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Abstract

The current data acquisition rate of astronomical transient surveys and the promise for significantly higher rates in
the next decade necessitate the development of novel approaches to analyze astronomical data sets and promptly
detect objects of interest. The Deeper, Wider, Faster (DWF) program is a survey focused on the identification of
fast-evolving transients, such as fast radio bursts, gamma-ray bursts, and supernova shock breakouts. It employs
multifrequency simultaneous coverage of the same part of the sky over several orders of magnitude. Using the
Dark Energy Camera mounted on the 4 m Blanco telescope, DWF captures a 20 s g-band exposure every minute,
at a typical seeing of ∼1″ and an air mass of ∼1.5. These optical data are collected simultaneously with
observations conducted over the entire electromagnetic spectrum—from radio to γ-rays—as well as cosmic-ray
observations. In this paper, we present a novel real-time light-curve analysis algorithm, designed to detect
transients in the DWF optical data; this algorithm functions independently from, or in conjunction with, image
subtraction. We present a sample of fast transients detected by our algorithm, as well as a false-positive analysis.
Our algorithm is customizable and can be tuned to be sensitive to transients evolving over different timescales and
flux ranges.

Unified Astronomy Thesaurus concepts: Transient detection (1957); Time series analysis (1916); Surveys (1671)

1. Introduction

The field of transient astronomy is booming, with several
successful completed, ongoing, and planned optical surveys
that will come online in the coming years, specifically designed
to find transient phenomena. Among the former, the Palomar
Transient Factory/Intermediate Palomar Transient Factory
(PTF/iPTF; Law et al. 2009; Rau et al. 2009), the Panoramic
Survey Telescope and Rapid Response System (Pan-STARRS;
Magnier et al. 2013), the Sloan Digital Sky Survey (SDSS)
Supernova Survey (Wolf et al. 2016), the Asteroid Terrestrial-
impact Last Alert System (ATLAS) All-sky Survey (Tonry
et al. 2018), the Gaia Survey (Gaia Collaboration et al. 2016),
the Zwicky Transient Facility (ZTF; Bellm et al. 2019; Graham
et al. 2019), the Dark Energy Survey (DES; Dark Energy
Survey Collaboration et al. 2016), the All Sky Automated
Survey for Supernovae (ASAS-SN; Kochanek et al. 2017), and
the Transiting Exoplanet Survey Satellite (TESS; Ricker et al.
2015) have provided a census of a large variety of supernovae
(SNe), tidal disruption events, and exoplanet confirmations. In
the latter category, the Vera C. Rubin Observatory and Nancy
Grace Roman Telescope will push our understanding of the
transient sky toward deeper limits and longer wavelengths. An
overview of the field of view (FOV), depth, and cadence of
these surveys can be found in Table 1. In conjunction with
some of these optical surveys, gravitational-wave (GW)
detectors like the Advanced Laser Interferometer Gravita-
tional-wave Observatory (aLIGO; LIGO Scientific Collabora-
tion et al. 2015) and Virgo (Acernese et al. 2015) and neutrino
detectors such as IceCube (IceCube Collaboration 2005) and

the Baksan Neutrino Observatory (Kuzminov 2012) have
ushered us into a new era of multimessenger transient
astronomy.
We expect that the discovery of new and exciting transient

phenomena will continue at a higher pace thanks to the Vera C.
Rubin Observatory/Legacy Survey of Space and Time (LSST;
Ivezić et al. 2019): the telescope is being constructed in Cerro
Pachón, Chile (with a planned first-light date in 2022, before
commencing operations in 2023) and aims to image the sky in
Wide, Fast, Deep mode at a depth of g∼ 24 every 3 days
(LSST Science Collaboration et al. 2017). The Nancy Grace
Roman Telescope/Wide-field Infrared Space Telescope
(WFIRST; Spergel et al. 2015) will cover an area of 9 deg2

at an average depth of J∼ 25 with a cadence of 5 days in a
proposed medium-depth SN survey when it is launched on its
scheduled date in 2025 (Hounsell et al. 2018; Akeson et al.
2019). We summarize the characteristics of these planned
instruments in Table 1.

1.1. Current Survey Results

In this section we briefly summarize some of the seminal
discoveries that the next generation of surveys will look to
build on; a visual representation of the FoV of several surveys
on the sky is presented in the left panel of Figure 1. For
example, Pan-STARRS results include the outburst from an SN
progenitor 1 yr before its explosion (Fraser et al. 2013), a lack
of superluminous SNe with light curves compatible with pair-
instability models (Nicholl et al. 2013), and the first interstellar
asteroid detection (de la Fuente Marcos & de la Fuente
Marcos 2017). Similarly, the most recent SDSS survey results
include the detection of baryonic acoustic oscillation measure-
ments (Alam et al. 2017), evidence for the epoch of
reionization around z∼ 6 (Becker et al. 2001), high-redshift
(z> 5.6) quasars (Fan et al. 2001), and indirect dark matter

The Astronomical Journal, 163:95 (13pp), 2022 February https://doi.org/10.3847/1538-3881/ac441b
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0001-6548-3777
https://orcid.org/0000-0001-6548-3777
https://orcid.org/0000-0001-6548-3777
https://orcid.org/0000-0001-5310-4186
https://orcid.org/0000-0001-5310-4186
https://orcid.org/0000-0001-5310-4186
mailto:robert.strausbaugh@uvi.edu
http://astrothesaurus.org/uat/1957
http://astrothesaurus.org/uat/1916
http://astrothesaurus.org/uat/1671
https://doi.org/10.3847/1538-3881/ac441b
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ac441b&domain=pdf&date_stamp=2022-01-27
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ac441b&domain=pdf&date_stamp=2022-01-27
http://creativecommons.org/licenses/by/4.0/


detection via weak lensing (Fischer et al. 2000). And finally, in
recent years PTF/iPTF/ZTF have further enhanced our
knowledge on tidal disruption events (TDEs; Hung et al.
2018; van Velzen et al. 2021), gamma-ray burst (GRB) orphan
afterglows (Cenko et al. 2015; Ho et al. 2020), and hosts of
novel SNe (Arcavi et al. 2010; Kasliwal et al. 2010; Ofek et al.
2010; Horesh et al. 2012; Cao et al. 2013; Ofek et al. 2013;
Goobar et al. 2017).

Due to the design of these facilities and their observational
strategies, there are still a lack of discoveries of fast (1 hr) and
faint (mg 21) transients (see Figure 1, right panel). There are
several science cases that benefit from the fast identification

(and potential classification) of rapidly varying transients with
simultaneous observations spanning the electromagnetic spec-
trum. Fast radio bursts (FRBs) are a class of objects
characterized by either single or repeating radio bursts evolving
on subsecond timescales; finding emission at frequencies other
than radio is important toward understanding the progenitors
and ignition mechanism(s) for these events. The first emission
other than radio observed to accompany an FRB was recently
detected from a magnetar in the Milky Way at X-ray
frequencies; although the bursts are weaker in the radio than
extragalactic FRBs, this event suggests that magnetars may be
the progenitors of at least some FRBs (Andersen et al. 2020;
Bochenek et al. 2020; Lin et al. 2020).
Also, due to a lack of sufficient early-time observations of

SNe, the shock breakout mechanism for Type Ia SNe and the
ignition mechanisms for core-collapse SNe (CC-SNe) are still
not well understood. Type Ia SNe are critical for determining
cosmological distance scales and are used to measure the
accelerated expansion of the universe (Riess et al. 1998).
Despite their use as standard candles, the shock breakout
mechanism for Type Ia SNe is not conclusively understood
(Nomoto 1982). Identification and follow-up of a Type Ia SN
within the first day, building on early-time observations of
Type Ia SNe by ZTF (Miller et al. 2020) and TESS (Fausnaugh
et al. 2021), can lead to an understanding of the shock breakout
mechanism including the detection of a cooling tail, indicative
of a delayed detonation transition (Piro et al. 2010). More
importantly, the nature and progenitors of SNe Ia are unclear.
The detection of UV/optical bursts from SN Ia ejecta colliding
with a companion star (e.g., Cao et al. 2015) helps to secure the
single-degenerate progenitor model for some fraction of events;
these detections must occur on short timescales. A better
understanding of Type Ia SNe could be the key toward
resolving the more than 3σ discrepancy between measurements
of the Hubble constant using the cosmic microwave back-
ground (e.g., by Planck, Hinshaw et al. 2013; Planck
Collaboration et al. 2020) and measurements made using the
cosmic distance ladder method (e.g., Riess et al. 1998, 2016),
on which Type Ia SNe are a vital rung.

Figure 1. Left: comparison of the FOVs of various astronomical surveys. Adopted from Laher et al. (2018). The DWF program uses the same telescope as the DES,
the Blanco 4 m scope at Cerro Tololo Inter-American Observatory in Chile. Right: the characteristic timescales and brightness of transients within the DWF detection
phase space. Adopted from J. Cooke et al. (2022, in preparation).

Table 1
Optical Transient Survey Details

Survey Name
Field of

View (deg2) Depth

Cadence (days,
unless otherwise

noted)

Pan-STARRS1 7 g ∼ 22 90 (a)
SDSS SN Survey 3 r ∼ 22 4
PTF/iPTF SN

Survey
7.8 g ∼ 21.3 5

ATLAS 28.9 m ∼ 19 2
Gaia 2 × 0.5 G∼20.7 20 (a)
DES 2.5 g ∼ 25 5
ZTF 47 g ∼ 20.5 1–3
ASAS-SN 4.5 v ∼ 17 2–3
TESS 4 × 24 broadband

(b) ∼15
2–30 minutes

Rubin 9.6 g ∼ 24 3 (a)
Roman 9 J ∼ 25 5
DWF 2.5 (c) g ∼ 24 1 minute

Note. The FOV, depth, and cadence of notable past, present, and future
transient surveys. We note that surveys with (a) have or will at some point
operate at cadences shorter than those listed, e.g., the Deep Drilling fields for
Rubin (Foley et al. 2018) and fast cadence search in Gaia (Wevers et al. 2018).
The TESS broadband (b) wavelengths span Rc, Iz, and z bands. (c) The FOV
quoted for DWF is the “on-sky” area of the science CCDs and not the footprint
FOV that includes CCD gaps that is typically listed.
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The study of CC-SNe is important in understanding the ends
of the life cycles of massive stars and these phenomena are
believed to be one of the drivers of nucleosynthesis of elements
heavier than iron (Arnett & Clayton 1970), in addition to
collapsars (Siegel et al. 2019). Early detection and follow-up of
CC-SNe can distinguish between various theorized ignition
mechanisms, such as magnetorotational instabilities (Akiyama
et al. 2003), standing accretion shocks (Blondin et al. 2003),
acoustic shocks (Burrows et al. 2007), and QCD phase
transitions (Sagert et al. 2009).

The first GRB orphan afterglow may have been detected in
the radio (Law et al. 2018), but it was discovered at such a late
time after its prompt emission that deep optical follow-ups
resulted in only upper limits. Searches are also being performed
by ZTF (Ho et al. 2020; Andreoni et al. 2020b) for orphan
afterglows and kilonovae. One candidate orphan afterglow
(Coughlin et al. 2020) was later associated with prompt γ- and
X-ray emission from GRB 201103B (Svinkin et al. 2020); the
optical component was reported first by ZTF, instilling
confidence in the veracity of their method in detecting and
identifying orphan afterglows. The study of orphan afterglows
would allow us to calculate GRB jet angles, as well as the true
GRB rate (Rhoads 1997).

Although we have made many discoveries with surveys such
as PTF, ZTF, and ASAS-SN and plan on continued success
with the Vera C. Rubin Observatory and Nancy Roman Space
Telescope, there is a void in the parameter space for fast, faint
transients that remains unfilled. Our understanding of GRB
orphan afterglows, short GRBs, FRBs, SN ignition mechan-
isms and shock breakouts, and electromagnetic counterparts to
GW events can be greatly enhanced by detecting these
transients in real time across several segments of the
electromagnetic spectrum. Due to the rarity of these events,
the use of wide-field facilities is needed.

In this paper we present an automated, customizable fast
transient identification algorithm centered mainly on the
Deeper, Wider, Faster (DWF) program source light-curve
analysis. We summarize the DWF program in Section 2 and
describe the DWF data sets analyzed in this work. In Section 3
we motivate the need for a transient detection algorithm that is
independent from image subtraction and present the elements
of a novel fast transient detection algorithm. The results of
running the algorithm on both real-time DWF data and later-
time further processed data sets is presented in Section 4.
Finally, in Section 5 we describe how this algorithm will be
deployed in future DWF runs and how it can be used with data
from other surveys.

2. Deeper, Wider, Faster Program

DWF (Andreoni & Cooke 2019) is peculiar among all the
aforementioned transient surveys. The primary goal of DWF is
to identify transient phenomena on the shortest timescales;
DWF searches from milliseconds to hours in various
wavelengths. The deep optical component of DWF is carried
out by the Dark Energy Camera (DECam; Honscheid &
DePoy 2008), collecting 20 s exposures in a 1 minute cadence,
at g∼ 23 mag limits, a wide (∼3 deg2) FOV (a comparison of
DWF with other surveys can be found in Table 1). We note that
the 1 minute cadence and 20 s exposure times are due to
overheads in inefficient readout times. In conjunction with
optical observations carried out with DECam on the 4 m
Blanco Telescope in Chile, wide-field ground- and space-based

observatories spanning the entire electromagnetic spectrum are
coordinated either to simultaneously collect data on the same
region of the sky or to trigger rapid (or later-time) follow-up of
transient sources. The DWF program is carried out for 1 week
twice annually. Data collected by DECam for real-time analysis
are highly compressed (Vohl et al. 2017), to minimize transfer
speed, and sent directly from the summit on Cerro Tololo,
Chile, to the OzSTAR supercomputer at Swinburne University
of Technology in Australia for processing and analysis. In
addition, these data are transferred using lossless compression
and fully processed by a modified version of the photpipe
NOAO Community Pipeline (Rest et al. 2005; Swaters &
Valdes 2007; Valdes & Swaters 2007) at a later time.
The DWF program, like many other transient surveys (e.g.,

PTF and SN Legacy Survey, among others; Perrett et al. 2010;
Cao et al. 2016), relies on an image subtraction pipeline (Mary
pipeline; Andreoni et al. 2017) to detect potential sources of
interest in real time. A ranked list of candidates is presented to
astronomers and volunteers for further visual inspection of
image cutouts (small fraction of the DECam FOV centered on a
single detected source) and light curves using the interactive
tools described in Meade et al. (2017).

2.1. DWF Data Samples

Here we describe the DWF data stream in more detail, the
light-curve creation process, and the final inputs that will be fed
into the transient identification algorithm. The data collected by
DECam for the DWF program are unique among transient
surveys in their cadence and therefore offer the potential for
“first of their kind” discoveries. For DWF, the 4 m Blanco
telescope, on which DECam is mounted, collects continuous
20 s exposures at ∼1 minute cadence, when including readout
time. In each 20 s exposure, DECam reaches a depth of g∼ 23
under normal DWF observing conditions, ∼1 0 seeing at ∼1.5
air mass. The slightly higher than ideal air mass is due to the
visibility requirements for simultaneous observations in the
radio, conducted by telescopes in either Australia or South
Africa, and telescopes operating at other wavelengths in the
Antarctic, North America, and other locations, including space-
based telescopes.
The g band is selected as the main observing band for DWF,

as DECam sensitivity is ∼0.5 mag deeper than in redder filters,
many fast bursts are hot and blue, and DWF target fields are
typically at low Galactic extinction. Most DWF target fields
have template reference images taken prior to the run in
multiple filters. In addition, and if there are no reference images
(i.e., for newly discovered FRB or short-GRB fields), the target
fields are observed at either the start or end of the night (or
both) in other filters, typically r and i bands, to determine
source colors.
The DWF program collects data with DECam over a

∼3 deg2 FOV. This wide field is covered by the 62 individual
DECam CCDs. The data from each CCD are saved as an
extension in a multiextension fits file. These data are processed
and analyzed in two ways.
First, for real-time or fast analysis, the image files are

“lossy,” compressed at the summit using the method described
in Vohl et al. (2017), and sent to the OzSTAR supercomputer at
Swinburne University of Technology for data analysis. Data
transfer from the Cerro Tololo summit in Chile to Australia is
too slow to enable data processing, analysis, and transient
candidate identification within minutes, which is necessary for
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fast transients. The lossy compression is tunable to the speed of
the internet and can speed up transfer by compressing the data
up to ∼20× and still enable detection of ∼95% of the
transients. Furthermore, to enable fast identification and
rapid-response follow-up triggers, these data are “fast”
processed in parallel on the OzSTAR supercomputer. The fast
processing sacrifices some aspects of a full processing pipeline
for speed. Both the lossy compression and the fast processing
result in several artifacts in the images that are not typically
observed in conventional transient pipeline analyses.

The real-time data processing for the data collected on the
dates used in this work include using Swarp (Bertin et al. 2002)
to align and stack images, SExtractor (Bertin & Arnouts 1996)
to identify sources, and HOTPANTS (Becker 2015) to perform
image subtractions. After performing image subtraction and
source extraction on the differenced images, the Mary pipeline
(Andreoni et al. 2017) runs a machine-learning algorithm on
the potential candidates to minimize CCD artifacts. Aperture
photometry of one FWHM was forced on the coordinates of
sources that contained a residual following an image subtrac-
tion. The remaining candidates are then ranked based on their
presence in the Second-Generation Guide Star Catalog (GSC-
II; Lasker et al. 2008) and in previous nights of the DWF run,
with higher rankings given to those sources that are present in
neither GSC-II nor previous DWF nights. Data analyzed in this
manner will be referred to as “real-time” data. We note that the
real-time processing is different for later runs.

Second, the data are separately sent to the NOAO High-
Performance Pipeline System (Swaters & Valdes 2007; Valdes
& Swaters 2007) to provide post-run, fully processed and well-
calibrated data for later-time analyses. These data are used for
fast transient detection after burst, fast transient searches cross-
matched with other wavelengths, fast transients associated with
slower-evolving events (e.g., SN shock breakouts), slower-
evolving events caught early by DWF, and other applications.
For the data used here, sources were identified using SExtractor
and the images are not stacked, nor image subtracted, however.
Automatically calculated apertures were forced on the
coordinates of all sources 1.5σ greater than the background.
Magnitudes from SExtractor-identified sources are calibrated
against the SkyMapper Data Release 2 catalog (Onken et al.
2019). Data analyzed in this manner will be referred to as
“post-run” data.

For both real-time and post-run data processing methods, the
light curves are generated for sources that have one or more
detections at the same coordinates using aperture photometry
on nonsubtracted images; DWF targets are named using these
coordinates. For each DWF source, a data point or upper limit
is generated every ∼1 minute, unless the source location falls

off the CCD, either in chip gaps or off the edge of the DECam
FOV as a result of small offsets in guiding, tracking, and
hexapod tip-tile corrections, as a result of changing weather,
moving to a new field, etc.
There are a total of five DWF fields analyzed in this work,

shown in Table 2. There are two “real-time” data sets covering
the CDFS Legacy and FRB171019 fields. There are five “post-
run” data sets covering two epochs on the 4 hr and Antlia fields
and one epoch on the FRB010724 field. The two 4 hr and
Antlia epochs analyzed here are from two separate runs, spaced
11 and 16 months apart, respectively; this second pointing can
help establish whether there is any recurrence or periodicity to
transient behavior observed.
The 4 hr field is one of the first fields observed by DWF. The

first DWF run employed an observational routine with
dithering. Analyzing the first run on the 4 hr field can
determine how robust our algorithm is to dithered data;
subsequent DWF runs have moved away from the dithered
approach owing to confounding issues discussed in Section 4.1.
The Antlia field was chosen for analysis, in part because
comparisons can be drawn between this work and work done in
Webb et al. (2020). The FRB010724 data are from a dense field
with 839,729 light curves generated over 5 days. The two “real-
time” fields were chosen out of necessity; older “real-time” data
were not stored for later analysis, and the COVID-19
pandemic, which has halted operations for many observing
sites across the world, had precluded the acquisition of “real-
time” data sets from Cerro Tololo for several months. The
results of running the Fast Transient Finding (FTF) algorithm
on the five data sets in Table 2 are presented in Section 4. The
naming convention for the light curves presented in this paper
is the survey name, DWF, followed by the R.A. and decl. in
sexagesimal coordinates as follows: DWFRADEC.

2.2. Challenges of Detecting and Studying Fast Transients

The challenges of “big data” in astronomy have been well
documented (e.g., Feigelson & Babu 2012; Zhang &
Zhao 2015; Zhang et al. 2015; Kremer et al. 2017). As seen in
Table 1, the cadence of many optical transient surveys allows
for longer processing times but could limit the speed with
which astronomers detect transient phenomena, with potential
delays of several days between the start of an event and its
detection. DWF offers a different approach to other optical
surveys and presents new challenges to analyzing incoming
data in “real time.” The real-time, fast processing by DWF
(described in Section 2.1) is by no means ideal or optimal; the
lossy compression adds artifacts, and the fast data processing is
much poorer than normal processing, creating additional

Table 2
DWF Runs Analyzed with FTF Algorithm

Field Name R.A. (Center) Decl. (Center) Start Date End Date

4 hr 04:10:00 −55:00:00 2015-01-14 2015-01-17
2015-12-18 2015-12-22

Antlia† 10:30:04 −35:19:24 2018-06-07 2018-06-09
2017-02-03 2017-02-07

FRB010724 01:18:00 −75:12:00 2015-12-18 2015-12-22
CDFS Legacy+ 03:30:00 −28:06:00 2019-12-03 2019-12-07
FRB171019+ 22:17:32 −08:39:32 2019-12-05 2019-12-07

Note. DWF fields analyzed as a part of this study. Fields noted with a plus sign are those with real-time data. Fields noted with a dagger are those that have been
analyzed in Webb et al. (2020).
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artifacts and poorer astrometry and alignments, which can yield
poorer subtractions. This suboptimal fast processing is
necessary, however, in order to identify events and trigger
follow-up before sources fade. Detailed follow-up of these
events, ideally spectra, can shed light on the early phases of
SNe, GRB afterglows, potential FRB optical counterparts, and
other transient phenomena. The challenges outlined here are
unique to DWF owing to the fast cadence and the opportunity
for transient detection on minute timescales. It is these
challenges that motivate the work presented here.

3. Algorithm for Early Source Detection

Despite its ubiquity, the use of image subtraction techniques
to identify transient sources is wrought with challenges. The
convolution of point-spread functions between images can be
challenging, if not impossible, between different instruments
and different seeing conditions; even when feasible, convolu-
tion can be computationally intensive. Source extraction codes
(or the astronomers interpreting their outputs) can be fooled by
sources that are not real, for example, cosmic rays, cross talk on
images, or misaligned subtractions. As surveys search for
transients to fainter magnitudes, they begin to hit the noise/
source threshold, and many detections are too ambiguous to
accurately identify. The very large number of source detections
in image-subtracted frames and the inability to have humans
analyze them all in a reasonable time frame (especially for fast
transients), or do so with any solid accuracy to trigger follow-
up observations, necessitate the use of machine-learning
frameworks to identify false positives (Díaz et al. 2016; Masci
et al. 2017; Duev et al. 2019), further complicating the process
and increasing computational demands.

Furthermore, the machine-learning approach requires exten-
sive training and large training set samples (typically in the
hundreds of thousands of images), increasing the demands on
human time and capital. The challenges associated with image
subtraction have led to attempts to identify transient sources
through direct image comparisons (Wardęga et al. 2021) and

light-curve analysis (e.g., Wevers et al. 2018; Liu et al. 2020;
Webb et al. 2020).
In addition, definitive source classification is hardly possible

with image subtraction alone: transient characterization is
confirmed through follow-up observations, including spectro-
scopic data; however, telescope time using sensitive spectro-
scopic instruments is very limited, and the time window for
observing fast-fading sources is narrower than the cadence of
conventional transient surveys. If enough data of the source are
rapidly available for a light curve to be made (e.g., within a few
minutes of the first data acquisition), preliminary classification
can be performed, using simple metrics such as its rise and/or
decay rate and peak brightness. This early classification using
light curves can inform astronomers about the resources they
should allocate to these targets, which are always limited; this
kind of observation strategy will be crucial for LSST and is the
service that brokers will be performing for the community
(Narayan et al. 2018a, 2018b; Patterson et al. 2019; Smith 2019;
Förster et al. 2021; Möller et al. 2021). With better sampling,
including light curves spanning multiple wavelength bands, a
more precise classification of sources can be achieved (Ball
et al. 2006; Debosscher et al. 2007; Richards et al. 2011;
Bloom et al. 2012; Kim & Bailer-Jones 2016; Jamal &
Bloom 2020), but progress on this front is still minimal owing
to the complexity of the data and classification algorithms.

3.1. Fast Transient Finding (FTF) Algorithm

Given the obstacles inherent in using image subtraction
techniques and the necessity of a light-curve analysis to classify
peculiar transient events, we propose to identify these transient
phenomena with a direct light-curve analysis of the DWF data
stream. The algorithm we describe can be used as an
independent verification for candidates detected via other
methods (e.g., image subtraction, machine-learning algo-
rithms); a flow chart of the FTF algorithm is shown in
Figure 2.

Figure 2. For a given DWF field, a total of N sources are detected. A light curve (LC) will be generated for each source during post-run processing, or in real time for
those sources identified as potential transients from image subtraction (see Section 2.1 for a thorough discussion of the different data types). Each LC is fed into the
algorithm described in Section 3.1 in a parallel-processed manner. The LCs are separated into n − (SW − 1) different sliding windows, where n is the number of data
points in the LC and SW is the size of the sliding window. Each of these sliding windows is processed in parallel, fit linearly, and the sign of the slope is determined:
positive, negative, or flat. The signs from the slopes of the individual sliding windows are recombined, and the number of inflection points (IPs) in the LC is counted.
Those LCs with fewer than five IPs are saved as potential transients.
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For each unique source observed during the DWF
run, we separate the light-curve data using a sliding window,
a technique common in financial time series analysis
(Karathanasopoulos et al. 2016; Chou & Nguyen 2018; Chou
& Truong 2019), as well as machine-learning applications
across several disciplines (Dietterich 2002; Kaneda &
Mineno 2016; Helwan & Uzun Ozsahin 2017; Selvin et al.
2017). The user can define the size of the sliding window
parameter but is limited by the number of data points contained
within an individual light-curve file (light curves may have
missing points owing to changing weather conditions, upper
limits, or artifacts that prevent our photometric pipeline from
accurately estimating the magnitude of the source). The source
code for the FTF algorithm is publicly available.5

3.2. Statistical Selection of Algorithm Parameters

Based on the typical field cadence and the number of points
per light curve, we can assess the best sliding window size. We
emphasize here that, while we focus in this paper on finding
known categories of fast-evolving transients (e.g., GRB
afterglows, kilonovae, etc.), the FTF algorithm can be easily
customized for different or novel types of variable phenomena
by changing the sliding window size (Figure 3) and the slope

threshold (Figure 4); searches for new types of fast-evolving
transients are an important focus of DWF, and we will us the
FTF to pursue these targets in the future.
In Figure 3, we present the histograms of the number of data

points present in each light curve for all of the fields and runs
analyzed in this work, for both the “real-time” and “post-run”
data. The data points for both the real-time and post-run data
are generated by forced photometry. In the real-time data,
aperture photometry of one FWHM was forced on the
coordinates of sources that contained a residual following an
image subtraction. In the post-run data, automatically calcu-
lated apertures were forced on the coordinates of all sources
1.5σ greater than the background. The red dashed line in
Figure 3 represents our choice of SW= 5; this avoids the
predominance of noisy light curves (SW= 5) and mitigates the
risk of averaging over rapidly rising and falling light curves or
flares with larger windows (SW? 5).
Over each sliding window, we compute a simple linear fit,

g= αt+ g0 (where g is the observed magnitude, t is the time in
minutes from the first observation, α is the temporal decay
index, and g0 is the intercept), and return the slope and its
uncertainty. We do not perform our fit using uncertainties in the
photometry for reasons of efficiency.
A histogram of the slopes of each window from real-time

and post-processed fields is plotted in the two graphs in

Figure 3. Amalgamated histogram of the number of data points present in each light curve for all of the fields and runs analyzed in this work in both the real-time data
(left) and post-run processed data (right) sets. The red dashed line is plotted at 5, the chosen sliding window size in the FTF algorithm explored in this paper; the
sliding window parameter can be changed to search for transients evolving on different timescales.

Figure 4. Histograms of the slope of each separate sliding window for the real-time data (left) and the post-run processed data (right). We fit the histogram with a
Laplacian distribution, as defined in Equation (1), and plot the b term with a red dashed line. The slopes within the red dashed lines are considered “flat” in the FTF
algorithm explored in this paper. This slope threshold can be tuned to search for transients with different intensities, as shown by the blue dashed line in Figure 5.

5 https://github.com/rstrausb/FTF
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Figure 4. We find that the distribution of slopes is well modeled
with a Laplace distribution, represented by the probability
density function

( ) ∣ ∣ ( )m
=

-
P x

b

x

b
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2
exp , 1⎛

⎝
⎞
⎠

where μ is the mean (which, in the case of this function, is
equal to the median as well as the mode), the variance is 2b2,
and the average absolute deviation is b. From the linear fits, we
obtain the sign of each window slope as positive, negative, or
flat; we consider a flat (nonchanging) slope if α= 0± b, as
shown by the red dashed lines in Figure 4. The algorithm keeps
track of the sign of the slope over each sliding window and
notes a change in the sign of the slope as an inflection point
(IP). Scanning over each sliding window, the algorithm tallies
and records the number of IPs. For example, a typical fast,
previously unknown transient may have a number of IPs
between 0 (straight rising or decay behavior) and 3 (e.g., a flare
with one IP rising, one IP fading, and one IP flat).

The aforementioned process is time-consuming and CPU
intensive. Since our ultimate goal is to provide real-time
identification of fast transients from the DWF data stream, we
implement a full parallelization of our Python-based algorithm;
each target can be run independently and in parallel during the
DWF run. This parallelization enables the code to run over
each DWF source in1 minute, on par with the cadence of
incoming data points. The efficiency of the code is important
for real-time identification of transients, especially deployed on
multicore CPUs, like the supercomputer at Swinburne
University, where the optical data from DWF runs are
analyzed.

3.3. Phenomenological Selection of Number of Inflection
Points

For each light curve we calculate the number of IPs and then
group all objects and light curves with the same number of IPs.
For this work, we focus on light curves that have four or fewer
IPs within the typical DWF light curve (∼1 hr).

1. Light curves with zero IPs but that are monotonically
increasing or decreasing could be longer evolving
transients: Cepheids, RR Lyrae, or SNe, for example.

These could also be the beginning of a fast-evolving
transient at the end of DWF observation.

2. Light curves with one IP might be catching the start of the
rise or fall of a transient evolving on timescales of
minutes to days.

3. Light curves with two or three IPs may contain peaks or
dips spanning the entire DWF time on the field (typically
1–4 hr).

4. Four IP light curves could point toward more complex
behavior that goes through several phases over the course
of the DWF observation.

It is important to note that transient phenomena may be
occurring before the DWF run began, or continue after data
acquisition has stopped. Therefore, a burst-like event might
only have two or three IPs, as its light curve might be shifted
toward the beginning or end of a run in such a way that some
parts of the curve are not sampled.
For the FTF algorithm, we define “fast transient” candidates

as those with fewer than four IPs and with at least one sliding
window with a slope greater than a user-specified slope; in this
iteration of the algorithm, that specific slope is defined by
statistical measures as defined in Section 3.2, but it could be set
manually by the user if searching for a specific type of source
with a known range of slopes. The code could be modified to
include sources with more than four IPs toward a variable
source that could be of interest to other areas of astronomy.
Using this algorithm, the first potential transients can be

reported just after the first 5 minutes of observation by DWF;
thereafter the number of IPs associated with each light curve
will be updated every minute, as the sliding window shifts over
by one data point. A noted inflection change with a
corresponding positive detection in the image subtraction
pipeline provides good evidence to trigger imaging and
spectroscopic follow-up.

3.4. FTF Algorithm Demonstration

In Figure 5 we show how the FTF algorithm works on a
sample light curve, using a flaring star first detected in Webb
et al. (2020) as an example. The light curve for this flaring
source, DWF102955.559-360035.170, is plotted in the left
panel of Figure 5. The right panel of Figure 5 shows the slope
derived from each sliding window as a function of time. We

Figure 5. Left: light curve of a flaring star, DWF102955.559-360035.170, observed in the Antlia field by DWF. This object was first discovered using unsupervised
learning techniques in Webb et al. (2020). Right: the slope of each sliding window is plotted over time. The red dashed line corresponds to the b term derived from the
Laplace distribution, as defined in Equation (1) and plotted in Figure 4. The blue dashed line represents a more restrictive parameter that can be tuned in the algorithm
if, for example, astronomers are looking specifically for flare stars.
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can clearly see that the flare in the light curve and the relative
IPs enable the identification of a change in brightness beyond
the typical brightness. While this information may be used to
trigger follow-up observations, the subsequent data demon-
strate that there are more IPs and therefore the source is not a
fast transient as classified in Section 3.3. The dashed red lines
in the figure represent the same thresholds identified in the
histograms presented in Figure 4; users can set a different
threshold to identify different transients of interest, as shown by
the blue dashed lines.

4. Results

In this section we present the outcome of our FTF algorithm
and the implication on (1) detectability of fast transients of
different natures and the rate of detection of these objects
compared to other surveys and (2) the required effort for
spectroscopic follow-up for secure classification. In summary:

1. On a single night of observation on a single field we
obtained on average ∼50,000 real-time light curves and
∼340,000 post-processed light curves.

2. Feeding these 50,000 real-time and 340,000 post-
processed light curves into the FTF algorithm, we detect
on average 150 (∼3%) and 3000 (1%) potential fast
transients, respectively.

3. Checking the science frames of the potential fast
transients for artifacts and other nonastronomical sources,
we obtained on average 1 statistically significant fast
transient per field in the real-time data and 13 statistically
significant fast transients per field in the post-pro-
cessed data.

4. Based on light-curve fits, 69 sources can be classified as
“potential transients” under our definition in Section 3.1
from the fields described in Table 2.

5. In the event of a fast transient identification, FTF would
allow a latency time of just 5–15 minutes for multi-
wavelength and spectroscopic follow-up observations.

A detailed breakdown of the results over each field can be
found in Table 3. We note that the 69 sources identified as
“potential transients” are fast-evolving sources that would

require follow-up, specifically spectroscopic follow-up to
determine whether these sources are indeed transients or other
variable sources.

4.1. Results on Real-time and Post-run Data

Once a list of candidates is generated using the FTF
algorithm (within the first 5–10 minutes of the run, and then
every minute thereafter), as shown in Section 3.4, light curves
are vetted by our team; for those light curves that passed human
inspection, image cutouts for the source’s location on the sky
were visually inspected to exclude the presence of artifacts that
survived our processing pipeline (e.g., cosmic rays, bad pixels,
bad rows/columns, etc.). For the purposes of this paper, a
positive detection is defined as one where the source is a known
variable, a DWF variable detected by other methods (see, e.g.,
Webb et al. 2020), or a newly discovered candidate that passes
a visual inspection of the images associated with the light
curves. To confirm known variables, we checked the
coordinates of our candidates against known variable source
catalogs such as the General Catalog of Variable Stars (Samus’
et al. 2017) and the International Variable Star Index (Watson
et al. 2017).
It is important to note that the real-time light curves will only

exist for those sources that were candidates identified via image
subtraction as a part of the Mary pipeline analysis; in contrast,
the light curves from the post-run processing with the NOAO
pipeline encompass all sources that were detected during the
run. The sources in both real-time and post-run data sets
include point sources and extended sources. The linear fits
plotted in the subsequent figures (Figures 6–10) are meant to
give an idea of the general trends in the lights curves and are
not the slopes associated with the sliding windows, as shown in
Section 3.4, nor are they necessarily the best fit for the data.
The light curve of DWF011805.113-751125.458, plotted in

the left panel of Figure 6, is a known RR Lyrae source, called
BG Tuc (Hoffmeister 1963; Geßner 1981). The light curves of
DWF011805.113-751125.458 for each night of the DWF
observing run are plotted in the right panel of Figure 6; this
figure shows the variability of the object over long timescales.
The behavior of DWF102920.187-355700.211 on both the

night of 180607, plotted in the top left panel of Figure 7, and
1800608, plotted in the top right panel of Figure 7, were
identified by the FTF algorithm as potential transient
phenomena. The first night of data shows a source decreasing
from g∼ 17.6 to g∼ 18.4 in 30 minutes of observation. The
data from the second night show a source with a baseline
magnitude of g∼ 20 that dips dramatically twice: once by 2
mag and a second time by 1.5 mag, each occurring in the space
of a few minutes. Visual inspection of the first night of data
revealed no signs of contamination by nonastrophysical
sources. The analysis of the data from the second night, shown
in the bottom panel of Figure 7, reveals that DWF102920.187-
355700.211 and the dimmer stars in the vicinity all become
very faint; clouds passing over this region of the sky would
account for the apparent dimming of the source during the
second night, if the clouds passed over this region of the sky
and not the region containing reference stars for the field. We
believe that DWF102920.187-355700.211 was displaying
some genuine transient phenomena on the first night of
observation before reaching a quiescent phase in the second
and third nights.

Table 3
FTF Results

Number of Algorithm-identified Human-filtered
Field Name

Light Curves Light Curves Final Results

4 hr (Run 1) 155,989 758 20
4 hr (Run 2) 182,486 448 10
Antlia (Run 1) 350,542 2001 7
Antlia (Run 2) 161,511 1364 7
FRB010724 839,729 5512 23
CDFS Legacy* 84,394 137 1
FRB171019* 17,209 265 1
Total 1,791,860 15,897 69

Note. The FTF algorithm identified ≈ 1% of the light curves in the fields
studied as potential transients, reducing the number of real-time light curves
that require human inspection by two orders of magnitude. From those light
curves identified by the algorithm, about 0.5% are identified by a human
observer as potentially real astrophysical phenomena, after rejecting sources
with obvious nonastrophysical explanations. Fields with an asterisk denote
fields where real-time data were analyzed.
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In Figure 8, we present two light curves that showcase when
the FTF can identify a fast-evolving transient in the DWF “real-
time” data stream and how quickly astronomers can trigger

other resources. The left panel shows the source
DWF040623.456-550041.171 around g∼ 17 before dropping
by 0.7 mag over a 10 minute period. For a source like this, the

Figure 6. Left: light curve of DWF011805.113-751125.458 that was detected by the FTF algorithm; its slope, labeled α, is plotted with the red dashed line. These
coordinates correspond to the known RR Lyrae BG Tuc. Right: data from the other DWF nights are plotted for DWF011805.113-751125.458, showing the variability
of this object over the week-long DWF run. The section plotted in the left panel corresponds to the second-to-last section of the graph in the right panel.

Figure 7. Top left: the light curve of DWF102920.187-355700.211 is plotted for the night of 180607. There does not appear to be contamination from
nonastrophysical effects in the image cutouts from this night of data, so we identify this source as real. Top right: the light curves for the other nights for which this
source is observed. Overall, the source is declining from g ∼ 17.5 in the first night down to an almost constant g ∼ 20 mag in the second and third nights. There are,
however, dips of about 2 mag present during the second night. Bottom: the image cutouts for the second night of data from this source are presented. As can be seen in
one of the middle rows, the source and those nearby all seem to fade, indicative of clouds that may not have been visible to the astronomers on the ground.
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FTF algorithm would alert astronomers within the first few data
points (within 10 minutes in this case) after the light curve
deviates from a flat position. The right panel of Figure 8 shows
the light curve of DWF102613.233-350150.332 rising by about
0.8 mag in 40 minutes, before undergoing a seemingly
exponential decay over the remainder of the observations.
This source would be identified as a potential transient after the
first 5 data points, due to the steep nature of its increasing
brightness. Furthermore, the FTF algorithm would identify an
IP within 10 minutes of the object’s drop in brightness,
notifying astronomers of a change in the behavior of this
object.

4.2. Transient Misidentification

In this section we present a sample of light curves that were
identified as possible transients by the FTF algorithm but, after
further analysis, were determined to be bogus. The most
common type of light curve that confounded the FTF algorithm
were those involving an astronomical source interacting with

the edge of one of the 62 science CCDs that make up the
DECam detector (Honscheid & DePoy 2008), pictured in
Figure 1 under the label DES (Dark Energy Survey); the
number of CCDs increases the chance for edge interactions. As
the source moves onto or off of a CCD, the light curve can
show a peak or a dip not unlike that mimicking a fast rising or
fading transient. This effect was exacerbated by early DWF
observational strategies employing a dithering routine (e.g., the
first run on the 4 hr field analyzed in this paper); dithering
patterns are no longer favored by DWF, in part for this reason.
This issue can be remedied by ignoring data collected near the
edge of a detector. This information is not always available in
cataloged data sets, but it can be easily identified using
software analyzing the dimensions of the science image (i.e., is
it square?) and by machine-learning algorithms.
In Figure 9, we present an example of an astronomical

source DWF040903.800-554603.567 appearing to exhibit
transient behavior. In the left panel of Figure 9, the light curve
dims by >0.1 mag in 1 minute before continuing to decay over

Figure 8. Left: the light curve of DWF040623.456-550041.171 is presented. The first 10 data points in the light curve are consistent with the flat slope defined in
Section 3.1. The source then dims by 0.8 mag in about 10 minutes. After the first data point in this decay, the FTF algorithm will note this object as a potential fast
transient. Right: the light curve of DWF102613.233-350150.332 is presented. The first 5 data points in this light curve would indicate this object as a potential fast
transient. The light curve then enters into a period of seemingly exponential decay for the remainder of observation. The algorithm would detect this inflection change,
again alerting astronomers about the potential transient nature of this source. In both cases present in this figure, the FTF algorithm can alert astronomers within
5–10 minutes of the transient behavior.

Figure 9. Left: light curve of DWF040903.800-554603.567 that was flagged by the FTF algorithm as a potential transient, due to the fast 0.1 mag drop, and the
slower, further 0.1 mag decay. Right: image cutouts centered on the position of DWF040903.800-554603.567 on the sky. These image cutouts show the source
moving off the edge of the CCD, causing the decreasing light curve.
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the next 5 minutes. Upon visual inspection of the fits images (in
the right panel of Figure 9), it is clear that the telescope shifted
slightly, placing the source on the edge of the detector, and
afterward, the source is slowly moving out of frame.

In Figure 10, we present a light curve that was misidentified
as a transient owing to edge effects, but for a slightly different
reason than that shown in Figure 9. In the left panel of
Figure 10, we present the light curve of DWF040748.870-
541956.717 that appears at a magnitude of g≈ 19.7 out of a 5σ
background upper limit of g< 22.5. The source then proceeds
to decay by 0.6 mag over the course of about 7 minutes. Upon
inspection of the images, shown in the right panel of Figure 10,
a bright source is shown moving out of frame. We suspect that
the cause of the appearance of the source at g≈ 19.7 more than
50 minutes after the observation of the field began is the
following: (1) A bright star was present in the field at
coordinates slightly offset from those of DWF040748.870-
541956.717. (2) This bright source began to move out of frame.
(3) Eventually the centroid of the star is out of frame, but light
from the star is still being detected; the NOAO pipeline then
identifies a new source using coordinates in frame. (4) As the
source continues to move out of frame, the brightness of the
object continues to decrease.

5. Conclusions and Future Work

The DWF program is unique in terms of its depth (g∼ 23
per image) and its short cadence (∼1 minute) when compared
to other transient surveys, occupying a parameter space with a
distinct lack of coverage (e.g., Andreoni et al. 2020a, Figure 6).
In addition to its depth and cadence, DWF offers a new way to
explore transient phenomena owing to the simultaneous wide-
field multiwavelength observations performed across the entire
electromagnetic spectrum. Identification of transient phenom-
ena in transient surveys has heavily relied on the imperfect
science of image subtraction. Image subtraction is necessary in
some cases, such as the identification of a transient within a
bright host galaxy. Identification of transients via light-curve
analysis can be done independently from image subtraction, or
in concert with image subtraction techniques. Light-curve
analysis can identify variable objects with small changes in
brightness that might be missed in an image subtraction, for

example, exoplanet transits. In addition, the rudimentary
classification of transient phenomena requires analysis of the
light curves of these objects, with more refined classifications
relying heavily on a spectral analysis of the object.
In this work, we present the FTF algorithm, capable of

identifying transient phenomena both independently of image
subtraction (e.g., “Post-run Data” in Section 4.1) and in tandem
with an image subtraction algorithm (e.g., “Real-Time Data” in
Section 4.1 and the ∗ fields in Table 3) on the DWF data stream
light curves. We focused on identifying fast transients (e.g.,
explosive phenomena) in this paper, but we also demonstrate
how the FTF algorithm can be customized to find other kinds
of transients and variables.
This type of algorithm occupies a unique space within the

transient detection landscape. Most currently operating optical
surveys do not detect intranight variability and, as such, miss
the opportunity to alert the community for possible follow-up
on fast-evolving transients such as GRB and FRB counterparts.
We see the work in this paper as the first step toward

implementation of real-time transient classification. We will
first identify potential transients using the FTF algorithm. Next,
we will combine the multiwavelength data sets obtained by the
DWF for sources of interest. We will either extract features
from this combined multifrequency data set or run a deep-
learning classification algorithm in real time (A. Cucchiara
et al. 2021, in preparation).
The FTF algorithm will be incorporated into the DWF

pipeline and deployed on the next DWF run, as shown in
Figure 11. In its first iterations the algorithm will be working
off of the light curves generated by the image subtractions
performed by the Mary pipeline (Andreoni et al. 2017). When a
source is first identified as a candidate by image subtraction, a
light curve will begin to be populated for that source. If the
slope of the light curve of that source is above some threshold,
which we can select manually for specific sources (very high
for flare stars or slightly lower for slower-evolving transients)
or automatically using a statistical measure (e.g., Figure 4),
then that source will be identified as a potential fast transient
candidate. Candidates from the image subtraction are provided
to human observers using interactive visualization tools. We
will give priority to sources that are flagged as potential
transients by the FTF algorithm, as these sources are both

Figure 10. Left: light curve of DWF040748.870-541956.717 that was flagged by the FTF algorithm as a potential transient. This source seems to appear at g ∼ 19.7
before rapidly fading by ∼0.6 mag in 7 minutes. Right: image cutouts centered on the position of DWF040748.870-541956.717 on the sky. Upon further inspection, it
appears that a bright source is on the edge of the CCD; as it moves further off the edge, a small section of the star is still visible. This small bit of flux is assigned to
coordinates still in the FOV of this CCD, and a new source is generated in the catalog. As the source continues to move off the CCD, the measured flux decreases.
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image-subtracted candidates and FTF candidates. As more data
are generated, sources with more IPs will drop out of the FTF
candidate list. We can trigger follow-up of image-subtracted
and FTF candidates to classify these sources in real time (e.g.,
with detailed spectra).

Due to the general nature of the FTF algorithm, we will look
to apply it to other data sets, both proprietary and publicly
available. In particular, some authors of this paper are members
of the Rubin Science Collaboration or are Rubin Observatory
Data Preview 0.1 (DP06) Delegates and have early access to the
Rubin Science Platform. We plan to test the FTF algorithm on
the DP0 data set and refine our algorithm before Rubin
Observatory comes fully online in 2023.
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