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Abstract— A robust nonlinear control method is devel-
oped for fluid flow velocity tracking, which formally ad-
dresses the inherent challenges in practical implementa-
tion of closed-loop active flow control systems. A key
challenge being addressed here is flow control design to
compensate for model parameter variations that can arise
from actuator perturbations. The control design is based
on a detailed reduced-order model of the actuated flow
dynamics, which is rigorously derived to incorporate the
inherent time-varying uncertainty in the both the model
parameters and the actuator dynamics. To the best of
the authors’ knowledge, this is the first robust nonlinear
closed-loop active flow control result to prove exponential
tracking control of a reduced-order actuated flow dynamic
model, which formally incorporates input-multiplicative
time-varying parametric uncertainty and nonlinear cou-
pling between the state and control signal. A rigorous
Lyapunov-based stability analysis is utilized to prove semi-
global exponential tracking of a desired flow field velocity
profile over a given spatial domain. A detailed comparative
numerical study is provided, which demonstrates the per-
formance improvement that is achieved using the proposed
robust nonlinear flow control method to compensate for
model uncertainty and uncertain actuator dynamics.

I. INTRODUCTION

Significant theoretical challenges exist in control design
for fluid flow systems due to the fact that the governing
dynamic equations are partial differential equations (PDEs)
(e.g., Navier-Stokes equations), which are not amenable
to control design. To address this challenge, model or-
der reduction techniques are popularly utilized to develop
control-oriented mathematical models for the flow dynam-
ics. In practical applications, reduced-order models (ROM)
can be developed using data obtained from experimental
or high-fidelity computational methods. The resulting ROM
are based on a given, fixed set of flow field conditions,
so ROM dynamic uncertainty and unmodeled, time-varying
parameter fluctuations are an inherent challenge in flow
control applications. Moreover, in closed-loop active flow
control systems, the controlling actuator itself can con-
tribute significantly to ROM parameter fluctuations. For
reliable flow control under realistic, time-varying operating
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conditions, rigorous control design methods are needed to
address these inherent practical challenges.

Reliable control of fluid flow dynamic systems is critical
in a wide range of engineering applications to achieve
aerodynamic drag reduction [1], [2], aeroacoustic noise
reduction [3], [4], and lift enhancement in aircraft [5], [6]. In
order to achieve reliable performance over a wide range of
operating conditions, closed-loop AFC offers many potential
benefits over PFC and open loop AFC methods.

Experimental investigations of AFC systems have been
widely presented in recent research [7]-[12]. Applications
addressed in these experimental AFC studies include ther-
mal protection [7]; control of vortex-body interaction and
wing-tip-vortex meandering in NACA0012 airfoils [8], [9];
low-pressure gas turbines [10]; pressure, force, and moment
manipulation in airfoils without moving control surfaces
[11]; and flow separation control for performance enhance-
ment in aircraft rudders [12]. Although all of the afore-
mentioned studies have shown promising results in their
respective objectives, most of them do not utilize rigorous
mathematical tools to model the flow field dynamics and
theoretically predict and analyze the influence of AFC on
the flow. Dynamic modeling and mathematical analytical
techniques can be leveraged to reduce the number of
required repetitions and, hence, the time and cost that
can be involved in numerical and experimental methods.
A key element in the design and analysis of closed-loop
AFC systems is the development of control-oriented ROMs.

Proper orthogonal decomposition (POD) [13], which is
often referred to as Karhunen-Loéve expansion or principal
component analysis, is a method that can be used to obtain
lower-dimensional dynamic models for fluid flow. POD is
utilized to develop a set of basis functions (POD modes) that
approximates the governing infinite-dimensional flow dy-
namics (i.e., the Navier-Stokes PDE) as a finite-dimensional
set of ordinary differential equations (ODE) in terms of the
POD modes. Depending on the flow control application and
objectives, the number of POD modes in the ROM can be
judiciously selected to yield the desired trade-off between
ROM accuracy and computational efficiency. In application,
the POD-based reduced-order flow dynamic model repre-
sents a nominal approximation of flow dynamics that is
obtained under a specific set of flow field conditions (e.g.,
from experimental or high-fidelity computational data). In
order to develop reliable closed-loop AFC over realistic,
uncertain, time-varying flow field conditions, the control
design must formally incorporate the uncertainty inherent
in the reduced-order dynamic model.
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To address the challenge of model uncertainty, various
linear, robust, and intelligent methods for closed-loop AFC
have been presented in recent research literature [14]-[20].
The techniques utilized in these recently developed flow
control systems include, adaptive control [14], [15], PI con-
trol [16], and neural network-based control [17], [18]. While
methods such as these have been widely shown to achieve
promising results, robust nonlinear control approaches are
less popularly utilized in flow control applications.

In this paper, a robust controller is presented, which is
rigorously proven to achieve exponential tracking of a fluid
flow velocity field. To the best of the authors’ knowledge,
this is the first robust nonlinear closed-loop AFC result to
prove exponential tracking control of a POD-based reduced-
order model for the complete actuated flow dynamics,
which formally incorporates both input-multiplicative time-
varying parametric uncertainty and nonlinear couplings
between the state and control input. The three main con-
tributions of this paper are as follows:

1) POD-based ROM development of the actuated flow dy-
namics, which formally incorporates the time-varying
parameter fluctuations caused by unmodeled effects
and control input perturbations.

2) A rigorous Lyapunov-based stability analysis which
proves semi-global exponential tracking of a de-
sired flow field velocity in the presence of input-
multiplicative time-varying parametric uncertainty and
nonlinear coupling between the state and control in-
put.

3) A detailed comparative numerical study, which shows
the performance improvement that is achieved using
the proposed robust nonlinear control design under
input-multiplicative uncertainty.

II. DyNAMIC MODEL AND PROPERTIES

In this section, a POD-based model reduction technique
is utilized to derive a reduced-order, control-oriented model
for the actuated flow dynamics. The design of a robust
nonlinear control law that formally incorporates the com-
plete nonlinear dynamics and time-varying parametric un-
certainty of the ROM is one of the key contributions of the
current work.

A. Reduced order Model for Flow Field Dynamics

The incompressible Navier-Stokes equations are given as
[21]

Ju 1

a = 7(’[14 . V)U + ﬁ
where u(s,t) : T' x [0,00) € R? denotes the velocity of the
flow field over a spatial domain s € I' C R?; p(s,t) € R3
is the space- and time-dependent pressure of the flow field
over I'; and Re denotes the Reynolds number.

POD expansion or principal component analysis is used
to obtain lower-dimensional dynamic models for fluid flow.
In the POD modal decomposition technique, the flow veloc-
ity field u(s,t) is expanded as a weighted sum of actuated

V-u=0, V2(u) = Vp (1)

and unactuated POD modes defined in the spatial domain
T". The actuation effects are embedded in the coefficients
of the Galerkin system. Specifically, the actuation effects
can be included in the reduced-order model by defining the
modal decomposition as [20]

n m
u(s,t) = uo + Z$i(t)¢i(3) + Z%‘(t)%‘(s) ()
i=1 i=1

In (2), ¢i(s) € R i = 1,...,n, denote the unactuated
POD modes and z;(t), ¢ = 1,...,n, denote time-varying
coefficients resulting from the modal decomposition; and
up € R3 denotes the mean flow velocity over I'; ¢;(s) €
R denote the actuation modes, and 7;(t) € R denote
actuation values (i.e., control inputs). By leveraging an input
separation method similar to that in [22], the actuation
modes can be defined as the modes that minimize the
energy not captured in the modal expansion of the actuated
flow field.

By substituting the decomposition in (2) into (1), the com-
plete actuated POD-based reduced-order model is obtained
as

Ap+ ) Brizi(t) + > Y Crijai(t)z;(t)

T =
i=1 =1 j=1
+ Z Dyii(t) + Z Z Ejigai(t)y; (1)
i=1 i=1 j=1

m m m
+ Z Frivi(t) + Z Z Grijvi(t)v;(t) ()
i=1 i=1 j=1
In (3), Ay, B, Ckzj € R, for k,i,j = 1,...,n; Dyi, Fii,
Grij, k,i,§ =1,...,m;and Ey;; € R, fork,i=1,...,n,and
for j=1..m, represent constant uncertain parameters,
which can be explicitly computed for any given, fixed set of
numerical or experimental flow field data. Also in (3), 4;(t),
1t = 1,...,n, represent the elements of the control input
vector, which can be physically interpreted as a controllable
perturbation to the flow field.

Property 1. Since the fluid flow velocity u(s,t) is based
only on physical data collected from high-fidelity computa-
tional fluid dynamics (CFD) simulations or experiment, the
decomposition in (2) can be used to prove that the actuation

signal v(t) is bounded provided x(t) is bounded.

Remark 1. (Inherent Parameter Variations) The POD-
based reduced-order flow dynamic model in (3) is obtained
from data collected under a single, fixed set of flow field
conditions in the absence of actuation. The introduction of
an actuation signal into the flow dynamic system causes
fluctuations in the parameters (i.e., A, ...,G) of the reduced-
order model. Thus, to achieve reliable control of a flow field
under realistic uncertain conditions, compensation for time-
varying parametric uncertainty in the reduced-order model is
of crucial importance for closed-loop flow control applications.

B. Control-oriented Flow Dynamic Model

To address the time-varying parametric uncertainty in-
herent in the reduced-order model for the fluid flow dynam-
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ics in (3), the dynamic model will be rewritten in control-
oriented form as

jj =

fl(x7 z,bh (t)) + fQ(xa s 92(t))
+  f3(v,7,05(8) + Q) (4)

where f1(-), fa(+), f3(-) € R™ denote uncertain nonlinear
(quadratic) terms for which the k' rows are explicitly
defined as

frw(z, 01(2)) = )+ YD Chijmi(t)z;(t)

Ap + ) Briai(t

i=1 i=1 j=1
(5)
f2 k(z ’7792 é ZZEIW]IZ 7J ) (6)
=1 j5=1
fan(7,05(t) Zsz% (t) + ZZGkiJ%(t)W (t) (7)
i=1 j=1
for £k = 1,..n. In (4 and (5), =(t) =
[ z1(t) xo(t) ] € R™ denotes the state

vector, v(t) = A(t) € R™ is the control input; and

f:(t) € RVTHL 0,(t) € R™, O5(t) € R™ ™", for
k = 1,...,n, denote vectors contalmng the uncertaln
time-varying parameters in the dynamic model. Also in
(4), Q(t) € R™*™ denotes an uncertain input gain matrix.
Specifically, Q(t) contains the terms Dy, for k = 1,...,n,
i =1, ...,m, which are introduced in (3).

Remark 2. (Control Input Variable) The control input
term v(t) is being defined for notational convenience only.
The subsequent control development and stability analysis
will incorporate the input-dependent actuation signals ~(t)
to formally address the challenge of input-multiplicative
uncertainty.

Assumption 1. The reduced-order model in (4) is assumed
to be controllable.

Assumption 2. The parameter vectors 01(t), 02(t), 03(t)
and the parameter matrix Q)(t) and their derivatives satisfy
the following inequalities:
102 < G (1028 < ¢
1610 < g 02(0)]] < C2a
sup{|(t) i} < o

105 < Cs
105(t)]| < Caa
Slip{HQ(t)”ioo} <(aa (8

where (1, (2, (3, Ca, Cids C2ds C3a> Coa € RT are known
bounding constants. As is standard in robust nonlinear control
methods, knowledge of the upper bounds on the uncertain
parameters is utilized to derive sufficient gain conditions in
the subsequent stability analysis.

Assumption 3. (Fully Actuated System) The subsequent
analysis is based on the assumption that the the number m
of actuation modes is equal to the number n of unactuated
modes (i.e., it is assumed that n = m in (4)). However, the
adaptive control design presented here can be applied to any
system for which m > n.

III. CONTROL DEVELOPMENT
A. Control Objective
The control objective is to ensure that the state x(t)
tracks a desired flow field velocity profile z4(t) € R™.
To quantify this control objective, a tracking error variable

e(t) € R™ is defined as
A
e= 1T — x4 9)

To facilitate the subsequent analysis, an auxiliary (filtered)
tracking error variable, denoted by r(t) € R", is defined as

reé+ae (10)
where o € R™ "™ is a positive definite, constant control
gain matrix.

Assumption 4. The desired flow field velocity profile x4(t)
is bounded and smooth in the sense that
2q(t) < Cedrs %q(t) < Crd2s Zq(t) < Cpas  (11)

where Cza1, Ceaz, Czas € RT are known bounding constants.

B. Open-Loop Error System
The open-loop tracking error dynamics can be developed
by taking the time derivative of (10) and using (4)-(9) to
obtain
F=d—iq=f1 +f2+f3+Qv+Qi)—id+a(r—ae) (12)

The open-loop error dynamics in (12) can be rewritten in
compact form as

F=N+N,+Ng+Q+Q—e (13)
where  the uncertain nonlinear auxiliary terms
N(z,&,2q,%q,e,7,t) € R™ Ny(z,&,7) € R”, and
Ny(zq,Zq,%q) are explicitly defined as

Ny 2yTEfi+ 2" By + Fey +97 Gy (19)
N £ By(z—zq)+ Br(d — i4) (15)
+$T(Ck + Cg)id — xg(Ck + C,?)de
-‘r,TT(Ck + Cg)l‘ - :L‘T(Ck + C;{):Ed
+2TChx — x?;C"kxd +a(r—ae)+e
Ny = kad + Bipag + xg(()k + Cg)id
-l—.’L'Z;CkiL'd — @4 (16)

Motivation for the selective grouping of terms in (14)-(16)
is based on the fact that the following bounding inequalities
can be developed!

INI < pa(ll=Dlizll, I1Nall < Cva
INSI < Ealol® + Z2llvl + s (L2121

where (yg, Z1, Z2 € RT are known bounding con-
stants; p1(-) and p(-) are positive, globally invertible non-
decreasing functions; and z(t) € R?" is defined as

17)
(18)

z&2 el T )T, (19)

!Proof of the bound on the auxiliary terms is straightforward using
the mean-value theorem and Young’s Inequality and is omitted here for
brevity.
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Note that the bounding of Ng(x4,Zq,%q) follows directly
from Assumption 4 and Inequalities (11).

C. Control Design and Closed-loop Error System

Based on the open loop error dynamics in (13) and the
subsequent stability analysis, the control input is designed
via

v == (ks + Ln)e(t) — (ks + Ln)e(0) +w]  (20)

where w(t) € R™ is an implicit learning law with an update
rule defined as

a(ks + I,)e(t) + ky ||v|| sgn(r)
+(kg + k171 + K2 ll7]*) sgn(r)

(21)

d}:

and kg, ky, kg, ky1, ky2 € R ™ denote positive-definite,
diagonal, control gain matrices. In (20), 3 € R" is a
matrix containing the constant, known, nominal values
of the uncertain parameters in €); sgn(-) denotes the
standard signum function, where the function is applied
element-wise to the vector argument; and I,, denotes the
n x n identity matrix.

After taking the time derivative of (20) and substituting
the result into the open-loop error dynamics in (13), the
closed-loop error system can be expressed as

o= N+N,+Ng+w—Qks + I)r —e
—Okn|y] sgn(r) — Qkya|7]1* sgn(r)

—Qok, o] sgn(r) — ks sen(r) (22)

where (10) was utilized. In (22), the uncertain parameter
mismatch matrix Q(¢) € R™*™ is defined as

Q200" (23)
To facilitate the subsequent stability analysis, the mismatch
matrix €2(t) in (23) will be separated into diagonal (A(t) €
R™*™) and off-diagonal (A(t) € R®*™) components as

Q=A+A. (24)

Assumption 5. Approximate knowledge of the parameter
matrix )(t) is available such that the mismatch matrix €(t)
is diagonally dominant in the sense that

Htlf{)‘mm(A)} - SEP{HAHZOO} > € (25)

where € € R is a known bounding constant.

Assumption 5 is mild in the sense that, for a given set of
flow field data (e.g., from high-fidelity CFD simulation or
experiment), the nominal values of the reduced-order model
parameters would be readily available.

IV. STABILITY ANALYSIS

Theorem 1. The control law given in Equations (20) and (21)
ensures semi-global exponential tracking in the sense that

le@)] < I\Z(O)I\exp(—%t) v te[0,00)

where \1 € R, provided ks is selected sufficiently large (see
the subsequent proof), and where the control gain matrices
ky, kg, k1, and k2 introduced in (20) are selected to satisfy
the sufficient conditions

)\min(kv) > % )\min(kﬂ) > CZJ (26>
=1 Zo
Amin(k'yl) > ? )\min(k'yZ) > ?

where (04, (Nd, =1, and Zo are introduced in (17); € is intro-
duced in (25); and Apin(+) denotes the minimum eigenvalue
of the argument.

Proof: Let V(z) : R®™ — R be a continuously
differentiable, positive-definite function defined as

1 1
V(z) & ieTe + irTr

where e(t) and r(t) are defined in (9) and (10), respectively.
After taking the time derivative of (27) and using Equations
(10), (22), and (25), along with Inequalities (8) and (25), V()
can be upper bounded as

V(z) < —allel® +rT(N + Ny) = e(Amin(ks) + L) |7
+Caal[vll[I7]] = eAmin (ko) [0l lI7[] + Cnallrl| = eAmin (k)7
=&Xmin (B )V I7 ]| = eXmin (ko) VPNl (28)

where the fact that |r| > ||r|| V r € R™ was used. After
using the bounding inequalities in (17), combining terms,
and rearranging, the upper bound in (28) can be expressed
as

(27)

V(z) < I?

—ale||* —el|r
—[EAmin (k) lI7]1* = (U111

provided the gain conditions in (26) are satisfied, where
p(l1z1) £ p1(|12]1)+p+(]|2])) is a positive. globally invertible
non-decreasing function. By completing the squares for the
bracketed terms, the upper bound in (29) can be expressed

V() <~ - 52

(29)

(30)

where z(t) is defined in (19), and = min{«, ¢}. The upper
bound in (30) can be expressed as

V(z) < =M= (1)

where \; € RT is a constant, provided z(¢) is within the
domain defined by

N é{z € RQ"II\ZH < 971(2 N€Amin (ks)) }-

The inequalities in (27) and (31) can be used to show that
V (2) € L in S; hence, e (t), r (t) € Lo in S. Given that
e(t), r(t) € Lo in S, Equation (10) can be used to show
that é (t) € Lo in S; and Assumption 4 can be used with
Equations (9) and (10) to prove that x (¢), © (t) € Lo in S.
Given that = (1) € L in S, Property 1 can be used along
with Equation (2) to show that v (t) € L in S. Since
x(t), ©(t), v(t) € Lo in S, Assumption 2 can be used
along with Equation (3) to prove that ¥ (¢), v (t) € Lo
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in §. Given that r (¢), v(t), v(t) € L in S, the time
derivative of Equation (20) can be used with (21) to prove
that v (t) € Lo in S.

The definition of V(z) in Equation (27) can be used
along with Inequality (31) to show that V' (z) can be upper
bounded as

Vi(z) < =\V(z) (32)

in the domain S. The differential inequality in (32) can be
solved as

V(z) < V(2(0)) exp(=A1t) (33)

Hence, Equations (19), (27), and (33) can be used to conclude
that

el < =0)exp(~311) Y tefo,00) (4

V. SIMULATION

A detailed numerical simulation was created using Mat-
lab/Simulink to demonstrate the performance of the pro-
posed robust control law. The simulation demonstrates the
performance of the control law in (20) and (21) for two
cases: 1) with actuator uncertainty compensation and 2)
without compensation. The control law with uncertainty
compensation includes nonzero values of all of the control
gains introduced in (20) and (21); and as a comparison,
the control gains k,, k,1, and k,o in (21) are set to
zero to simulate the control law without input-uncertainty
compensation. The reduced-order flow dynamic model in
the simulation uses four POD modes, but the proposed
control design can be applied to ROM consisting of an
arbitrary number of modes. The objective of the controller
is to regulate the flow field velocity to a constant value.
The regulation control objective is presented as a proof-of-
concept only. The proposed control method could be applied
to a tracking control objective with little modification.
The flow field dynamic reduced-order model used in this
simulation is given by [23]:

i1 = by (t) + La1 (H)x1 + Quar (2124 + Q111 ()77
+ Qia1(t)z172 + Q131 (H)w123 + L1 ()71
To = bg(t) + [ng(t) + Rg(t)(.%‘% + x%)].ﬁg
+ Log(t)xs + Qai2(t)z122 + B2(t)72
"tg = bg (t) + L32 (t).’bg
+ [Las(t) + Ra(za(t)? + a3))as
+ Qz13(t) 173 + Qs14() 71704 + B3(1)73
4 = bg(t) + La1 (t)w1 + Laa ()24 + Quaa(t)a]
+ Qaua(t)z174(t) + Qa2a(t)T274
+ Qaza(t)w374 + Ba(t)Va

To simulate a realistic closed-loop AFC scenario where
the model parameters are influenced by the control pertur-
bations, the parameters in the plant model in (35)-(38) are
time-varying. For completeness in defining the simulation
plant model, the nominal values of the time varying param-
eters b;(t), L;;(t), Qik(t) for i;7;k =1,...,4 are provided
in Table I and were taken from [23]. The initial conditions

(35)

(36)

(37)

(38)

of the states are 19 = 2,Z99 = 3,739 = 6, 740 = 2.

TABLE I

NomiNAL PARAMETERS USED IN THE SIMULATION PLANT MODEL

[ Linear Terms [ Quadratic and Cubic Terms ]

bio =557.7 | L11 = —86.1 |Q111 =1.8 |[Q414 =29
boo = 1016.9 | Loo =—392.4 Q121 =—2.2 Q424 =—-9.8
bsg = 41.0 Los =263.9 Q131 = —2.3| Q434 =6.3
byo =—628.9 | L3o= —218.3 Q141 = —6.8 Q444 =-7.3
L33 = —7.6 Q212 =175.0
Ta1 =434 |Qsi3 =50 |Rz=-25
Tas=—1135 Q314 =30 |Rs=—02

A. Summary of Results

The control gains in the simulation were selected as
ky=3.75 X I, ky, =0.01 X1, kg = 2000 xI,, (see Equations
(20) and (21)). As stated previously, &, = k,, = k,, = 0 for
the control law without input uncertainty compensation.
The control gains in the simulation were selected to yield
the best performance tradeoff between regulation accuracy
and control usage. In an attempt to reduce chattering,
the discontinuous signum function was approximated in
the simulation using a continuous logarithmic switching
function without loss of generality. To provide a realistic
demonstration of the closed-loop system performance un-
der parametric uncertainty, the control system was sim-
ulated for 50 iterations of randomized time-varying para-
metric uncertainty in the plant model (i.e., using the Matlab
rand function). Each iteration was tested over six different
levels of randomized uncertainty: 5%, 7%, 10%, 15%, 18%,
20% (e.g., x% uncertainty in b; is mathematically defined
via by = byg £ [(#% of byg) x sin(t)], where by is the
corresponding nominal parameter value in Table 1).

Time [sec]

Time [sec]

Fig. 1. Time evolution of the state z1 (¢), z2(t), x3(t), z4(t) for controller
without uncertainty compensation (red) and controller with uncertainty
compensation (blue) during closed-loop operation for 50 iterations of
randomized uncertainty.

Figure 1 shows the time evolution of the states during
closed-loop operation for 50 iterations of 20% randomized
uncertainty for the two cases: 1) with input uncertainty
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compensation (in blue) and 2) without compensation (in
red). Figure 2 shows the time evolution of the control
input during the closed-loop operation for a given iteration
of 20% uncertainty (for clarity of the figure, only one
iteration is shown). These results clearly demonstrate the
improved performance that can be achieved using the
proposed controller with input uncertainty compensation.

The average mean squared error (MSE) in trajectory
tracking over the 50 iterations was then calculated for
each of the six levels of uncertainty for the two cases:
1) controller with compensation and 2) controller without
compensation. In summary, the average MSE reduction
achieved using the proposed compensator ranged from
37.39% to 72.10%.

20

(1]

= 10
S (9]
400 2 4 6 8 10 0 2 4 6 8 10
Time [sec] Time [sec] [1 0]
100
= 50 [11]
> 0
3
-50
(12]
-100 :
2 4 6 8 10
Time [sec] Time [sec]
(13]
Fig. 2. Control input wi(t),u2(t),u3(t), ua(t) during closed-loop
trajectory tracking control operation without and with uncertainty com- (14]
pensation
[15]
VI. CONCLUSIONS
(16]
In this paper, a robust nonlinear flow control system
is presented, which is shown to exponentially track a  [17]
desired flow field velocity over a given spatial domain in
the presence of time varying input-multiplicative paramet- [18]
ric uncertainty and nonlinear coupling between the state
and the control input. To achieve the result, a detailed
ROM is derived, and a rigorous error system development 19
and Lyapunov-based stability analysis are provided. The
Lyapunov-based stability analysis proves that the control
design achieves semi-global exponential tracking of the [y
desired velocity profile. Numerical simulation results are
also provided, which show the performance improvement
of the proposed control law over a standard sliding mode [
control method in compensating for time-varying input-
multiplicative uncertainty. The numerical simulation results (2%
show a reduction in the average MSE ranging from 37.39%
up to 72.10% over multiple trials. [23]
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