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ABSTRACT 24 

Previous research suggests that learning to use a phonetic property (e.g., voice-onset-25 

time, VOT) for talker identity supports a left ear processing advantage. Specifically, listeners 26 

trained to identify two “talkers” who only differed in characteristic VOTs showed faster talker 27 

identification for stimuli presented to the left ear compared to the right ear, interpreted as 28 

evidence of hemispheric lateralization consistent with task demands. Experiment 1 (n = 97) 29 

aimed to replicate this finding and identify predictors of performance; experiment 2 (n = 79) 30 

aimed to replicate this finding under conditions that better facilitate observation of laterality 31 

effects. Listeners completed a talker identification task during pre-test, training, and post-test 32 

phases. Inhibition, category identification, and auditory acuity were also assessed in experiment 33 

1. Listeners learned to use VOT for talker identity, which was positively associated with auditory 34 

acuity. Talker identification was not influenced by ear of presentation, with Bayes Factors 35 

indicating strong support for the null. These results suggest that talker-specific phonetic variation 36 

is not sufficient to induce a left ear advantage for talker identification; together with the extant 37 

literature, they instead suggest that hemispheric lateralization for talker-specific phonetic 38 

variation requires phonetic variation to be conditioned on talker differences in source 39 

characteristics.  40 

Keywords: speech perception; talker identification; hemispheric lateralization; perceptual 41 

learning  42 
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I. INTRODUCTION 43 

The acoustic speech signal simultaneously conveys information regarding who is 44 

speaking and what is being said. Traditionally, these two functions were considered to be 45 

supported by different aspects of the acoustic signal, with indexical cues (e.g., fundamental 46 

frequency) used to support voice recognition and phonetic cues (e.g., voice-onset-time, formant 47 

patterns) used to support linguistic processing. We now know that a strict functional delineation 48 

between phonetic and acoustic cues is not possible. For example, talkers show stable individual 49 

differences in how they implement phonetic cues (e.g., Allen et al., 2003; Chodroff & Wilson, 50 

2017; Hillenbrand et al., 1995; Theodore et al., 2009) and listeners are sensitive to these 51 

differences (e.g., Allen & Miller, 2004; Ganugapati & Theodore, 2019; Myers & Theodore, 52 

2017; Theodore et al., 2015; Theodore & Miller, 2010). Experience with a talker’s voice support 53 

advantages for linguistic processing (e.g., Nygaard et al., 1994; Nygaard & Pisoni, 1998), and 54 

experience with a given language supports advantages for voice processing (e.g., Goggin et al., 55 

1991; Orena et al., 2015; Perrachione et al., 2011) – providing further evidence that the 56 

processing of phonetic and indexical aspects of the speech stream are intertwined. 57 

Though behavioral evidence points to a tight integration between phonetic and indexical 58 

cues, the extant neuroimaging literature suggests disassociate hemispheric dominance for these 59 

two aspects of speech processing, with left temporal regions dominant for processing phonetic 60 

identity and right temporal regions dominant for processing voice identity (e.g., Formisano et al., 61 

2008; Latinus et al., 2013; Bonte et al., 2014; Chang et al., 2010; Liebenthal et al., 2003; Myers, 62 

2007; Belin & Zatorre, 2003; van Lancker et al., 1989). This may reflect different timescales for 63 

phonetic and indexical cues (e.g., Poeppel, 2003) and/or different functional tasks (e.g., von 64 

Kriegstein et al., 2003). Training studies have shown that perceptual learning of talker-specific 65 
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phonetic detail can alter hemispheric processing of phonetic cues. For example, Myers and 66 

Theodore (2017) exposed listeners to two talkers who differed in their characteristic VOTs. 67 

Following exposure, neural activation was measured using fMRI as listeners completed a 68 

phonetic identification task for VOT variants that were typical or atypical of each talker. Their 69 

results showed that right temporoparietal regions including the right middle temporal gyrus 70 

(rMTG) implicated in voice processing were sensitive to talker typicality. Moreover, a functional 71 

connectivity analysis showed greater connectivity between the rMTG and two regions in the left-72 

hemisphere phonetic network (left postcentral gyrus, left middle temporal gyrus and left superior 73 

temporal sulcus) for talker typical compared to talker atypical VOT variants. 74 

In addition, Francis and Driscoll (2006) reported evidence indicating that short-term 75 

perceptual training could induce a left ear advantage for using VOT as a cue to talker 76 

identification that results in faster talker identification decisions for stimuli presented to the left 77 

compared to the right ear, consistent with right hemisphere dominance for talker processing. The 78 

transmission of sound from the peripheral to central nervous system consists of contralateral 79 

auditory pathways; that is, auditory fibers that carry sound from the ear to the brain decussate 80 

such that monaural stimulation results in relatively strong activation in the contralateral 81 

hemisphere with relatively weaker activation of the ipsilateral hemisphere (e.g., Pickles, 1998; 82 

Jancke et al., 2002). This is not to say that sound detected by the left ear is only processed by the 83 

right hemisphere, but the contralateral nature of the auditory pathway has been successful 84 

exploited to measure hemispheric dominance using behavioral as opposed to neuroimaging 85 

methods (e.g., Kimura, 1967), as we describe further below. During training phase of the Francis 86 

and Driscoll (2006) study, listeners heard two sets of tokens, one with characteristically short 87 

VOTs (30 ms) and one with characteristically longer VOTs (50 ms). On each trial, a token was 88 
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presented binaurally and listeners were asked to identify which of two talkers produced that 89 

token. Feedback was provided to train listeners to associate the short VOTs as one talker and the 90 

longer VOTs as the other talker. Both sets of tokens were based on the speech of a single talker 91 

and thus indexical cues (e.g., fundamental frequency, vocal quality) were held constant between 92 

the two “talkers.” Consequently, the two talkers only differed in their characteristic VOTs. 93 

During the pre- and post-test phases, listeners completed the same talker identification task with 94 

two key exceptions: (1) no feedback was provided and (2) stimuli were presented monaurally 95 

(i.e., either to the left or right ear on a given trial). Francis and Driscoll hypothesized that a left 96 

ear (i.e., right hemisphere) processing advantage would emerge at post-test for listeners who 97 

learned to process the phonetic property (i.e., VOT) as a cue to talker identification. Consistent 98 

with this hypothesis, reaction times to correct responses were on average 92 ms faster for stimuli 99 

presented to the left ear compared to the right ear at post-test. This left ear advantage was not 100 

present at pre-test, suggesting that it emerged as a consequence of learning during the training 101 

phase. 102 

Though broadly consistent with the extant neuroimaging literature, the finding from 103 

Francis and Driscoll (2006) is striking in the context of the dichotic listening literature. 104 

Specifically, Francis and Driscoll observed a laterality effect (i.e., a left ear advantage) for 105 

stimuli that were presented monaurally. Hemispheric dominance for processing different types of 106 

acoustic signals has been measured through behavioral dichotic listening paradigms. In a 107 

traditional dichotic listening task, relative contributions of the left and right hemispheres are 108 

segregated by presenting a target stimulus to either the left or right ear in conjunction with a 109 

competing stimulus to the ear that does not receive the target stimulus (Kimura, 1967). Thus, 110 

during a dichotic listening task, there is simultaneous presentation of different stimuli to each 111 
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ear, with one ear receiving the target stimulus and the other ear receiving a competing stimulus. 112 

As reviewed in Hugdahl (2011), over 50 years of research using the dichotic listening paradigm 113 

has established both its utility as a behavioral method to measure brain laterality effects as well 114 

as a clear understanding of the importance of presenting dichotic stimuli – that is, a target and a 115 

competitor to opposite ears – in order to elicit laterality effects. Indeed, the latter point was 116 

established from the introduction of this paradigm (Kimura, 1967). Because Francis and Driscoll 117 

(2006) did not present a competing stimulus in the ear contralateral to the ear receiving the target 118 

stimulus, their task was not dichotic in nature, and thus it is perhaps surprising that the left ear 119 

processing advantage for talker identification was observed using a monaural listening task. 120 

Their finding may suggest that a competing stimulus in the contralateral ear of interest is 121 

extraneous for a task of this nature. Consistent with this interpretation, González et al. (2010) 122 

demonstrated that a left ear processing advantage for repetition-priming effects in a talker 123 

identification task was strengthened when noise was presented in the contralateral ear, but the 124 

competing stimulus was not necessary to induce the left ear advantage. 125 

In addition, the finding from Francis and Driscoll (2006) bears revisiting due to several 126 

methodological and empirical points. First, the left ear advantage was observed in a very small 127 

sample of participants (n = 8). Small sample sizes alone are not a determinant of either research 128 

quality or reproducibility. Indeed, the “small-N” design, in which an extremely large number of 129 

observations are made on only a few participants, has a rich precedent in the psychophysics 130 

domain (Smith & Little, 2018). In some cases, small-N designs may even promote better power 131 

and inferential validity compared to large-N designs (Smith & Little, 2018). However, for 132 

traditional designs, such as that used in Francis and Driscoll (2006), small sample sizes can 133 

increase the likelihood of false positives in the literature just as they can decrease the ability to 134 
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detect true effects (e.g., Button et al., 2013). Second, these participants reflected those who met a 135 

learning criterion, defined as a minimum improvement in talker identification accuracy of 5% 136 

from pre- to post-test. While it is sensible to limit analyses to those who learned to associate 137 

VOT as a cue to talker identification given the nature of the hypothesis, no justification for the 138 

specific learning criterion was provided. Third, the statistical evidence for the key interaction 139 

between test phase and ear of presentation, while statistically significant, was only marginally so 140 

(p = 0.04). Fourth, the small sample (n = 8) who met the learning criterion reflected fewer than 141 

half of the total participants tested (n = 18). That is, most participants were not able to learn to 142 

associate VOT as a cue to talker identification, and this study did not reveal what factors may 143 

influence whether a given listener can learn to use phonetic properties to support talker 144 

identification. 145 

For these reasons, the goal of the current work is two-fold. First, in each of two 146 

experiments, we conducted a high-powered replication of Francis and Driscoll (2006) in order to 147 

examine whether the left ear processing advantage for phonetic cues to talker identification 148 

would generalize to a larger sample. Second, all participants in experiment 1 completed four 149 

individual differences measures in addition to the primary talker identification task to identify 150 

potential predictors of talker identification performance. The talker identification task was 151 

modeled after the paradigm used in Francis and Driscoll (2006). In experiment 1, test stimuli 152 

were presented monaurally to either the left or right ear. In experiment 2, test stimuli were 153 

presented dichotically, with noise presented to the contralateral ear of the target stimulus. The 154 

four individual differences measures consisted of a flanker task, a pitch perception task, a 155 

category identification task, and a within-category discrimination task. We assessed inhibitory 156 

control (using a flanker task) and pitch perception given previous evidence linking both of these 157 
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constructs to talker identification ability (Theodore & Flanagan, 2020; Xie & Myers, 2015). For 158 

example, increased inhibitory control has been positively associated with talker identification 159 

accuracy (Theodore & Flanagan, 2020) and invoked as an explanatory mechanism for heighted 160 

talker identification abilities in bilingual compared to monolingual children (Levi, 2018). On this 161 

view, heighted talker identification may reflect a stronger ability to inhibit irrelevant information 162 

(e.g., phonetic or other linguistic content) to instead focus on other aspects of the signal (e.g., 163 

fundamental frequency) for the purposes of talker identification. Pitch perception has also been 164 

positively associated with talker identification and talker discrimination (Theodore & Flanagan, 165 

2020; Xie & Myers, 2015). Using a flanker and pitch perception task to assess inhibitory control 166 

and auditory acuity, respectively, supports the examination of individual differences in non-167 

speech abilities as potential predictors of performance in the current speech perception task. In 168 

contrast, the category identification task assessed listeners’ VOT voicing boundaries and 169 

identification slopes (the latter as a measure of how categorically listeners perceived the voicing 170 

contrast). The within-category discrimination task assessed listeners’ perceptual acuity for VOT 171 

specifically which is a logical precursor to learning to use VOT as a cue to talker identification. 172 

If the left ear advantage for phonetic cues to talker identification generalizes beyond the 173 

original sample (Francis & Driscoll, 2006), then we predict that listeners who learn to associate 174 

VOT as a cue to talker identification will show faster reaction times for stimuli presented to the 175 

left ear compared to the right ear during the talker identification post-test. If increased inhibitory 176 

control and auditory acuity are associated with enhanced talker identification, then we predict a 177 

positive relationship between performance on the talker identification task and performance on 178 

the flanker, pitch perception, and within-category discrimination tasks. The relationship between 179 

talker identification and categorical perception was exploratory in the current work. Listeners 180 
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who show early VOT voicing boundaries may not have perceived the VOT variants in the talker 181 

identification task as belonging to the same category, which would result in improved talker 182 

identification accuracy given that the two talkers would be perceived as saying different words 183 

(instead of saying the same word with different VOTs). Listeners who have shallower 184 

identification slopes may be more sensitive to within-category variation compared to listeners 185 

who have more categorical slopes; if so, then those with shallower identification slopes would 186 

show improved performance on the talker identification task. 187 

II. EXPERIMENT 1 188 

A. Methods 189 

1. Participants 190 

One hundred and forty participants were recruited from the Prolific participant pool 191 

(https://www.prolific.co; Palan & Schitter, 2018) for session one. All participants were 192 

monolingual English speakers between 18 – 35 years of age currently residing in the US with no 193 

history of language-related disorders. Forty-three participants were excluded due to failure to 194 

pass all three headphone screens (n = 28) or failure to meet the training accuracy criterion (n = 195 

15), described in detail below. The final sample (n = 97) included 42 women and 55 men (mean 196 

age = 27 years, SD = 4 years). All of these participants were invited to participate in session two, 197 

with 59 participants choosing to do so. The mean time between the two sessions was 11 days (SD 198 

= 12 days, range = 1 – 35 days). 199 

2. Power analysis 200 

The sample size was determined based on a priori power analyses using the simr package 201 

(Green & MacLeod, 2016) in R. First, trial-level data from Francis and Driscoll (2006) for the 202 

effect we aimed to replicate (i.e., the data underlying the interaction shown in their Figure 1) 203 

https://www.prolific.co/
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were fit to a linear mixed effects model using the lmer() function from the lme4 package (Bates 204 

et al., 2015) in R. The dependent variable was log-transformed reaction time. The fixed effects 205 

were test (pre-test = -0.5, post-test = 0.5), ear (left ear = -0.5, right ear = 0.5), and their 206 

interaction. The random effects structure consisted of random intercepts by subject and random 207 

slopes by subject for test and ear. Second, we created a data frame to reflect the structure of our 208 

design, given that power for mixed effects model is linked to number of observations (in addition 209 

to sample size). As described below, each participant completed 80 trials in each test phase, and 210 

we only analyzed RTs for correct responses (as in Francis and Driscoll, 2006). We 211 

conservatively simulated accuracy at 60% correct, resulting in a simulated data set that consisted 212 

of 48 trials/participant at each test session. Third, the parameters of the original model were 213 

simulated in our data structure 500 times using the powerCurve() function in simr, which showed 214 

that 55 participants were required to achieve 80% power to detect the test by ear interaction 215 

observed in Francis and Driscoll (2006). Thus, we aimed to test 55 participants who met the 216 

learning criterion from Francis and Driscoll (2006) in order to perform an adequately powered 217 

replication. The recruited sample (n = 140) was based on estimated attrition rates (e.g., failure to 218 

pass headphone screens, failure to pass training criterion, failures to meet learning criterion) and 219 

resulted in 58 participants who met the learning criterion from Francis and Driscoll (2006), as we 220 

describe further below. 221 

3. Stimuli 222 

a. Talker identification. Stimuli for the talker identification task were drawn from two 223 

VOT continua, one that perceptually ranged from gain to cane and one that perceptually ranged 224 

from goal to coal. Both continua were created by applying an LPC synthesis procedure to natural 225 

productions of the voiced endpoints (i.e., gain, goal) elicited from a single female, monolingual 226 
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speaker of American English. These stimuli are a subset of those used in Theodore and Miller 227 

(2010), to which the reader is referred to for comprehensive details on stimulus construction.  228 

From each of these continua, we selected two unique tokens for each of the two talkers, 229 

who were fictitiously referred to as Joanne and Sheila. The selected tokens were in the 230 

unambiguous, voiceless region of the original continua and thus perceptually cued the words 231 

cane and coal. The tokens were selected so that Joanne had characteristically shorter VOTs than 232 

Sheila. Specifically, the selected VOTs ranged between 84 – 89 ms for Joanne and between 165 233 

– 170 ms for Sheila. With this procedure, the only difference between the two talkers’ voices was 234 

their characteristic VOTs. These stimuli were used for both the training and test phases because 235 

the left ear advantage in Francis and Driscoll (2006) only emerged for trained items. As 236 

described in the procedure section below, stimuli were presented binaurally during training and 237 

monaurally at test. 238 

b. Individual differences measures. Separate stimulus sets were used in each of the four 239 

individual differences tasks. Stimuli for the flanker task consisted of linear arrays of five arrows 240 

in which the middle arrow was either congruent (e.g., < < < < <) or incongruent (e.g., < < < > < 241 

<) with the flanking arrows. There were 80 arrays in total, 20 congruent and 20 incongruent 242 

arrows for each of two arrow directions (i.e., left vs. right). Stimuli for the pitch perception task 243 

consisted of a subset of the local pitch perception stimuli from Xie and Myers (2015), to which 244 

the reader is referred for comprehensive details on stimulus construction. In brief, each stimulus 245 

consisted of a pair of six-tone sequences separated by 1000 ms of silence. There were 32 pairs in 246 

total; 16 of which contained two identical tone sequences (i.e., same trials) and 16 of which 247 

contained tone sequences that differed in pitch for one of the six tones of the sequence (i.e., 248 

different trials). 249 
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Stimuli for the category identification and within-category discrimination tasks consisted 250 

of tokens drawn from gain-cane and goal-coal VOT continua, created using the methods 251 

described for the talker identification stimuli. Critically, the stimuli used for the category 252 

identification and within-category discrimination tasks were produced by a different talker than 253 

was used in the main talker identification learning task in order to minimize potential transfer of 254 

learning between the two sessions. Stimuli for the category identification task consisted of 10 255 

tokens from each continuum consisting of VOTs that ranged between 21 – 99 ms; as a 256 

consequence, the selected VOTs perceptually cued both endpoints for each continuum (i.e., gain, 257 

cane, goal, coal). Stimuli for the within-category identification task consisted of 15 tokens from 258 

each continuum consisting of VOTs that ranged between 79 – 208 ms; accordingly, all selected 259 

tokens cued the voiceless endpoint (i.e., cane, coal). The selected tokens were arranged into 260 

same and different pairs; word was held constant on a given pair. There were 12 unique same 261 

pairs that sampled the range of selected VOTs. There were 36 different pairs, reflecting six 262 

unique pairs for each of three step distances between pair members (reflecting a difference in 263 

VOT of 28, 54, or 80 ms, respectively) and two pair orders. As we describe in the procedure 264 

section, we presented three repetitions of the same pairs and two repetitions of the different pairs 265 

during the within-category discrimination task in order to equate the number of same and 266 

different trials. 267 

4. Procedure 268 

a. Session 1. All testing was completed online using Gorilla Experiment Builder 269 

https://gorilla.sc; Anwyl-Irvine et al., 2019). After providing informed consent, participants 270 

completed a series of headphone screens. These included two existing protocols that use dichotic 271 

listening tasks to screen for headphone compliance on web-based platforms (Milne et al., 2021; 272 

https://gorilla.sc/
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Woods et al., 2017). The third screen was a custom channel detection task in which listeners 273 

heard a tone presented to either the left or right ear and were asked to indicate via button press in 274 

which ear they heard the tone. The channel detection task was used in the headphone screen 275 

battery because although the Woods et al. (2017) and Milne et al. (2020) dichotic listening tasks 276 

assess use of stereo headphones, they do not assess whether a participant has placed the left 277 

channel on the left ear (and thus the right channel on the right ear), which is a critical 278 

requirement for the present study. Participants who did not pass on all three screens were 279 

excluded from analyses; pass was defined as ≥ 5 correct responses (of six total trials) on the 280 

Woods et al. (2017) and Milne et al. (2020) tasks and ≥ 7 correct responses (of eight total trials) 281 

on the custom channel detection task. 282 

After completing the headphone screens, participants completed the talker identification 283 

task. The talker identification task consisted of familiarization, pre-test, training, and post-test 284 

phases. During familiarization, listeners heard two repetitions of the four tokens for each talker 285 

while seeing the name of the talker displayed on the screen. Stimuli during familiarization were 286 

presented binaurally and blocked by word and talker (i.e., they heard Joanne’s two cane tokens, 287 

and then Sheila’s two cane tokens, followed by Joanne’s two coal tokens and then Sheila’s two 288 

coal tokens). Listeners were directed to listen to each word, view the talker’s name, and try to 289 

learn each talker’s voice; no responses were collected during familiarization. 290 

Following familiarization, listeners completed the pre-test phase. On a given trial, stimuli 291 

were presented monaurally to either the left or right channel. The pre-test consisted of 80 trials (2 292 

tokens x 2 words x 2 talkers x 2 channels x 5 repetitions) presented in a different randomized 293 

order for each participant. Participants were asked to indicate whether the word was produced by 294 

Joanne or by Sheila as quickly as possible without sacrificing accuracy. Participants made their 295 
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responses using the “a” and “l” keys and were instructed to keep their index fingers on these 296 

keys throughout the experiment to facilitate faster response times; a visual diagram was provided 297 

to demonstrate correct finger placement during the instructions. The instructions explicitly noted 298 

that this was not a sound localization task to help ensure that participants understood that they 299 

should be indicating which talker they heard on each trial and not ear of stimulus presentation. 300 

No feedback was provided during pre-test. 301 

After the pre-test, participants completed the training phase. The training phase consisted 302 

of 400 trials (2 tokens x 2 words x 2 talkers x 50 repetitions) of talker identification following the 303 

task instructions described for pre-test; trials were randomized separately for each participant. 304 

Stimuli were presented binaurally and feedback was provided on every trial in the form of a 305 

green checkmark (for correct responses) or a red “x” (for incorrect responses). Session one 306 

concluded with the post-test phase, which was identical to the pre-test phase. 307 

A progress bar was displayed on the bottom center of the screen throughout the entirety 308 

of the experiment and the ISI was constant at 1000 ms (measured from the participant’s response 309 

on each trial to the onset of the next stimulus). The entire procedure lasted approximately 35 310 

minutes and participant were compensated $5.83 for their participation. 311 

b. Session 2. All testing was completed online using Gorilla Experiment Builder (Anwyl-312 

Irvine et al., 2020). After providing informed consent, listeners completed the Woods et al. 313 

(2018) and Milne et al. (2020) headphone screens. All participants who returned for session two 314 

(n = 59) passed all headphone screens at session two. After completing the headphone screens, 315 

participants completed the within-category discrimination, flanker, category identification, and 316 

pitch perception tasks in this fixed order. The within-category discrimination consisted of 72 317 

same trials (2 words x 12 VOTs x 3 repetitions) and 72 different trials (2 words x 3 distances x 6 318 
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unique pairs x 2 pair orders). On each trial, participants were directed to indicate whether the two 319 

members of the pair were the same or different by clicking one of two appropriately labeled 320 

buttons. The flanker task consisted of one randomization of the 80 linear arrays (2 trial types x 2 321 

directions x 20 repetitions). On each trial, participants were directed to indicate the direction of 322 

the central arrow as quickly as possible without sacrificing accuracy. Participants were asked to 323 

keep their index fingers on top of the response keys throughout the task and a visual diagram 324 

illustrating correct finger placement was provided during the instructions. 325 

The category identification task consisted of 80 trials (2 continua x 10 VOTs x 4 326 

repetitions). Participants were asked to indicate whether the word began with a “g” as in gain 327 

and goal or “k” as in cane and coal by clicking on an appropriately labeled button. The pitch 328 

perception task consisted of 64 trials (2 trial types x 16 unique pairs x 2 repetitions). On each 329 

trial, participants indicated whether the two members of the pair were the same or different by 330 

clicking on an appropriately labeled button. For all tasks, trials were presented in a separate 331 

randomized order for each participant and the ISI was 1000 ms. The entire procedure lasted 332 

approximately 35 minutes; participants were compensated $5.83 for their participation. 333 

B. Results 334 

1. Talker identification 335 

a. Training. Trial-level data (for all tasks) and a script (in R) is available on the Open 336 

Science Framework (https://osf.io/ge2vb/). Executing the script will reproduce all statistics 337 

reported in this manuscript in addition to generating all figures. For the training phase, accuracy 338 

for each participant was calculated in terms of proportion correct responses across all training 339 

trials. We excluded 15 participants because they failed to meet the inclusion criterion for training 340 

accuracy (≥ 0.60). Mean accuracy across included participants (0.83, SD = 0.10, range = 0.61 – 341 

https://osf.io/ge2vb/
https://osf.io/ge2vb/)
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0.98) was significantly above chance as confirmed by a one-sample t-test [t(96) = 32.495, p < 342 

0.001), which was expected based the inclusion criterion. 343 

b. Test. Accuracy and reaction time during the test phases were analyzed separately. For 344 

accuracy, trial-level responses (0 = incorrect, 1 = correct) were submitted to a generalized linear 345 

mixed effects model with the binomial response family as implemented with the glmer() function 346 

of the lme4 package (Bates et al., 2015) in R. The model included fixed effects of test (pre-test = 347 

-0.5, post-test = 0.5), ear (left = -0.5, right = 0.5), and their interaction. The random effects 348 

structure included random intercepts by subject and random slopes by subject for test and ear. 349 

The model revealed a main effect of test (𝛽̂𝛽 = 0.469, SE = 0.069, z = 6.829, p < 0.001), indicating 350 

that accuracy improved from pre-test (0.71, SD = 0.14) to post-test (0.79, SD = 0.12). There was 351 

no main effect of ear (𝛽̂𝛽 = 0.034, SE = 0.043, z = 0.780, p = 0.435), nor an interaction between 352 

test and ear (𝛽̂𝛽 = -0.090, SE = 0.078, z = -1.150, p = 0.250). The main effect of test is visualized 353 

in Figure 1. 354 

FIG. 1. (Color online.) Results of the talker identification task in experiment 1. Panel A shows 355 
performance during the talker identification task for all participants (n = 97); panel B shows 356 
performance during the talker identification for those who met the learning criterion (n = 58). In 357 
both panels, the distribution of participants’ accuracy scores (mean proportion correct) for each 358 
test is shown at left, and the distribution of participants’ mean response times to correct 359 
responses by test and ear of stimulus presentation is shown at right. 360 
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Trial-level reaction times (RT) for correct responses during test were analyzed in a linear 361 

mixed effects model using the lmer() function of the lme4 package (Bates et al., 2015). The 362 

Satterthwaite approximation of degrees of freedom was used to evaluate statistical significance 363 

using the t distribution (Kuznetsova et al., 2017). RTs were log-transformed and trials exceeding 364 

2.5 SDs of a participant’s mean log RT were excluded (3.2% of correct RTs). The fixed and 365 

random effects structure was identical to that described for the accuracy analysis. The results of 366 

the model showed a main effect of test (𝛽̂𝛽 = -0.073, SE = 0.020, t = -3.620, p < 0.001), with RTs 367 

decreasing from pre-test (mean = 1051 ms, SD = 268) to post-test (mean = 958 ms, SD = 220). 368 

There was no main effect of ear (𝛽̂𝛽 = 0.008, SE = 0.005, t = 1.489, p = 0.140), nor an interaction 369 

between test and ear (𝛽̂𝛽 = -0.011, SE = 0.010, t = -1.075, p = 0.283). Figure 1 shows the 370 
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distribution of participants’ mean RTs by test session and ear. 371 

Recall that in Francis and Driscoll (2006), the left ear advantage at post-test emerged 372 

only for listeners who met their learning criterion, defined as ≥ 5% improvement in talker 373 

identification accuracy from pre-test to post-test. A parallel reaction time analysis was performed 374 

limited to listeners in the current study who met this criterion (n = 58). The results converged 375 

with the full sample; reaction time decreased from pre-test to post-test (𝛽̂𝛽 = -0.083, SE = 0.031, t 376 

= -2.671, p = 0.010), but there was no main effect of ear (𝛽̂𝛽 = 0.008, SE = 0.007, t = 1.152, p = 377 

0.255), nor an interaction between test and ear (𝛽̂𝛽 = -0.020, SE = 0.013, t = -1.541, p = 0.123). 378 

2. Individual differences measures 379 

a. Flanker. Mean accuracy (proportion correct) across participants was near ceiling (0.97, 380 

SD = 0.03, range = 0.85 – 1.00). To ensure that the expected inhibition effect was observed 381 

across participants in the aggregate, trial-level log RTs for correct responses were analyzed in a 382 

linear mixed effects model following the methods outlined previously. RTs were log-transformed 383 

and trials exceeding 2.5 SDs of a participant’s mean log RT were excluded (2.8% of correct 384 

RTs). Congruency was entered as a fixed effect (congruent = -0.5, incongruent = 0.5); the 385 

random effects structure consisted of random intercepts by participant and random slopes for 386 

congruency by participant. The results of the model confirmed a main effect of congruency (𝛽̂𝛽 = 387 

0.049, SE = 0.006, t = 7.648, p < 0.001), with RTs faster for congruent (mean = 434 ms, SD = 388 

63) compared to incongruent trials (mean = 455 ms, SD = 61). For each subject, inhibition was 389 

calculated as the difference in RT between congruent and incongruent trials; thus, more negative 390 

scores indicate weaker inhibition. Performance on the four individual differences measures is 391 

shown in Figure 2. 392 

FIG. 2. (Color online.) Performance on the four individual differences measures in experiment 1. 393 
Panel A shows the distribution of participants’ mean response times by trial type (left) and the 394 
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distribution of interference scores (right) for the flanker task. Panel B shows the distribution of 395 
accuracy scores for same and different trials (left) and the distribution of sensitivity scores (right) 396 
for the pitch perception task. Panel C shows the relationship between /k/ responses and VOT for 397 
each participant as determined by logistic regression (left) and the distribution of identification 398 
slopes (right) for the category identification task. Panel D shows the distribution of accuracy 399 
scores for same and different trials (left) and the distribution of sensitivity scores (right) for the 400 
within-category discrimination task. 401 

 

b. Pitch perception. To quantify performance on the pitch perception task, we calculated 402 

sensitivity (d’) separately for each participant. Hit was defined as responding “same” for same 403 

tone sequence trials; false alarm was defined as responding “same” for different tone sequence 404 

trials. Mean sensitivity (d’) across participants was 1.96 (SD = 1.01), which was significantly 405 

greater than zero [t(58) = 14.847, p < 0.001]. 406 

c. Category identification. Trial-level identification responses were fit to a logistic 407 

regression separately for each participant; in each regression, VOT was the independent variable 408 

and binary response (0 = /g/, 1 = /k/) was the dependent variable. Two parameters were derived 409 

from each regression: (1) the slope of the identification function and (2) the category boundary, 410 
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defined as the VOT corresponding to 0.50 proportion /k/ responses. To derive the slope, we used 411 

the beta estimate for VOT from the regression model; with this metric, higher values indicate 412 

steeper identification slopes. The category boundary was derived using the model intercept and 413 

beta estimate for VOT from the regression model according to equation (1), where 𝛽̂𝛽0 is the 414 

intercept, 𝛽̂𝛽1 is the slope, and x is the category boundary. 415 

𝛽̂𝛽0 + 𝛽̂𝛽1x = log( 0.5
1−0.5

); x = -𝛽𝛽
�0 
𝛽𝛽�1

   Equation (1) 416 

Two participants were excluded from subsequent category identification analyses because they 417 

did not show a statistically significant relationship between VOT and phonetic decisions; instead,  418 

their response functions were flat suggesting that they did not perform the task as directed. 419 

Across participants, the mean slope of the identification function was 0.146 (SD = 0.076) and the 420 

mean category identification boundary was 54 ms (SD = 9 ms). 421 

d. Within-category discrimination. To quantify performance on the within-category 422 

discrimination task, we calculated sensitivity (d’) separately for each participant. Hit was defined 423 

as responding “same” for same trials; false alarm was defined as responding “same” for different 424 

trials. Mean sensitivity (d’) across participants was 1.20 (SD = 0.56), which was significantly 425 

greater than zero [t(58) = 16.348, p < 0.001]. 426 

3. Relationship between talker identification and individual differences measures 427 

 A series of correlations were performed to examine whether performance on the 428 

individual differences measures predicted performance on the talker identification task. Five 429 

measures of individual differences were considered, which included inhibition (congruent RT – 430 

incongruent RT), sensitivity (d’) for the pitch perception task, identification slope and category 431 

boundary for the category identification task, and sensitivity (d’) for the within-category 432 

discrimination task. Each of these five measures was correlated with four measures from the 433 
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talker identification task, which included accuracy during training, accuracy at pre-test, accuracy 434 

at post-test, and learning (accuracy at post-test – accuracy at pre-test). These correlations are 435 

shown in Table I and visualized in Figure 3. 436 

TABLE I. Pearson’s correlation coefficient (r) and p-value (in parentheses) relating the five 437 
individual difference measures to each of four talker identification measures. Cells in bold 438 
indicate statistical significance with 𝛼𝛼 = 0.05. Cells with underline indicate statistical 439 
significance after applying the conservative Bonferroni correction to account for family-wise 440 
error rate (as described in the main text). The degrees of freedom were 57 for all measures except 441 
for the category identification measures, which had degrees of freedom equal to 55 (given that 442 
two participants were excluded due to failure to complete the task as directed). Parallel analyses 443 
were performed using Spearman’s rank-order correlations and the results converged in all cases; 444 
these correlations can be viewed by executing the script provided in the OSF repository for this 445 
manuscript. 446 

Individual 
differences measure 

Talker identification measure 

Training Pre-test Post-test Learning 

Inhibition 0.00 (0.971) -0.15 (0.267) -0.17 (0.209) 0.00 (0.971) 

Pitch perception 0.41 (0.001) 0.28 (0.029) 0.40 (0.002) 0.09 (0.500) 

Identification: Boundary 0.20 (0.132) -0.09 (0.487) 0.25 (0.065) 0.36 (0.007) 

Identification: Slope 0.19 (0.165) 0.25 (0.058) 0.16 (0.240) -0.12 (0.363) 

Discrimination 0.52 (<0.001) 0.32 (0.013) 0.45 (<0.001) 0.09 (0.477) 
 

There was no significant relationship between inhibition and any measure of talker 447 

identification. Pitch perception was positively associated with talker identification accuracy 448 

during training, pre-test, and post-test; however, pitch perception was not related to the degree of  449 

learning. The location of the VOT voicing boundary was significantly associated with the degree 450 

of learning from pre- to post-test; with longer category boundaries associated with better 451 

performance. Within-category discrimination was positively associated with talker identification 452 

accuracy during training, pre-test, and post-test, but was not associated with learning.  453 

FIG. 3. (Color online.) Scatterplots illustrating the relationship between the five individual 454 
differences measures (by row) and the four measures of talker identification (by column) in 455 
experiment 1. Each point reflects an individual participant. The regression line indicates a linear 456 
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model; the shaded region marks the 95% confidence interval. 457 

 

We note that when the conservative Bonferroni correction to account for family-wise 458 

error rate is applied (resulting in corrected 𝛼𝛼 = 0.0025 given 𝛼𝛼 = 0.05 and 20 comparisons), the 459 

only relationships that survive are the associations between the two measures of auditory acuity 460 
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(i.e., pitch perception, within-category discrimination) and talker identification accuracy during 461 

training and post-test.1 462 

III. EXPERIMENT 2 463 

The results of experiment 1 revealed two primary findings. First, most listeners learned to 464 

use VOT as a cue to talker identification, consistent with the results of Francis and Driscoll 465 

(2006). That is, following a brief training phase, listeners improved in their ability to use a 466 

phonetic cue as an indicant of talker identity, even in the absence of traditional indexical cues to 467 

voice identity (e.g., fundamental frequency). Second, auditory acuity was positively associated 468 

with talker identification, suggesting that heightened sensitivity to fine-grained acoustic 469 

information facilitated performance in the current task. Of note, we did not observe any evidence 470 

to suggest that ear of stimulus presentation influenced performance in the talker identification 471 

task. The goal of experiment 2 is examine whether a left ear advantage is observed under 472 

conditions that are known to better facilitate behavioral observation of laterality effects. 473 

Following the conclusion of experiment 2, we present Bayes Factors analyses to inform 474 

interpretation of null effects reported in this manuscript. 475 

As reviewed in the introduction, hemispheric laterality effects are more optimally 476 

observed in behavioral tasks under conditions in which a competing stimulus is presented to the 477 

contralateral ear of the target stimulus (Behne et al., 2005, 2006; Bless et al., 2015; González et 478 

al., 2010; Hugdahl & Anderson, 1984; Studdert-Kennedy & Shankweiler, 1970; Westerhausen, 479 

                                                 
1 In addition to packages cited in the main text, we also acknowledge additional R resources used 
for data analysis including the tidyverse packages dplyr and tidyr (Wickham et al., 2019) for data 
manipulation, the tidyverse package ggplot2 (Wickham et al., 2019) and the cowplot package 
(Wilke, 2019) for figure generation, the jtools package (Long, 2020) for summarizing model 
results, and the inauguration package (Bedford-Petersen, 2021), which provides a color palette 
for plots inspired by the power attire worn by celebrated women at the 2021 US presidential 
inauguration. 
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2019). This is contrast to the manipulation used in Francis and Driscoll (2006) and in experiment 480 

1, in which silence was presented to the contralateral ear. Dichotic stimulus presentation 481 

facilitates the observation of laterality effects because ipsilateral auditory pathways are 482 

suppressed when ears are presented with competing stimuli. Most of the literature on laterality 483 

effects for auditory verbal processing differs from the focus of the current investigation in that 484 

previous research has primarily examined laterality effects when processing the linguistic 485 

content of the stimuli, that is, the “what” of a talker’s message. For example, the pioneering work 486 

of Kimura (1967) presented verbal productions of different digits to each ear and asked listeners 487 

to identify which digit(s) they heard. Likewise, the now classic consonant-vowel (CV) dichotic 488 

listening paradigm presents different CV syllables to each ear and requires listeners to identify 489 

which syllables(s) they hear (Hugdahl & Anderson, 1984; Studdert-Kennedy & Shankweiler, 490 

1970). The extensive literature on linguistic processing of dichotic signals thus supports a 491 

cumulative science that can inform optimal design decisions for eliciting and measuring laterality 492 

effects for auditory verbal processing (e.g., Bless et al., 2013, 2015; Parker et al., 2021; 493 

Westerhausen, 2019). 494 

In contrast, studies using behavioral tasks to assess hemispheric laterality for talker 495 

processing – that is, the “who” of a linguistic message – is relatively sparse, reflecting an 496 

emerging line of inquiry. To our knowledge, only three studies have provided behavioral 497 

evidence of a left ear advantage for talker identification. The first is Francis and Driscoll (2006), 498 

which directly motivates the current work, and, as described previously, consisted of a monaural 499 

task (i.e., stimuli presented to either the left or right ear) instead of a dichotic listening task. The 500 

second comes from Perrachione and colleagues (Perrachione et al., 2009). In their study, native 501 

English and native Mandarin listeners completed a talker identification task (with feedback) for 502 
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voices speaking English and Mandarin during a training phase. On each trial, listeners heard two 503 

talkers produce the same sentence and were asked to identify the talker in the left ear on some 504 

trials and the talker in the right ear on other trials. Trials were blocked by both ear and stimulus 505 

language; that is, listeners completed four training blocks formed by crossing monitoring ear (left 506 

vs. right) and stimulus language (English vs. Mandarin). Analysis of talker identification 507 

accuracy during training revealed a left ear benefit for both listener groups only when identifying 508 

talkers producing English sentences, which the authors speculate may reflect differences in the 509 

temporal modulation of frequency information between the two languages. 510 

The third study comes from González and colleagues (González et al., 2010). In their 511 

study, listeners completed a talker identification task with target stimuli presented to either the 512 

left or the right ear. The construct of interest in this study was long-term repetition priming; 513 

accordingly, talker identification accuracy was compared between same sentence (i.e., a talker’s 514 

repeated sentence) and different sentence (i.e., a talker’s novel sentence) trials. Pink noise was 515 

presented in the contralateral ear to the target stimulus in their first experiment, whereas silence 516 

was presented in the contralateral ear in their second experiment. The results of the two 517 

experiments converged to show a left ear advantage for recognition memory in the talker 518 

identification task. Specifically, talker identification accuracy was higher for same compared to 519 

different sentence trials when stimuli were presented in the left ear, and no such benefit was 520 

observed for stimuli presented in the right ear. The laterality effect was observed in both 521 

experiments; however, it was stronger in the first compared to the second experiment, consistent 522 

with noise in the contralateral ear serving to suppress the influence of ipsilateral auditory 523 

pathways (Behne et al., 2005, 2006). 524 

Drawing from these three studies, the specific dichotic manipulation used in experiment 2 525 
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was to present pink noise in the contralateral ear to the target stimulus, as in González et al. 526 

(2010). This manipulation allowed us to use otherwise identical procedures between experiments 527 

1 and 2, and thus better isolate the influence of a dichotic listening environment on any observed 528 

differences between the two experiments (in contrast to, for example, adopting the blocked ear 529 

design used in Perrachione et al., 2009). 530 

A. Methods 531 

1. Participants 532 

One hundred and fourteen participants were recruited from the Prolific participant pool 533 

(https://www.prolific.co; Palan & Schitter, 2018) following the criteria outlined for experiment 534 

1. Forty-three participants were excluded due to failure to pass all three headphone screens (n = 535 

23) or failure to meet the training accuracy criterion (n = 12), as described for experiment 1. The 536 

final sample (n = 79) included 24 women, 54 men, and one participant who declined to report 537 

gender (mean age = 28 years, SD = 4 years). The sample size was determined by the power 538 

analyses described for experiment 1. Specifically, we tested participants until we achieved n = 55 539 

who met the learning criterion outlined for experiment 1, which was defined as an improvement 540 

in proportion correct talker identification between pre- and post-test greater than or equal to 0.05.  541 

2. Stimuli and procedure 542 

The stimuli and procedure were identical to experiment 1 with two key exceptions. First, 543 

pink noise was presented in the contralateral ear of the target stimulus at pre- and post-test. 544 

Following González et al. (2010), the amplitude of the pink noise (72 dB) was 3 dB lower than 545 

the amplitude of the target stimuli (75 dB). Second, in addition to the 80 target trials in each test 546 

phase (i.e., trials on which the target was presented to either the left or the right ear, with pink 547 

noise presented in the contralateral ear), 20 filler trials were presented in which the target 548 

https://www.prolific.co/
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stimulus was presented binaurally (i.e., the same signal was presented to each ear), following 549 

recommendations of Parker et al. (2021) and Westerhausen (2019). These filler trials, reflecting 550 

five repetitions of each word for each talker, were randomly interspersed across each test phase 551 

and subsequently removed from the analyses. 552 

B. Results 553 

Performance during the training phase was analyzed as outlined for experiment 1. Mean 554 

accuracy across participants (0.82, SD = 0.10, range = 0.62 – 0.98) was significantly above 555 

chance as confirmed by a one-sample t-test [t(78) = 27.492, p < 0.001), which was expected 556 

based the inclusion criterion (accuracy ≥ 0.60). 557 

Accuracy and reaction time during the test phases were analyzed as outlined for 558 

experiment 1. The accuracy model revealed a main effect of test (𝛽̂𝛽 = 0.661, SE = 0.095, z = 559 

6.942, p < 0.001), indicating that accuracy improved from pre-test (0.60, SD = 0.15) to post-test 560 

(0.73, SD = 0.14). There was no main effect of ear (𝛽̂𝛽 = -0.041, SE = 0.042, z = -0.985, p = 561 

0.325), nor an interaction between test and ear (𝛽̂𝛽 = 0.028, SE = 0.080, z = -0.340, p = 0.734). 562 

The main effect of test is visualized in Figure 4. 563 

As described for experiment 1, RTs were log-transformed and trials exceeding 2.5 SDs of 564 

a participant’s mean log RT were excluded from analysis (2.7% of correct trials). The results of 565 

the RT model showed a main effect of test (𝛽̂𝛽 = -0.048, SE = 0.022, t = -2.175, p = 0.033), with 566 

RTs decreasing from pre-test (mean = 1112 ms, SD = 330) to post-test (mean = 1041 ms, SD = 567 

257). There was no main effect of ear (𝛽̂𝛽 = 0.011, SE = 0.006, t = 1.716, p = 0.090), nor an 568 

interaction between test and ear (𝛽̂𝛽 = 0.006, SE = 0.012, t = 0.476, p = 0.634). Figure 4 shows the 569 

distribution of participants’ mean RTs by test session and ear. 570 

FIG. 4. (Color online.) Results of the talker identification task in experiment 2. Panel A shows 571 
performance during the talker identification task for all participants (n = 79); panel B shows 572 
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performance during the talker identification for those who met the learning criterion (n = 55). In 573 
both panels, the distribution of participants’ accuracy scores (mean proportion correct) for each 574 
test is shown at left, and the distribution of participants’ mean response times to correct 575 
responses by test and ear of stimulus presentation is shown at right. 576 

 

Recall that in Francis and Driscoll (2006), the left ear advantage at post-test emerged 577 

only for listeners who met their learning criterion, defined as ≥ 5% improvement in talker 578 

identification accuracy from pre-test to post-test. As for experiment 1, a parallel reaction time 579 

analysis was performed limited to listeners in experiment 2 who met this criterion (n = 55). The 580 

results converged with the full sample; reaction time decreased from pre-test to post-test (𝛽̂𝛽 = -581 

0.078, SE = 0.027, t = -2.859, p = 0.006), but there was no main effect of ear (𝛽̂𝛽 = 0.009, SE = 582 

0.007, t = 1.213, p = 0.225), nor an interaction between test and ear (𝛽̂𝛽 = 0.003, SE = 0.015, t = 583 

0.235, p = 0.815). 584 
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IV. BAYES FACTORS ANALYSIS 585 

Collectively, the results of experiment 2 converge with the pattern of results observed for 586 

the talker identification task in experiment 1. Specifically, most listeners learned to use a 587 

phonetic property of speech as a cue to talker identification, as indicated by an improvement in 588 

talker identification accuracy from pre- to post-test. In addition to improved accuracy, exposure 589 

during the training phase inferred a behavioral benefit such that talker identification decisions 590 

were faster at post-test compared to pre-test. However, there was no evidence to suggest that 591 

learning to use a phonetic property as a cue to talker identity yielded a left ear advantage for 592 

talker identification, even under circumstances that were optimized to elicit a laterality effect in 593 

behavior (i.e., by presenting a competing stimulus in the contralateral ear to the target stimulus). 594 

Drawing conclusions from a null result using frequentist statistics (i.e., null hypothesis 595 

significance testing) is challenging because, by definition, a p-value does not provide evidence in 596 

support of the null hypothesis. Instead, the p-value obtained in a frequentist analysis approach, as 597 

used in the current work, reflects the probability of observing the result (or a more extreme 598 

result) if the null hypothesis were true (e.g., Badenes-Ribera et al., 2016; Hubbard & Lindsay, 599 

2008). That is, the p-value reflects the probability of the data given the null, which can be 600 

formally expressed as p = p(data|H0). When the p-value is low (e.g., p < 0.05), we inferentially 601 

reason that we can reject the null hypothesis because the probability of the observed effect in the 602 

data is very low if in fact the null hypothesis were true. When the p-value is high (e.g., p > 0.50), 603 

the appropriate inference is that the null hypothesis is not rejected. As described by Badenes-604 

Ribera et al. (2016), one of the most common misconceptions about p-values – even among 605 

trained researchers – is the “inverse probability fallacy,” in which p-values are misinterpreted as 606 

the probability that the null hypothesis is true given the observed data (Carver, 1978). The 607 
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inverse probability fallacy can be formally expressed as p = p(H0|data). Consider the p-values 608 

observed for the critical phase by ear interaction in the reaction time models for the full sample 609 

in experiment 1 (p = 0.283) and experiment 2 (p = 0.634). Both p-values support the logical 610 

inference that the null hypothesis is not rejected; however, neither of these p-values provide 611 

direct support for the null hypothesis because, by definition, this is not the probability expressed 612 

by the p-value. 613 

Bayes Factors analysis can help to resolve the inverse probability fallacy because the 614 

Bayes Factor expresses the ratio between the likelihood of two hypotheses (e.g., Kass & Raftery, 615 

1995; Lee & Wagenmakers, 2014; van Doorn et al., 2021). For example, a Bayes Factor can be 616 

calculated for the likelihood of an alternative hypothesis (i.e., H1) relative to the likelihood of the 617 

null hypothesis (i.e., H0), and thus can be interpreted as a measure of the strength of the evidence 618 

in favor of one hypothesis over another. Unlike a p-value, the Bayes Factor can directly express 619 

the strength of the evidence in support of the alternative or the null hypothesis. By convention, a 620 

Bayes Factor of 1 is interpreted as no evidence for either hypothesis; that is, when the likelihood 621 

of the H1 and H0 are equal, the Bayes Factor indicates no evidence for either hypothesis (e.g, 622 

Lee & Wagenmakers, 2014). A Bayes Factor > 1 is interpreted as evidence in support of the H1 623 

and a Bayes Factor < 1 is interpreted as evidence in support of the H0. Moreover, the magnitude 624 

of the Bayes Factor can be interpreted as the degree of support. For example, Bayes Factors 625 

between 3 and 10 are, by convention, interpreted as providing moderate evidence for the H1. 626 

Likewise, Bayes Factors between 1/3 and 1/10 are interpreted as providing moderate evidence 627 

for the H0. Accordingly, Bayes Factors analysis provides a tool for interpreting null effects 628 

observed in frequentist analysis approaches because Bayes Factors support the interpretation of 629 

null effects beyond the limited “failure to reject the null” inference that is licensed by p-values. 630 
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To this end, we calculated the Bayes Factor for the null effects that emerged in the 631 

reaction time models of experiments 1 and 2. All calculations were performed using the lmBF() 632 

function of the BayesFactor package (Morey & Rouder, 2018) in R, with multivariate Cauchy 633 

prior distributions set to scale = 0.5 and scale = 1.0 for fixed and random effects, respectively. 634 

Calculating a Bayes Factor requires specifying two hypotheses (i.e., models) for comparison, one 635 

to represent the H1 and one to represent the H0. For all calculations, we followed guidance to 636 

include random intercepts by subject and random slopes by subject for within-subjects variables 637 

when calculating Bayes Factors using trial-level data in mixed effects models; accordingly, null 638 

models reflected the balanced null (van Doorn et al., 2021). 639 

Four Bayes Factors were calculated for each experiment, two for the model that included 640 

all participants and two for the model that included only the participants who met the learning 641 

criterion. First, we calculated the Bayes Factor when defining the H1 as a model that included 642 

fixed effects of phase, ear, and their interaction and the H0 as a model that only included fixed 643 

effects of phase and ear. The Bayes Factor here thus indicates the degree of support for the 644 

interaction versus the lack of interaction. The resulting Bayes Factors (on a natural log scale) are 645 

shown in Figure 5. In three of the four cases, the Bayes Factor indicated strong evidence in 646 

support of the H0 (i.e., no interaction between phase and ear); in the fourth case, the Bayes 647 

Factor was on the cusp between criteria used to mark moderate and strong support for the null 648 

hypothesis. Second, we calculated the Bayes Factor when defining the H1 as a model that 649 

included fixed effects of phase and ear and the H0 as a model that only included the fixed effect 650 

of phase. Accordingly, the Bayes Factor for these hypotheses indicates the degree of support for 651 

a model that includes ear as a predictor versus a model that does not. As shown in Figure 5, the 652 

resulting Bayes Factors indicated strong support for the null for both samples in each 653 
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experiment. Viewed in conjunction with the frequentist statistics reported for each experiment, 654 

the results of the Bayes Factors analysis suggest that each experiment provides strong support for 655 

the null hypothesis; that is, the current results support the hypothesis that ear of presentation does 656 

not influence reaction time in the current talker identification tasks. 657 

FIG. 5. (Color online.) Bayes Factors analyses for the null effects observed in experiments 1 and 658 
2. As described in the main text, Bayes Factors were calculated for two sets of hypotheses in 659 
each experiment, which were calculated separately for the full sample (i.e., all participants who 660 
met the a priori training criterion for inclusion in the study) and the subset of participants who 661 
met the learning criterion (defined as ≥ 5% improvement in talker identification accuracy from 662 
pre- to post-test). In the figure below, Bayes Factors are plotted on a natural log scale to facilitate 663 
visualization (i.e., a Bayes Factor of 1 = 0 on the natural log scale). Interpretation conventions 664 
are provided in italicized text, with gray lines indicating the bounds for each interpretation 665 
criterion (i.e., Bayes Factors between -2.303 and -3.401 on a natural log scale represent the range 666 
of values that can be interpreted as providing strong evidence in support of the null hypothesis). 667 

 

V. DISCUSSION 668 

Here we revisited the finding of Francis and Driscoll (2006), who showed that learning to 669 

use a phonetic property of speech as a cue to talker identity induced a left ear processing 670 

advantage for behavioral responses in a talker identification task. The left ear processing 671 

advantage was interpreted as evidence of hemispheric lateralization consistent with task 672 
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demands. As reviewed in the Introduction, this finding is broadly consistent with the 673 

neuroimaging literature suggesting right hemisphere dominance for talker processing. However, 674 

this finding is unexpected given the extant dichotic listening literature, which suggests that the 675 

ability to measure hemispheric asymmetries through behavioral listening tasks requires 676 

presenting competing stimuli across binaural channels. The current work aimed to (1) determine 677 

whether a left ear advantage for phonetic cues to talker identification would generalize to a larger 678 

sample and (2) identify factors that predict a listeners’ ability to use phonetic cues for talker 679 

identification. The results of the talker identification task converged across both experiments. 680 

Specifically, listeners in the aggregate showed improved talker identification accuracy at post-681 

test compared to pre-test, indicative of learning to use VOT as a cue to talker identity, which did 682 

support a behavioral processing advantage in terms of faster reaction times at post-test compared 683 

to pre-test. However, we found no evidence to suggest a left ear advantage either in the full 684 

sample (n = 97 in experiment 1, n = 79 in experiment 2) or in the subset of participants (n = 58 in 685 

experiment 1, n = 55 in experiment 2) who met the Francis and Driscoll (2006) learning 686 

criterion. 687 

A failure to replicate could reflect any one of the methodological differences between the 688 

original and current study. Some of these differences are more minor (e.g., different stimulus 689 

sets, different number of training and test trials), whereas two differences are more substantial. 690 

First, the current study used web-based measures for data collection and the original study tested 691 

participants in a laboratory. It may be the case that the effect observed in Francis and Driscoll 692 

(2006) may require a high level of control over the testing environment that is only possible in a 693 

traditional laboratory setting. Though we cannot rule out this possibility, web-based and smart 694 

phone-based methods have been shown to be sufficient for behavioral detection of cerebral 695 
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lateralization specifically (e.g., Bless et al., 2013; Parker et al., 2021) and for eliciting dichotic 696 

listening effects more generally (e.g., Milne et al., 2021; Woods et al., 2017). Gorilla Experiment 697 

Builder, the software used to deploy the current web-based study, provides excellent timing 698 

control for stimulus presentation and reaction time measurement (Anwyl-Irvine et al., 2021), and 699 

we followed best practice for web-based reaction times studies by implementing a fully within-700 

subjects design so that differences in browser and hardware (which may influence experimental 701 

timing) were not confounded with experimental conditions. Moreover, all participants in the 702 

current study passed two dichotic listening tasks that were designed to screen for headphone 703 

compliance on web-based platforms (Milne et al., 2020; Woods et al., 2017) in addition to 704 

passing a custom channel detection screen. 705 

Second, the talker identification task was completed in a single session in the current 706 

study, whereas the task was spread across three days in the original study. Accordingly, the left 707 

ear processing advantage in Francis and Driscoll (2006) may be linked to sleep-based 708 

consolidation (e.g., Earle et al., 2018). However, right hemisphere sensitivity to talker-specific 709 

VOT patterns for phonetic identification has been shown to emerge within an hour of exposure 710 

as measured using fMRI (Myers & Theodore, 2017), suggesting that neural sensitivity to a 711 

talker’s phonetic signature is not contingent on sleep-based consolidation. 712 

An additional explanation for the failure to replicate may be that the original effect 713 

reported in Francis and Driscoll (2006) was a false positive effect. This would not be 714 

unreasonable for three reasons. First, the paradigm was not optimized for measuring hemispheric 715 

laterality given the absence of a competing stimulus in the contralateral ear of interest (e.g., 716 

Kimura, 1967; Hugdahl, 2011). That is, although hemispheric laterality can be measured through 717 

behavioral dichotic listening tasks, Francis and Driscoll (2006) used a monaural listening task. 718 
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Monaural listening tasks show weakened ability to measure structural asymmetries of the 719 

auditory pathway and its interaction with selective attention (Nicholls, 1998). In experiment 1, 720 

we chose to replicate the original Francis and Driscoll task (i.e., present test stimuli monaurally) 721 

to keep the replication closer to the original design. In experiment 2, pink noise was presented in 722 

the contralateral ear to the target stimulus, which is a dichotic listening manipulation that has 723 

successfully elicited a left ear advantage for talker identification in past research (González et al., 724 

2010). However, the left ear advantage failed to emerge in the current study even under these 725 

more favorable conditions for behavioral observation of laterality effects. Second, the original 726 

sample was limited to eight participants, and underpowered studies have been associated with an 727 

increased rate of false positive effects (e.g., Button et al., 2013). Third, a reanalysis of the 728 

Francis and Driscoll (2006) data suggests that the left ear effect was not stable at the level of 729 

individual subjects, despite being significant in the aggregate. Figure 6 shows the aggregate 730 

effect and by-subject patterns for each of the eight participants included in the aggregate 731 

analysis. Five participants showed numerically faster mean reaction time for left compared to 732 

right ear stimuli at post-test; however, none of the participants showed a pattern of responses 733 

consistent with the group-level pattern. 734 

Though we did not replicate a left ear advantage, the current results did show that 735 

listeners could use VOT as a cue to talker identification, consistent with Francis and Driscoll 736 

(2006) and numerous others studies pointing to tight links between the processing of phonetic 737 

and indexical cues (e.g., Ganugapati & Theodore, 2019; Myers & Theodore, 2017; Theodore et 738 

al., 2015; Theodore & Miller, 2010). Moreover, the current results shed light on individual 739 

differences factors that predict listeners’ use of VOT as a cue for talker identification. 740 

Specifically, both measures of auditory acuity – pitch perception and within-category 741 
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discrimination – were positively associated with performance on the talker identification task; 742 

accuracy was higher at pre-test, training, and post-test for listeners with stronger vs. weaker 743 

auditory acuity. In contrast, inhibitory control and identification slope were not associated with 744 

any measure of talker identification performance. The only measure that predicted learning (i.e., 745 

the change in performance between pre- and post-test) was the location of participants’ VOT 746 

voicing boundaries, with later boundaries associated with increased learning. Recall that Joanne 747 

and Sheila’s characteristic VOTs were selected to reflect within-category variation for /k/. 748 

Participants with longer VOT voicing boundaries may have perceived the short VOT variants 749 

(i.e., Joanne) as members of the /g/ category, providing an additional cue for disassociating the 750 

talkers’ voices. 751 

FIG. 6. (Color online.) Re-analysis of Francis and Driscoll (2006). Panel A shows mean reaction 752 
time to correct responses at pre- and post-test by ear of presentation; error bars indicate standard 753 
error of the mean. Panel B shows performance for each of the eight participants who were 754 
included in the analysis presented in A; participant numbers (e.g., S01) reflect identifiers used in 755 
the original study. 756 

 

On the one hand, null effects can present challenges for theory development (particularly 757 

when null effects emerge from frequentist analyses) because a failure to find evidence to reject 758 

the null hypothesis does not in turn provide evidence to support the null hypothesis. On the other 759 



 37 

hand, observing cases where predictions of a given theory do not hold is a key component of the 760 

scientific method; these findings are needed to refine, revise, or perhaps even dismiss the theory. 761 

Moreover, any single test of a hypothesis cannot be considered definitive “truth;” this is only 762 

possible through repeated observations that together form a cumulative science. Though we 763 

imagine that these basic tenets of the scientific process are uncontroversial, these tenets are not 764 

reflected in the literature. For example, Scheel and colleagues (Scheel et al., 2021) examined the 765 

degree of hypothesis confirmation in the standard psychology literature compared to Registered 766 

Reports in this domain. A Registered Report is a relatively new research article type that is 767 

granted conditional acceptance prior to data collection; that is, the hypotheses and methods are 768 

evaluated independently from the results (e.g., Simons et al., 2014; Storkel & Gallun, 2022). 769 

They found that 96% of hypotheses were confirmed in the standard psychology literature 770 

compared to only 44% in Registered Reports. Concerns regarding the improbability of 771 

“successes” in the literature have been noted for decades (e.g., Fanelli, 2012; Scheel et al., 2021; 772 

Sterling, 1959; Sterling et al., 1995). These concerns have been linked to replication failures in 773 

numerous research domains (e.g., Begley & Ellis, 2012; Hubbard & Vetter, 1996; Ioannidis, 774 

2005; Martin & Clarke, 2017), and some have argued the preponderance of positive effects in the 775 

literature is a direct consequence of a publication bias against null effects and replication studies 776 

(e.g., Neuliep, 1990; Neuliep & Crandall, 1993; Pashler & Wagenmakers, 2012). As argued by 777 

Haeffel (2022), in order to provide critical tests of our theories, we must stop the extraordinary 778 

“winning streak” that yields a scientific literature suggesting that positive support is obtained for 779 

every hypothesis that is tested. 780 

If positive support for the hypothesis at hand is our metric of “winning,” then we have 781 

definitely lost in the current study. However, given that the results of the Bayes Factors analyses 782 
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provided strong support for the null hypothesis, all is perhaps not lost for theory development. 783 

The results of Francis and Driscoll (2006) led to the theory that hemispheric dominance reflects 784 

functional use of acoustic-phonetic cues. That is, the theory posited that the functional use of a 785 

given speech cue was the primary determinant of lateralization, and not the nature of the specific 786 

speech cue. The current results are inconsistent with this theory. Combined with the extant 787 

literature, they instead support a theory that places higher weight on the signal for guiding 788 

hemispheric lateralization (Albouy et al., 2020; Perrachione et al., 2009; Poeppel, 2003; von 789 

Kriegstein et al., 2003). For example, access to source characteristics may be necessary for 790 

engaging right hemisphere dominance for voice processing. This is consistent with findings from 791 

the two studies that observed behavioral evidence of right hemisphere lateralization for talker 792 

identification. In González et al. (2010) and Perrachione et al. (2009), the stimuli consisted of 793 

sentence-length items and talkers differed not only in their phonetic implementation of speech 794 

sounds, presumably, but also in their indexical characteristics. That is, the talkers in these studies 795 

differed on a host of naturally occurring dimensions, including fundamental frequency. As a 796 

consequence, any talker-specific phonetic variability in the stimuli was conditioned on talker 797 

differences in source characteristics. This was not the case in the current experiments because the 798 

two talkers only differed in their phonetic instantiation of /k/. 799 

Other behavioral research has shown that although talker-specific phonetic variation can 800 

facilitate talker identification, listeners require additional time to learn the conditioning between 801 

phonetic and indexical cues. For example, Ganugapati and Theodore (2019) trained listeners to 802 

identify three female talkers from single-word utterances. For one group of listeners, phonetic 803 

information was structured across talkers such that each talker had a characteristic VOT 804 

production. This structure was absent for a different group of listeners who instead heard all 805 
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three talkers each produce all three characteristic VOTs. In contrast to the current experiments, 806 

the three talkers also differed in source characteristics; thus, sensitivity to talker-specific VOT 807 

was not required to perform the talker identification task. Indeed, given brief exposure to the 808 

talkers (72 trials), talker identification accuracy did not differ between the two groups. However, 809 

given longer exposure (216) trials, those who heard structured phonetic variation showed higher 810 

talker identification accuracy compared to those who did. Moreover, results from the 811 

neuroimaging literature suggest that right hemisphere regions associated with voice processing 812 

show sensitivity to talker-specific phonetic patterns when these patterns co-occur with talker 813 

differences in indexical cues (Myers and Theodore, 2017). Together with the current work, these 814 

findings are consistent with the theory that using talker-specific phonetic variation for voice 815 

processing will be heightened when phonetic variation can be conditioned on source 816 

characteristics. We note that though the current results are consistent with such a theory, future 817 

research is needed to confirm this hypothesis by direct examination of potential laterality effects 818 

following exposure to input that would allow phonetic variability to be conditioned on indexical 819 

variability. 820 

In conclusion, the current study did not yield evidence to suggest a left ear processing 821 

advantage in behavior for the talker identification task used here. This does not imply that it may 822 

not emerge under different circumstances; indeed, the results contribute to a theory predicting 823 

that a right hemisphere (i.e., left ear) advantage may emerge when talker-specific phonetic 824 

variability can be conditioned on talker differences in source characteristics. Future research is 825 

needed to test this hypothesis directly. Given evidence to suggest right hemisphere sensitivity to 826 

talker-specific phonetic patterns (e.g., González et al., 2010; Myers & Theodore, 2017; 827 

Perrachione et al., 2009) and behavioral evidence indicating a tight coupling between phonetic 828 
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and indexical processing (e.g., Ganugapati & Theodore, 2019; Goggin et al., 1991; Nygaard & 829 

Pisoni, 1998; Orena et al., 2015), future research is warranted to determine the type and time 830 

course of behavioral advantages that may occur given perceptual learning of talker-specific 831 

phonetic detail. 832 
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