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Abstract—This paper presents a sliding mode observer
(SMO)-based robust control method, which achieves simulta-
neous estimation, fluid flow velocity regulation and limit cycle
oscillation (LCO) suppression in a flexible airfoil. The proposed
control design is based on a dynamic model that incorporates
the fluid structure interactions (FSI) in the airfoil. The FSI
describe how the flow field velocity at the surface of a flexible
structure gives rise to fluid forces acting on the structure.
In the proposed control method, the LCO are controlled via
control of the flow field velocity near the surface of the airfoil
using surface-embedded synthetic jet actuators. The flow field
velocity is expressed using a proper orthogonal decomposition
based reduced-order flow model that formally incorporates the
actuation effects of synthetic jet actuator. Specifically, this flow
field velocity profile is driven to a desired time-varying profile,
which results in a LCO-stabilizing fluid forcing function acting
on the airfoil. A sliding mode observer is designed to estimate
the unmeasurable states in the reduced-order model of the
actuated flow field dynamics. The SMO is rigorously proven to
achieve local finite-time estimation of the unmeasurable state
in the presence of the parametric uncertainty in the SJA. A
Lyapunov-based stability analysis is used to prove that the
active flow control system asymptotically converges to the LCO-
stabilizing forcing function that suppresses the LCO. Numerical
simulation results demonstrate that the augmented observer
provides a reduction in the control effort required to stabilize
the LCO.

I. INTRODUCTION

The interaction between a flexible structure and the fluid
surrounding it is referred to as fluid structure interactions
(FSI). A detailed understanding of FSI is of critical impor-
tance in numerous applications in aeronautical and aerospace
systems, renewable energy systems, and marine offshore
engineering [1], [2], [3]. A particularly important application
of FSI is in the development of limit cycle oscillation (LCO)
suppression control systems for unmanned aircraft. Indeed,
a thorough understanding of the FSI and LCO can lead to
significant improvements in the aerodynamic characteristics
of aircraft, such as lift enhancement and drag reduction.
While standard LCO suppression control in aircraft wings is
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achieved using deflection surfaces (e.g., ailerons, rudders),
the contribution of this paper is the analysis of a sliding
mode observer and robust control system that achieves LCO
suppression via control of the wing boundary-layer flow field
velocity.

LCO (or flutter) are self-excited aeroelastic instabilities
that can have a detrimental effect on aircraft flight perfor-
mance and can even lead to catastrophic failures [4], [5].
A thorough review of research and development in LCO
suppression technology over 50 years is presented in [4].
To achieve the boundary-layer flow control, synthetic jet
actuators (SJA) have become a popular choice due to their
small size, cost-effectiveness, and easy implementation [5].

SJA have been widely used in recent flow control and
LCO suppression research [6], [7], [8]. The reader is referred
to [6] for a detailed analysis into origins, applications and
current state of the art about SJA. In [7], a span-wise array
of SJAs are used for control of boundary layer separation
and the influence of geometrical, operational parameters on
the flow separation control are investigated. An active flow
control method to achieve pitch-roll-yaw attitude control at
a high angle of attack when the stall occurs is proposed
in [8] using SJA. One of the primary challenge in SJA-
based control design is that the input-output characteristic
of the SJA contain parametric uncertainty and are nonlinear.
Specifically, the relationship between the virtual deflection
angle and the SJA input voltage is an uncertain nonlinear
function. Additional challenges arise due to the nature of
the mathematical models of the flow dynamics.

Active flow control techniques have gained a lot of
attention recently [9], [10], [11], due to their significant
advantages by virtue of their capability to react in real time
to time-varying sensor measurements of flow field properties.
A detailed review of active flow control for UAVs can
be found in [9]. To facilitate active flow control design,
proper orthogonal decomposition (POD)-based model order
reduction technique can be used to express the Navier-Stokes
PDE:s as a finite set of ordinary differential equations (ODEs)
[10]. It has been shown that this model order reduction
technique is capable of approximating the flow field dy-
namics using only a few states (i.e., POD modes) [11], and
this reduced-order model is in a form that is amenable to
control design. Furthermore, the Galerkin coefficients are
not directly measurable. To overcome this problem, a sliding
mode observer (or estimator) can be designed to estimate the
unknown coefficients using flow field velocity measurements.

Sliding mode observer-based estimation methods have
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been utilized extensively due to the advantage of fast con-
vergence and inherent robustness to model uncertainty [12],
[13]. In this paper, a finite-time SMO is proposed for dy-
namic systems containing both a nonstandard measurement
equation and input-multiplicative parametric uncertainty.
The main contributions of the paper are summarized as

1) Development of a sliding mode observer that achieves
finite time state estimation of the reduced-order flow
dynamic model under SJA parametric uncertainty.

2) Development of robust control algorithm, which for-
mally incorporates FSI with a POD-based reduced-
order flow dynamic model to achieve LCO suppression
in a flexible aircraft wing

3) The proposed theoretical contributions are validated
through numerical simulations (which incorporate de-
tailed models of the LCO and reduced-order flow
dynamics combined with an SMO) to demonstrate
proof of concept numerically.

II. MATHEMATICAL MODEL

In this section, the mathematical model of LCO dynamics
in an airfoil and the flow field dynamics based on Navier-
Stokes equations are presented. Section II-A describes the
LCO dynamics of a foil in the presence of fluid forces.
In II-B, a detailed description of the actuated fluid flow
model using incompressible Navier-Stokes is presented and
a POD-based model reduction technique is utilized to recast
the incompressible Navier-Stokes equations as finite set of
nonlinear ODEs. Fig. 1 shows the block diagram of the
proposed closed-loop system.

A. LCO Dynamic Model

The equation of motion describing the LCO dynamics, in
the presence of a fluid forcing function are expressed as [14]

M(S)ﬁ(sat) + C’(p(s,t)) + K(p(57t)) = BFfl’LLid(S7t) (1)

where p(t) £ [ h(t) a(t) }T € R? denotes the LCO
displacement vector containing plunging (h (¢)) and pitching
(e (t)) displacements, s € R is the linear position along the
structure (i.e., wing), M(s) € R?*?2 is the inertia matrix
of the wing, and C(¥) € R? and K(x) € R? denote
viscous damping and stiffness functions, respectively. In (1),
Friuid(s,t) € R denotes the fluid forces acting on the wing,
and B € R? is a constant input gain vector.

In the LCO dynamic model given by (1), the fluid forcing
function F't1yi4(s,t) can be mathematically expressed as the
product of the boundary-layer turbulence velocity a(s, t) and
a position-dependent function b(s) as [14]

Friia(s,t) = pdcaU (s)a(s, t). )

In (2) the fluid forcing function is directly dependent on
the flow turbulence a(s,t) near the surface of the wing.
The variables p denotes the density of the air/fluid, d is the
wing cross-sectional area, ¢ is the drag coefficient and U (s)
denotes the mean air flow velocity near the surface of the
wing.
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Fpuiai(st)= b(s)v(s;t)
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Fig. 1. A block diagram illustrating the proposed nonlinear control method

for simultaneous flow control and LCO suppression

B. Flow Dynamics Reduced-order Model

In this section, a POD-based model reduction technique is
utilized to recast the incompressible Navier-Stokes equations
as a finite set of nonlinear ODEs. By expressing the Navier-
Stokes PDEs as a set of ODEs, an approximate dynamic
model for the flow dynamics will be obtained, which is more
amenable to control design.

The incompressible Navier-Stokes equations are given as
[15]

% =—(a-V)a+vV3a)—Vp, @3
where a(s,t) : © x [0,00) — R denotes the velocity of the
flow field over a spatial domain s € Q; p(s,t) € R is the
space and time-dependent pressure of the flow field over €2;
V denotes the spatial gradient; and v £ ﬁ is the kinematic
viscosity, where Re denotes the Reynolds number.

Proper orthogonal decomposition (POD), is used to obtain
lower-dimensional dynamic models for fluid flow. In the
POD-based model order reduction method, the flow velocity
field a(s,t) is expanded as a weighted sum of actuated and
unactuated POD modes defined in the spatial domain (2 as
[16], [17]

a(s,t) = ao(s,t) + in(t)%‘(S) + vaz(t)%(S) S

V.-a=0,

In (4), v;(s) € R denote the POD modes; z;(t), i = 1,...,n,
are time-varying coefficients resulting from the modal de-
composition; and ag(s,t) € R denotes the mean flow
velocity over ), where ¢; (s) € R denote the actuation
modes, and x; (t) € R denote actuation values (i.e., control
inputs).

For the control design presented here, it will be assumed
that an input separation method in [17] is utilized to ex-
pand the flow field in terms of baseline (unactuated) POD
modes and actuation modes. The baseline POD modes are
extracted using a standard POD procedure as described in
Section II-B, whereas the actuation modes are built using an
optimization algorithm similar to that in [17]. By substituting
the actuated modal decomposition in (4) into (3), the actuated
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reduced-order flow dynamics can be expressed in terms of
an auxiliary (“virtual”) control input u(t) as

&= f(z) +g(x)u,  y=h(z) (5)

The reader is referred to [18], for a detailed mathematical
derivation of the reduced-order actuated flow model and is
omitted her for brevity.

III. SJA-BASED CONTROL MODEL DERIVATION

In this section, a reduced order POD-based flow field
dynamic model will be augmented to include the effects of
SJA actuation. The uncertain control model is a key feature
of the proposed observer and flow control design, which
enables us to derive a nonlinear control law that is proven
to compensate for the parametric uncertainty in the SJA
actuators.

A. SJA Actuator Model

The relation between the virtual control surface deflection
angle produced by an i*" SJA array (i.e., u(t) in (5)) and
the corresponding SJA array input voltages can be expressed
using the empirically determined model as [19]

01 , i=1,2, ...,
vi(t)

where u;(t) € R denotes the virtual surface deflection due
to i'" SJA array. In (6), v;(t) £ A2, (t) € R, where Ay
represents the peak-to-peak voltage magnitude applied to
the i'" SJA array; and 6%,, 65, € R are uncertain physical
parameters in [V-deg] and [deg] respectively. To address the
parametric uncertainty inherent in the SJA model, the voltage
input signal v;(t) can be designed using the robust-inverse
control structure [19]

u;(t) = 65, — m. (6)

vi(t) = AL (7
O2; — uqi(t)

where, ug;(t) € R, for ¢ = 1,...,m, are auxiliary control
signals and éu, ég,- € R are constant, feedforward best-
guess estimates of the uncertain parameters 07, and 03,.

Remark 1: (Singularity Avoidance) Based on the robust-
inverse control structure in (7), the SJA voltage input signal
v;(t) will encounter singularities when wg; (t) = f5;. To
avoid these singularities, the auxiliary control signals wug; (¢),
for ¢ = 1,...,m, can be designed using a singularity avoid-
ance algorithm [20].

After substituting (6) and (7) into (5), the SJA-based
control model can be expressed as

= f(x) +Zp + Quqg(t) ®)

where ug () 2 [uar (t), ..., uam (£)]" € R™, and expres-
sions for the uncertain constant auxiliary terms =Zp € R"
and 2 € R™ ™ are summarized in the following remark.

To address the problem of uncertainty in the input-
multiplicative matrix {2 in (8), the auxiliary control signal
ugq (t) is designed as

uq(t) = Q% p(t) 9)
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where ) € R"*™ denotes a feedforward estimate of ), and
[-]# denotes the pseudoinverse of a (nonsquare) matrix. After
substituting (9) into (8), the open loop SJA-based system can
be expressed as

& = f(x) +Ep + Qu(t) (10)

where Q 2 QO# € Rxn, Heuristically, the uncertain matrix
Q represents the deviation between the actual SJA parameters
607, and their constant estimates éli, fori=1,...,m.

Property 1: The uncertain matrix Q) can be decomposed
as

Q=T+A() (11)

where I' € R™*™ denotes an nxn identity matrix and A(t) €
R™"™ denotes off-diagonal uncertain “mismatch” matrix.
Assumption 1: Approximate model knowledge of the un-
certain parameters is available such that the parameter mis-
match matrix €2 is diagonally dominant in the sense that

infin (D)} —s0p{ A} > (12)
where ¢ € R is a known bounding constant, and |||,
denotes the induced infinity norm of a matrix.

Assumption 2: The initial conditions of the state and
estimate satisfy |z(0) — £(0)| < eg, where |(-)| denotes a
standard 1-norm of a vector and ¢y is a known bounding
constant.

By substituting (11) into (10), the SJA-based flow dynamic
model can be expressed as

P=f@+ZpHuO+ADORW),  y=h), (13

Remark 2: The control objective in this paper is based on
driving the fluid forcing function to a desired fluid forcing
function, which is designed in a separate step based on the
objective of regulating LCO. The fluid forcing function in
(2) can be approximated using POD as

Friuia = b(s)a(s, t) = b(s)y(t) = b(s)h(),

where y(t) is the output of the flow dynamic model described
in (13). The approximation accuracy can be made arbitrarily
accurate by adjusting the number of POD modes which are
defined in (4).

(14)

IV. OBSERVER DESIGN

In this section, a SMO design is presented, which achieves
finite-time state estimation for the uncertain system described
in (13) using only the available sensor measurements (i.e.,
y (t).

To facilitate the following SMO design and convergence
analysis, a vector of output signals is defined as

ho (2, 1)] "
Ly 'h(2)]" (15)

H(z,p) = [ha(x) ho(z,p)
= [h(x) Lsh(z)
where L?h(a:) denotes the i'" Lie derivative of the output

function h(z) [21], along the direction of the vector field
f(x,p). Note that hy (x) = h(x) does not include the
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measurable input signal p (t) based on the output equation
in (13).

Condition 1 (Observability): The closed loop dynamics in
(13) must satisfy the observability condition

rank (O (x,p)) =n, Vx € R, (16)

where the observability matrix O (z, p) £ 2E&) ¢ gnxn

ox
and |det %)‘ > ¢ > 0. The observability condition

given in (16) can be ensured through judicious sensor
placement. A detailed analysis on sensor placement and
the number of sensors required (varies according to the
application) for flow control has been described in [22].

Provided Condition 1 and Assumptions 1 and 2 are satis-
fied, the sliding mode observer that estimates the full state
z (t) for the uncertain flow dynamic system in (13) can be
designed as

&= f(2)+ 07" (& 1) K(&, 1) {sgn(V (1) — H(#))} + u(t)

a7
where H (-) is defined in (15), and O (&, i) is introduced in
(16). In (17), the elements of the auxiliary vector V() =
[01(t), ..., v (t)]T € R™ are defined via the recursive form

vi(t) = h1 () (18)

Oh; (%
vip1(t) = Ki{sgnfv;(t) — hi(g})}}eq + aix)'u (t) (19
for i = 1,..,n — 1 and {sgn[]}_, denotes a continuous

equivalent value operator of the discontinuous signum func-
tion [18]. The observer in (17) will be proven to achieve
finite-time state estimation in the presence of the input-
multiplicative SJA parametric uncertainty through the design
of the sliding gain matrix C(Z, u) € R™*™, which has the
general form

K(&, 1) = diag[k1 (&, @), ..., 6o (&, )] (20)

where ; (Z,1) € R, for i = 1,...,n, denote sliding mode
observer gains which are designed as

ki (T, ) = Bri + Bayi ||| - 2D

Theorem 1: (Observer Convergence) The observer given
in (17) achieves local finite-time estimation of the state z (¢)
in the sense that Z(t) = x(t) for t > ¢, where t,, < oo is a
calculable time instant.

Proof: Proof of Theorem 1 can be found in [18] and
is omitted here for brevity. [ ]

V. CONTROL DEVELOPMENT

The control objective is to design the control signal x (t)
to regulate the fluid forcing function F'y;,;4 defined in (14) to
a desired fluid forcing function F'yjy;q,4es, Which is defined
as

Ffluid,des = b(s)yd(t) (22)

where y,(t) is the desired flow field velocity output that
suppresses LCO. To quantify the control objective, a tracking

error e(t) € R and an auxiliary tracking error () € R are
defined as

e(t) = Friuid — Friuid,des, r(t)=é+ae, (23)

where a € R is a positive, constant control gain. Thus, the
control objective can be stated mathematically as e (t) — 0

A. Open Loop Error System

Taking the time derivative of r (¢) and using the definition
of (23), the open loop error dynamics can be expressed as

7= N(t) + Ng(t) + Q a(t) + b(s)At)u(t) —e, (24)

where (4 = b(s)Q and the unknown, unmeasurable auxiliary
functions, N (t), Ng4(t) € R are defined as

N = b(S)%(;)i‘ + a(r — ae) + e, (25)

Ni = —Ftiuid.des (26)

The motivation for the separation of terms in (V-B), (25) and
(26) is based on the fact that the following inequalities can
be developed

INT < p(llzl) 1211, [ NVall < ¢y INall < (g,
27
where p, (n,, C Ny € R™ are known bounding constants; and

z(t) € R? is defined as
) E[e®) r@) .

Note that the upper bound on || N (t)]| in (27) can be derived
from (25), along with the definitions in (14), (22), and (23).

(28)

B. Closed-Loop Error System

Based on the open-loop error system dynamics in (), the
control p(t) is defined via

fu(t) = —kul p@)|[sgn(r) — (ks + 1)r — kysgn(r)

where k., ks, k, € R are positive, constant control gains.
After substituting (29) into (), the closed-loop error dynamics
is rewritten as

(29)

=N 4 Ng— Quky|| ()| sgn(r) — Q1 (ks + 1)r

— Wk sgn(r) + b(s)A(t)u(t) —e.  (30)

VI. STABILITY ANALYSIS

Theorem 2: The robust nonlinear control law given in (7),
(9), and (29) ensures that all system signals remain bounded
throughout closed-loop operation, and that the fluid forcing
function tracking error is asymptotically regulated in the
sense that

lle )|l — 0 as t — oo, 31
provided the control gain k., k, and k. introduced in (29)

are selected according to the conditions

2
Bl S
demin(a, €) €

S

ky > CJEVJ. (32)
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Proof: Let V (z,t)
function defined as

: R?> — R be a non-negative

L r L r

V= 26 e+ 27° r

After taking the time derivative of (33) and using (11),

(23), (30) and using Assumptions 1 and Property 1, and

the bounding inequalities in (27) and the gain conditions

in (32), the bracketed terms are positive and by completing

the squares and the upper bound can be expressed as V(z7 t)
can be upper bounded as

(33)

Vet) < — [mmm?e) - ”(””)] 1221

12 (k) (34)

Provided the gain condition in (32) is satisfied, (33) and (34)
can be used to show that V () € L.; hence, e (t), r (t) €
L. Given that e (t), r (t) € Lo, a standard linear analysis
technique can be used along with (23) to show that ¢ (t) €
L. Since e (t), €(t) € Loo, (23) can be used along with
the assumption that yq (t), ¥4 (f) € Lo to prove that x (),
% (t) € Lo Given that z (1), () € Lo, (5) can be used
along with the Assumption 1 to prove that the control input
w(t) € Loo. Since r (t) € Lo, Assumption 1 can be used
along with (29) to prove that f (t) € L.

The definition of V' (2, t) in (33) can be used along with the
inequality (34) to show that V(z,t¢) can be upper-bounded
as

V(z,t) < —cV(z,t) (35)

provided the sufficient condition in (32) is satisfied. Hence,
(28),(33) and (35) can be used to conclude that

c

()] < l[2(0)]le™> V t€[0,00). (36)
VII. SIMULATION RESULTS -

A numerical simulation was performed to demonstrate the
performance of the proposed control law in (29) using the
observer design in (17). The simulation tests the capability of
the proposed controller using the estimated states to regulate
fluid forcing function in (2) to desired fluid forcing function
that suppresses the plunging LCO and at the same time com-
pensate for the input-multiplicative parametric uncertainty
resulting from SJ actuators.

A. Flow and LCO Dynamic Model

The reduced-order model flow dynamic equations and the
corresponding POD parameters can be found in [18]. The
LCO dynamic model equation (cf. Equation (1)) and the
corresponding parameters used in the simulation can be [5]
and are omitted for brevity.

TABLE 1
INITIAL CONDITIONS FOR STATES AND ESTIMATES, OBSERVER GAINS
[ States (x(t)) ] 7.5 [ 6 [ 3 [ 2 |
[ Estimates (£(t)) | [ [ 4 [ 2 [ 1.5 |
[ Gains [ Buu=5 [ Bi2=3 | P1iz=3 | Bua=3 ]
[ Gains [ B2 =01 [ B2z =01 [ Bag =01 | Bag =01 ]

The initial conditions of the states, estimates and the
observer gains k1 ; and kg ; for ¢ = 1,2, 3,4 are provided in

TABLE I
SJA PARAMETERS AND THEIR ESTIMATES FOR ALL THREE CASES

32.7,29.7 | B2
323,318 | 0,
32.0,26.7 | 0,
31.7,23.7 | 0,

164, 15.8
16.5, 16.5
16.2, 14.2
16.0, 12.6

Nominal Values éli
Case 1 07;
Case 2 07;
Case 3 07,

&

=

x1(t) and @1 (¢)
er(t.) and Z2(t)

0.‘02 0.‘04 0.;)6 0.68 01
Time [s]

—True State
—Estimate

n.;)z 0.64 0.‘06 0.66
Time [s]

o
=

=y

x3(t) and @3(t)
x4 (1) allnld 24 (t)

0,‘02 0,64 0.;)6 0.68 01
Time [s]

D.;)Z 0.64 0,‘06 0.66
Time [s]

o
=

Fig. 2. Zoomed-in Plots showing initial convergence phase of the
states(blue) and estimates(red) using the observer in (17).

o=
=
&

Plunging [m]

Time [s]

Pitching [rad]

Time [s]

Fig. 3. Open-loop plunging and pitching response of the LCO system.

Table I. The control gain values were selected as k; = 10,
ky, = 0.3, « = 0.25, and k, = 0.5. A Monte Carlo-
type simulation was created, which shows the results of the
closed-loop AFC system under three different sets of values
for the uncertain SJA parameters 67,, 65,. Table II shows the
deviation of each SJA parameters from its nominal value (up
to 20%).

The simulation results are summarized in Fig. 2-4. Fig.
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Fig. 4. Monte Carlo-type simulation results for 4 different initial conditions
and uncertain SJA parameters. [Plunging (top-left), pitching (top-right) and
error (bottom) in fluid forcing function]

2 shows the zoomed-in initial transient response of the
SMO. The open-loop plunging and pitching responses of
the LCO are shown in Fig. 3. Fig. 4 shows the Monte
Carlo closed-loop pitching (top-left), plunging (top-right) and
error (bottom) in fluid forcing function for four different
initial conditions and uncertain SJA parameters. The results
clearly demonstrate the capability of proposed observer to
compensate for SJA uncertainty with a reduced control
effort to asymptotically regulate LCO via the control of the
boundary-layer flow velocity.

VIII. CONCLUSION

A sliding mode observer-based robust active flow control
method is developed, which is rigorously proven to asymp-
totically suppress LCO in a flexible wing section by using
SJA to drive the wing boundary-layer flow velocity to a
desired LCO-suppressing flow velocity profile. To achieve
the result, a sliding mode observer is designed to estimate
the flow field velocity in finite time and a LCO dynamic
model is utilized along with detailed mathematical models
for the FSI, SJA, and the POD-based reduced-order flow
dynamics. A Lyapunov-based stability analysis is utilized
to prove asymptotic convergence and tracking of a desired
LCO-suppressing fluid forcing function. Numerical simula-
tion demonstrate the observer and the control formulation
shows a reduction in the control effort to achieve asymptotic
regulation of LCO via boundary-layer flow control.
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