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Abstract— A barrier function-based sliding mode control
method is developed for fluid flow dynamic systems, which
formally compensates for the model parameter variations re-
sulting from actuator perturbations that are inherent in closed-
loop active flow control applications. In an effort to reduce
chattering, the control law incorporates adaptive sliding gain
terms based on barrier functions. To the best of the authors’
knowledge, this is the first barrier function-based nonlinear
closed-loop active flow control result to prove finite-time real
sliding of a reduced-order flow dynamic system, which formally
incorporates input-multiplicative time-varying parametric un-
certainty. An innovative error system development is provided
along with a rigorous Lyapunov-based stability analysis to prove
the theoretical results. A detailed comparative numerical study
is also provided, which shows the significant reduction in mean
squared error that are achieved using the barrier function-
based control law over a standard sliding mode controller.

I. INTRODUCTION

Considerable challenges exist in designing controllers for
fluid flow systems due to the fact that the governing dynamic
equations (i.e., the Navier-Stokes equations) are in a form
that is not control-amenable. To address this issue, various
techniques can be utilized to obtain reduced-order models
of the fluid flow dynamics. A key challenge in control
design based on reduced-order models (ROMs) of fluid
flow dynamic systems is that the resulting models are in a
highly non-standard mathematical form containing unmod-
eled parameter fluctuations, actuator model uncertainty, and
nonlinear coupling between the state and control input. While
numerous methods have been presented to achieve control
of fluid flow, there remain several open problems to be
addressed in closed-loop nonlinear control of fluid dynamic
systems. Specifically, there remains a need for closed-loop
flow control methods that formally incorporate the complete
actuation dynamics and actuator perturbations in the ROM.

A. Motivation

The two most broad categories of flow control configura-
tions can be classified as passive flow control (PFC) [1],
[2] or active flow control (AFC). Active control can be
further categorized as open-loop In order to achieve reliable
performance over a wide range of operating conditions,
closed-loop AFC offers many potential benefits over PFC
and open loop AFC methods.
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B. Literature Survey

Sliding mode control methods are popularly utilized to
achieve improved robustness in closed-loop control sys-
tems. However, practical implementation of discontinuous
sliding mode control methods is significantly hindered by
the well-known chattering phenomenon. As an alternative,
barrier function-based control techniques have been recently
investigated in [3], [4], [5]. In [3] a class K., function-
based adaptive sliding mode control scheme is presented,
which is shown to reduce the chattering and overestimation
phenomena that commonly occur in classical adaptive sliding
mode control. The results in [3] describe the closed-loop per-
formance using both concave and convex barrier functions.
Barrier function-based control laws specifically designed for
safety critical systems are presented in [4] and [5]. The
aforementioned recent results have clearly demonstrated that
barrier function-based adaptive sliding mode control can
achieve significant performance improvements over standard
sliding mode control for a variety of applications. Based
on this, the current result investigates the performance im-
provement that can be achieved by using a barrier function-
based fluid flow control method for an uncertain nonlin-
ear parameter-varying POD-based ROM, which formally
incorporates input-multiplicative parametric uncertainty and
actuator perturbations.

Sliding mode estimation and flow control methods were
presented in our recent work [6], [7], [8]. The current result
presents a non-trivial extension of our previous results, in
which we develop a barrier function-based sliding mode
control method that is based on a detailed POD-based ROM
of the complete actuated flow field dynamics. To achieve
the result, a non-trivial reworking of the error system devel-
opment, control design, and rigorous stability analysis are
presented along with a detailed numerical study.

C. Contribution

In this paper, a barrier function-based sliding mode control
design is presented, which is rigorously proven to achieve
finite-time real sliding in a fluid flow dynamic system.
To the best of the authors’ knowledge, this is the first
barrier function-based nonlinear closed-loop AFC result to
prove finite-time real sliding of a POD-based reduced-order
model for the complete actuated flow field dynamics, which
formally incorporates both input-multiplicative time-varying
parametric uncertainty and nonlinear couplings between the
state and control input. A rigorous Lyapunov-based stability
analysis is utilized to prove the theoretical result. A com-
parative numerical study is also provided to demonstrate the
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performance of the proposed barrier function-based control
method over a standard sliding mode control law.

II. DYNAMIC MODEL AND PROPERTIES

In this section, a POD-based model reduction technique is
summarized to derive the ROM that will be utilized in the
control design.

A. Reduced order Model for Flow Field Dynamics
The incompressible Navier-Stokes equations are given as [9]

ou
ot

where u(s,t) : ' x [0,00) € R3 denotes the velocity of the
flow field over a spatial domain s € I' C R?; p(s,t) € R3
is the space- and time-dependent pressure of the flow field
over I' ; and Re denotes the Reynolds number.

In the POD technique, the flow velocity field u(s,t) is
expanded as a weighted sum of actuated and unactuated POD
modes defined over a spatial domain I". The actuation effects
are embedded in the coefficients of the Galerkin system.
Specifically, the actuation effects can be included in the
reduced-order model by defining the modal decomposition
as [7]

V-u=0 —(u- V)u—&——V?() Vp (1)

n m
u(s,t) =uo+ »_wi(t)gi(s)+ Y _w()i(s) ()

i=1 i=1
In (2), ¢i(s) € R3 i = 1,..,n, denote the unactuated
POD modes and z;(t), ¢ = 1,...,n, denote time-varying
coefficients resulting from the modal decomposition;
and uy € R3? denotes the mean flow velocity over I
1;(s) € R denote the actuation modes, and 7,;(t) € R
denote actuation values (i.e., control inputs). By leveraging
an input separation method similar to that in [10], [11], the
actuation modes can be defined as the modes that minimize
the energy not captured in the modal expansion of the
actuated flow field.

By substituting the decomposition in (2) into (1), the com-
plete actuated POD-based reduced-order model is obtained

as
n o n

A + Z Biiz(t) + Z Z Chrijwi(t)z;(t)

i=1 i=1 j=1
+ Z Dyiyi(t) + Z Z Eijzi(t)v;(t)
=1

i=1 j=1
+ZFki%‘(t) + ZZGkij%(t)’Yj(t) 3)

i=1
In (3), Ak(t), Bki(t), Ckij(t) € R, for k‘,i,j =1,..,n

i=1 j=1
Dki(t), Fki(t), Gkij(t), k,i,j = 1,...,m; and Ekij(t) S
R, for k,i = 1,...,n, and for j = 1,... m, represent
time-varying uncertain parameters, the nominal values of
which can be explicitly computed for any given, fixed set
of numerical or experimental flow field data. Also in (3),
4i(t), i =1, ..., n, represent the elements of the control input

Ty =

vector, which can be physically interpreted as a controllable
perturbation to the flow field.

Remark 1. (Inherent Parameter Variations) The POD-
based ROM in (3) formally incorporates actuator per-
turbations through the time variation in the parameters
A(t), ..., G(t). Compensation for the time-varying paramet-
ric uncertainty in the ROM is of crucial importance for
reliable closed-loop flow control design.

Remark 2. (Unmeasurable State) The model coefficients
x;(t), for i = 1,...,n, in the reduced-order model (3) are
unmeasurable in actual implementation. Estimator design is
not the focus of the current work, so it will be assumed here
that state estimates are available for feedback. Readers are
referred to [6], [7], [12] for details on relevant estimator
design methods.

B. Control-oriented Flow Dynamic Model

To facilitate the subsequent control design procedure and
analysis, the ROM in (3) will be rewritten in control-oriented
form as

fl(I,I,Hl(t)) +f2(gj’fy’ 02(t))
+f3(7,7,03()) + Qt)v “4)
where f1(-), f2(), f3(-) € R™ denote uncertain nonlinear

(quadratic) terms for which the k' rows are explicitly
defined as

Tz =

2 AL+ Z Byrizi(t) + Z Z Crijri(t)z;(t)

i=1 i=1 j=1
&)

é Z Z Ek‘lj'TZ ’7] (6)
i=1 j=1
Z szVz

t) + ZZGkij'Yi(t)’Yj(t) (7)
for k=1,..,n. In (4), z(t) = za(t) |7 €

i=1 j=1
z1(t)

R™ denotes the state vector, v(t) = 4(t) € R™ is the control
input; and 0y (t) € RV 0,(t) € R™, 05(t) € R7°+7,
for k = 1,...,n, denote vectors containing the uncertain time-
varying parameters in the dynamic model. Also in (4), Q(t) €
R™ "™ denotes an uncertain input gain matrix. Specifically,
Q(t) contains the terms Dy;, for k = 1,...,n, i = 1,...,m,
which are introduced in (3).

frr(z,01(1))

for(z,7,02(t)

T3, (7, 05(t)

lI>—

Assumption 1. The reduced-order model in (4) is assumed
to be controllable.

Assumption 2. The parameter vectors 61(t), 02(t), 03(t)
and the parameter matrix Q(t) and their derivatives satisfy
the following inequalities:

[ <G 10200 < ¢
101(8)]| < Ca 1102(8)] < Coa
Sl;p{”Q(t)”zoo} < (o

03()]] < (3
103()]| < Ga
sgp{llﬂ(wllm} <Coa (8
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where (1, Co, G, Con G C2dr C3ar Coa € RT are known
bounding constants. In the subsequent stability analysis, we
will utilize the known bounds on the parameters to derive
sufficient gain conditions to achieve the desired control
objective.

Assumption 3. (Fully Actuated System) The control design
and stability analysis presented here are applicable to any
system for which m > n, but it will be assumed that m = n
without loss of generality.

III. CONTROL DEVELOPMENT
A. Control Objective

The control objective is to ensure that the state x(¢) tracks
a desired flow field velocity profile z4(t) € R™. To quantify
this control objective, a tracking error variable e(t) € R™ is
defined as ez )
To facilitate the subsequent analysis, an auxiliary (filtered)

tracking error variable, denoted by r(¢) € R", is defined as
r&eé+ae (10)

where a € R is a positive, constant control gain. (Note that
« could also be defined as a control gain matrix.)

Assumption 4. The desired flow field velocity profile x4(t)
is bounded and smooth in the sense that

24(t) < Crars #q(t) < Crdos #q(t) < Ceas (11)
where Czq1, Cuaz, Coaz € RT are known bounding constants.

Lemma 1. If |r (t1)| < oy, at some finite time instant t; >
0, where 0., € R is a bounding constant, then Equation
(10) can be used to prove that the tracking error e (t) is
bounded as

exp(—at1)e(0) Tev

< le(®)] < exp(—at1)]e(0) +

(2

for t > t1, where « is a control gain defined as in (10).

Hence, the ultimate bound on the tracking error e (t) can be
made arbitrarily small by adjusting o.

Proof: By using Equation (10), the following can be

obtained:
[r(t)] < 0w = |€(t) + ae(t)] < oy (13)

By eliminating the absolute value operation and rearranging,
Inequality (13) can be expressed as

é(t) < —ae(t) + ey, é(t) > —ae(t) — 0w.  (14)

The solution to the linear differential inequalities in (14) is
straightforward and can be obtained as

e(0) exp(—at) + ”;“ (1 - exp(—at)) (15)

e(t) > e(0)exp(~at) — Z=(1 — exp(—at)) (16)

e(t) <

Thus, by using the fact that 1 — exp(—at) < 1, one obtains

t)]e(0) Dle(0)] + >
(17)

exp(—a < le(t)] < exp(—a

Inequalities (12) can be directly inferred from (17) for any
t>1t; >0

Lemma (1) will be utilized in the subsequent stability anal-
ysis.
B. Open-Loop Error System

The open-loop tracking error dynamics can be developed by
taking the time derivative of (10) and using (4)—(9) to obtain

i =N+ N, + Ng+Qu+ Qo (18)
where  the uncertain  nonlinear  auxiliary  terms
N(z,&,xq,%q,e,7t) € R", Ny(z,z,7) € R", and
Ny(zq,tq,%q) are explicitly defined as

Ny, 23TE i + 2" By + By +97Gey  (19)
N 2 By(z — xq) + Bi(& — iq) + 27 (Cr + CD)iq  (20)

—2l(Cp + CFH)ig + 27 (Cy + CH)i:
2T (Cp + CF)da + 27 Cpr — 25 Crza + a(r — ae)

Ng = kad + Brag + :Eg(ck + Cg)xd

42l Cprg — #q (21)
Motivation for the selective grouping of terms in (19)—(21)
is based on the fact that the following bounding inequalities
can be developed:

INI < naallzll + ns2ll2]? (22)

INal| < Cwa (23)
Y = - - - 2

[N, < ExllvlP + Ballvll + Bs llzll 4+ Ea |27 24)

where 1.1,7.2,(Na, Z1, Z2, Z3, Z4 € RT are known
bounding constants; and z(t) € R?" is defined as

AT

el T }T.

z (25)

Note that the bounding of Ny(x4,Z4,%4) follows directly
from Assumption 4 and Inequalities (11).

C. Control Design and Closed-loop Error System

To facilitate the subsequent control development and sta-
bility analysis, definitions of the herein-employed barrier
function will first be presented. For detailed mathematical
definitions of barrier functions, readers are referred to [13].

1) Convex Barrier Function [3]: The convex barrier func-
tion being considered in the current result can be expressed
as

b 16D = s (0 () ~1)

for all £ € R™, where p; and \; are positive parameters.
kyri(-) is a strictly increasing convex function on (0, +00),
since k;ﬁi(|§|) = exp(lgl) and the second order

derivative kl;/f,i(‘ﬂ) = ,\z eXp(m) on [0, 00) fori =1,...,6.

i=1,..,6 (26)
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Lemma 2. Control gains can be selected to ensure that
the convex barrier function defined in (26) satisfies the
inequalities

kg (1€])
Koy (1€])

where c1,co € R are known bounding constants.

Proof: It is sufficient to prove that the following
conditions for a convex barrier function kyy; (|§]), V& € R™,
are satisfied, where kys ; () is defined as in (26):

Condition 1:

Z Cl||£||,
> eaI€]1?,

V¢ € R™
V¢ € R”

27)
(28)

Jim aglcw(lé“I) > lim afg(q”gn ) (29)
Condition 2:
0
M, ggzkorallel) > tim 652(@”5”]) (30)

where 1,5 =1, 2.

Condition 3: The function kys ;(|¢|) is a strictly increasing
convex barrier function.

Conditions 1 and 2 can be proved by calculating the first
and second derivatives of kyy,;(|€|) in (26) as follows: For
the 7 = 1 case in (27), one obtains (Condition 1) % >
c1 and (Condition 2) g > 0; and for the j = 2 case in
(28) one obtains (Condmon 1) £ 2 > 0 and (Condition 2)

£ > 2¢qy. Clearly, control gains pl and \; can be selected
to satzsfy these inequalities; thus Conditions 1 and 2 are
satisfied. The symmetry of kysi(-) (i.e., kys(-) is an even
function) can be leveraged to prove the claims in (27) and
(28). Condition 3 holds by definition.

Based on the open loop error dynamics in (18) and the
subsequent stability analysis, the control input is designed
via the implicit learning law

SN (be,l(lr\) + Kya(lv]) + Kips(]y]) G
+Kppa([y]) + Kops(|2]) + be,6(|z\)) sen(r)

where Kpf;(-), ¢ = 1,...,6, denote diagonal matrices con-
taining barrier functions ks ;(-) as described in (26).

In (32), Qp € R™™ ™ is a matrix containing the constant,
known, nominal values of the uncertain parameters in 2;
and sgn(-) denotes the standard signum function, where the
function is applied element-wise to the vector argument.

After substituting (32) into the open-loop error dynamics
in (18), the closed-loop error system can be expressed as

——

i = N+ Ny+ Ng+Qu—Q(Epp1(|r]) + Kpp2(|v])
+Kop3([7]) + Kopally]) + Kops(]2])

+Kor.6(]21)) sgn(r) (32)

In (32), the uncertain parameter mismatch matrix Q(t) €
R™*™ is defined as

Q200" (33)

To facilitate the subsequent stability analysis, the mismatch
matrix (t) in (33) will be separated into diagonal (A(t) €
R™*™) and off-diagonal (A(t) € R™*™) components as

Q=A+A. (34)

Assumption 5. Approximate knowledge of the parameter
matrix (t) is available such that the mismatch matrix Q(t)
is diagonally dominant in the sense that

irtlf{)\min(/\)} - sep{HAHioo} > e (35)

where € € R is a known bounding constant.

Assumption 5 is mild in the sense that, for a given set of
flow field data (e.g., from high-fidelity CFD simulation or
experiment), the nominal values of the reduced-order model
parameters would be readily available.

IV. STABILITY ANALYSIS

Theorem 1. The control law given in Equation (32) ensures
convergence to the real sliding surface |r(t)| < oy in finite
time, where o, can be made arbitrarily small, provided the
barrier function matrices Kyy ;, for t = 1, ..., 6, are designed
to satisfy the sufficient conditions

Ain (K1) > % Aunin(Kipa) > %an 36)
Amin(Kpf3) > = Amin(Kpfa) > = (37)
Amin(Kop5) > %“3 Ammin (Kof.6) > ”Eﬁ (38)

where Caq, CNd, 21, 22, 23, 24, 121 and 1,2 are introduced
in (22) — (24); € is introduced in (35); and A\min(-) denotes
the minimum eigenvalue of the argument.

Proof: Let V(r) : R® — R be a continuously
differentiable, positive-definite function defined as

1
V(r) = irTr

By utilizing bounding inequalities (8) and (35) of Assump-
tions 2 and 5, the following inequalities can be developed.

(39)

(40)

After taking the time derivative of (39) and using Equa-
tions (32), (33), (22), (23), (24), (40), and by using Lemma
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1 and the sufficient gain conditions for Ky ;, fori =1,...,6
in (36) - (38), the upper bound of V' (r) can be expressed as

V(r) < = [EAmin (Ko pa (7)) = Cval 17l (41)
where the fact that || > ||r|| V r € R™ was used. The upper
bound can be expressed in a more compact form as

V(T) S _/BCUHTHa /Bcv é 51be,min(‘r|) - CNd (42)

where Kpfmin(|7]) 2 Amin(Kpp1(]7])). Thus, Inequality
(42) can be used to prove finite-time convergence to the real
sliding surface |r| < o,. Specifically, the barrier function
definition in (26) can be used to explicitly calculate the
ultimate bound o, by using (42) to obtain the following
condition for convergence:
eKpfmin(|7]) — Cva > 0. (43)
By using the convex barrier function definition in (26), the
inequality can be expressed as

ep1 (exp <|;1> - 1) > (Nd

Thus, the region of convergence o, can be explicitly calcu-
lated as

7”|) _ Cva

exp <)\1 1 > o (44)
|| (Nd
=5 > ln<a+1) (45)
=l > A <1n (ﬁ + 1)) (46)
Ep1

‘7‘| < Ocv (47)
Oy = M1 <1n (CN—d + 1)) (48)

Ep1

Hence, (48) can be used to prove that the region of conver-
gence can be made arbitrarily small by adjusting the control
gains A\; and p;. By using Lemma 1, it further follows from
(48) that the tracking error e(t) converges in finite time to
the bounded set described by (17).

V. SIMULATION

A detailed numerical simulation was created using Matlab/
Simulink to demonstrate the performance of the proposed
robust control law. The simulation demonstrates the perfor-
mance of the control law in (32) for two cases: 1) with
barrier function and 2) without barrier function. The flow
field dynamic reduced-order model used in this simulation

is given by [14]:

1 = bi(t) + Lu(t)z1 + Quar(t)w1zs + Quua(t)a]
+Qu21(t)w122 + Q131 () 2123 + B1 ()71 (49)
Ty = bo(t) 4 [Lao(t) + Ro(t)(x3 + 23)]w2 + Loz(t)xs
+Q212(t) 122 + o (t)72 (50)
23 = by(t) + Laa(t)ze + [Laz(t) + Ra(zo(t)? + 23)]23
+Q313(t) 123 + Q314(t) 2174 + B3(t)73 (51)
2y = ba(t) + Lay(t)x1 + Laa() g + Quaa(t)2?
+Qa1a(t)z124(t) + Qa24(t) 1274
+Qua34(t) w324 + Ba(t)7a (52)

To simulate a realistic closed-loop AFC scenario where the
model parameters are influenced by the control perturbations,
the parameters in the plant model in (49)—(52) are time-
varying. For completeness in defining the simulation plant
model, the initial values of the time varying parameters
bi(t), Li;(t), Qijr(t) for 4,5,k = 1,..,4 are provided in
Table I and were taken from [14]. The initial conditions of
the states are x19 = 2,299 = 3,230 = 6,240 = 2.

A. Summary of Results

The numerical simulation is based on concave barrier
functions defined as kyr; = p; 1n(‘/\Ljfl)). Note
that the use of concave barrier functions as opposed
to convex is valid, since Lemma 2 in the previous
proof provides sufficient mnot necessary conditions
for the barrier functions used in the control design.
The control gains in the simulation were selected as
a = 50,p, = 500 X Iy, A\, = 1,p, = 10 X Iy, N, =
1,p71 = 1000 x 14,)\71 = 37p72 =10 x I4, )‘“/2 = 17pz1 =
0.01 x 14;)\21 = 1007[),32 = 0.001 x I4,)\z2 = 100.

Figure 1 shows the comparison of the time evolution of the
states during closed-loop operation for proposed controller
with and without barrier function under 20% uncertainty,
and Figure 2 shows the corresponding control input. This
plot clearly shows the benefit of using barrier function over
constant gains in the control law. Figure 3 shows a bar graph
of the average MSE over the 10 iterations for each of six
levels of parametric uncertainty.

VI. CONCLUSION

A barrier function-based sliding mode control method is
applied to a detailed ROM of the complete actuated dynamics
of a fluid flow dynamic system in the presence of parametric
uncertainty in the plant model and the actuation model. A rig-
orous Lyapunov-based stability analysis is utilized to prove
that the proposed barrier function-based control law achieves
finite-time real sliding in the presence of time-varying input-
multiplicative parametric uncertainty and nonlinear coupling
between the state and control input.

To further demonstrate the performance of the barrier
function-based robust nonlinear control law, a detailed com-
parative numerical study is provided, which shows the perfor-
mance of the proposed barrier function-based sliding mode
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Fig. 1. Time evolution of the state z1 (t), z2(t), z3(t), z4(t) for controller
without barrier function (red) and controller with barrier function (blue)
during closed-loop operation for 10 iterations of randomized uncertainty.
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Fig. 2. Closed loop response of the control input u1 (t), ua (t), us(t), ua(t)
using controller without barrier function (red) and controller with barrier
function (blue)

control law against a comparable standard sliding mode
control law. The numerical results show that the barrier
function-based control law achieves a significant reduction in
the MSE regulation error while using a similar commanded
control magnitude.

TABLE 1
PARAMETERS USED IN THE SIMULATION PLANT MODEL

[ Linear Terms [ Quadratic and Cubic Terms |
by =557.7 | L1 =—86.1 |[Q111 =1.8 Q414 = 2.9
bo = 1016.9 | Lo =—392.4 | Q121 =—2.2 | Q424 = —9.8
by = 41.0 Los =263.9 Q131 = —2.3| Q434 = 6.3
by =—628.9 | L3o= —218.3 | Q141 = —6.8| Q444 = —7.3

L3z = —7.6 Q212 = 75.0

Ly =434 Q313 =5.0 |R2x=—-2.5

Lag = —113.5 | Q314 =3.9 | R3=-0.2
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over 10 iterations of randomized time varying parameter uncertainty using
the proposed barrier function-based controller (blue) and a standard sliding
mode controller (red).
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