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ABSTRACT

Previous research suggests that learning to use a phonetic property (e.g., voice-onset-
time, VOT) for talker identity supports a left ear processing advantage. Specifically, listeners
trained to identify two “talkers” who only differed in characteristic VOTs showed faster talker
identification for stimuli presented to the left ear compared to the right ear, interpreted as
evidence of hemispheric lateralization consistent with task demands. Experiment 1 (n = 97)
aimed to replicate this finding and identify predictors of performance; experiment 2 (n = 79)
aimed to replicate this finding under conditions that better facilitate observation of laterality
effects. Listeners completed a talker identification task during pre-test, training, and post-test
phases. Inhibition, category identification, and auditory acuity were also assessed in experiment
1. Listeners learned to use VOT for talker identity, which was positively associated with auditory
acuity. Talker identification was not influenced by ear of presentation, with Bayes Factors
indicating strong support for the null. These results suggest that talker-specific phonetic variation
is not sufficient to induce a left ear advantage for talker identification; together with the extant
literature, they instead suggest that hemispheric lateralization for talker-specific phonetic
variation requires phonetic variation to be conditioned on talker differences in source
characteristics.
Keywords: speech perception; talker identification; hemispheric lateralization; perceptual

learning
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I. INTRODUCTION

The acoustic speech signal simultaneously conveys information regarding who is
speaking and what is being said. Traditionally, these two functions were considered to be
supported by different aspects of the acoustic signal, with indexical cues (e.g., fundamental
frequency) used to support voice recognition and phonetic cues (e.g., voice-onset-time, formant
patterns) used to support linguistic processing. We now know that a strict functional delineation
between phonetic and acoustic cues is not possible. For example, talkers show stable individual
differences in how they implement phonetic cues (e.g., Allen et al., 2003; Chodroff & Wilson,
2017; Hillenbrand et al., 1995; Theodore et al., 2009) and listeners are sensitive to these
differences (e.g., Allen & Miller, 2004; Ganugapati & Theodore, 2019; Myers & Theodore,
2017; Theodore et al., 2015; Theodore & Miller, 2010). Experience with a talker’s voice support
advantages for linguistic processing (e.g., Nygaard et al., 1994; Nygaard & Pisoni, 1998), and
experience with a given language supports advantages for voice processing (e.g., Goggin et al.,
1991; Orena et al., 2015; Perrachione et al., 2011) — providing further evidence that the
processing of phonetic and indexical aspects of the speech stream are intertwined.

Though behavioral evidence points to a tight integration between phonetic and indexical
cues, the extant neuroimaging literature suggests disassociate hemispheric dominance for these
two aspects of speech processing, with left temporal regions dominant for processing phonetic
identity and right temporal regions dominant for processing voice identity (e.g., Formisano et al.,
2008; Latinus et al., 2013; Bonte et al., 2014; Chang et al., 2010; Liebenthal et al., 2003; Myers,
2007; Belin & Zatorre, 2003; van Lancker et al., 1989). This may reflect different timescales for
phonetic and indexical cues (e.g., Poeppel, 2003) and/or different functional tasks (e.g., von

Kriegstein et al., 2003). Training studies have shown that perceptual learning of talker-specific
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phonetic detail can alter hemispheric processing of phonetic cues. For example, Myers and
Theodore (2017) exposed listeners to two talkers who differed in their characteristic VOTs.
Following exposure, neural activation was measured using fMRI as listeners completed a
phonetic identification task for VOT variants that were typical or atypical of each talker. Their
results showed that right temporoparietal regions including the right middle temporal gyrus
(rMTG) implicated in voice processing were sensitive to talker typicality. Moreover, a functional
connectivity analysis showed greater connectivity between the rMTG and two regions in the left-
hemisphere phonetic network (left postcentral gyrus, left middle temporal gyrus and left superior
temporal sulcus) for talker typical compared to talker atypical VOT variants.

In addition, Francis and Driscoll (2006) reported evidence indicating that short-term
perceptual training could induce a left ear advantage for using VOT as a cue to talker
identification that results in faster talker identification decisions for stimuli presented to the left
compared to the right ear, consistent with right hemisphere dominance for talker processing. The
transmission of sound from the peripheral to central nervous system consists of contralateral
auditory pathways; that is, auditory fibers that carry sound from the ear to the brain decussate
such that monaural stimulation results in relatively strong activation in the contralateral
hemisphere with relatively weaker activation of the ipsilateral hemisphere (e.g., Pickles, 1998;
Jancke et al., 2002). This is not to say that sound detected by the left ear is only processed by the
right hemisphere, but the contralateral nature of the auditory pathway has been successful
exploited to measure hemispheric dominance using behavioral as opposed to neuroimaging
methods (e.g., Kimura, 1967), as we describe further below. During training phase of the Francis
and Driscoll (2006) study, listeners heard two sets of tokens, one with characteristically short

VOTs (30 ms) and one with characteristically longer VOTs (50 ms). On each trial, a token was
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presented binaurally and listeners were asked to identify which of two talkers produced that
token. Feedback was provided to train listeners to associate the short VOTs as one talker and the
longer VOTs as the other talker. Both sets of tokens were based on the speech of a single talker
and thus indexical cues (e.g., fundamental frequency, vocal quality) were held constant between
the two “talkers.” Consequently, the two talkers on/y differed in their characteristic VOTs.
During the pre- and post-test phases, listeners completed the same talker identification task with
two key exceptions: (1) no feedback was provided and (2) stimuli were presented monaurally
(i.e., either to the left or right ear on a given trial). Francis and Driscoll hypothesized that a left
ear (i.e., right hemisphere) processing advantage would emerge at post-test for listeners who
learned to process the phonetic property (i.e., VOT) as a cue to talker identification. Consistent
with this hypothesis, reaction times to correct responses were on average 92 ms faster for stimuli
presented to the left ear compared to the right ear at post-test. This left ear advantage was not
present at pre-test, suggesting that it emerged as a consequence of learning during the training
phase.

Though broadly consistent with the extant neuroimaging literature, the finding from
Francis and Driscoll (2006) is striking in the context of the dichotic listening literature.
Specifically, Francis and Driscoll observed a laterality effect (i.e., a left ear advantage) for
stimuli that were presented monaurally. Hemispheric dominance for processing different types of
acoustic signals has been measured through behavioral dichotic listening paradigms. In a
traditional dichotic listening task, relative contributions of the left and right hemispheres are
segregated by presenting a target stimulus to either the left or right ear in conjunction with a
competing stimulus to the ear that does not receive the target stimulus (Kimura, 1967). Thus,

during a dichotic listening task, there is simultaneous presentation of different stimuli to each
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ear, with one ear receiving the target stimulus and the other ear receiving a competing stimulus.
As reviewed in Hugdahl (2011), over 50 years of research using the dichotic listening paradigm
has established both its utility as a behavioral method to measure brain laterality effects as well
as a clear understanding of the importance of presenting dichotic stimuli — that is, a target and a
competitor to opposite ears — in order to elicit laterality effects. Indeed, the latter point was
established from the introduction of this paradigm (Kimura, 1967). Because Francis and Driscoll
(2006) did not present a competing stimulus in the ear contralateral to the ear receiving the target
stimulus, their task was not dichotic in nature, and thus it is perhaps surprising that the left ear
processing advantage for talker identification was observed using a monaural listening task.
Their finding may suggest that a competing stimulus in the contralateral ear of interest is
extraneous for a task of this nature. Consistent with this interpretation, Gonzalez et al. (2010)
demonstrated that a left ear processing advantage for repetition-priming effects in a talker
identification task was strengthened when noise was presented in the contralateral ear, but the
competing stimulus was not necessary to induce the left ear advantage.

In addition, the finding from Francis and Driscoll (2006) bears revisiting due to several
methodological and empirical points. First, the left ear advantage was observed in a very small
sample of participants (n = 8). Small sample sizes alone are not a determinant of either research
quality or reproducibility. Indeed, the “small-N" design, in which an extremely large number of
observations are made on only a few participants, has a rich precedent in the psychophysics
domain (Smith & Little, 2018). In some cases, small-N designs may even promote better power
and inferential validity compared to large-N designs (Smith & Little, 2018). However, for
traditional designs, such as that used in Francis and Driscoll (2006), small sample sizes can

increase the likelihood of false positives in the literature just as they can decrease the ability to



135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

detect true effects (e.g., Button et al., 2013). Second, these participants reflected those who met a
learning criterion, defined as a minimum improvement in talker identification accuracy of 5%
from pre- to post-test. While it is sensible to limit analyses to those who learned to associate
VOT as a cue to talker identification given the nature of the hypothesis, no justification for the
specific learning criterion was provided. Third, the statistical evidence for the key interaction
between test phase and ear of presentation, while statistically significant, was only marginally so
(p = 0.04). Fourth, the small sample (» = 8) who met the learning criterion reflected fewer than
half of the total participants tested (» = 18). That is, most participants were not able to learn to
associate VOT as a cue to talker identification, and this study did not reveal what factors may
influence whether a given listener can learn to use phonetic properties to support talker
identification.

For these reasons, the goal of the current work is two-fold. First, in each of two
experiments, we conducted a high-powered replication of Francis and Driscoll (2006) in order to
examine whether the left ear processing advantage for phonetic cues to talker identification
would generalize to a larger sample. Second, all participants in experiment 1 completed four
individual differences measures in addition to the primary talker identification task to identify
potential predictors of talker identification performance. The talker identification task was
modeled after the paradigm used in Francis and Driscoll (2006). In experiment 1, test stimuli
were presented monaurally to either the left or right ear. In experiment 2, test stimuli were
presented dichotically, with noise presented to the contralateral ear of the target stimulus. The
four individual differences measures consisted of a flanker task, a pitch perception task, a
category identification task, and a within-category discrimination task. We assessed inhibitory

control (using a flanker task) and pitch perception given previous evidence linking both of these
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constructs to talker identification ability (Theodore & Flanagan, 2020; Xie & Myers, 2015). For
example, increased inhibitory control has been positively associated with talker identification
accuracy (Theodore & Flanagan, 2020) and invoked as an explanatory mechanism for heighted
talker identification abilities in bilingual compared to monolingual children (Levi, 2018). On this
view, heighted talker identification may reflect a stronger ability to inhibit irrelevant information
(e.g., phonetic or other linguistic content) to instead focus on other aspects of the signal (e.g.,
fundamental frequency) for the purposes of talker identification. Pitch perception has also been
positively associated with talker identification and talker discrimination (Theodore & Flanagan,
2020; Xie & Myers, 2015). Using a flanker and pitch perception task to assess inhibitory control
and auditory acuity, respectively, supports the examination of individual differences in non-
speech abilities as potential predictors of performance in the current speech perception task. In
contrast, the category identification task assessed listeners” VOT voicing boundaries and
identification slopes (the latter as a measure of how categorically listeners perceived the voicing
contrast). The within-category discrimination task assessed listeners’ perceptual acuity for VOT
specifically which is a logical precursor to learning to use VOT as a cue to talker identification.
If the left ear advantage for phonetic cues to talker identification generalizes beyond the
original sample (Francis & Driscoll, 2006), then we predict that listeners who learn to associate
VOT as a cue to talker identification will show faster reaction times for stimuli presented to the
left ear compared to the right ear during the talker identification post-test. If increased inhibitory
control and auditory acuity are associated with enhanced talker identification, then we predict a
positive relationship between performance on the talker identification task and performance on
the flanker, pitch perception, and within-category discrimination tasks. The relationship between

talker identification and categorical perception was exploratory in the current work. Listeners
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who show early VOT voicing boundaries may not have perceived the VOT variants in the talker
identification task as belonging to the same category, which would result in improved talker
identification accuracy given that the two talkers would be perceived as saying different words
(instead of saying the same word with different VOTs). Listeners who have shallower
identification slopes may be more sensitive to within-category variation compared to listeners
who have more categorical slopes; if so, then those with shallower identification slopes would
show improved performance on the talker identification task.
II. EXPERIMENT 1
A. Methods
1. Participants

One hundred and forty participants were recruited from the Prolific participant pool

(https://www.prolific.co; Palan & Schitter, 2018) for session one. All participants were

monolingual English speakers between 18 — 35 years of age currently residing in the US with no
history of language-related disorders. Forty-three participants were excluded due to failure to
pass all three headphone screens (n = 28) or failure to meet the training accuracy criterion (n =
15), described in detail below. The final sample (n = 97) included 42 women and 55 men (mean
age = 27 years, SD = 4 years). All of these participants were invited to participate in session two,
with 59 participants choosing to do so. The mean time between the two sessions was 11 days (SD
= 12 days, range = 1 — 35 days).
2. Power analysis

The sample size was determined based on a priori power analyses using the simr package
(Green & MacLeod, 2016) in R. First, trial-level data from Francis and Driscoll (2006) for the

effect we aimed to replicate (i.e., the data underlying the interaction shown in their Figure 1)
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were fit to a linear mixed effects model using the Imer() function from the Ime4 package (Bates
et al., 2015) in R. The dependent variable was log-transformed reaction time. The fixed effects
were test (pre-test = -0.5, post-test = (.5), ear (left ear = -0.5, right ear = 0.5), and their
interaction. The random effects structure consisted of random intercepts by subject and random
slopes by subject for test and ear. Second, we created a data frame to reflect the structure of our
design, given that power for mixed effects model is linked to number of observations (in addition
to sample size). As described below, each participant completed 80 trials in each test phase, and
we only analyzed RTs for correct responses (as in Francis and Driscoll, 2006). We
conservatively simulated accuracy at 60% correct, resulting in a simulated data set that consisted
of 48 trials/participant at each test session. Third, the parameters of the original model were
simulated in our data structure 500 times using the powerCurve() function in simr, which showed
that 55 participants were required to achieve 80% power to detect the test by ear interaction
observed in Francis and Driscoll (2006). Thus, we aimed to test 55 participants who met the
learning criterion from Francis and Driscoll (2006) in order to perform an adequately powered
replication. The recruited sample (n = 140) was based on estimated attrition rates (e.g., failure to
pass headphone screens, failure to pass training criterion, failures to meet learning criterion) and
resulted in 58 participants who met the learning criterion from Francis and Driscoll (2006), as we
describe further below.
3. Stimuli

a. Talker identification. Stimuli for the talker identification task were drawn from two
VOT continua, one that perceptually ranged from gain to cane and one that perceptually ranged
from goal to coal. Both continua were created by applying an LPC synthesis procedure to natural

productions of the voiced endpoints (i.e., gain, goal) elicited from a single female, monolingual
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227  speaker of American English. These stimuli are a subset of those used in Theodore and Miller
228  (2010), to which the reader is referred to for comprehensive details on stimulus construction.
229 From each of these continua, we selected two unique tokens for each of the two talkers,
230  who were fictitiously referred to as Joanne and Sheila. The selected tokens were in the

231  unambiguous, voiceless region of the original continua and thus perceptually cued the words
232 cane and coal. The tokens were selected so that Joanne had characteristically shorter VOTs than
233 Sheila. Specifically, the selected VOTs ranged between 84 — 89 ms for Joanne and between 165
234 — 170 ms for Sheila. With this procedure, the only difference between the two talkers’ voices was
235  their characteristic VOTs. These stimuli were used for both the training and test phases because
236  the left ear advantage in Francis and Driscoll (2006) only emerged for trained items. As

237  described in the procedure section below, stimuli were presented binaurally during training and
238  monaurally at test.

239 b. Individual differences measures. Separate stimulus sets were used in each of the four
240  individual differences tasks. Stimuli for the flanker task consisted of linear arrays of five arrows
241  in which the middle arrow was either congruent (e.g., < < < <<) or incongruent (e.g., < < <><
242 <) with the flanking arrows. There were 80 arrays in total, 20 congruent and 20 incongruent

243 arrows for each of two arrow directions (i.e., left vs. right). Stimuli for the pitch perception task
244 consisted of a subset of the local pitch perception stimuli from Xie and Myers (2015), to which
245  the reader is referred for comprehensive details on stimulus construction. In brief, each stimulus
246  consisted of a pair of six-tone sequences separated by 1000 ms of silence. There were 32 pairs in
247  total; 16 of which contained two identical tone sequences (i.e., same trials) and 16 of which

248  contained tone sequences that differed in pitch for one of the six tones of the sequence (i.e.,

249  different trials).
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Stimuli for the category identification and within-category discrimination tasks consisted
of tokens drawn from gain-cane and goal-coal VOT continua, created using the methods
described for the talker identification stimuli. Critically, the stimuli used for the category
identification and within-category discrimination tasks were produced by a different talker than
was used in the main talker identification learning task in order to minimize potential transfer of
learning between the two sessions. Stimuli for the category identification task consisted of 10
tokens from each continuum consisting of VOTs that ranged between 21 — 99 ms; as a
consequence, the selected VOTs perceptually cued both endpoints for each continuum (i.e., gain,
cane, goal, coal). Stimuli for the within-category identification task consisted of 15 tokens from
each continuum consisting of VOTs that ranged between 79 — 208 ms; accordingly, all selected
tokens cued the voiceless endpoint (i.e., cane, coal). The selected tokens were arranged into
same and different pairs; word was held constant on a given pair. There were 12 unique same
pairs that sampled the range of selected VOTs. There were 36 different pairs, reflecting six
unique pairs for each of three step distances between pair members (reflecting a difference in
VOT of 28, 54, or 80 ms, respectively) and two pair orders. As we describe in the procedure
section, we presented three repetitions of the same pairs and two repetitions of the different pairs
during the within-category discrimination task in order to equate the number of same and
different trials.

4. Procedure
a. Session 1. All testing was completed online using Gorilla Experiment Builder

https://gorilla.sc; Anwyl-Irvine et al., 2019). After providing informed consent, participants

completed a series of headphone screens. These included two existing protocols that use dichotic

listening tasks to screen for headphone compliance on web-based platforms (Milne et al., 2021;
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Woods et al., 2017). The third screen was a custom channel detection task in which listeners
heard a tone presented to either the left or right ear and were asked to indicate via button press in
which ear they heard the tone. The channel detection task was used in the headphone screen
battery because although the Woods et al. (2017) and Milne et al. (2020) dichotic listening tasks
assess use of stereo headphones, they do not assess whether a participant has placed the left
channel on the left ear (and thus the right channel on the right ear), which is a critical
requirement for the present study. Participants who did not pass on all three screens were
excluded from analyses; pass was defined as > 5 correct responses (of six total trials) on the
Woods et al. (2017) and Milne et al. (2020) tasks and > 7 correct responses (of eight total trials)
on the custom channel detection task.

After completing the headphone screens, participants completed the talker identification
task. The talker identification task consisted of familiarization, pre-test, training, and post-test
phases. During familiarization, listeners heard two repetitions of the four tokens for each talker
while seeing the name of the talker displayed on the screen. Stimuli during familiarization were
presented binaurally and blocked by word and talker (i.e., they heard Joanne’s two cane tokens,
and then Sheila’s two cane tokens, followed by Joanne’s two coal tokens and then Sheila’s two
coal tokens). Listeners were directed to listen to each word, view the talker’s name, and try to
learn each talker’s voice; no responses were collected during familiarization.

Following familiarization, listeners completed the pre-test phase. On a given trial, stimuli
were presented monaurally to either the left or right channel. The pre-test consisted of 80 trials (2
tokens x 2 words x 2 talkers x 2 channels x 5 repetitions) presented in a different randomized
order for each participant. Participants were asked to indicate whether the word was produced by

Joanne or by Sheila as quickly as possible without sacrificing accuracy. Participants made their
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responses using the “a” and “1” keys and were instructed to keep their index fingers on these
keys throughout the experiment to facilitate faster response times; a visual diagram was provided
to demonstrate correct finger placement during the instructions. The instructions explicitly noted
that this was not a sound localization task to help ensure that participants understood that they
should be indicating which talker they heard on each trial and not ear of stimulus presentation.
No feedback was provided during pre-test.

After the pre-test, participants completed the training phase. The training phase consisted
of 400 trials (2 tokens x 2 words x 2 talkers x 50 repetitions) of talker identification following the
task instructions described for pre-test; trials were randomized separately for each participant.
Stimuli were presented binaurally and feedback was provided on every trial in the form of a
green checkmark (for correct responses) or a red “x” (for incorrect responses). Session one
concluded with the post-test phase, which was identical to the pre-test phase.

A progress bar was displayed on the bottom center of the screen throughout the entirety
of the experiment and the ISI was constant at 1000 ms (measured from the participant’s response
on each trial to the onset of the next stimulus). The entire procedure lasted approximately 35
minutes and participant were compensated $5.83 for their participation.

b. Session 2. All testing was completed online using Gorilla Experiment Builder (Anwyl-
Irvine et al., 2020). After providing informed consent, listeners completed the Woods et al.
(2018) and Milne et al. (2020) headphone screens. All participants who returned for session two
(n=159) passed all headphone screens at session two. After completing the headphone screens,
participants completed the within-category discrimination, flanker, category identification, and
pitch perception tasks in this fixed order. The within-category discrimination consisted of 72

same trials (2 words x 12 VOTs x 3 repetitions) and 72 different trials (2 words x 3 distances x 6
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unique pairs x 2 pair orders). On each trial, participants were directed to indicate whether the two
members of the pair were the same or different by clicking one of two appropriately labeled
buttons. The flanker task consisted of one randomization of the 80 linear arrays (2 trial types x 2
directions x 20 repetitions). On each trial, participants were directed to indicate the direction of
the central arrow as quickly as possible without sacrificing accuracy. Participants were asked to
keep their index fingers on top of the response keys throughout the task and a visual diagram
illustrating correct finger placement was provided during the instructions.

The category identification task consisted of 80 trials (2 continua x 10 VOTs x 4
repetitions). Participants were asked to indicate whether the word began with a “g” as in gain
and goal or “k” as in cane and coal by clicking on an appropriately labeled button. The pitch
perception task consisted of 64 trials (2 trial types x 16 unique pairs x 2 repetitions). On each
trial, participants indicated whether the two members of the pair were the same or different by
clicking on an appropriately labeled button. For all tasks, trials were presented in a separate
randomized order for each participant and the ISI was 1000 ms. The entire procedure lasted
approximately 35 minutes; participants were compensated $5.83 for their participation.

B. Results
1. Talker identification

a. Training. Trial-level data (for all tasks) and a script (in R) is available on the Open
Science Framework (https://osf.io/ge2vb/). Executing the script will reproduce all statistics
reported in this manuscript in addition to generating all figures. For the training phase, accuracy
for each participant was calculated in terms of proportion correct responses across all training
trials. We excluded 15 participants because they failed to meet the inclusion criterion for training

accuracy (> 0.60). Mean accuracy across included participants (0.83, SD = 0.10, range = 0.61 —
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0.98) was significantly above chance as confirmed by a one-sample t-test [#(96) = 32.495, p <
0.001), which was expected based the inclusion criterion.

b. Test. Accuracy and reaction time during the test phases were analyzed separately. For
accuracy, trial-level responses (0 = incorrect, 1 = correct) were submitted to a generalized linear
mixed effects model with the binomial response family as implemented with the glmer() function
of the Ime4 package (Bates et al., 2015) in R. The model included fixed effects of test (pre-test =
-0.5, post-test = 0.5), ear (left = -0.5, right = 0.5), and their interaction. The random effects
structure included random intercepts by subject and random slopes by subject for test and ear.
The model revealed a main effect of test (8 = 0.469, SE = 0.069, z = 6.829, p < 0.001), indicating
that accuracy improved from pre-test (0.71, SD = 0.14) to post-test (0.79, SD = 0.12). There was
no main effect of ear (8 = 0.034, SE = 0.043, z = 0.780, p = 0.435), nor an interaction between
test and ear (8 = -0.090, SE = 0.078, z = -1.150, p = 0.250). The main effect of test is visualized
in Figure 1.

FIG. 1. (Color online.) Results of the talker identification task in experiment 1. Panel A shows
performance during the talker identification task for all participants (n = 97); panel B shows
performance during the talker identification for those who met the learning criterion (n = 58). In
both panels, the distribution of participants’ accuracy scores (mean proportion correct) for each

test is shown at left, and the distribution of participants’ mean response times to correct
responses by test and ear of stimulus presentation is shown at right.
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Trial-level reaction times (RT) for correct responses during test were analyzed in a linear
mixed effects model using the Imer() function of the Ime4 package (Bates et al., 2015). The
Satterthwaite approximation of degrees of freedom was used to evaluate statistical significance
using the ¢ distribution (Kuznetsova et al., 2017). RTs were log-transformed and trials exceeding
2.5 SDs of a participant’s mean log RT were excluded (3.2% of correct RTs). The fixed and
random effects structure was identical to that described for the accuracy analysis. The results of
the model showed a main effect of test (8 = -0.073, SE = 0.020, ¢ = -3.620, p < 0.001), with RTs
decreasing from pre-test (mean = 1051 ms, SD = 268) to post-test (mean = 958 ms, SD = 220).
There was no main effect of ear (8 = 0.008, SE = 0.005, ¢ = 1.489, p = 0.140), nor an interaction

between test and ear (8 =-0.011, SE =0.010, t=-1.075, p = 0.283). Figure 1 shows the
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distribution of participants’ mean RTs by test session and ear.

Recall that in Francis and Driscoll (2006), the left ear advantage at post-test emerged
only for listeners who met their learning criterion, defined as > 5% improvement in talker
identification accuracy from pre-test to post-test. A parallel reaction time analysis was performed
limited to listeners in the current study who met this criterion (n = 58). The results converged
with the full sample; reaction time decreased from pre-test to post-test (8 = -0.083, SE = 0.031, ¢
=-2.671, p =0.010), but there was no main effect of ear (,@ =0.008, SE=0.007,t=1.152,p =
0.255), nor an interaction between test and ear (8 = -0.020, SE = 0.013, r =-1.541, p = 0.123).

2. Individual differences measures

a. Flanker. Mean accuracy (proportion correct) across participants was near ceiling (0.97,
SD = 0.03, range = 0.85 — 1.00). To ensure that the expected inhibition effect was observed
across participants in the aggregate, trial-level log RTs for correct responses were analyzed in a
linear mixed effects model following the methods outlined previously. RTs were log-transformed
and trials exceeding 2.5 SDs of a participant’s mean log RT were excluded (2.8% of correct
RTs). Congruency was entered as a fixed effect (congruent = -0.5, incongruent = 0.5); the
random effects structure consisted of random intercepts by participant and random slopes for
congruency by participant. The results of the model confirmed a main effect of congruency (f =
0.049, SE = 0.006, t = 7.648, p <0.001), with RTs faster for congruent (mean = 434 ms, SD =
63) compared to incongruent trials (mean =455 ms, SD = 61). For each subject, inhibition was
calculated as the difference in RT between congruent and incongruent trials; thus, more negative
scores indicate weaker inhibition. Performance on the four individual differences measures is
shown in Figure 2.

FIG. 2. (Color online.) Performance on the four individual differences measures in experiment 1.
Panel A shows the distribution of participants’ mean response times by trial type (left) and the
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distribution of interference scores (right) for the flanker task. Panel B shows the distribution of
accuracy scores for same and different trials (left) and the distribution of sensitivity scores (right)
for the pitch perception task. Panel C shows the relationship between /k/ responses and VOT for
each participant as determined by logistic regression (left) and the distribution of identification
slopes (right) for the category identification task. Panel D shows the distribution of accuracy
scores for same and different trials (left) and the distribution of sensitivity scores (right) for the
within-category discrimination task.
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b. Pitch perception. To quantify performance on the pitch perception task, we calculated
sensitivity (d’) separately for each participant. Hit was defined as responding “same” for same
tone sequence trials; false alarm was defined as responding “same” for different tone sequence
trials. Mean sensitivity (d’) across participants was 1.96 (SD = 1.01), which was significantly
greater than zero [#(58) = 14.847, p < 0.001].

c. Category identification. Trial-level identification responses were fit to a logistic
regression separately for each participant; in each regression, VOT was the independent variable
and binary response (0 =/g/, 1 = /k/) was the dependent variable. Two parameters were derived

from each regression: (1) the slope of the identification function and (2) the category boundary,
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defined as the VOT corresponding to 0.50 proportion /k/ responses. To derive the slope, we used
the beta estimate for VOT from the regression model; with this metric, higher values indicate
steeper identification slopes. The category boundary was derived using the model intercept and
beta estimate for VOT from the regression model according to equation (1), where So is the

intercept, f1 is the slope, and x is the category boundary.

0.5
1-0.5

Bo+ Brx=log( T x =2 Equation (1)

Two participants were excluded from subsequent category identification analyses because they
did not show a statistically significant relationship between VOT and phonetic decisions; instead,
their response functions were flat suggesting that they did not perform the task as directed.
Across participants, the mean slope of the identification function was 0.146 (SD = 0.076) and the
mean category identification boundary was 54 ms (SD = 9 ms).

d. Within-category discrimination. To quantify performance on the within-category
discrimination task, we calculated sensitivity (d’) separately for each participant. Hit was defined
as responding “same” for same trials; false alarm was defined as responding “same” for different
trials. Mean sensitivity (d’) across participants was 1.20 (SD = 0.56), which was significantly
greater than zero [#(58) = 16.348, p < 0.001].

3. Relationship between talker identification and individual differences measures

A series of correlations were performed to examine whether performance on the
individual differences measures predicted performance on the talker identification task. Five
measures of individual differences were considered, which included inhibition (congruent RT —
incongruent RT), sensitivity (d’) for the pitch perception task, identification slope and category
boundary for the category identification task, and sensitivity (d’) for the within-category

discrimination task. Each of these five measures was correlated with four measures from the
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talker identification task, which included accuracy during training, accuracy at pre-test, accuracy
at post-test, and learning (accuracy at post-test — accuracy at pre-test). These correlations are
shown in Table I and visualized in Figure 3.

TABLE 1. Pearson’s correlation coefficient () and p-value (in parentheses) relating the five
individual difference measures to each of four talker identification measures. Cells in bold
indicate statistical significance with @ = 0.05. Cells with underline indicate statistical
significance after applying the conservative Bonferroni correction to account for family-wise
error rate (as described in the main text). The degrees of freedom were 57 for all measures except
for the category identification measures, which had degrees of freedom equal to 55 (given that
two participants were excluded due to failure to complete the task as directed). Parallel analyses
were performed using Spearman’s rank-order correlations and the results converged in all cases;
these correlations can be viewed by executing the script provided in the OSF repository for this
manuscript.

Talker identification measure

Individual
differences measure Training Pre-test Post-test Learning
Inhibition 0.00 (0.971)  -0.15(0.267)  -0.17 (0.209)  0.00 (0.971)
Pitch perception 0.41 (0.001) 0.28 (0.029) 0.40 (0.002) 0.09 (0.500)
Identification: Boundary 0.20(0.132)  -0.09 (0.487)  0.25(0.065)  0.36 (0.007)
Identification: Slope 0.19(0.165)  0.25(0.058)  0.16 (0.240)  -0.12 (0.363)
Discrimination 0.52 (<0.001) 0.32 (0.013) 0.45 (<0.001) 0.09 (0.477)

There was no significant relationship between inhibition and any measure of talker
identification. Pitch perception was positively associated with talker identification accuracy
during training, pre-test, and post-test; however, pitch perception was not related to the degree of
learning. The location of the VOT voicing boundary was significantly associated with the degree
of learning from pre- to post-test; with longer category boundaries associated with better
performance. Within-category discrimination was positively associated with talker identification
accuracy during training, pre-test, and post-test, but was not associated with learning.

FIG. 3. (Color online.) Scatterplots illustrating the relationship between the five individual

differences measures (by row) and the four measures of talker identification (by column) in
experiment 1. Each point reflects an individual participant. The regression line indicates a linear
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We note that when the conservative Bonferroni correction to account for family-wise

error rate is applied (resulting in corrected a = 0.0025 given a = 0.05 and 20 comparisons), the

only relationships that survive are the associations between the two measures of auditory acuity
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(i.e., pitch perception, within-category discrimination) and talker identification accuracy during
training and post-test.!
II1. EXPERIMENT 2

The results of experiment 1 revealed two primary findings. First, most listeners learned to
use VOT as a cue to talker identification, consistent with the results of Francis and Driscoll
(2006). That is, following a brief training phase, listeners improved in their ability to use a
phonetic cue as an indicant of talker identity, even in the absence of traditional indexical cues to
voice identity (e.g., fundamental frequency). Second, auditory acuity was positively associated
with talker identification, suggesting that heightened sensitivity to fine-grained acoustic
information facilitated performance in the current task. Of note, we did not observe any evidence
to suggest that ear of stimulus presentation influenced performance in the talker identification
task. The goal of experiment 2 is examine whether a left ear advantage is observed under
conditions that are known to better facilitate behavioral observation of laterality effects.
Following the conclusion of experiment 2, we present Bayes Factors analyses to inform
interpretation of null effects reported in this manuscript.

As reviewed in the introduction, hemispheric laterality effects are more optimally
observed in behavioral tasks under conditions in which a competing stimulus is presented to the
contralateral ear of the target stimulus (Behne et al., 2005, 2006; Bless et al., 2015; Gonzalez et

al., 2010; Hugdahl & Anderson, 1984; Studdert-Kennedy & Shankweiler, 1970; Westerhausen,

! In addition to packages cited in the main text, we also acknowledge additional R resources used
for data analysis including the tidyverse packages dplyr and tidyr (Wickham et al., 2019) for data
manipulation, the tidyverse package ggplot2 (Wickham et al., 2019) and the cowplot package
(Wilke, 2019) for figure generation, the jtools package (Long, 2020) for summarizing model
results, and the inauguration package (Bedford-Petersen, 2021), which provides a color palette
for plots inspired by the power attire worn by celebrated women at the 2021 US presidential
Inauguration.
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2019). This is contrast to the manipulation used in Francis and Driscoll (2006) and in experiment
1, in which silence was presented to the contralateral ear. Dichotic stimulus presentation
facilitates the observation of laterality effects because ipsilateral auditory pathways are
suppressed when ears are presented with competing stimuli. Most of the literature on laterality
effects for auditory verbal processing differs from the focus of the current investigation in that
previous research has primarily examined laterality effects when processing the linguistic
content of the stimuli, that is, the “what” of a talker’s message. For example, the pioneering work
of Kimura (1967) presented verbal productions of different digits to each ear and asked listeners
to identify which digit(s) they heard. Likewise, the now classic consonant-vowel (CV) dichotic
listening paradigm presents different CV syllables to each ear and requires listeners to identify
which syllables(s) they hear (Hugdahl & Anderson, 1984; Studdert-Kennedy & Shankweiler,
1970). The extensive literature on /inguistic processing of dichotic signals thus supports a
cumulative science that can inform optimal design decisions for eliciting and measuring laterality
effects for auditory verbal processing (e.g., Bless et al., 2013, 2015; Parker et al., 2021;
Westerhausen, 2019).

In contrast, studies using behavioral tasks to assess hemispheric laterality for talker
processing — that is, the “who” of a linguistic message — is relatively sparse, reflecting an
emerging line of inquiry. To our knowledge, only three studies have provided behavioral
evidence of a left ear advantage for talker identification. The first is Francis and Driscoll (2006),
which directly motivates the current work, and, as described previously, consisted of a monaural
task (i.e., stimuli presented to either the left or right ear) instead of a dichotic listening task. The
second comes from Perrachione and colleagues (Perrachione et al., 2009). In their study, native

English and native Mandarin listeners completed a talker identification task (with feedback) for
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voices speaking English and Mandarin during a training phase. On each trial, listeners heard two
talkers produce the same sentence and were asked to identify the talker in the left ear on some
trials and the talker in the right ear on other trials. Trials were blocked by both ear and stimulus
language; that is, listeners completed four training blocks formed by crossing monitoring ear (left
vs. right) and stimulus language (English vs. Mandarin). Analysis of talker identification
accuracy during training revealed a left ear benefit for both listener groups only when identifying
talkers producing English sentences, which the authors speculate may reflect differences in the
temporal modulation of frequency information between the two languages.

The third study comes from Gonzélez and colleagues (Gonzalez et al., 2010). In their
study, listeners completed a talker identification task with target stimuli presented to either the
left or the right ear. The construct of interest in this study was long-term repetition priming;
accordingly, talker identification accuracy was compared between same sentence (i.e., a talker’s
repeated sentence) and different sentence (i.e., a talker’s novel sentence) trials. Pink noise was
presented in the contralateral ear to the target stimulus in their first experiment, whereas silence
was presented in the contralateral ear in their second experiment. The results of the two
experiments converged to show a left ear advantage for recognition memory in the talker
identification task. Specifically, talker identification accuracy was higher for same compared to
different sentence trials when stimuli were presented in the left ear, and no such benefit was
observed for stimuli presented in the right ear. The laterality effect was observed in both
experiments; however, it was stronger in the first compared to the second experiment, consistent
with noise in the contralateral ear serving to suppress the influence of ipsilateral auditory
pathways (Behne et al., 2005, 2006).

Drawing from these three studies, the specific dichotic manipulation used in experiment 2
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was to present pink noise in the contralateral ear to the target stimulus, as in Gonzélez et al.
(2010). This manipulation allowed us to use otherwise identical procedures between experiments
1 and 2, and thus better isolate the influence of a dichotic listening environment on any observed
differences between the two experiments (in contrast to, for example, adopting the blocked ear
design used in Perrachione et al., 2009).
A. Methods
1. Participants

One hundred and fourteen participants were recruited from the Prolific participant pool

(https://www.prolific.co; Palan & Schitter, 2018) following the criteria outlined for experiment

1. Forty-three participants were excluded due to failure to pass all three headphone screens (n =
23) or failure to meet the training accuracy criterion (n = 12), as described for experiment 1. The
final sample (n = 79) included 24 women, 54 men, and one participant who declined to report
gender (mean age = 28 years, SD = 4 years). The sample size was determined by the power
analyses described for experiment 1. Specifically, we tested participants until we achieved n = 55
who met the learning criterion outlined for experiment 1, which was defined as an improvement
in proportion correct talker identification between pre- and post-test greater than or equal to 0.05.
2. Stimuli and procedure

The stimuli and procedure were identical to experiment 1 with two key exceptions. First,
pink noise was presented in the contralateral ear of the target stimulus at pre- and post-test.
Following Gonzalez et al. (2010), the amplitude of the pink noise (72 dB) was 3 dB lower than
the amplitude of the target stimuli (75 dB). Second, in addition to the 80 target trials in each test
phase (i.e., trials on which the target was presented to either the left or the right ear, with pink

noise presented in the contralateral ear), 20 filler trials were presented in which the target
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stimulus was presented binaurally (i.e., the same signal was presented to each ear), following
recommendations of Parker et al. (2021) and Westerhausen (2019). These filler trials, reflecting
five repetitions of each word for each talker, were randomly interspersed across each test phase
and subsequently removed from the analyses.

B. Results

Performance during the training phase was analyzed as outlined for experiment 1. Mean
accuracy across participants (0.82, SD = 0.10, range = 0.62 — 0.98) was significantly above
chance as confirmed by a one-sample t-test [#(78) = 27.492, p < 0.001), which was expected
based the inclusion criterion (accuracy > 0.60).

Accuracy and reaction time during the test phases were analyzed as outlined for
experiment 1. The accuracy model revealed a main effect of test (8 = 0.661, SE = 0.095, z =
6.942, p <0.001), indicating that accuracy improved from pre-test (0.60, SD = 0.15) to post-test
(0.73, SD = 0.14). There was no main effect of ear (f =-0.041, SE = 0.042, z = -0.985, p =
0.325), nor an interaction between test and ear (8 = 0.028, SE = 0.080, z = -0.340, p = 0.734).
The main effect of test is visualized in Figure 4.

As described for experiment 1, RTs were log-transformed and trials exceeding 2.5 SDs of
a participant’s mean log RT were excluded from analysis (2.7% of correct trials). The results of
the RT model showed a main effect of test (8 = -0.048, SE = 0.022, ¢ = -2.175, p = 0.033), with
RTs decreasing from pre-test (mean = 1112 ms, SD = 330) to post-test (mean = 1041 ms, SD =
257). There was no main effect of ear (8 = 0.011, SE = 0.006, ¢ = 1.716, p = 0.090), nor an
interaction between test and ear (8 = 0.006, SE = 0.012, 1 = 0.476, p = 0.634). Figure 4 shows the
distribution of participants’ mean RTs by test session and ear.

FIG. 4. (Color online.) Results of the talker identification task in experiment 2. Panel A shows
performance during the talker identification task for all participants (n = 79); panel B shows
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performance during the talker identification for those who met the learning criterion (n = 55). In
both panels, the distribution of participants’ accuracy scores (mean proportion correct) for each
test is shown at left, and the distribution of participants’ mean response times to correct
responses by test and ear of stimulus presentation is shown at right.
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Recall that in Francis and Driscoll (2006), the left ear advantage at post-test emerged
only for listeners who met their learning criterion, defined as > 5% improvement in talker
identification accuracy from pre-test to post-test. As for experiment 1, a parallel reaction time
analysis was performed limited to listeners in experiment 2 who met this criterion (n = 55). The
results converged with the full sample; reaction time decreased from pre-test to post-test (8 = -
0.078, SE = 0.027, t = -2.859, p = 0.006), but there was no main effect of ear (8 = 0.009, SE =
0.007, t=1.213, p = 0.225), nor an interaction between test and ear (,@ =0.003, SE=0.015,¢t=

0.235, p = 0.815).
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IV. BAYES FACTORS ANALYSIS

Collectively, the results of experiment 2 converge with the pattern of results observed for
the talker identification task in experiment 1. Specifically, most listeners learned to use a
phonetic property of speech as a cue to talker identification, as indicated by an improvement in
talker identification accuracy from pre- to post-test. In addition to improved accuracy, exposure
during the training phase inferred a behavioral benefit such that talker identification decisions
were faster at post-test compared to pre-test. However, there was no evidence to suggest that
learning to use a phonetic property as a cue to talker identity yielded a left ear advantage for
talker identification, even under circumstances that were optimized to elicit a laterality effect in
behavior (i.e., by presenting a competing stimulus in the contralateral ear to the target stimulus).

Drawing conclusions from a null result using frequentist statistics (i.e., null hypothesis
significance testing) is challenging because, by definition, a p-value does not provide evidence in
support of the null hypothesis. Instead, the p-value obtained in a frequentist analysis approach, as
used in the current work, reflects the probability of observing the result (or a more extreme
result) if the null hypothesis were true (e.g., Badenes-Ribera et al., 2016; Hubbard & Lindsay,
2008). That is, the p-value reflects the probability of the data given the null, which can be
formally expressed as p = p(data|H0). When the p-value is low (e.g., p < 0.05), we inferentially
reason that we can reject the null hypothesis because the probability of the observed effect in the
data is very low if in fact the null hypothesis were true. When the p-value is high (e.g., p > 0.50),
the appropriate inference is that the null hypothesis is not rejected. As described by Badenes-
Ribera et al. (2016), one of the most common misconceptions about p-values — even among
trained researchers — is the “inverse probability fallacy,” in which p-values are misinterpreted as

the probability that the null hypothesis is true given the observed data (Carver, 1978). The
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inverse probability fallacy can be formally expressed as p = p(HO|data). Consider the p-values
observed for the critical phase by ear interaction in the reaction time models for the full sample
in experiment 1 (p = 0.283) and experiment 2 (p = 0.634). Both p-values support the logical
inference that the null hypothesis is not rejected; however, neither of these p-values provide
direct support for the null hypothesis because, by definition, this is not the probability expressed
by the p-value.

Bayes Factors analysis can help to resolve the inverse probability fallacy because the
Bayes Factor expresses the ratio between the likelihood of two hypotheses (e.g., Kass & Raftery,
1995; Lee & Wagenmakers, 2014; van Doorn et al., 2021). For example, a Bayes Factor can be
calculated for the likelihood of an alternative hypothesis (i.e., H1) relative to the likelihood of the
null hypothesis (i.e., HO), and thus can be interpreted as a measure of the strength of the evidence
in favor of one hypothesis over another. Unlike a p-value, the Bayes Factor can directly express
the strength of the evidence in support of the alternative or the null hypothesis. By convention, a
Bayes Factor of 1 is interpreted as no evidence for either hypothesis; that is, when the likelihood
of the HI and HO are equal, the Bayes Factor indicates no evidence for either hypothesis (e.g,
Lee & Wagenmakers, 2014). A Bayes Factor > 1 is interpreted as evidence in support of the H1
and a Bayes Factor < 1 is interpreted as evidence in support of the HO. Moreover, the magnitude
of the Bayes Factor can be interpreted as the degree of support. For example, Bayes Factors
between 3 and 10 are, by convention, interpreted as providing moderate evidence for the HI.
Likewise, Bayes Factors between 1/3 and 1/10 are interpreted as providing moderate evidence
for the HO. Accordingly, Bayes Factors analysis provides a tool for interpreting null effects
observed in frequentist analysis approaches because Bayes Factors support the interpretation of

null effects beyond the limited “failure to reject the null” inference that is licensed by p-values.
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To this end, we calculated the Bayes Factor for the null effects that emerged in the
reaction time models of experiments 1 and 2. All calculations were performed using the ImBF()
function of the BayesFactor package (Morey & Rouder, 2018) in R, with multivariate Cauchy
prior distributions set to scale = 0.5 and scale = 1.0 for fixed and random effects, respectively.
Calculating a Bayes Factor requires specifying two hypotheses (i.e., models) for comparison, one
to represent the H1 and one to represent the HO. For all calculations, we followed guidance to
include random intercepts by subject and random slopes by subject for within-subjects variables
when calculating Bayes Factors using trial-level data in mixed effects models; accordingly, null
models reflected the balanced null (van Doorn et al., 2021).

Four Bayes Factors were calculated for each experiment, two for the model that included
all participants and two for the model that included only the participants who met the learning
criterion. First, we calculated the Bayes Factor when defining the H1 as a model that included
fixed effects of phase, ear, and their interaction and the HO as a model that only included fixed
effects of phase and ear. The Bayes Factor here thus indicates the degree of support for the
interaction versus the lack of interaction. The resulting Bayes Factors (on a natural log scale) are
shown in Figure 5. In three of the four cases, the Bayes Factor indicated strong evidence in
support of the HO (i.e., no interaction between phase and ear); in the fourth case, the Bayes
Factor was on the cusp between criteria used to mark moderate and strong support for the null
hypothesis. Second, we calculated the Bayes Factor when defining the H1 as a model that
included fixed effects of phase and ear and the HO as a model that only included the fixed effect
of phase. Accordingly, the Bayes Factor for these hypotheses indicates the degree of support for
a model that includes ear as a predictor versus a model that does not. As shown in Figure 5, the

resulting Bayes Factors indicated strong support for the null for both samples in each
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experiment. Viewed in conjunction with the frequentist statistics reported for each experiment,
the results of the Bayes Factors analysis suggest that each experiment provides strong support for
the null hypothesis; that is, the current results support the hypothesis that ear of presentation does
not influence reaction time in the current talker identification tasks.

FIG. 5. (Color online.) Bayes Factors analyses for the null effects observed in experiments 1 and
2. As described in the main text, Bayes Factors were calculated for two sets of hypotheses in
each experiment, which were calculated separately for the full sample (i.e., all participants who
met the a priori training criterion for inclusion in the study) and the subset of participants who
met the learning criterion (defined as > 5% improvement in talker identification accuracy from
pre- to post-test). In the figure below, Bayes Factors are plotted on a natural log scale to facilitate
visualization (i.e., a Bayes Factor of 1 = 0 on the natural log scale). Interpretation conventions
are provided in italicized text, with gray lines indicating the bounds for each interpretation
criterion (i.e., Bayes Factors between -2.303 and -3.401 on a natural log scale represent the range
of values that can be interpreted as providing strong evidence in support of the null hypothesis).
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V. DISCUSSION

Here we revisited the finding of Francis and Driscoll (2006), who showed that learning to
use a phonetic property of speech as a cue to talker identity induced a left ear processing
advantage for behavioral responses in a talker identification task. The left ear processing

advantage was interpreted as evidence of hemispheric lateralization consistent with task
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demands. As reviewed in the Introduction, this finding is broadly consistent with the
neuroimaging literature suggesting right hemisphere dominance for talker processing. However,
this finding is unexpected given the extant dichotic listening literature, which suggests that the
ability to measure hemispheric asymmetries through behavioral listening tasks requires
presenting competing stimuli across binaural channels. The current work aimed to (1) determine
whether a left ear advantage for phonetic cues to talker identification would generalize to a larger
sample and (2) identify factors that predict a listeners’ ability to use phonetic cues for talker
identification. The results of the talker identification task converged across both experiments.
Specifically, listeners in the aggregate showed improved talker identification accuracy at post-
test compared to pre-test, indicative of learning to use VOT as a cue to talker identity, which did
support a behavioral processing advantage in terms of faster reaction times at post-test compared
to pre-test. However, we found no evidence to suggest a left ear advantage either in the full
sample (n = 97 in experiment 1, n =79 in experiment 2) or in the subset of participants (n = 58 in
experiment 1, n =55 in experiment 2) who met the Francis and Driscoll (2006) learning
criterion.

A failure to replicate could reflect any one of the methodological differences between the
original and current study. Some of these differences are more minor (e.g., different stimulus
sets, different number of training and test trials), whereas two differences are more substantial.
First, the current study used web-based measures for data collection and the original study tested
participants in a laboratory. It may be the case that the effect observed in Francis and Driscoll
(2006) may require a high level of control over the testing environment that is only possible in a
traditional laboratory setting. Though we cannot rule out this possibility, web-based and smart

phone-based methods have been shown to be sufficient for behavioral detection of cerebral
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lateralization specifically (e.g., Bless et al., 2013; Parker et al., 2021) and for eliciting dichotic
listening effects more generally (e.g., Milne et al., 2021; Woods et al., 2017). Gorilla Experiment
Builder, the software used to deploy the current web-based study, provides excellent timing
control for stimulus presentation and reaction time measurement (Anwyl-Irvine et al., 2021), and
we followed best practice for web-based reaction times studies by implementing a fully within-
subjects design so that differences in browser and hardware (which may influence experimental
timing) were not confounded with experimental conditions. Moreover, all participants in the
current study passed two dichotic listening tasks that were designed to screen for headphone
compliance on web-based platforms (Milne et al., 2020; Woods et al., 2017) in addition to
passing a custom channel detection screen.

Second, the talker identification task was completed in a single session in the current
study, whereas the task was spread across three days in the original study. Accordingly, the left
ear processing advantage in Francis and Driscoll (2006) may be linked to sleep-based
consolidation (e.g., Earle et al., 2018). However, right hemisphere sensitivity to talker-specific
VOT patterns for phonetic identification has been shown to emerge within an hour of exposure
as measured using fMRI (Myers & Theodore, 2017), suggesting that neural sensitivity to a
talker’s phonetic signature is not contingent on sleep-based consolidation.

An additional explanation for the failure to replicate may be that the original effect
reported in Francis and Driscoll (2006) was a false positive effect. This would not be
unreasonable for three reasons. First, the paradigm was not optimized for measuring hemispheric
laterality given the absence of a competing stimulus in the contralateral ear of interest (e.g.,
Kimura, 1967; Hugdahl, 2011). That is, although hemispheric laterality can be measured through

behavioral dichotic listening tasks, Francis and Driscoll (2006) used a monaural listening task.
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Monaural listening tasks show weakened ability to measure structural asymmetries of the
auditory pathway and its interaction with selective attention (Nicholls, 1998). In experiment 1,
we chose to replicate the original Francis and Driscoll task (i.e., present test stimuli monaurally)
to keep the replication closer to the original design. In experiment 2, pink noise was presented in
the contralateral ear to the target stimulus, which is a dichotic listening manipulation that has
successfully elicited a left ear advantage for talker identification in past research (Gonzalez et al.,
2010). However, the left ear advantage failed to emerge in the current study even under these
more favorable conditions for behavioral observation of laterality effects. Second, the original
sample was limited to eight participants, and underpowered studies have been associated with an
increased rate of false positive effects (e.g., Button et al., 2013). Third, a reanalysis of the
Francis and Driscoll (2006) data suggests that the left ear effect was not stable at the level of
individual subjects, despite being significant in the aggregate. Figure 6 shows the aggregate
effect and by-subject patterns for each of the eight participants included in the aggregate
analysis. Five participants showed numerically faster mean reaction time for left compared to
right ear stimuli at post-test; however, none of the participants showed a pattern of responses
consistent with the group-level pattern.

Though we did not replicate a left ear advantage, the current results did show that
listeners could use VOT as a cue to talker identification, consistent with Francis and Driscoll
(2006) and numerous others studies pointing to tight links between the processing of phonetic
and indexical cues (e.g., Ganugapati & Theodore, 2019; Myers & Theodore, 2017; Theodore et
al., 2015; Theodore & Miller, 2010). Moreover, the current results shed light on individual
differences factors that predict listeners’ use of VOT as a cue for talker identification.

Specifically, both measures of auditory acuity — pitch perception and within-category
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discrimination — were positively associated with performance on the talker identification task;
accuracy was higher at pre-test, training, and post-test for listeners with stronger vs. weaker
auditory acuity. In contrast, inhibitory control and identification slope were not associated with
any measure of talker identification performance. The only measure that predicted learning (i.e.,
the change in performance between pre- and post-test) was the location of participants’ VOT
voicing boundaries, with later boundaries associated with increased learning. Recall that Joanne
and Sheila’s characteristic VOTs were selected to reflect within-category variation for /k/.
Participants with longer VOT voicing boundaries may have perceived the short VOT variants
(i.e., Joanne) as members of the /g/ category, providing an additional cue for disassociating the
talkers’ voices.

FIG. 6. (Color online.) Re-analysis of Francis and Driscoll (2006). Panel A shows mean reaction
time to correct responses at pre- and post-test by ear of presentation; error bars indicate standard
error of the mean. Panel B shows performance for each of the eight participants who were
included in the analysis presented in A; participant numbers (e.g., SO1) reflect identifiers used in

the original study.
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On the one hand, null effects can present challenges for theory development (particularly
when null effects emerge from frequentist analyses) because a failure to find evidence to reject

the null hypothesis does not in turn provide evidence to support the null hypothesis. On the other
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hand, observing cases where predictions of a given theory do not hold is a key component of the
scientific method; these findings are needed to refine, revise, or perhaps even dismiss the theory.
Moreover, any single test of a hypothesis cannot be considered definitive “truth;” this is only
possible through repeated observations that together form a cumulative science. Though we
imagine that these basic tenets of the scientific process are uncontroversial, these tenets are not
reflected in the literature. For example, Scheel and colleagues (Scheel et al., 2021) examined the
degree of hypothesis confirmation in the standard psychology literature compared to Registered
Reports in this domain. A Registered Report is a relatively new research article type that is
granted conditional acceptance prior to data collection; that is, the hypotheses and methods are
evaluated independently from the results (e.g., Simons et al., 2014; Storkel & Gallun, 2022).
They found that 96% of hypotheses were confirmed in the standard psychology literature
compared to only 44% in Registered Reports. Concerns regarding the improbability of
“successes” in the literature have been noted for decades (e.g., Fanelli, 2012; Scheel et al., 2021;
Sterling, 1959; Sterling et al., 1995). These concerns have been linked to replication failures in
numerous research domains (e.g., Begley & Ellis, 2012; Hubbard & Vetter, 1996; loannidis,
2005; Martin & Clarke, 2017), and some have argued the preponderance of positive effects in the
literature is a direct consequence of a publication bias against null effects and replication studies
(e.g., Neuliep, 1990; Neuliep & Crandall, 1993; Pashler & Wagenmakers, 2012). As argued by
Haeffel (2022), in order to provide critical tests of our theories, we must stop the extraordinary
“winning streak” that yields a scientific literature suggesting that positive support is obtained for
every hypothesis that is tested.

If positive support for the hypothesis at hand is our metric of “winning,” then we have

definitely lost in the current study. However, given that the results of the Bayes Factors analyses
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provided strong support for the null hypothesis, all is perhaps not lost for theory development.
The results of Francis and Driscoll (2006) led to the theory that hemispheric dominance reflects
functional use of acoustic-phonetic cues. That is, the theory posited that the functional use of a
given speech cue was the primary determinant of lateralization, and not the nature of the specific
speech cue. The current results are inconsistent with this theory. Combined with the extant
literature, they instead support a theory that places higher weight on the signal for guiding
hemispheric lateralization (Albouy et al., 2020; Perrachione et al., 2009; Poeppel, 2003; von
Kriegstein et al., 2003). For example, access to source characteristics may be necessary for
engaging right hemisphere dominance for voice processing. This is consistent with findings from
the two studies that observed behavioral evidence of right hemisphere lateralization for talker
identification. In Gonzalez et al. (2010) and Perrachione et al. (2009), the stimuli consisted of
sentence-length items and talkers differed not only in their phonetic implementation of speech
sounds, presumably, but also in their indexical characteristics. That is, the talkers in these studies
differed on a host of naturally occurring dimensions, including fundamental frequency. As a
consequence, any talker-specific phonetic variability in the stimuli was conditioned on talker
differences in source characteristics. This was not the case in the current experiments because the
two talkers only differed in their phonetic instantiation of /k/.

Other behavioral research has shown that although talker-specific phonetic variation can
facilitate talker identification, listeners require additional time to learn the conditioning between
phonetic and indexical cues. For example, Ganugapati and Theodore (2019) trained listeners to
identify three female talkers from single-word utterances. For one group of listeners, phonetic
information was structured across talkers such that each talker had a characteristic VOT

production. This structure was absent for a different group of listeners who instead heard all
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three talkers each produce all three characteristic VOTs. In contrast to the current experiments,
the three talkers also differed in source characteristics; thus, sensitivity to talker-specific VOT
was not required to perform the talker identification task. Indeed, given brief exposure to the
talkers (72 trials), talker identification accuracy did not differ between the two groups. However,
given longer exposure (216) trials, those who heard structured phonetic variation showed higher
talker identification accuracy compared to those who did. Moreover, results from the
neuroimaging literature suggest that right hemisphere regions associated with voice processing
show sensitivity to talker-specific phonetic patterns when these patterns co-occur with talker
differences in indexical cues (Myers and Theodore, 2017). Together with the current work, these
findings are consistent with the theory that using talker-specific phonetic variation for voice
processing will be heightened when phonetic variation can be conditioned on source
characteristics. We note that though the current results are consistent with such a theory, future
research is needed to confirm this hypothesis by direct examination of potential laterality effects
following exposure to input that would allow phonetic variability to be conditioned on indexical
variability.

In conclusion, the current study did not yield evidence to suggest a left ear processing
advantage in behavior for the talker identification task used here. This does not imply that it may
not emerge under different circumstances; indeed, the results contribute to a theory predicting
that a right hemisphere (i.e., left ear) advantage may emerge when talker-specific phonetic
variability can be conditioned on talker differences in source characteristics. Future research is
needed to test this hypothesis directly. Given evidence to suggest right hemisphere sensitivity to
talker-specific phonetic patterns (e.g., Gonzélez et al., 2010; Myers & Theodore, 2017;

Perrachione et al., 2009) and behavioral evidence indicating a tight coupling between phonetic
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and indexical processing (e.g., Ganugapati & Theodore, 2019; Goggin et al., 1991; Nygaard &
Pisoni, 1998; Orena et al., 2015), future research is warranted to determine the type and time
course of behavioral advantages that may occur given perceptual learning of talker-specific
phonetic detail.
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