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Abstract—A robust nonlinear control method is devel-
oped for �uid �ow velocity tracking, which formally ad-
dresses the inherent challenges in practical implementa-
tion of closed-loop active �ow control systems. A key
challenge being addressed here is �ow control design to
compensate for model parameter variations that can arise
from actuator perturbations. �e control design is based
on a detailed reduced-order model of the actuated �ow
dynamics, which is rigorously derived to incorporate the
inherent time-varying uncertainty in the both the model
parameters and the actuator dynamics. To the best of
the authors’ knowledge, this is the �rst robust nonlinear
closed-loop active �ow control result to prove exponential
tracking control of a reduced-order actuated �ow dynamic
model, which formally incorporates input-multiplicative
time-varying parametric uncertainty and nonlinear cou-
pling between the state and control signal. A rigorous
Lyapunov-based stability analysis is utilized to prove semi-
global exponential tracking of a desired �ow �eld velocity
pro�le over a given spatial domain. A detailed comparative
numerical study is provided, which demonstrates the per-
formance improvement that is achieved using the proposed
robust nonlinear �ow control method to compensate for
model uncertainty and uncertain actuator dynamics.

I. Introduction

Signi�cant theoretical challenges exist in control design

for �uid �ow systems due to the fact that the governing

dynamic equations are partial di�erential equations (PDEs)

(e.g., Navier-Stokes equations), which are not amenable

to control design. To address this challenge, model or-

der reduction techniques are popularly utilized to develop

control-oriented mathematical models for the �ow dynam-

ics. In practical applications, reduced-order models (ROM)

can be developed using data obtained from experimental

or high-�delity computational methods. �e resulting ROM

are based on a given, �xed set of �ow �eld conditions,

so ROM dynamic uncertainty and unmodeled, time-varying

parameter �uctuations are an inherent challenge in �ow

control applications. Moreover, in closed-loop active �ow

control systems, the controlling actuator itself can con-

tribute signi�cantly to ROM parameter �uctuations. For

reliable �ow control under realistic, time-varying operating
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conditions, rigorous control design methods are needed to

address these inherent practical challenges.

Reliable control of �uid �ow dynamic systems is critical

in a wide range of engineering applications to achieve

aerodynamic drag reduction [1], [2], aeroacoustic noise

reduction [3], [4], and li� enhancement in aircra� [5], [6]. In

order to achieve reliable performance over a wide range of

operating conditions, closed-loop AFC o�ers many potential

bene�ts over PFC and open loop AFC methods.

Experimental investigations of AFC systems have been

widely presented in recent research [7]–[12]. Applications

addressed in these experimental AFC studies include ther-

mal protection [7]; control of vortex-body interaction and

wing-tip-vortex meandering in NACA0012 airfoils [8], [9];

low-pressure gas turbines [10]; pressure, force, and moment

manipulation in airfoils without moving control surfaces

[11]; and �ow separation control for performance enhance-

ment in aircra� rudders [12]. Although all of the afore-

mentioned studies have shown promising results in their

respective objectives, most of them do not utilize rigorous

mathematical tools to model the �ow �eld dynamics and

theoretically predict and analyze the in�uence of AFC on

the �ow. Dynamic modeling and mathematical analytical

techniques can be leveraged to reduce the number of

required repetitions and, hence, the time and cost that

can be involved in numerical and experimental methods.

A key element in the design and analysis of closed-loop

AFC systems is the development of control-oriented ROMs.

Proper orthogonal decomposition (POD) [13], which is

o�en referred to as Karhunen-Loève expansion or principal

component analysis, is a method that can be used to obtain

lower-dimensional dynamic models for �uid �ow. POD is

utilized to develop a set of basis functions (POD modes) that

approximates the governing in�nite-dimensional �ow dy-

namics (i.e., the Navier-Stokes PDE) as a �nite-dimensional

set of ordinary di�erential equations (ODE) in terms of the

POD modes. Depending on the �ow control application and

objectives, the number of POD modes in the ROM can be

judiciously selected to yield the desired trade-o� between

ROM accuracy and computational e�ciency. In application,

the POD-based reduced-order �ow dynamic model repre-

sents a nominal approximation of �ow dynamics that is

obtained under a speci�c set of �ow �eld conditions (e.g.,

from experimental or high-�delity computational data). In

order to develop reliable closed-loop AFC over realistic,

uncertain, time-varying �ow �eld conditions, the control

design must formally incorporate the uncertainty inherent

in the reduced-order dynamic model.
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To address the challenge of model uncertainty, various

linear, robust, and intelligent methods for closed-loop AFC

have been presented in recent research literature [14]–[20].

�e techniques utilized in these recently developed �ow

control systems include, adaptive control [14], [15], PI con-

trol [16], and neural network-based control [17], [18]. While

methods such as these have been widely shown to achieve

promising results, robust nonlinear control approaches are

less popularly utilized in �ow control applications.

In this paper, a robust controller is presented, which is

rigorously proven to achieve exponential tracking of a �uid

�ow velocity �eld. To the best of the authors’ knowledge,

this is the �rst robust nonlinear closed-loop AFC result to

prove exponential tracking control of a POD-based reduced-

order model for the complete actuated �ow dynamics,

which formally incorporates both input-multiplicative time-

varying parametric uncertainty and nonlinear couplings

between the state and control input. �e three main con-

tributions of this paper are as follows:

1) POD-based ROM development of the actuated �ow dy-

namics, which formally incorporates the time-varying

parameter �uctuations caused by unmodeled e�ects

and control input perturbations.

2) A rigorous Lyapunov-based stability analysis which

proves semi-global exponential tracking of a de-

sired �ow �eld velocity in the presence of input-

multiplicative time-varying parametric uncertainty and

nonlinear coupling between the state and control in-

put.

3) A detailed comparative numerical study, which shows

the performance improvement that is achieved using

the proposed robust nonlinear control design under

input-multiplicative uncertainty.

II. Dynamic Model and Properties

In this section, a POD-based model reduction technique

is utilized to derive a reduced-order, control-oriented model

for the actuated �ow dynamics. �e design of a robust

nonlinear control law that formally incorporates the com-

plete nonlinear dynamics and time-varying parametric un-

certainty of the ROM is one of the key contributions of the

current work.

A. Reduced order Model for Flow Field Dynamics

�e incompressible Navier-Stokes equations are given as

[21]

∇ · u = 0,
∂u

∂t
= −(u · ∇)u+

1

Re
∇2(u)−∇p (1)

where u(s, t) : Γ× [0,∞) ∈ R3
denotes the velocity of the

�ow �eld over a spatial domain s ∈ Γ ⊂ R3
; p(s, t) ∈ R3

is the space- and time-dependent pressure of the �ow �eld

over Γ; and Re denotes the Reynolds number.

POD expansion or principal component analysis is used

to obtain lower-dimensional dynamic models for �uid �ow.

In the POD modal decomposition technique, the �ow veloc-

ity �eld u(s, t) is expanded as a weighted sum of actuated

and unactuated POD modes de�ned in the spatial domain

Γ. �e actuation e�ects are embedded in the coe�cients

of the Galerkin system. Speci�cally, the actuation e�ects

can be included in the reduced-order model by de�ning the

modal decomposition as [20]

u(s, t) = u0 +
n∑
i=1

xi(t)φi(s) +
m∑
i=1

γi(t)ψi(s) (2)

In (2), φi(s) ∈ R3
, i = 1, ..., n, denote the unactuated

POD modes and xi(t), i = 1, ..., n, denote time-varying

coe�cients resulting from the modal decomposition; and

u0 ∈ R3
denotes the mean �ow velocity over Γ; ψi(s) ∈

R denote the actuation modes, and γi(t) ∈ R denote

actuation values (i.e., control inputs). By leveraging an input

separation method similar to that in [22], the actuation

modes can be de�ned as the modes that minimize the

energy not captured in the modal expansion of the actuated

�ow �eld.

By substituting the decomposition in (2) into (1), the com-

plete actuated POD-based reduced-order model is obtained

as

ẋk = Ak +
n∑
i=1

Bkixi(t) +
n∑
i=1

n∑
j=1

Ckijxi(t)xj(t)

+
m∑
i=1

Dkiγ̇i(t) +
n∑
i=1

m∑
j=1

Ekijxi(t)γj(t)

+
m∑
i=1

Fkiγi(t) +
m∑
i=1

m∑
j=1

Gkijγi(t)γj(t) (3)

In (3), Ak , Bki, Ckij ∈ R, for k, i, j = 1, ..., n; Dki, Fki,
Gkij , k, i, j = 1, ...,m; and Ekij ∈ R, for k, i = 1, ..., n, and

for j = 1, ... m, represent constant uncertain parameters,

which can be explicitly computed for any given, �xed set of

numerical or experimental �ow �eld data. Also in (3), γ̇i(t),

i = 1, ..., n, represent the elements of the control input

vector, which can be physically interpreted as a controllable

perturbation to the �ow �eld.

Property 1. Since the �uid �ow velocity u(s, t) is based
only on physical data collected from high-�delity computa-
tional �uid dynamics (CFD) simulations or experiment, the
decomposition in (2) can be used to prove that the actuation
signal γ(t) is bounded provided x(t) is bounded.

Remark 1. (Inherent Parameter Variations) �e POD-
based reduced-order �ow dynamic model in (3) is obtained
from data collected under a single, �xed set of �ow �eld
conditions in the absence of actuation. �e introduction of
an actuation signal into the �ow dynamic system causes
�uctuations in the parameters (i.e., A, ..., G) of the reduced-
order model. �us, to achieve reliable control of a �ow �eld
under realistic uncertain conditions, compensation for time-
varying parametric uncertainty in the reduced-order model is
of crucial importance for closed-loop �ow control applications.

B. Control-oriented Flow Dynamic Model
To address the time-varying parametric uncertainty in-

herent in the reduced-order model for the �uid �ow dynam-
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ics in (3), the dynamic model will be rewri�en in control-

oriented form as

ẋ = f1(x, x, θ1(t)) + f2(x, γ, θ2(t))

+ f3(γ, γ, θ3(t)) + Ω(t)v (4)

where f1(·), f2(·), f3(·) ∈ Rn denote uncertain nonlinear

(quadratic) terms for which the kth rows are explicitly

de�ned as

f1,k(x, θ1(t)) , Ak +
n∑
i=1

Bkixi(t) +
n∑
i=1

n∑
j=1

Ckijxi(t)xj(t)

(5)

f2,k(x, γ, θ2(t)) ,
n∑
i=1

m∑
j=1

Ekijxi(t)γj(t) (6)

f3,k(γ, θ3(t)) ,
m∑
i=1

Fkiγi(t) +
m∑
i=1

m∑
j=1

Gkijγi(t)γj(t) (7)

for k = 1, ..., n. In (4) and (5), x(t) ,
[ x1(t) · · · xn(t) ]T ∈ Rn denotes the state

vector, v(t) , γ̇(t) ∈ Rm is the control input; and

θ1(t) ∈ Rn2+n+1
, θ2(t) ∈ Rn2

, θ3(t) ∈ Rn2+n
, for

k = 1, ..., n, denote vectors containing the uncertain

time-varying parameters in the dynamic model. Also in

(4), Ω(t) ∈ Rn×m denotes an uncertain input gain matrix.

Speci�cally, Ω(t) contains the terms Dki, for k = 1, ..., n,

i = 1, ...,m, which are introduced in (3).

Remark 2. (Control Input Variable) �e control input
term v(t) is being de�ned for notational convenience only.
�e subsequent control development and stability analysis
will incorporate the input-dependent actuation signals γ(t)
to formally address the challenge of input-multiplicative
uncertainty.

Assumption 1. �e reduced-order model in (4) is assumed
to be controllable.

Assumption 2. �e parameter vectors θ1(t), θ2(t), θ3(t)
and the parameter matrix Ω(t) and their derivatives satisfy
the following inequalities:

‖θ1(t)‖ ≤ ζ1 ‖θ2(t)‖ ≤ ζ2 ‖θ3(t)‖ ≤ ζ3
‖θ̇1(t)‖ ≤ ζ1d ‖θ̇2(t)‖ ≤ ζ2d ‖θ̇3(t)‖ ≤ ζ3d
sup
t
{‖Ω(t)‖i∞} ≤ ζΩ sup

t
{‖Ω̇(t)‖i∞} ≤ ζΩd (8)

where ζ1, ζ2, ζ3, ζΩ, ζ1d, ζ2d, ζ3d, ζΩd ∈ R+ are known
bounding constants. As is standard in robust nonlinear control
methods, knowledge of the upper bounds on the uncertain
parameters is utilized to derive su�cient gain conditions in
the subsequent stability analysis.

Assumption 3. (Fully Actuated System) �e subsequent
analysis is based on the assumption that the the number m
of actuation modes is equal to the number n of unactuated
modes (i.e., it is assumed that n = m in (4)). However, the
adaptive control design presented here can be applied to any
system for which m ≥ n.

III. Control Development

A. Control Objective
�e control objective is to ensure that the state x(t)

tracks a desired �ow �eld velocity pro�le xd(t) ∈ Rn.

To quantify this control objective, a tracking error variable

e(t) ∈ Rn is de�ned as

e , x− xd. (9)

To facilitate the subsequent analysis, an auxiliary (�ltered)

tracking error variable, denoted by r(t) ∈ Rn, is de�ned as

r , ė+ αe (10)

where α ∈ Rn×n is a positive de�nite, constant control

gain matrix.

Assumption 4. �e desired �ow �eld velocity pro�le xd(t)
is bounded and smooth in the sense that
xd(t) ≤ ζxd1, ẋd(t) ≤ ζxd2, ẍd(t) ≤ ζxd3 (11)

where ζxd1, ζxd2, ζxd3 ∈ R+ are known bounding constants.

B. Open-Loop Error System
�e open-loop tracking error dynamics can be developed

by taking the time derivative of (10) and using (4)–(9) to

obtain

ṙ = ẍ− ẍd = ḟ1 + ḟ2 + ḟ3 +Ω̇v+Ωv̇− ẍd+α(r−αe) (12)

�e open-loop error dynamics in (12) can be rewri�en in

compact form as

ṙ = Ñ + Ñγ +Nd + Ω̇v + Ωv̇ − e (13)

where the uncertain nonlinear auxiliary terms

Ñ(x, ẋ, xd, ẋd, e, r, t) ∈ Rn, Ñγ(x, ẋ, γ) ∈ Rn, and

Nd(xd, ẋd, ẍd) are explicitly de�ned as

Ñγ , γTETk ẋ+ xT Ėkγ + Ḟkγ + γT Ġkγ (14)

Ñ , Ḃk(x− xd) +Bk(ẋ− ẋd) (15)

+xT (Ck + CTk )ẋd − xTd (Ck + CTk )ẋd

+xT (Ck + CTk )ẋ− xT (Ck + CTk )ẋd

+xT Ċkx− xTd Ċkxd + α(r − αe) + e

Nd = Ḃkxd +Bkẋd + xTd (Ck + CTk )ẋd

+xTd Ċkxd − ẍd (16)

Motivation for the selective grouping of terms in (14)–(16)

is based on the fact that the following bounding inequalities

can be developed
1

‖Ñ‖ ≤ ρ1(‖z‖)‖z‖, ‖Nd‖ ≤ ζNd (17)

‖Ñγ‖ ≤ Ξ1‖γ‖2 + Ξ2‖γ‖+ ργ(‖z‖)‖z‖ (18)

where ζNd, Ξ1, Ξ2 ∈ R+
are known bounding con-

stants; ρ1(·) and ργ(·) are positive, globally invertible non-

decreasing functions; and z(t) ∈ R2n
is de�ned as

z , [ eT rT ]T . (19)

1
Proof of the bound on the auxiliary terms is straightforward using

the mean-value theorem and Young’s Inequality and is omi�ed here for

brevity.
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Note that the bounding of Nd(xd, ẋd, ẍd) follows directly

from Assumption 4 and Inequalities (11).

C. Control Design and Closed-loop Error System

Based on the open loop error dynamics in (13) and the

subsequent stability analysis, the control input is designed

via

v = −Ω−1
0 [(ks + In)e(t)− (ks + In)e(0) + ω] (20)

where ω(t) ∈ Rn is an implicit learning law with an update

rule de�ned as

ω̇ = α(ks + In)e(t) + kv‖v‖ sgn(r) (21)

+(kβ + kγ1‖γ‖+ kγ2‖γ‖2) sgn(r)

and ks, kv , kβ , kγ1, kγ2 ∈ Rn×n denote positive-de�nite,

diagonal, control gain matrices. In (20), Ω0 ∈ Rn is a

matrix containing the constant, known, nominal values

of the uncertain parameters in Ω; sgn(·) denotes the

standard signum function, where the function is applied

element-wise to the vector argument; and In denotes the

n× n identity matrix.

A�er taking the time derivative of (20) and substituting

the result into the open-loop error dynamics in (13), the

closed-loop error system can be expressed as

ṙ = Ñ + Ñγ +Nd + Ω̇v − Ω̃(ks + In)r − e
−Ω̃kγ1‖γ‖ sgn(r)− Ω̃kγ2‖γ‖2 sgn(r)

−Ω̃kv‖v‖ sgn(r)− Ω̃kβ sgn(r) (22)

where (10) was utilized. In (22), the uncertain parameter

mismatch matrix Ω̃(t) ∈ Rn×n is de�ned as

Ω̃ , ΩΩ−1
0 . (23)

To facilitate the subsequent stability analysis, the mismatch

matrix Ω̃(t) in (23) will be separated into diagonal (Λ(t) ∈
Rn×n) and o�-diagonal (∆(t) ∈ Rn×n) components as

Ω̃ = Λ + ∆. (24)

Assumption 5. Approximate knowledge of the parameter
matrix Ω(t) is available such that the mismatch matrix Ω̃(t)
is diagonally dominant in the sense that

inf
t
{λmin(Λ)} − sup

t
{‖∆‖i∞} > ε (25)

where ε ∈ R+ is a known bounding constant.

Assumption 5 is mild in the sense that, for a given set of

�ow �eld data (e.g., from high-�delity CFD simulation or

experiment), the nominal values of the reduced-order model

parameters would be readily available.

IV. Stability Analysis

�eorem 1. �e control law given in Equations (20) and (21)
ensures semi-global exponential tracking in the sense that

‖e(t)‖ ≤ ‖z(0)‖ exp(−λ1

2
t) ∀ t ∈ [0,∞)

where λ1 ∈ R+, provided ks is selected su�ciently large (see
the subsequent proof), and where the control gain matrices
kv , kβ , kγ1, and kγ2 introduced in (20) are selected to satisfy
the su�cient conditions

λmin(kv) >
ζΩd
ε

λmin(kβ) >
ζNd
ε

(26)

λmin(kγ1) >
Ξ1

ε
λmin(kγ2) >

Ξ2

ε

where ζΩd, ζNd, Ξ1, and Ξ2 are introduced in (17); ε is intro-
duced in (25); and λmin(·) denotes the minimum eigenvalue
of the argument.

Proof: Let V (z) : R2n → R be a continuously

di�erentiable, positive-de�nite function de�ned as

V (z) ,
1

2
eT e+

1

2
rT r (27)

where e(t) and r(t) are de�ned in (9) and (10), respectively.

A�er taking the time derivative of (27) and using Equations

(10), (22), and (25), along with Inequalities (8) and (25), V̇ (z)
can be upper bounded as

V̇ (z) ≤ −α‖e‖2 + rT (Ñ + Ñγ)− ε(λmin(ks) + In)‖r‖2

+ζΩd‖v‖‖r‖ − ελmin(kv)‖v‖‖r‖+ ζNd‖r‖ − ελmin(kβ)‖r‖
−ελmin(kγ1)‖γ‖‖r‖ − ελmin(kγ2)‖γ‖2‖r‖ (28)

where the fact that |r| ≥ ‖r‖ ∀ r ∈ Rn was used. A�er

using the bounding inequalities in (17), combining terms,

and rearranging, the upper bound in (28) can be expressed

as

V̇ (z) ≤ −α‖e‖2 − ε‖r‖2

−[ελmin(ks)‖r‖2 − ρ(‖z‖)‖r‖‖z‖] (29)

provided the gain conditions in (26) are satis�ed, where

ρ(‖z‖) , ρ1(‖z‖)+ργ(‖z‖) is a positive. globally invertible

non-decreasing function. By completing the squares for the

bracketed terms, the upper bound in (29) can be expressed

as

V̇ (z) ≤ −(η − ρ2(‖z‖)
4ελmin(ks)

)‖z‖2 (30)

where z(t) is de�ned in (19), and η , min{α, ε}. �e upper

bound in (30) can be expressed as

V̇ (z) ≤ −λ1‖z‖2 (31)

where λ1 ∈ R+
is a constant, provided z(t) is within the

domain de�ned by

S ,{z ∈ R2n|‖z‖ < ρ−1(2
√
ηελmin(ks))}.

�e inequalities in (27) and (31) can be used to show that

V (z) ∈ L∞ in S ; hence, e (t), r (t) ∈ L∞ in S . Given that

e (t), r (t) ∈ L∞ in S , Equation (10) can be used to show

that ė (t) ∈ L∞ in S ; and Assumption 4 can be used with

Equations (9) and (10) to prove that x (t), ẋ (t) ∈ L∞ in S .

Given that x (t) ∈ L∞ in S , Property 1 can be used along

with Equation (2) to show that γ (t) ∈ L∞ in S . Since

x (t), ẋ (t), γ (t) ∈ L∞ in S , Assumption 2 can be used

along with Equation (3) to prove that γ̇ (t), v (t) ∈ L∞
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in S . Given that r (t), γ (t), v (t) ∈ L∞ in S , the time

derivative of Equation (20) can be used with (21) to prove

that v̇ (t) ∈ L∞ in S .

�e de�nition of V (z) in Equation (27) can be used

along with Inequality (31) to show that V (z) can be upper

bounded as

V̇ (z) ≤ −λ1V (z) (32)

in the domain S . �e di�erential inequality in (32) can be

solved as

V (z) ≤ V (z(0)) exp(−λ1t) (33)

Hence, Equations (19), (27), and (33) can be used to conclude

that

‖e(t)‖ ≤ ‖z(0)‖ exp(−λ1

2
t) ∀ t ∈ [0,∞) (34)

V. Simulation

A detailed numerical simulation was created using Mat-

lab/Simulink to demonstrate the performance of the pro-

posed robust control law. �e simulation demonstrates the

performance of the control law in (20) and (21) for two

cases: 1) with actuator uncertainty compensation and 2)

without compensation. �e control law with uncertainty

compensation includes nonzero values of all of the control

gains introduced in (20) and (21); and as a comparison,

the control gains kv , kγ1, and kγ2 in (21) are set to

zero to simulate the control law without input-uncertainty

compensation. �e reduced-order �ow dynamic model in

the simulation uses four POD modes, but the proposed

control design can be applied to ROM consisting of an

arbitrary number of modes. �e objective of the controller

is to regulate the �ow �eld velocity to a constant value.

�e regulation control objective is presented as a proof-of-

concept only. �e proposed control method could be applied

to a tracking control objective with li�le modi�cation.

�e �ow �eld dynamic reduced-order model used in this

simulation is given by [23]:

ẋ1 = b1(t) + L11(t)x1 +Q141(t)x1x4 +Q111(t)x2
1

+Q121(t)x1x2 +Q131(t)x1x3 + β1(t)γ̇1 (35)

ẋ2 = b2(t) + [L22(t) +R2(t)(x2
2 + x2

3)]x2

+ L23(t)x3 +Q212(t)x1x2 + β2(t)γ̇2 (36)

ẋ3 = b3(t) + L32(t)x2

+ [L33(t) +R3(x2(t)2 + x2
3)]x3

+Q313(t)x1x3 +Q314(t)x1x4 + β3(t)γ̇3 (37)

ẋ4 = b4(t) + L41(t)x1 + L44(t)x4 +Q444(t)x2
4

+Q414(t)x1x4(t) +Q424(t)x2x4

+Q434(t)x3x4 + β4(t)γ̇4 (38)

To simulate a realistic closed-loop AFC scenario where

the model parameters are in�uenced by the control pertur-

bations, the parameters in the plant model in (35)–(38) are

time-varying. For completeness in de�ning the simulation

plant model, the nominal values of the time varying param-

eters bi(t), Lij(t), Qijk(t) for i; j; k = 1, ..., 4 are provided

in Table I and were taken from [23]. �e initial conditions

of the states are x10 = 2, x20 = 3, x30 = 6, x40 = 2.

TABLE I

Nominal Parameters Used in the Simulation Plant Model

Linear Terms �adratic and Cubic Terms

b10 = 557.7 L11 = −86.1 Q111 = 1.8 Q414 = 2.9
b20 = 1016.9 L22 =−392.4 Q121 =−2.2 Q424 = −9.8
b30 = 41.0 L23 =263.9 Q131 = −2.3 Q434 = 6.3
b40 =−628.9 L32= −218.3 Q141 = −6.8 Q444 = −7.3

L33 = −7.6 Q212 = 75.0
L41 = 43.4 Q313 = 5.0 R2 = −2.5
L44 = −113.5 Q314 = 3.9 R3 = −0.2

A. Summary of Results

�e control gains in the simulation were selected as

kv=3.75 × In, kγ1 = 0.01 ×In, kβ = 2000 ×In (see Equations

(20) and (21)). As stated previously, kv = kγ1 = kγ2 = 0 for

the control law without input uncertainty compensation.

�e control gains in the simulation were selected to yield

the best performance tradeo� between regulation accuracy

and control usage. In an a�empt to reduce cha�ering,

the discontinuous signum function was approximated in

the simulation using a continuous logarithmic switching

function without loss of generality. To provide a realistic

demonstration of the closed-loop system performance un-

der parametric uncertainty, the control system was sim-

ulated for 50 iterations of randomized time-varying para-

metric uncertainty in the plant model (i.e., using the Matlab

rand function). Each iteration was tested over six di�erent

levels of randomized uncertainty: 5%, 7%, 10%, 15%, 18%,

20% (e.g., x% uncertainty in b1 is mathematically de�ned

via b1 = b10 ± [(x% of b10) × sin(t)], where b10 is the

corresponding nominal parameter value in Table 1).

Fig. 1. Time evolution of the state x1(t), x2(t), x3(t), x4(t) for controller

without uncertainty compensation (red) and controller with uncertainty

compensation (blue) during closed-loop operation for 50 iterations of

randomized uncertainty.

Figure 1 shows the time evolution of the states during

closed-loop operation for 50 iterations of 20% randomized

uncertainty for the two cases: 1) with input uncertainty
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compensation (in blue) and 2) without compensation (in

red). Figure 2 shows the time evolution of the control

input during the closed-loop operation for a given iteration

of 20% uncertainty (for clarity of the �gure, only one

iteration is shown). �ese results clearly demonstrate the

improved performance that can be achieved using the

proposed controller with input uncertainty compensation.

�e average mean squared error (MSE) in trajectory

tracking over the 50 iterations was then calculated for

each of the six levels of uncertainty for the two cases:

1) controller with compensation and 2) controller without

compensation. In summary, the average MSE reduction

achieved using the proposed compensator ranged from

37.39% to 72.10%.

Fig. 2. Control input u1(t), u2(t), u3(t), u4(t) during closed-loop

trajectory tracking control operation without and with uncertainty com-

pensation

VI. Conclusions

In this paper, a robust nonlinear �ow control system

is presented, which is shown to exponentially track a

desired �ow �eld velocity over a given spatial domain in

the presence of time varying input-multiplicative paramet-

ric uncertainty and nonlinear coupling between the state

and the control input. To achieve the result, a detailed

ROM is derived, and a rigorous error system development

and Lyapunov-based stability analysis are provided. �e

Lyapunov-based stability analysis proves that the control

design achieves semi-global exponential tracking of the

desired velocity pro�le. Numerical simulation results are

also provided, which show the performance improvement

of the proposed control law over a standard sliding mode

control method in compensating for time-varying input-

multiplicative uncertainty. �e numerical simulation results

show a reduction in the average MSE ranging from 37.39%

up to 72.10% over multiple trials.

ACKNOWLEDGMENT

�is research is supported in part by NSF award number

1809790.

References

[1] A. R. Paul, A. Jain, and F. Alam, “Drag reduction of a passenger car

using �ow control techniques,” International Journal of Automotive
Technology, vol. 20, no. 2, pp. 397–410, 2019.

[2] S. Chae, S. Lee, J. Kim, and J. H. Lee, “Adaptive-passive control of

�ow over a sphere for drag reduction,” Physics of Fluids, vol. 31, no. 1,

p. 015107, 2019.

[3] W. Zhu, Z. Xiao, and S. Fu, “Numerical modeling screen for �ow and

noise control around tandem cylinders,” AIAA Journal, 2020.

[4] C. Prasad and P. Morris, “A study of noise reduction mechanisms

of jets with �uid inserts,” Journal of Sound and Vibration, p. 115331,

2020.

[5] M. DeSalvo, E. Whalen, and A. Glezer, “High-li� performance en-

hancement using active �ow control,” AIAA Journal, pp. 1–15, 2020.

[6] L.-H. Feng, Z.-Y. Li, and Y.-L. Chen, “Li� enhancement strategy and

mechanism for a plunging airfoil based on vortex control,” Physics of
Fluids, vol. 32, no. 8, p. 087116, 2020.

[7] J. Huang and W.-X. Yao, “Active �ow control by a novel com-

binational active thermal protection for hypersonic vehicles,” Acta
Astronautica, vol. 170, pp. 320–330, 2020.

[8] A. Weingaertner, P. Tewes, and J. C. Li�le, “Parallel vortex body

interaction enabled by active �ow control,” Experiments in Fluids,
vol. 61, no. 137, p. 137, 2020.

[9] M. Dghim, M. Ferchichi, and H. Fellouah, “On the e�ect of active

�ow control on the meandering of a wing-tip vortex,” Journal of
Fluid Mechanics, vol. 896, p. A30, 2020.

[10] J. Bons, S. Benton, C. Bernardini, and M. Bloxham, “Active �ow

control for low-pressure turbines,” AIAA Journal, vol. 56, no. 7,

pp. 2687–2698, 2018.

[11] D. Dolgopyat and A. Seifert, “Active �ow control virtual maneuvering

system applied to conventional airfoil,” AIAA Journal, vol. 57, no. 1,

pp. 72–89, 2019.

[12] E. A. Whalen, A. Shmilovich, M. Spoor, J. Tran, P. Vijgen, J. C.

Lin, and M. Andino, “Flight test of an active �ow control enhanced

vertical tail,” AIAA Journal, vol. 56, no. 9, pp. 3393–3398, 2018.

[13] J. Weiss, “A tutorial on the proper orthogonal decomposition,” in

AIAA Aviation 2019 Forum, p. 3333, 2019.

[14] B. Choi, Y. Hong, B. Lee, M. Kim, H. J. Kim, and C. Kim, “Adaptive

�ow separation control over an asymmetric airfoil,” International
Journal of Aeronautical and Space Sciences, vol. 19, no. 2, pp. 305–

315, 2018.

[15] V. Mo�a and L. Malzacher, “Open-loop and closed-loop �ow control

based on van der pol modeling,” Acta Mechanica, vol. 229, no. 1,

pp. 389–401, 2018.

[16] D. Xingya and F. Jianchao, “Closed-loop �ow control of an ultra-

compact serpentine inlet based on nondimensional model,” Chinese
Journal of Aeronautics, 2020.

[17] S. Shimomura, S. Sekimoto, A. Oyama, K. Fujii, and H. Nishida,

“Closed-loop �ow separation control using the deep q network over

airfoil,” AIAA Journal, pp. 1–11, 2020.

[18] J. Rabault, M. Kuchta, A. Jensen, U. Réglade, and N. Cerardi, “Arti�-
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