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ABSTRACT

We present an individual-centric agent-based model and a flexible
tool, GeoSpread, for studying and predicting the spread of viruses
and diseases in urban settings. Using COVID-19 data collected by
the Korean Center for Disease Control & Prevention (KCDC), we
analyze patient and route data of infected people from January 20,
2020, to May 31, 2020, and discover how infection clusters develop as
a function of time. This analysis offers a statistical characterization
of population mobility and is used to parameterize GeoSpread to
capture the spread of the disease. We validate simulation predictions
from GeoSpread with ground truth and we evaluate different what-if
counter-measure scenarios to illustrate the usefulness and flexibility
of the tool for epidemic modeling.
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1 INTRODUCTION

On March 11, 2020, the WHO declared COVID-19 the first pan-
demic caused by a coronavirus [27]. Since then, prediction of the
spread of the disease became a critical guide of public health policy.
A tremendous amount of data is collected to help policy decisions
that can limit the spread of COVID-19. For example, Google pro-
vides time-series data of infections at a coarse granularity [24] (i.e.,
as a function of the area’s population, no information is provided at
the granularity of single individuals). Epidemiological simulation
and mathematical models have been used to predict the spread of
the disease. Typically, model effectiveness is tied to its input pa-
rameterization. Due to the increasing rate of novel viral outbreaks
[6], such as recent outbreaks of hepatitis in children [35] and mon-
keypox [34], using the growing amount of available data to predict
and limit such spreads is vital.
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In this paper, we use data provided by the Korean Center for Dis-
ease Control (KCDC) and local governments during the first wave
of the disease in South Korea. In contrast to the Google data, the
KCDC data focus on individual patients and allow the development
of an individual-centric model of the COVID-19 epidemic. Infected
individuals are monitored and their movements are logged using
CCTV, cellphones, and credit card transactions [25]. The KCDC
records patient movements in plain text (i.e., natural language)
without any unified rule. These logs are parsed through automated
code and rule-based methods to extract keywords that are then
used with web mapping service APIs (e.g., Google Maps [1], Kakao
Map [2], or Naver Map [3]) to extract geographical coordinates (i.e.,
latitude and longitude) and other data.

To the best of our knowledge, the KCDC logs are the only data
that contain patient-centric information in great detail: they report
on the patient mobility, i.e., traveled distance and the sequence of
locations visited on a daily basis, the date of the onset of symptoms,
whether and when the patient got in contact with other patients.
The KCDC data set is a valuable resource, yet it presents limitations:

o The last version of the KCDC data set contains data collected
up to May 31, 2020 By that date approximately 11,500 COVID-
19 cases were confirmed in South Korea [18, 25], but only
35% of them have been logged.

e Some locations visited by patients are not recorded due to pri-
vacy concerns. Consequently, patient infection information
and route data do not always coincide.

e Patient and route data may be incomplete (i.e., some loca-
tion attributes are occasionally missing) and require manual
completion before analyzing the data set.

o There is route data information for only the 15% of all con-
firmed cases by May 31.

We adopt different data discovery strategies to address the above
challenges. We have manually retrieved certain missing attributes:
in the case of patient routes with missing location type (e.g., store,
school, hospital, airport), we use the provided geographical coordi-
nates to retrieve the visited location and identify its type.

Regretfully, some missing data are not possible to recover. Specif-
ically, provided that the mobility of only the 15% of confirmed
patients are logged in detail, we can only “guess” the mobility of
the remaining patients assuming it is independent and identically
distributed to the 15% of patients with detailed logs. We contend
that while detailed logs provide data of statistical significance, their
usage introduces some unavoidable bias towards the percentage
of patients who voluntarily shared more information than others.
Here, we use this processed data in the form of histograms (and
also make them available to the community [29]).
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We use logs and histograms to feed GeoSpread, an extended
version of the GeoMason [31] tool that uses agent-based models
(ABM) and geographic information systems (GIS). GeoMason has
been used to study disease outbreaks (e.g., a cholera outbreak [10]).
We simulate interactions of thousands of people in the Gangnam
and Seocho districts of Seoul on roads and in buildings to investigate
the COVID-19 outbreak in the largest metropolis of South Korea and
evaluate different what-if mitigation scenarios. Our contributions
and outline of this work are:

e Data Discovery. We analyze and connect data from various
KCDC logs to extract information on patient movements
(Sections 2 and 3). Missing information is manually retrieved,
when possible.

o Statistical Analysis. We provide statistical analysis of pop-
ulation movements and habits.

e Agent-based Model and Flexible Tool. We create a tool,
GeoSpread, and parameterize an agent-based model that
uses the KCDC data as input, see Section 4, and outline its
flexibility to capture a variety of conditions as well as new
viral outbreaks. The simulation tool and processed data are
publicly available [29].

e Model Validation with Real Data . We use the ground
truth to validate the model in Section 5. Model limitations
are discussed in Section 6.

2 THE KCDC DATA SET

The data sets [16] used in this paper contain data collected by the
KCDC and local governments from January 20, 2020, to May 31,
2020. The PatientInfo and PatientRoute data sets contain informa-
tion and routes of COVID-19 patients.

PatientInfo data set. This data set provides epidemiological data.
It contains 4004 different entries, each entry represents a differ-
ent patient identified by a unique ID (patient_id). Other attributes
include their gender and age, their provenance (country, province,
and city), whether they have been infected in a known case (in-
fection_case, e.g., overseas inflow or contact with patient) and the
ID of the patient that infected them (infected_by), the number of
people that the patient came in contact with (contact_number), and
the date of their first symptoms (symptom_onset_date).
PatientRoute data set. This data set contains 8092 entries, each
one reporting a visit (to one of 2992 unique locations) of 1472 (out
of 4004) unique South Korean COVID-19 patients logged in the
PatientInfo data set. A location is unequivocally identified by its
latitude and longitude. Province, city, and type (e.g., airport, hospital,
store) of each location are also provided. The attribute type of almost
30% of entries is set to etc (i.e., locations that cannot be identified
using the rule-based approach of [16]). We manually look for their
type using their geographical coordinates and OpenStreetMap [4]
to compensate for this lack of data. Each entry also contains the
patient (identified by patient_id, the same as in the PatientInfo data
set, and by global_num, another ID used only in this data set) that
visited the location on a specific date. The time spent in the location
is not available. Locations visited by a patient in a single day are
logged chronologically.
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Figure 1: Location-related information from the KCDC data
sets for (a) Seoul and its districts, Gangnam (blue) and Seo-
cho (green), with (b) the top-10 most visited location types
in Seoul and (c) movements between Gangnam and Seocho.

3 DATA DISCOVERY

Although the information contained in the KCDC data sets are
not as accurate as one would like, it still allows for the analysis
of patient movements and interactions with high accuracy. In this
section, we discuss information that we extract from the data sets
and how it is used to parameterize GeoSpread, our extension of the
GeoMason ABM tool [31].

3.1 Visited Locations

Fig. 1(a) depicts a heat map of the most visited locations in Seoul.
Within Seoul, the south-west and south-east areas are those with
more patient routes. The financial district and company head-
quarters are located in the south-west part of the city. The south-
east region corresponds to the Gangnam and Seocho districts, out-
lined in blue and green, respectively, in Fig. 1(a). Many shopping
and entertainment centers are located in Gangnam. Fig. 1(b) shows
the ten most visited facility types in Seoul, with Hospital being
the first one. No information about schools is available since this
data set monitors only people in their 20s through 70s. The scarcity
of logged residential facilities is due to privacy concerns. Finally,
Fig. 1(c) illustrates the movement of population between two neigh-
boring districts, Gangnam and Seocho that we use later in our
model.

3.2 Patient Connections

Figs. 2(a) and 2(b) present subgraphs of patient connections dis-
covered by linking the PatientRoute and PatientInfo data sets. To
improve visibility, we only present a small portion (i.e., 13% and
9% respectively) of the entire graph. Here, nodes depict patients,
black edges connect patients that visited the same place during
the same day from the PatientRoute data set, and red edges repre-
sent the virus spreading information obtained from the PatientInfo
data set (i.e., infected_by attribute). Some red edges do not overlap
with black edges due to missing data, i.e., even if one of the two
nodes connected by the red edge infected the other, no connections
(i.e., visits to the same location during the same day) have been
recorded in the data set. Some nodes also have no red edges, since
it is not always possible to determine which person they were in-
fected by. The node degree in Figs. 2(a) and 2(b) shows the contact
degree among patients and illustrates visually the complexity of
the problem.

Fig. 2(c) shows a summary view of patient connections: the
contact degree CDF of all patients for the entire dataset. Three
CDFs are shown: one for the whole South Korea, one for Seoul, and
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(a) Patient connections (partial 1)

(b) Patient connections (partial 2)
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Figure 2: Patient contacts.
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Figure 3: Infection spread subgraph: Red nodes are patients with route information who infected others. Green nodes are
patients who infected others but do not have any route information. Blue nodes are patients who did not infect anyone else.

another one for the Gyeongsangbuk-do province. Interestingly, all
CDFs have a similar shape. High contact degrees indicate potential
super spreaders (i.e., patients that infect many other people). People
who come into contact with many others are not necessarily super
spreaders since it is unknown whether they were sick or healthy
when the contact occurred.

3.3 Super Spreaders

Fig. 3 illustrates a subset of patients where the infected_by rela-
tionship (i.e., patient A is infected by patient B) is known from the
PatientInfo data set. The entire graph contains 1052 patient nodes
and 822 edges representing the known infection spread. For the sake
of visibility, we present just a data subset. Red nodes correspond
to individuals with available route information who are known to
have infected others, green nodes correspond to individuals who
infected others but have no available route information, and blue
nodes correspond to patients who are not known to have infected
others. This particular subset shows a mix of super spreaders (i.e.,
people who infected more than six people) and low spreaders, who
infected six or fewer people. The large “fans” in this figure are
indicative of super spreaders.

Using this classification of patients based on the number of
people they infect, we discover different behaviors of super/low
spreaders, shown in Fig. 4. Super spreaders account for 3.59% and
low spreaders for the rest of 96.41% of patients. Fig. 4 presents CDFs
of the number of people infected by an individual, the number
of days in the log that the individual appears, the unique visited
locations, and the total number of visited locations. The CDFs in
this figure indicate that, in general, super spreaders tend to be active
for more days, visit more unique locations, and have longer routes
than low spreaders.

3.4 Mobility

Fig. 5(a) plots the density heat map of distance traveled by patients
in Seoul and the number of locations visited in a day. The darker
the area, the more patients have the same traveled distance and
visited locations. With some exceptions, people mostly travel short
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Figure 4: Super spreader analysis.
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Figure 5: Mobility: Daily traveled distance and visited locations.

distances and visit only a few locations each day. The CDF of the
daily traveled distance is shown in Fig. 5(b). Intuitively, the more
places a patient visits, the higher their mobility is. Looking at the
mobility of individual patients, there are days where they exhibit
high mobility and days where they move significantly less. This
leads us to a more usable definition of mobility as a function of
different time periods (days). Fig. 5(c) shows the day count of unique
locations reached by the patients in the data set: for 2,063 days
(88.9% of days) a typical patient visits 1-3 locations, while for 258
days (11.1%) more than 3 unique locations are visited.

Defining a high mobility day as a day during which a patient
visits at least L locations, the mobility of a patient is the ratio of
the patient high mobility days to all logged days for this specific
individual. Note that this is not the only way to define mobility. For
simulation purposes (Section 4), this definition provides a practical
way to capture mobility with a probability. Based on this definition,
Fig. 5(d) shows the difference in mobility between low and super
spreaders.

4 AGENT-BASED MODEL

In this section, we show how to parameterize a simulation based on
our tool, GeoSpread, an expanded version of GeoMason [31] using
the characterization presented in Section 3. A replication package
containing the expanded version of GeoMason is available [29].
Attributes, life cycle, and states of each agent are shown in Fig. 6.
The following attributes are set during the initialization phase:

(1) Infection status. One or more random agents are selected as
the initial case(s).

(2) Position. Agents are randomly placed on a road in the simu-
lated area.

(3) Speed/Distance. Agents’ speed and distance traveled. Both are
fed to GeoSpread as distributions to model different move-
ment habits. The CDF of daily traveled distance in Fig. 5(b)
is used to determine the distance traveled.

(4) Type of spreaders. We define two classes of spreaders: 3.59%
of patients are super spreaders and 96.41% are low spreaders
(see Section 3.3).

(5) Mobility. We use the mobility of super spreaders and low
spreaders depicted in Fig. 5(d) to model patient mobility.

Simulation time is defined by cycles. In each simulation cycle,
agents outside a building move along the road toward their destina-
tion; agents inside a building can choose to stay or leave, based on

their mobility. Agents with high mobility have a high probability
to leave the building. Note that agents stay in a building for at least
15 minutes in order to meet the definition of close contact [8].

If multiple agents are inside the same building, they may infect
each other with a certain probability. When an infection happens,
the agent state changes from healthy to infected. We assume the
outdoor infection probability to be negligible. Given the probability
of infection inside a building, @, and the number of infected agents
in the building, n, the probability of a healthy agent to be infected
by a contact within the building is:

Pr(infection) =1— (1 - a)™. (1)

The probability of infection defined by Eq. (1) is nominal. Any model
can be used here to capture the viral load: the total number of people
in the location, the duration of interaction among individuals, the
square footage of the room, its air circulation, wearing a mask or
not, see [20] for examples on how to adjust Eq. (1).

It takes 1-14 days for patients to show COVID-19 symptoms
after infection according to the WHO [26]. GeoSpread supports
any distribution (e.g., Uniform, Exponential, Log-normal) to define
the transition of an individual status from infected to symptomatic.
This allows capturing different scenarios and model future variants
of SARS-CoV-2, different pathogens, or new viral outbreaks.

Consistent with infectious disease simulation studies [17], we set
the simulation cycle to 5 minutes. The simulation terminates either
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Figure 6: Life cycle of an agent.
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Figure 7: Gangnam and Seocho Simulation.

when all agents are infected or after a number of cycles defined by
the user.!

We simulate the COVID-19 outbreak in the neighboring Seocho
and Gangnam districts, see Fig. 1(a). Roads and buildings are placed
in the simulated area as described in [23], a collection of GIS data
with regard to Seoul. GeoSpread loads the GIS data (e.g., roads,
road intersections, buildings) stored in a shapefile format, i.e., a file
containing geometric locations and their attribute information. We
do not have any information on building stories, entries, or num-
ber of rooms. This information is crucial, especially for apartment
buildings, where multiple people can be inside the same building at
the same time without contact. To address this lack of information,
we limit the population in our simulations. We validate parameter
choices against ground truth data in Section 5.

A screenshot of the GeoSpread simulation execution that focuses
on the Gangnam and Seocho districts can be seen in Fig. 7. Black
lines are roads that agents travel on and green areas are buildings
where agents stop. Agents only have two states in terms of infection,
i.e., healthy (blue dots) or infected (red dots).

5 MODEL VALIDATION AND CASE STUDY

After presenting the generic model in Section 4, we showcase its
flexibility. We use real data to validate GeoSpread, then we simulate
different mitigation measures to assess their effectiveness when
applied to Seocho and Gagnam districts.

5.1 Validation

We focus on agents moving between Seocho and Gagnam. Fig. 1(c)
shows the percentage of residents in these two districts that have
been infected, the figure also illustrates the frequency of residents
visiting buildings in their home district, as well as visiting the other
district. We use this information to parameterize the simulation.
During the initialization phase, we separate the agents into Gang-
nam residents (70.4% of the population) and Seocho residents (29.6%

!In this simulation, we do not explicitly model agent recovery: a recovered agent that
resumes its mobility is considered immune and non-contagious, therefore does not
contribute to the disease spread. The simulation can be trivially extended to model
recovered agents re-entering the simulation cycle.
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of the population). Next, we retrieve the distributions of agent mo-
bility and spreader types from the data set for residents of each
district to set their attributes. After initialization, when selecting
destination buildings, the probability of a resident staying or leaving
their home district follows Fig. 1(c).

Since two districts are considered in this simulation, starting
with only one infected agent in one of the two areas could bias the
results. Here, we start the simulation with 55 infected agents, i.e.,
the number of infections observed from the data set on March 9,
2020, proportionally assigned to agents in the two districts (29.6%
in Seocho, 70.4% in Gangnam). We selected March 9, 2020 because
mitigation efforts in Seoul have yet to produce a noticeable effect
on disease spread, while also allowing us to clearly see trends.
Simulations starting at any time earlier or around March 9, result
in similar infection trends.

Fig. 8(a) depicts the number of COVID-19 cases in the Gangnam
and Seocho districts observed from the data set (black line) and
simulation (red and blue lines). The ground truth line illustrates the
COVID-19 outbreak in the two districts. At the beginning of April,
the curve flattens. This is likely due to effective counter-measures
executed in Seoul, especially the Strong Social Distancing Cam-
paign which began on March 22. Consistent with the COVID-19
incubation timeline, the effectiveness of the Strong Social Distanc-
ing Campaign does not show immediately, but after two weeks at
the beginning of April. Our simulation in Fig. 8(a) does not model
the effect of social distancing campaign so it is expected not to
capture the knee of the ground truth curve.

We align the beginning of simulation data to the time of 55
infection cases in the ground truth, since this is the starting point
of the simulation. The two simulation lines in Fig. 8(a) (whose
95% confidence interval is represented by the shaded areas) closely
follow the ground truth: the simulation of population 10,000 with
infection rate 0.004 and the simulation of population 20,000 with
infection rate 0.002 are in excellent agreement with the ground
truth from March 26, 2020 to April 5, 2020, when the effects of
any counter-measures are not discernible yet. The overlap of two
simulation cases with the ground truth validates the simulation.

We note in Fig. 8(a) an interesting relationship between popula-
tion and infection rate: when the population is doubled, dividing the
infection rate in half gives similar simulation outcomes. This obser-
vation also meets the results in the generic simulation that higher
population leads to faster spreading of the COVID-19 virus, while
lowering the infection rate slows down the virus spreading. We
conclude that we can use a “limited” population with an adjusted
infection rate to efficiently (yet accurately) model the expected
behavior of larger populations.

As further validation, we simulate the effects of applying a stay-
at-home advisory mid-simulation in order to capture the effects of
the mitigation measures taken in Seoul on March 22 - the Strong
Social Distancing Campaign. Fig. 8(b) depicts the results of these
simulations (with 95% confidence interval) against the ground truth.
In this simulation case, we begin with no mitigation measures and
apply a stay-at-home advisory once we reach a certain threshold
number of infections. Here, we select this threshold based on the
number of infections in the ground truth data when the Strong
Social Distancing campaign was enacted, however, this threshold is
a parameter and we can choose to transition between no measures
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Figure 9: Hotspots in the data set (ground truth) and model.

and a stay-at-home advisory at any given number of infections.
After applying the stay-at-home advisory mid-simulation, the sim-
ulation also exhibits a flattening trend, which is consistent with the
ground truth.

Fig. 8(c) shows the effect of different mitigation measures on the
number of infections in the two Seoul districts. The stay-at-home
advisory is the most efficient counter-measure that keeps the num-
ber of cases below 250 people during the first 40 days. The number
of infections is mildly contained when people cannot leave their
home-district (i.e., border lockdown), while it sharply increases
when no mitigation measures are taken. This highlights the abil-
ity of the model to capture what-if scenarios defined by different
mitigation measures and patterns of population movement.

The accuracy of GeoSpread is also assessed through hotspot loca-
tions. In Fig. 9(a), we present the heat map of most visited locations
in the Gangnam and Seocho districts from the data set (ground
truth). The most visited areas are in the northern part of Gangnam
and across the border between the two districts. These hotspots
correspond to the density of commercial buildings in these areas,
which results in higher traffic areas. Figs. 9(b) and 9(c) show the
heat map of visits in the first week for simulated populations of
10,000 and 20, 000, accordingly. From both simulations, we observe
similar hotspots, consistent with the ground truth heat map. This
similarity further validates the accuracy of the simulation. These
results can also be further improved through more detailed building
information, such as maximum occupancy and more specific infor-
mation on the building’s purpose. We leave these improvements
for future work.

6 MODEL LIMITATIONS

Although the model is validated using ground truth, missing data
limit its generalization. Limitations include:

First wave data. This data is from the first wave of the disease in
South Korea. With South Korea having one of the best responses to
the disease globally, the mobility patterns inevitably reflect cultural

and demographic characteristics as well as policy decisions. We
have no way to evaluate how mobility statistics changed during
other waves of COVID-19.

Privacy concerns. The KCDC data set is anonymized and no sen-
sitive data of monitored patients can be retrieved. No data about the
underage population is provided as well as movements of patients
from/to their private homes. This limits the scenarios that can be
analyzed, e.g., the impact of school closures.

Transportation assumptions. The KCDC data set does not show
the transportation mode of patients and we do not have data to
parameterize this aspect of the simulation. Nevertheless, simulation
results are in agreement with the ground truth. As for other input
parameters, GeoSpread allows users to fully customize the ratio of
pedestrian to vehicles in case this parameter is crucial to study new
SARS-CoV-2 variants or future disease outbreaks.

7 RELATED WORK

The COVID-19 pandemic has been largely studied from different
perspectives due to its disruptive effects. New habits forced by the
unprecedented situation (e.g., usage of contact tracing apps) are
analyzed in [19, 32].

ABMs are a simulation-based alternative of mathematical models
that incorporate human interactions [15]. ABMs are typically used
for modeling pedestrian movements, human mobility during rare
events (e.g., natural disasters), resource usage, and to successfully
study the spread of diseases [10, 22].

Ferguson et al. [11] model the spread of influenza in British and
American households, schools, and workplaces. Their simulations
are parameterized using census and land use data. They use air
travel patterns (i.e., large scale international population movements)
to model people mobility. ABMs parameterized by census data have
been used to capture the spread of COVID-19 in Australia [9, 28].
Using census and age-distribution data from Germany and Poland,
Bock et al. [7] investigate the efficiency of mitigation strategies by
accounting for interactions within households where it is hard to
social distance. Census ABM-based frameworks have been used to
simulate the COVID-19 outbreak [13], evaluate the efficiency of
contact tracing [5], face masks [14], and testing strategies [33]. Kim
et al. [17] use synthetic, location-based social network data to study
outbreaks and evaluate the effectiveness of different mitigation
strategies, especially how social behaviors affect the virus spread.
Souza et al. [30] use geo-located data from social networks (i.e.,
Twitter) to identify hotspots that facilitate the spread of infectious
diseases (i.e., Dengue). ABMs are used also to model the spread of
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SARS-CoV-2 in small areas: crowded areas of supermarkets [36]
and university campuses [12]. Differently from our approach, no
fine-grained movement data is used in any of the above works. The
above models are parameterized using census or synthetic data while
population movement habits are captured at a coarse granularity.

Miiller et al. [20, 21] use an ABM parameterized with synthetic
mobility traces (originally generated from mobile phone data for
public transportation applications) to study the COVID-19 outbreak
in Berlin and analyze how mitigation measures result in reduction
of activity in public. These are the closest to our work but they
do not provide any detailed statistics on agent mobility during the
pandemic as we do here.

Summarizing, in this paper we extract human movement habits
and dynamics from the KCDC data set of real COVID-19 patients. The
mobility information (i.e., patient mobility, traveled distance, visited
locations) and statistics are used to tune an ABM and investigate
the COVID-19 outbreak in two districts of Seoul. Agent movements
and behaviors are simulated using the statistics of actual human
movements, other structures (e.g., networks or graphs) are not re-
quired.The proposed approach allows investigating scenarios under
different circumstances to identifying mitigation strategies.

8 CONCLUSIONS

In this paper, we extract human movement habits and dynamics
from the KCDC data sets of real COVID-19 patients. Mobility sta-
tistics are used to tune an ABM used by our tool, GeoSpread, and
to investigate the COVID-19 outbreak in two districts of Seoul. The
proposed approach allows investigating scenarios under different
circumstances to identify mitigation strategies. Simulation results
are in excellent agreement with ground truth and show that this
model can be used to flexibly examine and evaluate the spread of
COVID-19 (and new disease outbreaks) in an urban setting. While
we do not claim that it is a definitive COVID-19 spread model, it
can be used to investigate useful what-if scenarios (e.g., mitiga-
tion measures) and future infectious diseases (e.g., more aggressive
SARS-CoV-2 variants or new pathogens). We also plan to extract
new information from the data set used in [20, 21] to investigate
the impact of public transport and determine which aspects can be
generalized to other cities around the world.
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