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Abstract— We revisit the setting and the assumptions that
underlie the methodology of Dynamic Mode Decomposition
(DMD) in order to highlight caveats as well as potential
measures of when the applicability is warranted.

I. INTRODUCTION

Whereas the topic of “big data” dominates current
headlines in research publications and popular news analyses
alike, the perennial challenge of obtaining reliable models
with only limited observation records persists in a wide
range of time series applications. Indeed, one often hears
the admission from practitioners that the problem is not “big
data” but “small data.” A case in point is that of time series
of flow fields where a exceedingly high-dimension state is
observed, or partially observed, albeit over a relatively short
time window. It is precisely for these types of applications
that Dynamic Mode Decomposition (DMD) and related
frameworks were conceived to address [1], [2], [3].

DMD, as introduced by Schmid [4], is a formalism to
identify dominant modes in a high-dimensional time series
xt ∈ RN , t ∈ {1, 2, . . . , L}, where the dimensionality N of
the time series is much larger than the number L of available
observations. In its original formulation, DMD takes xt as
a convenient state of an underlying process and thereby
dispenses of higher order dynamics that may be hidden in
differences between the time series data. The more general
situation of higher order dynamics can be treated similarly
[5]. The main issue that we discuss in this paper is the
pertinence of the assumption in seeking such a state model,
and whether a reliable estimate of state dynamics should be
expected to reflect the structure of the data. We propose a
certain geometric concept, the so-called gap metric, as a tool
to provide guidance in selecting suitable dimension for the
sought DMD dynamics.

II. THE BASIC DMD RATIONALE

Consider the basic linear dynamical model,

xt+1 = Axt + vt, for 1 ≤ t ≤ L− 1, (1)

where A ∈ RN×N , while vt ∈ RN signifies deviation from
linear deterministic dynamics (via the input term vt that may
represent stochastic excitation or contribution of nonlinear
terms). The standard formulation of DMD is based on the
assumption that the time series under consideration, herein
xt, is dominated by the linear transition mechanism and that,
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moreover, the dimension of xt is much larger than the size
of the observation window t ∈ {1, 2, . . . , L}.

The underlying premise of the DMD methodology is
that the state vector xt concentrates along the directions
that correspond to the dominant eigendirections of A and,
thereby, DMD aims (and has a viable chance) to identify the
dynamics that are manifested by restricting the recurrence
relation in (1) onto the range of a data matrix

X1:n−1 := [x1, x2, . . . , xn−1] ,

for n possibly n ≤ L. Thereby, the dynamics are sought in
a matrix A ∈ RN×N to satisfy

X2:n ' AX1:n−1. (2)

One readily observes that the operator A, restricted onto
the orthogonal complement of range(X1:n−1), namely,

A|range(X1:n−1)⊥ ,

is undefined, i.e., it cannot be determined from the data.
DMD sets out to determine the action of A precisely on
the range of X1:n−1. To this end, complete the columns
of X1:n−1 into a basis B := {x1, . . . , xn−1, yn, . . . , yN}
for RN . We tacitly assume that {x1, . . . , xn−1} are linearly
independent. The matrix Yn:N = [yn, . . . , yN ] formed out of
the added (column) vectors is such that

T = [X1:n−1, Yn:N ]

is an invertible matrix. Selection of Yn:N can be accom-
plished by taking the singular value decomposition

X1:n−1 = UΣV T ,

of X1:n−1, where U ∈ O(N), V ∈ O(n− 1), and

Σ =


σ1(X1:n−1) 0 0 . . .

0 σ2(X1:n−1) 0 . . .

0 0
. . .

...
...


is the N × (n− 1) matrix with the (non-increasing sequence
of) singular values of X1:n−1 on the main diagonal, and
where O(k) denotes the group of k×k orthogonal matrices.
Then, if after partitioning

U = [U1:n−1, Un:N ] ,

the selection Yn:N = Un:N presents a convenient option.
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Similarity transformation with T bring A into the form[
S S12

S21 S22

]
,

since

A [X1:n−1, Yn:N ] = [X1:n−1, Yn:N ]

[
S S12

S21 S22

]
.

Thus,
AX1:n−1 = X1:n−1S + Yn:NS21.

Assuming that A leaves range(X1:n−1) invariant, the inter-
twining relation

AX1:n−1 = X1:n−1S,

holds and S represents the restriction of A onto the
range(X1:n−1). Thus, assuming that (2) holds with equality,

X2:n = X1:n−1S, (3)

captures the action of A on the range of X1:n−1 and can be
used to determine S. Finally, because the columns of X2:n−1

are shared with a shift between X1:n−1 and X2:n, S has the
companion structure

S =



0 0 0 . . . 0 −sn−1

1 0 0 . . . 0 −sn−2

0 1 0 . . . 0 −sn−3

...
. . .

...

0 0 0 . . . 1 −s1


,

where the last column can be easily identified by solving (3).

Since in general the linear transformation A does not
leave range(X1:n−1) entirely invariant, and thereby (2) does
not hold with equality, suitable approximation is carried out
to obtain S. For instance, the vector s = (sn−1, . . . , s1)T

can be obtained as

argmin{‖xn −X1:n−1s‖ | s ∈ Rn−1}, (4)

with ‖·‖ denoting (typically, and herein) the Euclidean norm,
and to this end several alternative numerical schemes have
been proposed (such as Arnoldi and SVD based) [4], [1].
This is the typical scenario for DMD applications.

Regularizations

An alternative approach is to regularize the problem
by penalizing perturbation from the recorded values in data
matrix X1:n−1 as well, e.g., by solving instead (the nonlinear
problem)

argmin{‖xn − X̂1:n−1s‖+ ε‖X̂1:n−1 −X1:n−1‖},

over s ∈ Rn−1 and X̂1:n−1 ∈ RN×(n−1), for a choice
of regularizing parameter ε > 0. This option is especially
reasonable in case (2) fails to hold with equality due to
stochastic noise or the (small) effect of nonlinear dynamics,
or in cases where prior information dictates specific structural
features, e.g., see [6], [7].

Higher order dynamics

We note that in cases when higher order dynamics are
at play and RN is insufficient as a choice of state-space,
an option is to account for lagged values of xt and thereby
select as a candidate state vector, e.g., for the case of one
lag,

ξt = [xTt , x
T
t−1]T .

Very little changes in the basic setting [5]. In this case,
one seeks an A matrix of twice the size to now satisfy
Ξ3:n ' AΞ2:n−1, cf. (2). Thence, a matrix S as before, with
companion structure, such that

Ξ3:n = Ξ2:n−1S,

with Ξk:` := [ξk, ξk+1, . . . , ξ`], assuming k < `, cf. (3).
Thus, without loss of generality we will only discuss the
basic setting without further expanding neither on higher
order dynamics nor on the relevance of various choices for
regularization.

Recap & concluding thoughts

The goal of DMD is to identify dominant modes that
capture the relation between successive vectors of the time
series. These are the roots of the polynomial

s(λ) = λn−1 + s1λ
n−2 + . . .+ sn−1.

An underlying premise of the framework is that the time se-
ries does not depart significantly from being quasi-stationary.
This can only hold if the observed dynamics result from a
“tug-of-war” mechanism that provides excitation and satu-
ration at the same time (a la fluctuation-dissipation). Such
a dynamical mechanism can be based in either or both, a
stochastic excitation or nonlinear contributions, as in (1),
where vt may represent either. This understanding suggests
that the effectiveness of DMD and relevance of the underly-
ing dynamical structure may be quantified by the geometric
relation between subspaces spanned by successive collections
of time series samples xt. From a more practical perspective,
the effectiveness of DMD, by necessity, rests on how close
the subspaces spanned by X2:n and X1:n−1 are.

To this end, below, we explore the use of geometric
concepts that quantify how well the above expectations are
reflected in the data. Specifically, we introduce the analogue
of partial autocorrelation coefficients that can serve to iden-
tify the size of the state-space that can usefully be exploited
to identify dominant dynamics.

III. INNOVATION PARAMETERS (IP’S)

The effectiveness of DMD in modeling the underly-
ing dynamics rests on the relation between the subspaces
spanned by {x`, x`+1, . . . , xm}, over a progression of inter-
vals [`,m] of indices and over varying window sizes.

Consider first intervals [1, k − 1] and [2, k]. We seek
to quantify the new information that is contained in the last
vector xk as compared to the previous ones. Specifically,
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we consider how introducing these new data point xk im-
pacts the distance (angle) between the subspaces spanned
by X1:k−1 and X2:k. Evidently, the angle between these
subspaces relates to the discrepancy in (2) from holding with
identity.

We will similarly consider relations between subspaces
corresponding to adjacent windows [`, ` + k − 1] and [` +
1, ` + k], and how angles between such subspaces change
with the indices ` and k.

Angles and the gap metric

The distance between subspaces X1,X2 ⊆ X , of a
Hilbert space X , is naturally quantified by the angle operator

R12 := ΠX1 |X⊥2 ,

where ΠX1
denotes orthogonal projection onto X1 and

|X⊥2 the restriction onto the orthogonal complement of X2.
Herein, we will be concerned with finite dimensional Eu-
clidean spaces. In this case, provided the subspaces have
equal dimension,

‖ΠX1
|X⊥2 ‖ = ‖ΠX2

|X⊥1 ‖.

This common value is equal to ‖ΠX1 −ΠX2‖ and defines a
bona fide metric between subspaces [8], [9]. This is referred
to as the gap metric

d(X1,X2) := ‖ΠX1
−ΠX2

‖.

Thence,
θ(X1,X2) := arcsin(d(X1,X2))

represents an angular distance between the two subspaces. In
case their dimensions do not match, the gap is the maximal
norm of the two angle operators, and equals d(X1,X2) = 1,
giving θ(X1,X2) = π

2 .

We remark that the gap metric between the graphs
(infinite dimensional subspaces) of dynamical systems is
a natural metric to quantify uncertainty in the context of
feedback theory, and as such has been a chapter in modern
robust control [10], [11], [12]. Herein we are only concerned
with the geometry of finite dimensional subspaces spanned
by the vectorial entries of a time series.

Innovation parameters and PARCOR’s

In order to assess the consistency of successive mea-
surements of the time series we consider gaps between sub-
spaces spanned by successive segments, e.g., range(X1:k)
and range(X2:k+1) for different values of k. We refer to
these as innovation parameters (IP)

rk := d(range(X1:k), range(X2:k+1))

In geometric terms, rk is the sine of the angular distance

θk := arcsin(rk)

between Πspan(x2,...,xk)⊥x1 and Πspan(x2,...,xk)⊥xk+1, i.e.,
between the projections of x1, xk+1 onto the orthogo-
nal complement of the span of the intermediate vectors
{x1, . . . , xk}. Similarly, we define

r`,k := d(range(X`:`+k−1), range(X`+1:`+k))

to capture the same dependence between successive sub-
spaces from a different starting point `.

The innovation parameters relate to the partial corre-
lation coefficients (PARCOR) in time-series analysis [13].
Specifically, if Xk, for k ∈ Z, denotes a stationary time
series, the PARCOR’s are the cosines of the angles between

X` − E{X`|X`+1, . . . ,X`+k−1} and
X`+k − E{X`+k|X`+1, . . . ,X`+k−1},

where in the conditioning, for k = 1, we define the set
{X`+1, . . . ,X`+k−1} as empty. Thus, these also coincide
with the cosines of the angles between the spans of the ran-
dom variables {X`, . . . ,X`+k−1} and {X`+1, . . . ,X`+k}.

Besides one set of parameters corresponding to sines
and the other to cosines, the main difference between IP’s
and PARCORs is that the latter are typically defined for
stationary stochastic processes, in that the kernel

K(i, j) := 〈xi, xj〉

has a Toeplitz structure [13], unlike the case of IP’s which
do not have necessarily a Toeplitz structure, as the geometric
relations in the data sequence x1, x2, . . . are not shift-
invariant in general, which often necessitates exploring the
double indexing in r`,k.

Recursive computation of innovation parameters

Efficient code for computing the innovation parameters
for large data sets and size of vectors can be devised based on
a recursive scheme that orthonormalizes successive vectors
in the data base.

Specifically, consider a basis for the span of X1:k−1

to consist of x1 and the orthonormal columns of a matrix
U2:k−1. Likewise, the span of X2:k consist of xk and
the orthonormal columns of a matrix U2:k−1. Define the
orthogonal projection onto the orthogonal complement of the
range of U2:k−1

Πrange(U2:k−1)⊥ = I − U2:k−1U
T
2:k−1.

Then the angle between the span of X1:k−1 and that of X2:k

coincides with the angle between

(I −Πrange(U2:k−1)⊥)x1 and (I −Πrange(U2:k−1)⊥)xk.

The computation of the innovation parameters can be carried
our recursively as follows:

Alternatively, the same computation can be carried
out in Matlab utilizing the “econ” feature that optimizes
computations for large data sets. E.g., in order to compute
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Algorithm 1: Recursive computation of IP’s

Data: Given X1:n ∈ RN×n
Initialization: k = 1, u1 = x1/‖x1‖, u2 = x2/‖x2‖,
ufirst = u1 − 〈u1, u2〉u2, ulast = u2, U = [u2];
while k < n− 1 do

ulast = xk+2;
ulast = ulast − UU ′ulast;
ulast = ulast/‖ulast‖;
rk = sin(acos(〈ufirst, ulast〉));
U = [U ulast];
ufirst = ufirst − 〈ufirst, ulast〉ulast;
ufirst = ufirst/‖ufirst‖;
k = k + 1;

end

rn set Y1 = X1:n−1 and Y2 = X2:n, and compute Ui for
i ∈ {1, 2} with the command [Ui,Σi, Vi] = svd(Yi,

′ econ′).
Since,

Πrange(Yi) = UiU
′
i ,

with Ui an isometry, the gap between the two subspaces is

‖U1U
′
1(I − U2U

′
2)‖2 = ‖U ′1 − (U ′1U2)︸ ︷︷ ︸

M

U ′2‖2

= ‖(U ′1 −MU ′2)(U1 − U2M
′)‖

= ‖I −MM ′ −MM ′ +MM ′‖
= ‖I −MM ′‖

Therefore, the gap between range(Y1) and range(Y2) is√
1− σmin(M)2

with M = U ′1U2 and σmin(M) denotes the smallest singular
value of M .

We proceed to motivate and explain the use and rel-
evance of the IP’s in selecting a suitable size n for the
dynamics sought via DMD on a case study. An additional
technical result will be presented along with the example,
which highlights the fact that under- or over-estimating the
value for n leads to significant errors in identifying the
correct dynamics. The example we consider is that of an
almost periodic series.

IV. A CASE STUDY

We consider time series data that represent a persistent
vorticity of a periodically fluctuating fluid flow field in
the wake behind a circular cylinder. This dataset can be
generated by publicly accessible code in [14]. The two-
dimensional Navier–Stokes equations are numerically solved
at Reynolds number 100, to obtain these data. At this
Reynolds number the flow undergoes a laminar vortex shed-
ding which can be thought of as a stable limit cycle. The
data are collected after simulations converge to steady-state
vortex shedding. The reader is referred to [1] for more details
on how these data set is extracted. At each of 151 snapshots,
the values of vorticity are stacked up in a column of a

(a) t = 1

(b) t = 5

(c) t = 9

Fig. 1: Vorticity field around a cylinder wake.

data matrix X which is of size 89351 × 151. The images
of the vorticity field at successive timestamps t ∈ {1, 5, 9}
are depicted in Fig. 1. The color-coded velocity fluctuations
reveal the mechanism of vortex shedding.

The DMD formalism, and specifically (4), is applied
to identify the apparent modes of oscillation. The resulting
modes are dramatically affected by the choice of n in (4).
Important points that are highlighted below by this example
are as follows:

i) The time series is very close to being periodic. This
can been seen in a variety of ways, including standard
spectral or Fourier analysis. However, here, we compute
the sequence of innovation parameters that quantify how
far the subspaces spanned by sliding windows of data,
of varying width, are from each other in the gap metric.
Fig. 2 shows rk = r1,k as a function of k. A dimple
that repeats with period 30 indicates periodicity. It turns
out that exact periodicity of the rk’s, even when the
time series is very close to being periodic is masked
by numerical sensitivity that we will comment later on
(discussion leading to, and Proposition 1).

ii) Fig. 3 shows the color-coded values of r`,k as a
function of ` vs. k. Specificaly, 50 snapshots are
drawn as rows. The `th row corresponds to the gap
d(range(X`:k), range(X`:k+1)), where k sweeps from
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Fig. 2: rk = d(range(X1:k), range(X2:k+1)) vs. k

Fig. 3: d(range(X`:k), range(X`:k+1)) color-coded as func-
tion of starting time ` and window size k

` + 1 to the last one. The first row, for instance,
corresponds to the values illustrated in Fig. 2. One can
observe that at each row the minimum gap occurs at
the 30th timestamp. This strongly suggests the use of a
time-window of size n = 30 to find the DMD modes.
Periodicity is evident in Fig. 3; the decreasing dimples
with period 30 are repeated with regularity starting from
any chosen starting point ` (cf. discussion leading to
Proposition 1).

iii) The eigenvalues of S (DMD eigenvalues of the sought
dynamics) are shown in Fig. 4 for n ∈ {20, 30, 40}.
It is observed that their distribution is dramatically
affected by the chosen size of the subspaces to compare
in (2), namely n.

iv) For n = 30 the eigenvalues of S shown in Fig. 4
have modulus ' 1, in agreement with the observed
periodic structure of the flow field. Exact periodicity of
the time series results in equispaced eigenvalues, and
this is (almost) the case here.

At this point we would like to explain the source of
the apparent diminishing of periodic dimples in Fig. 2 with
period 30. As noted earlier, the gap

rk = d(range(X1:k−1), range(X2:k))

(a) DMD eigenvalues for n = 20

(b) DMD eigenvalues for n = 30

(c) DMD eigenvalues for n = 40

Fig. 4: DMD eigenvalues from vorticity field data.
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is the sine of the angle between

ξ1 := Πspan(x2,...,xk−1)⊥x1, and

ξk := Πspan(x2,...,xk−1)⊥xk.

Assuming that the series is k-periodic, the angle between ξ1
and ξk is zero and xk ∈ span(x1, . . . , xk−1). Likewise,

xk+1 ∈ span(x2, . . . , xk) = span(x1, . . . , xk−1).

Denote
ξnext := Πspan(x2,...,xk−1)⊥xk+1,

and observe that the angle to ξk, and therefore ξ1 too, is
zero. Then

rk+1 = d(range(X1:k), range(X2:k+1))

= d(span(ξ1, X2:k−1, ξk), span(X2:k−1, ξk, ξnext))

= d(span(ξ1, ξk), span(ξk, ξnext)) = 0,

with all three vectors ξ1, ξk, ξnext co-linear. However, a small
perturbation in each has a significant effect. Indeed, for
arbitrarily small δ’s,

d(span(ξ1 + δ1, ξk + δk), span(ξk + δk, ξnext + δ))

= d(Πspan(ξk+δk)⊥(ξ1 + δ1),Πspan(ξk+δ)⊥(ξnext + δ))

can take any value on [0, 1]. We recast the claim as follows.

Proposition 1: Consider a vector ξ ∈ RN and pertur-
bations ξi = ξ + δi, for i ∈ {1, 2}, with δi ⊥ ξ. Then

d(span(ξ + δ1, ξ), span(ξ + δ2, ξ) = d(span(δ1), span(δ2)).

The proof is elementary. What this statement helps exemplify
(and prove) is that in cases where elements that determine
the span of interest are almost co-linear, the angles between
the subspaces are very sensitive to errors. A more precise
mathematical statement can be worked out that involves the
conditioning number of the matrix X1:k in our earlier setting.

V. CONCLUDING REMARKS

In many applications it is often the case that only a
limited number of data samples are available for modeling
an otherwise exceedingly high dimensional process. The
dimensionality of the process, which may represent visual
or distributional fields, in conjunction with the limited ob-
servation record requires careful analysis. It is precisely this
regime of “small data,” i.e., “few samples,” that has been
a challenge in traditional signal analysis since its inception
[15], and has led to entropic regularization among other
methodologies. DMD represents a more recent development
that aims to identify suitable linear dynamics that can explain
the data.

Historically, DMD has roots and ramifications that relate
to theory of the Koopman operator [16], [17], [18]. Data
that originate from periodic and quasi-periodic attractors
of nonlinear dynamics can also be dealt with in the same
framework [1]. Thus the concept of the gap metric, as a tool
to quantify how subspaces spanned by data impact modeling
assumptions, is expected to be applicable in this more general

setting. The present work summarizes some of the findings
in a developing treatise into the topic of extracting dynamics
from high dimension distributional fields [19], specifically,
the relevance of the gap metric as a tool to provide guidance
in selecting appropriate dimensionality for models for such
processes.
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