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Abstract— A Lyapunov-based adaptive control law is ap-
plied to a reduced-order model for a fluid flow dynamic
system, which contains parametric uncertainty in both the
plant dynamic model and the actuator model. The reduced-
order model is derived using a proper orthogonal decom-
position (POD) technique. To generate a control-oriented
reduced-order model for the actuated flow dynamics, the
POD decomposition is performed using both actuated and
unactuated modes. This results in a reduced-order flow
dynamic model that is in a non-standard mathematical
form. This challenge is mitigated through innovative al-
gebraic manipulation in the regulation error system de-
velopment along with a Lyapunov-based adaptive control
law. To the best of the authors’ knowledge, this is the
first result to apply a nonlinear, Lyapunov-based adaptive
control law to the complete actuated POD-based reduced-
order flow dynamics to formally compensate for input-
multiplicative parametric uncertainty. To achieve the result,
a rigorous error system development is presented along
with a Lyapunov-based stability analysis. To complement
the theoretical development, detailed numerical simulation
results are also provided, which show the control design
trade-off between the adaptive control law and a standard
non-adaptive control law.

Index Terms— Adaptive Control, Nonlinear Control, Lya-
punov Analysis

I. INTRODUCTION

Reliable control of fluid flow dynamic systems is crit-
ical in a wide range of engineering applications includ-
ing combustion, turbo machinery, automotive systems, and
aeronautics. The potential benefits include aerodynamic
drag reduction [1], aeroacoustic noise reduction [2], and
lift enhancement in aircraft [3]. While passive and open
loop active flow control methods are adequate for many
applications, there remain several open problems in the
design of reliable closed-loop active flow control systems.

A. Literature Survey

Experimental investigations of AFC systems have been
widely presented in recent research [4]-[8]. Applications
addressed in these experimental AFC studies include
thermal protection [5]; control of vortex-body interaction
and wing-tip-vortex meandering in NACAO0012 airfoils
[4]; low-pressure gas turbines [6]; pressure, force, and
moment manipulation in airfoils without moving control
surfaces [7]; and flow separation control for performance
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enhancement in aircraft rudders [8]. Although all of the
aforementioned studies have shown promising results
in their respective objectives, most of them do not
utilize rigorous mathematical tools to model the flow
field dynamics and theoretically predict and analyze the
influence of AFC on the flow. Dynamic modeling and
mathematical analytical techniques can be leveraged to
reduce the number of required repetitions and, hence,
the time and cost that can be involved in numerical and
experimental methods.

To address the challenge of model uncertainty, various
linear, robust, and intelligent methods for closed-loop AFC
have been presented in recent research literature [9]-[13].
The techniques utilized in these recently developed flow
control systems include sliding mode control [9], H.-based
control [10] and PI control [11]. While methods such as
these have been widely shown to achieve promising results
in their respective objectives, adaptive control approaches
are less popularly utilized in flow control applications.

The use of a standard Lyapunov-based robust and
adaptive control system in this result is motivated by
the desire to achieve reliable control using a relatively
light computational requirement. This is in contrast to
time consuming and computationally heavy methods
such as machine learning, reinforcement learning, and Q-
learning, for example [14]-[16]. While the aforementioned
intelligent control approaches have yielded impressive
results, the rigorous reduced-order dynamic modeling and
active flow control design approach presented here can
be implemented in real time, without the need for offline
learning or training phases. Further, using this relatively
simplistic design approach, the computation time for the
resulting control systems can be significantly reduced. This
is in stark contrast to reinforcement learning algorithms,
for example, in which the computation time can scale
polynomially [17] or even exponentially [18] with the
number of states [19]. Although the Lyapunov-based
robust and adaptive nonlinear control approach described
in this paper is nothing new theoretically, the application
of methods such as these to the closed-loop fluid flow
regulation objective has rarely been reported in controls
literature.

Recent research on adaptive control methods are detailed
n [12], [13], [20]-[22], where [12] and [13] specifically dis-
cuss the adaptive methods of closed-loop AFC. The strategy
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in [12] combines an adaptive controller with an extremum-
seeking technique to determine the actuation frequency and
forcing amplitude, respectively, for flow separation control
over an airfoil. A prediction error-based adaptive control
architecture is developed in [13], which utilizes Van der Pol
modelling of coupled shear layer von Karman instabilities
over a wing section. The adaptive flow control approaches
in [12] and [13] demonstrate promising results; however,
they do not address the challenge of uncertain actuator
dynamics. The current result focuses on developing an
adaptive controller for a POD-based reduced-order
flow dynamic model, which includes the complete
nonlinear model of both the flow dynamics and the
actuator dynamics.

B. Contribution

In this paper, a Lyapunov-based adaptive controller is
presented, which is rigorously proven to achieve asymptotic
velocity regulation of a fluid flow field. To the best of the
authors’ knowledge, this is the first closed-loop active non-
linear AFC result to prove asymptotic flow field regulation
using the full nonlinear POD-based reduced-order model,
including the complete actuated flow dynamics in addition
to input-multiplicative parametric uncertainty.

II. DyNAMIC MODEL AND PROPERTIES

In this section, a POD-based model-order reduction tech-
nique is utilized to derive a reduced-order, control-oriented
model for the actuated flow dynamics.

A. Reduced-order Model for Flow Field Dynamics

The incompressible Navier-Stokes equations are given as
(23]

du
ot

where u(s,t) : D x [0,00) € R? denotes the velocity of
the flow field over a spatial domain s € D C R3; p(s,t) €
R? is the space- and time-dependent pressure of the flow
field over D; and v £1/Re, where Re denotes the Reynolds
number.

Proper orthogonal decomposition (POD) expansion, or
principal component analysis, is used to obtain lower-
dimensional dynamic models for fluid flow. In the POD
modal decomposition technique, the flow velocity field
u(s,t) is expanded as a weighted sum of actuated and
unactuated POD modes defined in the spatial domain D.
The actuation effects are embedded in the coefficients of the
Galerkin system. Specifically, the actuation effects can be
included in the reduced-order model by defining the modal
decomposition as [9]

V-u=0, = —(u-Vu+oV3(u) —Vp, (1)

u(s, t) = ug + Zzi(tm(s) + Z%(twi(s)- 2)

In (2), ¢;(s) € R3 are the POD modes; x;(t), i = 1,...,n,
denote unknown, time-varying coefficients resulting from

the modal decomposition; uy € R? denotes the mean flow
velocity over D; ¢; (s) € R denote the actuation modes;
and v; (t) € R denote actuation values (i.e., control inputs).
By leveraging an input separation method similar to that in
[24], the actuation modes can be defined as the modes that
minimize the energy not captured in the modal expansion
of the actuated flow field.

By substituting the decomposition in (2) into (1), the com-
plete actuated POD-based reduced-order model is obtained
as

A+ 3 B (1) + 303 G (02, (1)
i=1

T =
i=1 j=1
D Dridi (8 + )Y Exigwi (£) 5 (1)
i=1 i=1 j=1

m m m
+ Z Frivi (t) + Z Z Grijvi 1) (1) (3)
i=1 i=1 j=1

for k = 1,...,n. In 3), A, Bk, Cx, D, &k, Fi, and G
represent constant uncertain scalars, vectors, and matrices
of appropriate dimensions, which can be explicitly com-
puted for any given set of numerical or experimental flow
field data. Also in (3), 4; (¢), for ¢ = 1,...,m, represents
the control input, which can be physically interpreted as a
controllable perturbation to the flow field.

Property 1. Since the fluid flow velocity u(s,t) is based
only on physical data collected from high-fidelity computa-
tional fluid dynamics (CFD) simulations or experiment, the
decomposition in (2) can be used to prove that ~(t) is bounded
provided x(t) is bounded.

Remark 1. The POD-based reduced-order flow dynamic
model in (3) is obtained from data collected under a single,
fixed set of flow field conditions. Thus, to achieve reliable
control of a flow field under realistic uncertain conditions,
compensation for parametric uncertainty is of crucial impor-
tance for closed-loop flow control applications.

B. Control-oriented Flow Dynamic Model

After substituting the POD-based modal decomposition
in (2) into (1), the reduced-order dynamic model for the
actuated flow can be expressed in compact form as

& = fx(t),~(t),00) + Q2 @)

where f(.) denotes a nonlinear (quadratic) auxiliary func-
tion, and §(¢t) € R™ is introduced in (3). In (4), 6; €
RP1 denotes a vector of uncertain parameters, and ) €
R™X™ represents an uncertain input gain matrix. Explicit
expressions for #; and () can be readily obtained from (3).

To facilitate the adaptive control design, the expression
in (4) will be rewritten as

j} =

(£@®).7(1).01) = F(za®), (1), 02)) + @5
+F(za(t).1(1),61). ©)
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III. ConTROL OBJECTIVE AND OPEN LOOP ERROR SYSTEM

The control objective is to design the control signal ()
to regulate the state vector to a desired reference state. To
quantify this objective, a tracking error, denoted by e(t) €
R™, is defined as

e(t) = a(t) - zq(t) ©)

where x4(t) € R™ denotes a desired reference state. The
desired state can be defined based on the specific physical
control objective at hand (e.g., flow separation control,
turbulence reduction, cavity flow control). Based on (6), the
control objective can be mathematically stated as

e(t) — 0. (7)

Assumption 1. The desired flow field velocity profile x4(t)
and is bounded and smooth in the sense that

za(t) < (1, Ea(t) < G (8)
where (1, (2 € RT are known bounding constants.

A. Open Loop Error System

The open loop dynamics can be developed by taking the
time derivative of (6) and using (5) as

i) = (S(t),7(),0) = f(a(t),7(0),61)) +

+f(2a(t), (1), 01) — Za(t). ©)

To facilitate the subsequent control design and stability
analysis, the open loop dynamics can be rewritten as

é(t) = N+ Yighy + Yabo — 34 (t) (10)

where the auxiliary function N (z,z4,7,01) € R™ is
explicitly defined as

N & fa(),v(1),00) = f(za(t)v(1).61). (A1)

In (10), Yig (z (t),v(t)) € R™Pt and Y, (¥ (t)) € R"*P2
are measurable regression matrices; and 62 € RP? is a
vector of uncertain constants, which are defined via the
parameterizations

Yiaby £ f(xq (), 7 (t),01); Yaby £ QF (12)

where the uncertain parameter vector 6; is introduced in
(4). Note that the uncertain parameter vector f simply
contains the elements of the input-multiplicative vector €).
One of the control design challenges for the open-loop
system in (4) is that the control input (t) is pre-multiplied
by an uncertain matrix. To address this challenge, an esti-
mate of the uncertain matrix €2, denoted by Q(t) € R"™*™,
is defined via
O = Yoy (13)
where 0, (t) € RP2 is a subsequently defined adaptive
estimate of the uncertain matrix Q (ie., f5(t) contains

the elements of )(t)). Based on (12) and (13), 2% can be
expressed as

O = Yol + Q5 (14)
where the parameter estimate mismatch 65(t) € RP? is
defined as

ég £ 0y — éQ. (15)

The open loop dynamics can be rewritten by substituting
(14) into (9) as

é(t) = N + Vit + Yaby + Q — d4(t). (16)

Remark 2. A standard projection algorithm is used to ensure
that the parameter estimate matrix S)(t) remains nonsingular
throughout closed-loop controller operation.

Remark 3. (Bounding of N) Note that, since
flx(t),v(t),01) is continuous and differentiable in x(t), the
following can be obtained from the mean value theorem:

f(@(t),7(t), 01) — f(zalt), (1), 01) = co(x — 2a) = coe(?)

(17)
where co is a constant. Thus, the definition in (11) can be
utilized to upper bound N as

N < [e(®)]| (18)

where ¢; € R is a known bounding constant.

IV. CoNTROL DESIGN AND CLOSED-LOOP ERROR SYSTEM

The contribution of this paper is development, which
shows how a Lyapunov-based adaptive control technique
can be applied to achieve asymptotic tracking of a desired
fluid flow velocity field in the presence of parametric
uncertainty in reduced-order fluid flow dynamic systems
in the form given in (3).

Based on the open loop dynamics in (16) and the subse-
quent stability analysis, the control input is designed as

v = Q_l(—Yldél — kisgn(e) — koe) (19)

where k1, k2 € R denote positive constant control gains.

Remark 4. It should be noted that the implemented control
law for ~(t) given via (20) can be obtained by integrating
both sides of the expression. Thus, the actual control law is
based on the integral signum, which is continuous in the
sense that the time derivative +(t) exists and is bounded.
This integral signum structure is philosophically motivated by
the desire to reduce chattering (or shake) in implementation.
Further, since the signum function is not implementable in
practice, controllers are usually designed based on low-pass
filtered wversions of the discontinuous signum function (e.g.,
the tanh function). To test a practical scenario in this result,
the subsequent simulation results utilize the tanh function as
an approximation of the signum.

The closed-loop tracking error system can be developed
by substituting the control law (19) into (16) as follows:
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N + Y101 + Yabs

¢ =
+QQ N (—Y1ab1 — k1 sgn(e) — kae)) — i4(20)
¢ = N+ Yiab1 + Yoy — Yigby — kysgn(e)
—koe — 2y (21)
¢ = N+ Yigh + Yol — kysgn(e) — koe — iq (22)

where the parameter estimate mismatch 6, (t) € RP' is
defined as

0, 20, — 0. (23)
Based on the closed-loop error system in (22) and the sub-
sequent Lyapunov-based stability analysis, the parameter
estimates 61 (t) and 65(t) are generated online according to
the adaptive update laws

él = FlYldTe (24)

ég = FQ}/-QTe (25)
where I'y € RP1*P1 and I'y € RP2*P2 denote diagonal,
positive definite adaptation gain matrices.

To facilitate the following stability analysis, the control
gains k1 and ko in (22) are selected to satisfy the sufficient
gain conditions

Ifl > cy, kQ > <2 (26)

where c¢; is introduced in introduced in (18), and (s is
introduced in (8).

V. STABILITY ANALYSIS

Theorem 1: The adaptive control law described by Equa-
tions (19), (24), and (25) achieves asymptotic tracking of
a desired flow field velocity in the sense that e (t) — 0,
provided the control gain conditions in (26) are satisfied.
Proof: Consider a non-negative function (i.e., a Lyapunov
function candidate) defined as

1 1~ M e ~
V=_elet+ 59{1“;191 + 592T1“5102. (27)

2

After taking the time derivative of V' (¢) along trajectories
of the closed loop error system in (22), V (¢) can be
expressed as

V= eT(N + Yia01 + Yabs — ky sgn(e) — koe — &q)
—0Tr70, — 011510, (28)
By substituting the adaptive laws in (24) and (25) into (29)
and cancelling common terms, V (¢) can be rewritten as
follows:
V= eT(N + Yia01 + Yabs — k1 sgn(e) — kae — &q)

— 0T (T g e) — 02T (Mo YaTe).  (29)

V =e'N —eTkisgn(e) — eTkoe — T iy. (30)

Based on the bounding inequalities in (8) and (18), V (t)
can be upper bounded as

V < — (k2 —c1)lle))® = (k1 — G2) [le]| - (31)

After using the gain conditions in (26), the upper bound on
V (t) can be expressed as

V< —Ale?. (32)

where A € RT is a known bounding constant.

Based on (27) and (32), 61(¢) and 62(t) € Ly and e(t)
€ Loo. Given that e(t) € Lo, (18) can be used to conclude
that N € L. Since e(t) € Lo, the assumption that z4(t)
is bounded can be used along with equation (6) to show that
2(t) € Loo. Given that x(t) € Lo, Property 1 can be used
to show that v(t) € L. Since (t) € Lo, the assumption
that x4(t) is bounded can be used along with Equation (12)
to show that Y74(z,7,601) € Loo. Given that ég(t) € Lo,
Equation (15) can be used to prove that 5(t) € L. Since
05(t) € Loo, (14) can be used to prove that 2 € L. Since
Q € Lo, the assumption that Q) remains nonsingular can
be used to show that Q! € L. Since 0, contains bounded
system parameters, the fact that 6; (t) € Lo can be used
along with equation (23) to prove that 6, (t) € Ly. Given
that Q1 Yi4(z, 7, 61),01(t), e(t) € Loo, Equation (19) can
be used to show that %(f) € Loo. Since 2, ¥ € L, Equation
(12) can be used to show that Y5(7) € L. Since, N,0.(t),
02(t), Yia(x,7v),Y2(%),e(t) € Lo , Equation (22) can be
used to conclude that é(t) € L, thus e(t) is uniformly
continuous. Barbalat’s lemma can now be invoked to prove
that e(t) — 0 as ¢ — oo.

VI. SIMULATION

A numerical simulation was created to test the
performance of the proposed adaptive controller. The
simulation demonstrates the performance of the control
law in (19) using the proposed adaptive law design in (24)
and (25). The objective of the simulation is to regulate the
flow field velocity to a desired constant value. The objective
of regulating the flow field velocity to a constant value is
presented as a proof-of-concept only. The proposed closed-
loop control method could be applied to drive the flow
field to a desired time-varying velocity profile with little
modification. The simulation demonstrates the capability
of the proposed closed-loop adaptive flow control method
to effectively compensate for the parametric uncertainty
in the plant dynamic model and actuator model. The
reduced-order flow dynamic model in the simulation uses
four POD modes, but the proposed control design can be
applied to ROM consisting of an arbitrary number of modes.

For completeness in defining the simulation plant model,
the values of the constant parameters b;, L;;, Q1 for
1,7,k =1,...,4 are provided in Table II and were taken from
(Gordeyev, 2013). The initial conditions of the states and
estimates are provided in Table I, and the control gains are
are as follows: I'y = 0.0001 x eye(24), I'o = 0.005 X eye(4),
k1 = diag (400;800;800;800) and ky = diag (100;300;350;350).
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The flow field dynamic reduced-order model in this
simulation can be expressed as

1 = b+ Luz + Quuzizs + Quiat + Qu21 2122

+Qiz317123 + B171 (33)
Zg = by+[Loo+ tg(xg + m%)}xg + Losxs

+Q2127172 + Bao (34)
23 = b3+ Laowo + [Laz + t3(23 4 22)]x3

+Q3137123 + Q3147174 + B373 (35)
Ty = bs+ Lyxy + Laawy + Quaaz]

+Q4147174 + Qu24T2T4 + Q4347374 + B474(36)

with a measurement (i.e., output) equation given by

4
Yy= E CiT;
i=1

where z; is introduced in (2), and ¢;, i = 1,....4 are the
weighting coefficients of the output matrix. Without loss
of generality, the ¢; are assumed to be 1 for the proof of
concept in the simulation.

(37)

Figures 1 and 2 show the closed-loop response of the
states and the control input signals, respectively. These
figures show that the adaptive control law achieves zero
steady state error in the state regulation, where the
non-adaptive has a significant non-zero steady-state error.
Based on Figure 2, the commanded control inputs are
very large; however, the magnitudes of these actuation
values are based on the reduced-order model and do not
correspond to physical quantities. It is expected that a more
detailed derivation of the numerical values of the input
gain terms could result in more reasonable magnitudes of
the commanded control inputs, and this is a subject of
future work.

To provide an apples-to-apples comparison, the non-
adaptive controller is designed with the same structure
and control gain values as the adaptive controller, but
uses feedforward constant estimates [ of the input-
multiplicative parametric uncertainty, which are selected to
be equal to the initial conditions of the adaptive parameter
estimates /3 (0) that are used in the adaptive controller. The
non-adaptive controller does not include the feedforward
adaptive term 01 (¢).

TABLE I: Initial Conditions of the States and Estimates
(Column vectors) (i.e., ’;” denotes a new row in the vector)

Parameter Value
z(t) [2:3;6;2]
[1673.1; -258.3; 5.4; -20.4; -6.6; -6.9;
3050.7; -1177.2; -7.5; 791.7; 225; 123;
él -654.9; -22.8; -0.6; 15; 11.7; -1886.7;
130.2; -340.5; -21.9; 8.7; -29.4; 18.9]
02 [1;1;1;1]
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——Modified Non Adaptive
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0\
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0 0
0 02 04 06 08 1 0 02 04 06 08 1
Time [sec] Time [sec]

Fig. 1: Closed loop response of the states x1(t), z2(t), z5(t)
and z4(t) with adaptive control (blue solid) and non adap-
tive controller (red solid) tracking the desired trajectory
(black dashed).
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Fig. 2: Closed loop response of the control signal 4(¢) using
adaptive control (blue solid) and non adaptive controller
(red solid).

VII. CoNCLUSION

A Lyapunov-based adaptive control method is applied to
a detailed reduced-order model of the complete actuated
dynamics of a fluid flow dynamic system in the pres-
ence of parametric uncertainty in the plant model and
the actuation model. A rigorous Lyapunov-based stability
analysis is utilized to prove that the adaptive control law
achieves asymptotic flow field regulation in the presence of
the parametric uncertainty. Future work will address 1) a
more rigorous derivation of the input gain matrix values
in the reduced order model development and 2) methods
to quantify the actuation magnitudes in the reduced-order
model in physical terms.
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TABLE II: Parameters Used in the Simulation Plant Model

(1]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

l

Linear Terms [ Quadratic and Cubic Terms ]

b1 = 557.7 L11 = —86.1 Qlll =1.8 Q414 =29
bo = 1016.9 | Log =—392.4 | Q121 =—2.2 | Q424 = —9.8
bz = 41.0 Lo3 =263.9 Q131 = —2.3| Q434 = 6.3
by =—628.9 | L3o= —218.3 | Q141 = —6.8 | Q444 = —7.3
L33 = —-T7.6 Q212 =175.0
L4 =434 Q313 = 5.0 to = —2.5
Lyg = —113.5 [ Q314 =3.9 [t3=—-0.2
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