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ABSTRACT

We present an individual-centric agent-based model and a flexible

tool, GeoSpread, for studying and predicting the spread of viruses

and diseases in urban settings. Using COVID-19 data collected by

the Korean Center for Disease Control & Prevention (KCDC), we

analyze patient and route data of infected people from January 20,

2020, toMay 31, 2020, and discover how infection clusters develop as

a function of time. This analysis offers a statistical characterization

of population mobility and is used to parameterize GeoSpread to

capture the spread of the disease.We validate simulation predictions

fromGeoSpreadwith ground truth andwe evaluate differentwhat-if

counter-measure scenarios to illustrate the usefulness and flexibility

of the tool for epidemic modeling.
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1 INTRODUCTION

On March 11, 2020, the WHO declared COVID-19 the first pan-

demic caused by a coronavirus [27]. Since then, prediction of the

spread of the disease became a critical guide of public health policy.

A tremendous amount of data is collected to help policy decisions

that can limit the spread of COVID-19. For example, Google pro-

vides time-series data of infections at a coarse granularity [24] (i.e.,

as a function of the area’s population, no information is provided at

the granularity of single individuals). Epidemiological simulation

and mathematical models have been used to predict the spread of

the disease. Typically, model effectiveness is tied to its input pa-

rameterization. Due to the increasing rate of novel viral outbreaks

[6], such as recent outbreaks of hepatitis in children [35] and mon-

keypox [34], using the growing amount of available data to predict

and limit such spreads is vital.
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In this paper, we use data provided by the Korean Center for Dis-

ease Control (KCDC) and local governments during the first wave

of the disease in South Korea. In contrast to the Google data, the

KCDC data focus on individual patients and allow the development

of an individual-centric model of the COVID-19 epidemic. Infected

individuals are monitored and their movements are logged using

CCTV, cellphones, and credit card transactions [25]. The KCDC

records patient movements in plain text (i.e., natural language)

without any unified rule. These logs are parsed through automated

code and rule-based methods to extract keywords that are then

used with web mapping service APIs (e.g., Google Maps [1], Kakao

Map [2], or Naver Map [3]) to extract geographical coordinates (i.e.,

latitude and longitude) and other data.

To the best of our knowledge, the KCDC logs are the only data

that contain patient-centric information in great detail: they report

on the patient mobility, i.e., traveled distance and the sequence of

locations visited on a daily basis, the date of the onset of symptoms,

whether and when the patient got in contact with other patients.

The KCDC data set is a valuable resource, yet it presents limitations:

• The last version of the KCDC data set contains data collected

up toMay 31, 2020 By that date approximately 11,500 COVID-

19 cases were confirmed in South Korea [18, 25], but only

35% of them have been logged.

• Some locations visited by patients are not recorded due to pri-

vacy concerns. Consequently, patient infection information

and route data do not always coincide.

• Patient and route data may be incomplete (i.e., some loca-

tion attributes are occasionally missing) and require manual

completion before analyzing the data set.

• There is route data information for only the 15% of all con-

firmed cases by May 31.

We adopt different data discovery strategies to address the above

challenges. We have manually retrieved certain missing attributes:

in the case of patient routes with missing location type (e.g., store,

school, hospital, airport), we use the provided geographical coordi-

nates to retrieve the visited location and identify its type.

Regretfully, some missing data are not possible to recover. Specif-

ically, provided that the mobility of only the 15% of confirmed

patients are logged in detail, we can only łguessž the mobility of

the remaining patients assuming it is independent and identically

distributed to the 15% of patients with detailed logs. We contend

that while detailed logs provide data of statistical significance, their

usage introduces some unavoidable bias towards the percentage

of patients who voluntarily shared more information than others.

Here, we use this processed data in the form of histograms (and

also make them available to the community [29]).
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SARS-CoV-2 in small areas: crowded areas of supermarkets [36]

and university campuses [12]. Differently from our approach, no

fine-grained movement data is used in any of the above works. The

above models are parameterized using census or synthetic data while

population movement habits are captured at a coarse granularity.

Müller et al. [20, 21] use an ABM parameterized with synthetic

mobility traces (originally generated from mobile phone data for

public transportation applications) to study the COVID-19 outbreak

in Berlin and analyze how mitigation measures result in reduction

of activity in public. These are the closest to our work but they

do not provide any detailed statistics on agent mobility during the

pandemic as we do here.

Summarizing, in this paper we extract human movement habits

and dynamics from the KCDC data set of real COVID-19 patients. The

mobility information (i.e., patient mobility, traveled distance, visited

locations) and statistics are used to tune an ABM and investigate

the COVID-19 outbreak in two districts of Seoul. Agent movements

and behaviors are simulated using the statistics of actual human

movements, other structures (e.g., networks or graphs) are not re-

quired.The proposed approach allows investigating scenarios under

different circumstances to identifying mitigation strategies.

8 CONCLUSIONS

In this paper, we extract human movement habits and dynamics

from the KCDC data sets of real COVID-19 patients. Mobility sta-

tistics are used to tune an ABM used by our tool, GeoSpread, and

to investigate the COVID-19 outbreak in two districts of Seoul. The

proposed approach allows investigating scenarios under different

circumstances to identify mitigation strategies. Simulation results

are in excellent agreement with ground truth and show that this

model can be used to flexibly examine and evaluate the spread of

COVID-19 (and new disease outbreaks) in an urban setting. While

we do not claim that it is a definitive COVID-19 spread model, it

can be used to investigate useful what-if scenarios (e.g., mitiga-

tion measures) and future infectious diseases (e.g., more aggressive

SARS-CoV-2 variants or new pathogens). We also plan to extract

new information from the data set used in [20, 21] to investigate

the impact of public transport and determine which aspects can be

generalized to other cities around the world.
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