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Abstract—A Lyapunov-based adaptive control law is ap-
plied to a reduced-order model for a fluid flow dynamic
system, which contains parametric uncertainty in both the
plant dynamic model and the actuator model. The reduced-
order model is derived using a proper orthogonal decom-
position (POD) technique. To generate a control-oriented
reduced-order model for the actuated flow dynamics, the
POD decomposition is performed using both actuated and
unactuated modes. This results in a reduced-order flow
dynamic model that is in a non-standard mathematical
form. This challenge is mitigated through innovative al-
gebraic manipulation in the regulation error system de-
velopment along with a Lyapunov-based adaptive control
law. To the best of the authors’ knowledge, this is the
first result to apply a nonlinear, Lyapunov-based adaptive
control law to the complete actuated POD-based reduced-
order flow dynamics to formally compensate for input-
multiplicative parametric uncertainty. To achieve the result,
a rigorous error system development is presented along
with a Lyapunov-based stability analysis. To complement
the theoretical development, detailed numerical simulation
results are also provided, which show the control design
trade-off between the adaptive control law and a standard
non-adaptive control law.

Index Terms—Adaptive Control, Nonlinear Control, Lya-
punov Analysis

I. Introduction

Reliable control of fluid flow dynamic systems is crit-

ical in a wide range of engineering applications includ-

ing combustion, turbo machinery, automotive systems, and

aeronautics. The potential benefits include aerodynamic

drag reduction [1], aeroacoustic noise reduction [2], and

lift enhancement in aircraft [3]. While passive and open

loop active flow control methods are adequate for many

applications, there remain several open problems in the

design of reliable closed-loop active flow control systems.

A. Literature Survey
Experimental investigations of AFC systems have been

widely presented in recent research [4]–[8]. Applications

addressed in these experimental AFC studies include

thermal protection [5]; control of vortex-body interaction

and wing-tip-vortex meandering in NACA0012 airfoils

[4]; low-pressure gas turbines [6]; pressure, force, and

moment manipulation in airfoils without moving control

surfaces [7]; and flow separation control for performance
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enhancement in aircraft rudders [8]. Although all of the

aforementioned studies have shown promising results

in their respective objectives, most of them do not

utilize rigorous mathematical tools to model the flow

field dynamics and theoretically predict and analyze the

influence of AFC on the flow. Dynamic modeling and

mathematical analytical techniques can be leveraged to

reduce the number of required repetitions and, hence,

the time and cost that can be involved in numerical and

experimental methods.

To address the challenge of model uncertainty, various

linear, robust, and intelligent methods for closed-loop AFC

have been presented in recent research literature [9]–[13].

The techniques utilized in these recently developed flow

control systems include sliding mode control [9], H∞-based

control [10] and PI control [11]. While methods such as

these have been widely shown to achieve promising results

in their respective objectives, adaptive control approaches

are less popularly utilized in flow control applications.

The use of a standard Lyapunov-based robust and

adaptive control system in this result is motivated by

the desire to achieve reliable control using a relatively

light computational requirement. This is in contrast to

time consuming and computationally heavy methods

such as machine learning, reinforcement learning, and Q-

learning, for example [14]–[16]. While the aforementioned

intelligent control approaches have yielded impressive

results, the rigorous reduced-order dynamic modeling and

active flow control design approach presented here can

be implemented in real time, without the need for offline

learning or training phases. Further, using this relatively

simplistic design approach, the computation time for the

resulting control systems can be significantly reduced. This

is in stark contrast to reinforcement learning algorithms,

for example, in which the computation time can scale

polynomially [17] or even exponentially [18] with the

number of states [19]. Although the Lyapunov-based

robust and adaptive nonlinear control approach described

in this paper is nothing new theoretically, the application
of methods such as these to the closed-loop fluid flow
regulation objective has rarely been reported in controls

literature.

Recent research on adaptive control methods are detailed

in [12], [13], [20]–[22], where [12] and [13] specifically dis-

cuss the adaptive methods of closed-loop AFC. The strategy

2022 IEEE Conference on Control Technology and Applications (CCTA)
August 22-25, 2022. Trieste, Italy

978-1-6654-7338-5/22/$31.00 ©2022 IEEE 57

20
22

 IE
EE

 C
on

fe
re

nc
e 

on
 C

on
tr

ol
 T

ec
hn

ol
og

y 
an

d 
Ap

pl
ic

at
io

ns
 (C

CT
A)

 |
 9

78
-1

-6
65

4-
73

38
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

CC
TA

49
43

0.
20

22
.9

96
61

08

Authorized licensed use limited to: Embry-Riddle Aeronautical University. Downloaded on December 27,2022 at 18:13:17 UTC from IEEE Xplore.  Restrictions apply. 



in [12] combines an adaptive controller with an extremum-

seeking technique to determine the actuation frequency and

forcing amplitude, respectively, for flow separation control

over an airfoil. A prediction error-based adaptive control

architecture is developed in [13], which utilizes Van der Pol

modelling of coupled shear layer von Karman instabilities

over a wing section. The adaptive flow control approaches

in [12] and [13] demonstrate promising results; however,

they do not address the challenge of uncertain actuator

dynamics. The current result focuses on developing an

adaptive controller for a POD-based reduced-order
flow dynamic model, which includes the complete
nonlinear model of both the flow dynamics and the
actuator dynamics.

B. Contribution

In this paper, a Lyapunov-based adaptive controller is

presented, which is rigorously proven to achieve asymptotic

velocity regulation of a fluid flow field. To the best of the

authors’ knowledge, this is the first closed-loop active non-

linear AFC result to prove asymptotic flow field regulation

using the full nonlinear POD-based reduced-order model,

including the complete actuated flow dynamics in addition

to input-multiplicative parametric uncertainty.

II. Dynamic Model and Properties

In this section, a POD-based model-order reduction tech-

nique is utilized to derive a reduced-order, control-oriented

model for the actuated flow dynamics.

A. Reduced-order Model for Flow Field Dynamics

The incompressible Navier-Stokes equations are given as

[23]

∇ · u = 0,
∂u

∂t
= −(u · ∇)u+ v∇2(u)−∇p, (1)

where u(s, t) : D × [0,∞) ∈ R3
denotes the velocity of

the flow field over a spatial domain s ∈ D ⊂ R3
; p(s, t) ∈

R3
is the space- and time-dependent pressure of the flow

field over D; and v ≜1/Re, where Re denotes the Reynolds

number.

Proper orthogonal decomposition (POD) expansion, or

principal component analysis, is used to obtain lower-

dimensional dynamic models for fluid flow. In the POD

modal decomposition technique, the flow velocity field

u(s, t) is expanded as a weighted sum of actuated and

unactuated POD modes defined in the spatial domain D.

The actuation effects are embedded in the coefficients of the

Galerkin system. Specifically, the actuation effects can be

included in the reduced-order model by defining the modal

decomposition as [9]

u(s, t) = u0 +
n∑

i=1

xi(t)ϕi(s) +
m∑
i=1

γi(t)ψi(s). (2)

In (2), ϕi(s) ∈ R3
are the POD modes; xi(t), i = 1, ..., n,

denote unknown, time-varying coefficients resulting from

the modal decomposition; u0 ∈ R3
denotes the mean flow

velocity over D; ψi (s) ∈ R denote the actuation modes;

and γi (t) ∈ R denote actuation values (i.e., control inputs).

By leveraging an input separation method similar to that in

[24], the actuation modes can be defined as the modes that

minimize the energy not captured in the modal expansion

of the actuated flow field.

By substituting the decomposition in (2) into (1), the com-

plete actuated POD-based reduced-order model is obtained

as

ẋk = Ak +
n∑

i=1

Bkixi (t) +
n∑

i=1

n∑
j=1

Ckijxi (t)xj (t)

+
m∑
i=1

Dkiγ̇i (t) +
n∑

i=1

m∑
j=1

Ekijxi (t) γj (t)

+
m∑
i=1

Fkiγi (t) +
m∑
i=1

m∑
j=1

Gkijγi (t) γj (t) (3)

for k = 1, ..., n. In (3), Ak , Bk , Ck , Dk , Ek , Fk , and Gk

represent constant uncertain scalars, vectors, and matrices

of appropriate dimensions, which can be explicitly com-

puted for any given set of numerical or experimental flow

field data. Also in (3), γ̇i (t), for i = 1, ...,m, represents

the control input, which can be physically interpreted as a

controllable perturbation to the flow field.

Property 1. Since the fluid flow velocity u(s, t) is based
only on physical data collected from high-fidelity computa-
tional fluid dynamics (CFD) simulations or experiment, the
decomposition in (2) can be used to prove that γ(t) is bounded
provided x(t) is bounded.

Remark 1. The POD-based reduced-order flow dynamic
model in (3) is obtained from data collected under a single,
fixed set of flow field conditions. Thus, to achieve reliable
control of a flow field under realistic uncertain conditions,
compensation for parametric uncertainty is of crucial impor-
tance for closed-loop flow control applications.

B. Control-oriented Flow Dynamic Model
After substituting the POD-based modal decomposition

in (2) into (1), the reduced-order dynamic model for the

actuated flow can be expressed in compact form as

ẋ = f(x(t), γ(t), θ1) + Ωγ̇ (4)

where f(.) denotes a nonlinear (quadratic) auxiliary func-

tion, and γ̇(t) ∈ Rm
is introduced in (3). In (4), θ1 ∈

Rp1
denotes a vector of uncertain parameters, and Ω ∈

Rm×m
represents an uncertain input gain matrix. Explicit

expressions for θ1 and Ω can be readily obtained from (3).

To facilitate the adaptive control design, the expression

in (4) will be rewritten as

ẋ =
(
f(x(t), γ(t), θ1)− f(xd(t), γ(t), θ1)

)
+Ωγ̇

+f(xd(t), γ(t), θ1). (5)
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III. Control Objective and Open Loop Error System

The control objective is to design the control signal γ̇(t)
to regulate the state vector to a desired reference state. To

quantify this objective, a tracking error, denoted by e(t) ∈
Rn

, is defined as

e(t) = x(t)− xd(t) (6)

where xd(t) ∈ Rn
denotes a desired reference state. The

desired state can be defined based on the specific physical

control objective at hand (e.g., flow separation control,

turbulence reduction, cavity flow control). Based on (6), the

control objective can be mathematically stated as

e (t) → 0. (7)

Assumption 1. The desired flow field velocity profile xd(t)
and is bounded and smooth in the sense that

xd(t) ≤ ζ1, ẋd(t) ≤ ζ2 (8)

where ζ1, ζ2 ∈ R+ are known bounding constants.

A. Open Loop Error System
The open loop dynamics can be developed by taking the

time derivative of (6) and using (5) as

ė(t) =
(
f(x(t), γ(t), θ1)− f(xd(t), γ(t), θ1)

)
+Ωγ̇

+f(xd(t), γ(t), θ1)− ẋd(t). (9)

To facilitate the subsequent control design and stability

analysis, the open loop dynamics can be rewritten as

ė (t) = Ñ + Y1dθ1 + Y2θ2 − ẋd (t) (10)

where the auxiliary function Ñ (x, xd, γ, θ1) ∈ Rn
is

explicitly defined as

Ñ ≜ f (x (t) , γ (t) , θ1)− f (xd (t) , γ (t) , θ1) . (11)

In (10), Y1d (x (t) , γ (t)) ∈ Rn×p1
and Y2 (γ̇ (t)) ∈ Rn×p2

are measurable regression matrices; and θ2 ∈ Rp2
is a

vector of uncertain constants, which are defined via the

parameterizations

Y1dθ1 ≜ f (xd (t) , γ (t) , θ1) ; Y2θ2 ≜ Ωγ̇ (12)

where the uncertain parameter vector θ1 is introduced in

(4). Note that the uncertain parameter vector θ2 simply

contains the elements of the input-multiplicative vector Ω.
One of the control design challenges for the open-loop

system in (4) is that the control input γ̇(t) is pre-multiplied

by an uncertain matrix. To address this challenge, an esti-

mate of the uncertain matrix Ω, denoted by Ω̂(t) ∈ Rm×m
,

is defined via

Ω̂γ̇ = Y2θ̂2 (13)

where θ̂2(t) ∈ Rp2
is a subsequently defined adaptive

estimate of the uncertain matrix Ω (i.e., θ̂2(t) contains

the elements of Ω̂(t)). Based on (12) and (13), Ωγ̇ can be

expressed as

Ωγ̇ = Y2θ̃2 + Ω̂γ̇ (14)

where the parameter estimate mismatch θ̃2(t) ∈ Rp2
is

defined as

θ̃2 ≜ θ2 − θ̂2. (15)

The open loop dynamics can be rewritten by substituting

(14) into (9) as

ė(t) = Ñ + Y1dθ1 + Y2θ̃2 + Ω̂γ̇ − ẋd(t). (16)

Remark 2. A standard projection algorithm is used to ensure
that the parameter estimate matrix Ω̂(t) remains nonsingular
throughout closed-loop controller operation.

Remark 3. (Bounding of Ñ ) Note that, since
f(x(t), γ(t), θ1) is continuous and differentiable in x(t), the
following can be obtained from the mean value theorem:

f(x(t), γ(t), θ1)− f(xd(t), γ(t), θ1) = c0(x− xd) = c0e(t)
(17)

where c0 is a constant. Thus, the definition in (11) can be
utilized to upper bound Ñ as

Ñ ≤ c1 ∥e(t)∥ (18)

where c1 ∈ R+ is a known bounding constant.

IV. Control Design and Closed-loop Error System

The contribution of this paper is development, which

shows how a Lyapunov-based adaptive control technique

can be applied to achieve asymptotic tracking of a desired

fluid flow velocity field in the presence of parametric

uncertainty in reduced-order fluid flow dynamic systems

in the form given in (3).

Based on the open loop dynamics in (16) and the subse-

quent stability analysis, the control input is designed as

γ̇ = Ω̂−1(−Y1dθ̂1 − k1sgn(e)− k2e) (19)

where k1, k2 ∈ R denote positive constant control gains.

Remark 4. It should be noted that the implemented control
law for γ(t) given via (20) can be obtained by integrating
both sides of the expression. Thus, the actual control law is
based on the integral signum, which is continuous in the
sense that the time derivative γ̇(t) exists and is bounded.
This integral signum structure is philosophically motivated by
the desire to reduce chattering (or shake) in implementation.
Further, since the signum function is not implementable in
practice, controllers are usually designed based on low-pass
filtered versions of the discontinuous signum function (e.g.,
the tanh function). To test a practical scenario in this result,
the subsequent simulation results utilize the tanh function as
an approximation of the signum.

The closed-loop tracking error system can be developed

by substituting the control law (19) into (16) as follows:
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ė = Ñ + Y1dθ1 + Y2θ̃2

+Ω̂(Ω̂−1(−Y1dθ̂1 − k1 sgn(e)− k2e))− ẋd (20)

ė = Ñ + Y1dθ1 + Y2θ̃2 − Y1dθ̂1 − k1 sgn(e)

−k2e− ẋd (21)

ė = Ñ + Y1dθ̃1 + Y2θ̃2 − k1 sgn(e)− k2e− ẋd (22)

where the parameter estimate mismatch θ̃1(t) ∈ Rp1
is

defined as

θ̃1 ≜ θ1 − θ̂1. (23)

Based on the closed-loop error system in (22) and the sub-

sequent Lyapunov-based stability analysis, the parameter

estimates θ̂1(t) and θ̂2(t) are generated online according to

the adaptive update laws

˙̂
θ1 = Γ1Y1d

T e (24)

˙̂
θ2 = Γ2Y2

T e (25)

where Γ1 ∈ Rp1×p1
and Γ2 ∈ Rp2×p2

denote diagonal,

positive definite adaptation gain matrices.

To facilitate the following stability analysis, the control

gains k1 and k2 in (22) are selected to satisfy the sufficient

gain conditions

k1 > c1, k2 > ζ2 (26)

where c1 is introduced in introduced in (18), and ζ2 is

introduced in (8).

V. Stability Analysis

Theorem 1: The adaptive control law described by Equa-

tions (19), (24), and (25) achieves asymptotic tracking of

a desired flow field velocity in the sense that e (t) → 0,
provided the control gain conditions in (26) are satisfied.

Proof: Consider a non-negative function (i.e., a Lyapunov

function candidate) defined as

V =
1

2
eT e+

1

2
θ̃T1 Γ

−1
1 θ̃1 +

1

2
θ̃T2 Γ

−1
2 θ̃2. (27)

After taking the time derivative of V (t) along trajectories

of the closed loop error system in (22), V̇ (t) can be

expressed as

V̇ = eT (Ñ + Y1dθ̃1 + Y2θ̃2 − k1 sgn(e)− k2e− ẋd)

− θ̃T1 Γ
−1
1

˙̂
θ1 − θ̃T2 Γ

−1
2

˙̂
θ2 (28)

By substituting the adaptive laws in (24) and (25) into (29)

and cancelling common terms, V̇ (t) can be rewritten as

follows:

V̇ = eT (Ñ + Y1dθ̃1 + Y2θ̃2 − k1 sgn(e)− k2e− ẋd)

− θ̃T1 Γ
−1
1 (Γ1Y1d

T e)− θ̃T2 Γ
−1
2 (Γ2Y2

T e). (29)

V̇ = eT Ñ − eT k1 sgn(e)− eT k2e− eT ẋd. (30)

Based on the bounding inequalities in (8) and (18), V̇ (t)
can be upper bounded as

V̇ ≤ − (k2 − c1) ∥e∥2 − (k1 − ζ2) ∥e∥ . (31)

After using the gain conditions in (26), the upper bound on

V̇ (t) can be expressed as

V̇ ≤ −λ ∥e∥2 . (32)

where λ ∈ R+
is a known bounding constant.

Based on (27) and (32), θ̃1(t) and θ̃2(t) ∈ L∞ and e(t)
∈ L∞. Given that e(t) ∈ L∞, (18) can be used to conclude

that Ñ ∈ L∞. Since e(t) ∈ L∞, the assumption that xd(t)
is bounded can be used along with equation (6) to show that

x(t) ∈ L∞. Given that x(t) ∈ L∞, Property 1 can be used

to show that γ(t) ∈ L∞. Since γ(t) ∈ L∞, the assumption

that xd(t) is bounded can be used along with Equation (12)

to show that Y1d(x, γ, θ1) ∈ L∞. Given that θ̃2(t) ∈ L∞,

Equation (15) can be used to prove that θ̂2(t) ∈ L∞. Since

θ̂2(t) ∈ L∞, (14) can be used to prove that Ω̂ ∈ L∞. Since

Ω̂ ∈ L∞, the assumption that Ω̂ remains nonsingular can

be used to show that Ω̂−1 ∈ L∞. Since θ1 contains bounded
system parameters, the fact that θ̃1(t) ∈ L∞ can be used

along with equation (23) to prove that θ̂1(t) ∈ L∞. Given

that Ω̂−1, Y1d(x, γ, θ1), θ̂1(t), e(t) ∈ L∞, Equation (19) can

be used to show that γ̇(t) ∈ L∞. Since Ω, γ̇ ∈ L∞, Equation

(12) can be used to show that Y2(γ̇) ∈ L∞. Since, Ñ , θ̃1(t),
θ̃2(t), Y1d(x, γ), Y2(γ̇), e(t) ∈ L∞ , Equation (22) can be

used to conclude that ė(t) ∈ L∞, thus e(t) is uniformly

continuous. Barbalat’s lemma can now be invoked to prove

that e(t) → 0 as t→ ∞.

VI. Simulation

A numerical simulation was created to test the

performance of the proposed adaptive controller. The

simulation demonstrates the performance of the control

law in (19) using the proposed adaptive law design in (24)

and (25). The objective of the simulation is to regulate the

flow field velocity to a desired constant value. The objective

of regulating the flow field velocity to a constant value is

presented as a proof-of-concept only. The proposed closed-

loop control method could be applied to drive the flow

field to a desired time-varying velocity profile with little

modification. The simulation demonstrates the capability

of the proposed closed-loop adaptive flow control method

to effectively compensate for the parametric uncertainty

in the plant dynamic model and actuator model. The

reduced-order flow dynamic model in the simulation uses

four POD modes, but the proposed control design can be

applied to ROM consisting of an arbitrary number of modes.

For completeness in defining the simulation plant model,

the values of the constant parameters bi, Lij , Qijk for

i, j, k = 1, ..., 4 are provided in Table II and were taken from

(Gordeyev, 2013). The initial conditions of the states and

estimates are provided in Table I, and the control gains are

are as follows: Γ1 = 0.0001 × eye(24), Γ2 = 0.005 × eye(4),

k1 = diag (400;800;800;800) and k2 = diag (100;300;350;350).
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The flow field dynamic reduced-order model in this

simulation can be expressed as

ẋ1 = b1 + L11x1 +Q141x1x4 +Q111x
2
1 +Q121x1x2

+Q131x1x3 + β1γ̇1 (33)

ẋ2 = b2 + [L22 + t2(x
2
2 + x23)]x2 + L23x3

+Q212x1x2 + β2γ̇2 (34)

ẋ3 = b3 + L32x2 + [L33 + t3(x22 + x23)]x3

+Q313x1x3 +Q314x1x4 + β3γ̇3 (35)

ẋ4 = b4 + L41x1 + L44x4 +Q444x
2
4

+Q414x1x4 +Q424x2x4 +Q434x3x4 + β4γ̇4(36)

with a measurement (i.e., output) equation given by

y =
4∑

i=1

cixi (37)

where xi is introduced in (2), and ci, i = 1,…,4 are the

weighting coefficients of the output matrix. Without loss

of generality, the ci are assumed to be 1 for the proof of

concept in the simulation.

Figures 1 and 2 show the closed-loop response of the

states and the control input signals, respectively. These

figures show that the adaptive control law achieves zero

steady state error in the state regulation, where the

non-adaptive has a significant non-zero steady-state error.

Based on Figure 2, the commanded control inputs are

very large; however, the magnitudes of these actuation

values are based on the reduced-order model and do not

correspond to physical quantities. It is expected that a more

detailed derivation of the numerical values of the input

gain terms could result in more reasonable magnitudes of

the commanded control inputs, and this is a subject of

future work.

To provide an apples-to-apples comparison, the non-

adaptive controller is designed with the same structure

and control gain values as the adaptive controller, but

uses feedforward constant estimates β̂ of the input-

multiplicative parametric uncertainty, which are selected to

be equal to the initial conditions of the adaptive parameter

estimates β̂(0) that are used in the adaptive controller. The

non-adaptive controller does not include the feedforward

adaptive term θ̂1(t).

TABLE I: Initial Conditions of the States and Estimates

(Column vectors) (i.e., ’;’ denotes a new row in the vector)

Parameter Value

x(t) [2;3;6;2]

[1673.1; -258.3; 5.4; -20.4; -6.6; -6.9;

3050.7; -1177.2; -7.5; 791.7; 225; 123;

θ̂1 -654.9; -22.8; -0.6; 15; 11.7; -1886.7;

130.2; -340.5; -21.9; 8.7; -29.4; 18.9]

θ̂2 [1;1;1;1]

Fig. 1: Closed loop response of the states x1(t), x2(t), x3(t)
and x4(t) with adaptive control (blue solid) and non adap-

tive controller (red solid) tracking the desired trajectory

(black dashed).

Fig. 2: Closed loop response of the control signal γ̇(t) using
adaptive control (blue solid) and non adaptive controller

(red solid).

VII. Conclusion

A Lyapunov-based adaptive control method is applied to

a detailed reduced-order model of the complete actuated

dynamics of a fluid flow dynamic system in the pres-

ence of parametric uncertainty in the plant model and

the actuation model. A rigorous Lyapunov-based stability

analysis is utilized to prove that the adaptive control law

achieves asymptotic flow field regulation in the presence of

the parametric uncertainty. Future work will address 1) a

more rigorous derivation of the input gain matrix values

in the reduced order model development and 2) methods

to quantify the actuation magnitudes in the reduced-order

model in physical terms.
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TABLE II: Parameters Used in the Simulation Plant Model

Linear Terms Quadratic and Cubic Terms

b1 = 557.7 L11 = −86.1 Q111 = 1.8 Q414 = 2.9
b2 = 1016.9 L22 =−392.4 Q121 =−2.2 Q424 = −9.8
b3 = 41.0 L23 =263.9 Q131 = −2.3 Q434 = 6.3
b4 =−628.9 L32= −218.3 Q141 = −6.8 Q444 = −7.3

L33 = −7.6 Q212 = 75.0
L41 = 43.4 Q313 = 5.0 t2 = −2.5
L44 = −113.5 Q314 = 3.9 t3 = −0.2
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