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1. Introduction

The problem of estimating a function of the state vector,
without the need of estimating the entire state vector, arises
in many applications. The design of output feedback controllers
based on a state feedback design is a classical example, where
it is only the state feedback function that needs to be estimated
and not the entire state vector. Another class of applications is
related to the design of inferential control systems, where one
output is measured and a different output, which is unmeasured,
needs to be regulated. From a practical point of view, the most
common class of applications is related to condition monitoring
of dynamic systems.

These applications motivate the development of functional
observers, the aim being a reduction of dimensionality relative
to a full-state observer. The notion of a functional observer was
first defined in Luenberger’s pioneer work on observers for linear
multivariable systems [1,2]. Luenberger proved that for a linear
system, it is feasible to construct a functional observer with
number of states equal to observability index minus one.

The basic theory of linear functional observers can be found
in standard linear systems texts, e.g. [3]. In recent years, there
has been a renewed interest in linear functional observers [4-9],
the goal being to find the smallest possible order of the linear
functional observer.

For nonlinear systems, there have been significant develop-
ments in the theory of full-state observers, with a variety of
methods and approaches. In particular, in the context of exact
linearization methods [10-17], Luenberger theory for full-state
observers has been extended to nonlinear systems in a direct and
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analogous manner. The main goal of the present work is to de-
velop a direct generalization of Luenberger’s functional observers
to nonlinear systems.

The present work studies the design of functional observers
for nonlinear systems from the point of view of exact observer
error linearization. Necessary and sufficient conditions for the
existence of functional observers with linear error dynamics are
derived, leading to simple formulas for observer design with
eigenvalue assignment. In particular, in the present work, we

consider unforced nonlinear systems of the form

dx
= —F
it (x)

y = H(x) (1.1)
z = (q(x)

where:

x € R" is the system state

y € RP is the vector of measured outputs

z € R is the (scalar) output to be estimated
and :R" — R", H:R" — RP, q:R"™ — R are smooth
nonlinear functions. The objective is to construct a functional
observer of order v < n, which generates an estimate of the
output z, driven by the output measurement y.

Section 2 will define the notion of functional observer for a
system of the form (1.1) in a completely analogous manner to
Luenberger’s definition for linear systems. Section 3 will pose the
problem of functional observer design and point out its chal-
lenges. Section 4 will define notions of exact linearization for
the functional observer problem, in the same vein as they have
been defined for full-state observers in the literature. Section 5
will develop necessary and sufficient conditions for the solution
of the functional observer linearization problem, when both the


https://doi.org/10.1016/j.sysconle.2021.105021
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2021.105021&domain=pdf
mailto:kravaris@tamu.edu
https://doi.org/10.1016/j.sysconle.2021.105021

C. Kravaris and S. Venkateswaran

observer dynamics and its output must be linear, as well as a
simple formula for the resulting functional observer. The results
of Section 5 will be specialized to linear time-invariant systems
in Section 6, leading to simple and easy-to-check conditions for
the design of lower-order functional observers. In Section 7, nec-
essary and sufficient conditions for solvability of a more general
functional observer linearization problem will be derived.

2. Definition of a functional observer for a nonlinear dynamic
system

In complete analogy to Luenberger’s construction for the linear
case, we seek for a mapping

7i(X)
E=1(x)=| (2.1)
7,(X)

from R" to R”, to immerse system (1.1) to a vth order system (v
< n), with input y and output z:

— =9(&,y)
dt (2.2)

z=w(§,y)

where g:R" x RP — RY, w:R”" x RP — R, the aim being
that system (2.2), driven by the measured output y of (1.1), can
generate an estimate of unmeasured output z of (1.1).

But in order for system (1.1) to be mapped to system (2.2)
under the mapping 7(x), the following relations have to hold:

T
&(X)F(X) = ¢ (7(x), H(x)) (2.3)

q(x) = o (7(x), H(x)) (24)

The foregoing considerations lead to the following definition
of a functional observer:

Definition 1. Given a dynamic system (1.1), with y being the
vector of measured outputs and z is the scalar output to be
estimated, the system

dé A

— = ¢(.y)

o (2.5)
z=w(§,y)

where p: R" x RP - R”, w:R" xRP - R (v < n)is called a
functional observer for (1.1), if in the series connection

X y §

the overall dynamics

dx = F(x)
g (2.6)
T w(§, H(x))

possesses an invariant manifold é = 7(x) with the property that
q(x) = o (7(x), H(x)).

In the above definition, the requirement that § = 7(x) is an
invariant manifold of (2.6), i.e. that £(0) = 7(x(0)) = &(t) =
7(x(t)) Vt > 0, translates to g—i(x)F(x) = ¢ (7(x), H(x)), which is
condition (2.3) stated earlier.

If the functional observer (2.5) is initialized consistently with
the system (1.1) i.e. if £(0) = 7(x(0)), then &(t) = 7(x(t)), and
therefore

2(0) = o (£(0.¥(0) = 0 (7 (<), H(x(0) = A (1) Ve >0
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which means that the functional observer will be able to exactly
reproduce z(t).

In the presence of initialization errors, additional stability
requirements will need to be imposed on the &-dynamics, for the
estimate Z(t) to asymptotically converge to z(t).

At this point, it is important to examine the special case of a
linear system, where F(x) = Fx, H(x) = Hx, q(x) = gx with F,
H, q being n x n, p x n, 1 x n matrices respectively, and a linear
mapping 7(x) = Tx is considered. Definition 1 tells us that for a
linear time-invariant system

dx

— =K

dt

y = Hx (2.7)
zZ=(Qx

the system

dé A

— = Af + By

de (2.8)
z=C§ +Dy

will be a functional observer if the following conditions are met:

TF = AT + BH (2.9)
q=CT + DH (2.10)

for some v x n matrix T. These are exactly Luenberger’s conditions
for a functional observer for a linear time-invariant system [2].

3. Designing lower-order functional observers for nonlinear
systems

In order to design of a functional observer for a nonlinear

71(X)
system, one must be able to find a mapping 7(x) = to
7(X)
satisfy conditions (2.3) and (2.4), i.e. such that:
9T
a—’(x)F(x), j=1,...,v is a function of
X
7i(X), ..., T(x), H(x)
e ((x)is a function of 1y(x), ..., 7,(x), H(x)
However, such scalar functions 7;(x), ..., 7,(x) may not exist if
v <n-p.
Moreover, even when they do exist, there is an additional very
important requirement: Since %(X)F(X) = ¢ (7(x), H(x)) will

define the right-hand side of the functional observer’s dynamics,
it must be such that the functional observer’s dynamics is stable
and the decay of the error is sufficiently rapid.

This paper will address the functional observer design prob-
lem, focusing on finding conditions under which low-order func-
tional observers are feasible.

4. Exact linearization of a functional observer

The concept of exact observer linearization has been formu-
lated in the literature for full-state observers. We will start this
section with a brief necessary review, following [10-12]. Subse-
quently we will propose an extension of the concept of exact
linearization to functional observers, and we will discuss both
the inherent similarity and the fundamental difference with exact
linearization of full-state observers.

Consider a nonlinear system

dx

— =Fx)

dt (4.1)
y = H(x)
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If a mapping £ = 7(x) from R" to R” can be found to map system
(4.1) to a linear system
dé

= —At+B
it & + By

where A and B are v xv and v x p matrices respectively, the idea is
to use system (4.2) as the basis for a state observer. The mapping
7(x) must satisfy

(4.2)

0T
0Xx

Assuming for the moment that the partial differential equation
(4.3) can be solved, it will be possible to reconstruct the state if the
mapping x — £ is injective or if X — (&, y) is injective. The observer
will then consist of a replica of (4.2)

dé A
i A& + By
along with an algebraic equation to calculate the state estimate.
In particular,

(X)F(x) = AT(x) + BH(x) (4.3)

(44)

- for v = n (full-order observer), the state estimate will be
calculated as X = 771(&),

- for v = n - p (reduced-order observer), the state estimate will
7(X)=§
HR) =y
In both cases, the observer’s error dynamics will follow

d /. N
& (E-rt0) = (e o)
which is linear, and it will converge exponentially to 0 when the
matrix A is chosen to be Hurwitz.

In summary, existence of a full-state observer with linear error
dynamics reduces to two main questions:

be the solution of

(4.5)

i Solvability of the partial differential equation (4.3)
ii Injectivity of the mapping x — 7 (x) or X — (7(x), H(x)).

i. has affirmative answer under mild assumptions (see specific
results later in this section), whereas for ii. to hold, appropriate
observability conditions on (4.1) must be imposed (see [10-12]).

Let us now consider the functional observer, as defined by
Definition 1 in Section 2. In the spirit of full-state observer lin-
earization, we seek for a functional observer of the form (2.5)
whose dynamics is linear, i.e.

@(&,y) = A§ + By

Then, condition (2.3) will become the partial differential equation
(4.3), but we also need to satisfy condition (2.4), which states that
q(x) must be expressible as a function of 7(x) and H(x). This is a
functional dependence condition, whose satisfaction depends on
the order of the functional observer.

(4.6)

- If v = n - p and the reduced-order full-state observer lin-
earization problem can be solved, this will automatically solve the
functional observer linearization problem, for any functional q(x).

- If v < n - p, the functional dependence requirement from (2.4)
may or may not be feasible, depending on q(x) and the observer’s
dynamics.

In summary, the possibility of extension of exact linearization
to functional observers reduces to two main questions:

i Solvability of the partial differential equation (4.3)
ii Compatibility of 7(x) with the functional q(x), in the sense of
the functional dependence specified through (2.4).
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Thus, we see that the solvability problem for the partial differ-
ential equation (4.3) is common both for the functional and the
full-state observer linearization problems. This problem has been
resolved.

For locally Lipschitz F(x) and H(x), local existence of a (weak)
solution of (4.3) may be established under very mild assumptions.
The following proposition is an immediate consequence of a
Theorem by Andrieu and Praly [[10], Theorem 2]:

Proposition 1. Let O be an open set. Assume there exists a strictly
positive number § such that the dynamics % = F(x) is backward
complete within the set © + 6§ = {x e R™:dx € O:|x— x| < §}.
Then, for every Hurwitz matrix A, there exists a continuous function

7(x), defined on the closure of O, which satisfies (4.3).

The above proposition establishes existence of a solution. It
turns out that the solution is unique within the class of locally
analytic functions, but under stronger assumptions. The following
proposition is an immediate consequence of Lyapunov’s Auxiliary
Theorem [18] (see also [11]).

Proposition 1. Let F:R" — R", H:R" — RP be real analytic
functions with F(0) = 0, H(0) = 0 and denote by o(F) the set of
eigenvalues of g—i(o). Also, let A and B be vxv and vxp matrices
respectively. Suppose:

1. All the eigenvalues of A are non-resonant with o (F), i.e. no
eigenvalue Aj of A is of the form &; = Y. mik; , with
ki € o(F) and m; non negative integers, not all zero.

2. 0 does not lie in the convex hull of o (F).

Then the partial differential equation (4.3) with initial condition
7 (0) = 0, admits a unique real analytic solution 7(X) in a neigh-
bourhood of x = 0.

Because the subproblem of solvability of the partial differential
equation (4.3) has been resolved, the focus of the present paper
will be on the second subproblem: under what conditions could the
solution 7(X) be compatible with q(x), in the sense specified through
(2.4). The goal will be to find conditions to check feasibility of
lowering the order of the functional observer, below (n - p).

In the next section we will study a special form of the func-
tional observer linearization problem, where in addition to re-
quiring linear observer dynamics, we will also require linearity
of the observer’s output map. In particular, we will consider the
following:

Functional Observer Linearization Problem
Given a system of the form (1.1), find a functional observer of
the form

dé .

& = A§ + By

dt ) (4.7)
z=C& +Dy

where A, B, C, D are v x v, v x p,1 x v,1 x p matrices
respectively, with A having stable eigenvalues. Equivalently, find
a continuously differentiable mapping 7: R"™ — R” such that

0T

P F(x) = A7(x) 4+ BH(x) (4.3)
and
q(x) = C7(x) + DH(x) (4.8)

Assuming that the above problem can be solved, the resulting
error dynamics will be linear:

% (€= 100) = A(§ = 700)
z—z=2C (é — ’T(X))

(4.9)
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from which 2(t) — z(t) = Ce™ (£(0) — 7(x(0))). With the ma-
trix A having stable eigenvalues, the effect of the initialization
error £(0) — 7(x(0)) will die out, and Zz(t) will approach z(t)
asymptotically.

In Section 7, we will consider a more general functional ob-
server linearization problem, where the observer dynamics is
linear in the observer state but might involve a nonlinear function
of y, and the observer output depends on a linear function of
the states but might involve a nonlinear function of the observer
output and y. In particular, we will consider the following:

A more general Functional Observer Linearization Problem
Given a system of the form (1.1), find a functional observer of
the form

d A

L _ A +aiy)

de ) (4.10)
Z solution of €(Z,y) = C&

where A, C are v x v, 1 x v matrices respectively, with A having
stable eigenvalues, and where %: RP — R", €:R x RP — R are
continuous functions, with ¢ invertible with respect to its first
argument (i.e., such that the equation %(z,y) = ¢ is uniquely
solvable with respect to z, for every y and ¢). Equivalently, find a
continuously differentiable mapping 7: R" — R" such that

27 (0F) = AT() + H(HOX) (4.11)
and
(q(x). H(X) = C1(x) (4.12)

Assuming that the foregoing functional observer linearization
problem can be solved, the resulting error dynamics will be
linear:

o (E=700) =A (6= 10)

(2, H(x)) - (2 Hx)) = € (§ - 7(x))

from which

% (200, HX(©)) — % (2(0), HX(©) = Ce* (£(0) - 7(x(0))

With the matrix A having stable eigenvalues, the effect of the
initial error £(0) — 7(x(0)) will die out, £(t) will approach 7(x(t))
asymptotically and because of the invertibility assumption on
€, z(t) will approach z(t). This generalized Functional Observer
Linearization Problem will be solved in Section 7.

(4.13)

5. Necessary and sufficient conditions for solvability of the
functional observer linearization problem

To be able to develop a practical approach for designing func-
tional observers, it would be helpful to develop criteria to check if
for a given set of v eigenvalues, there exists a functional observer
whose error dynamics is governed by these eigenvalues. This
will be done in the present section for the Functional Observer
Linearization Problem.

The main result is as follows:

Proposition 2. For a nonlinear system of the form (1.1), there exists

a functional observer of the form

& = A£ + By

dt 4.7)
% = CE + Dy

with the eigenvalues of A being the roots of a given polynomial A" +

A e, A +a,, if and only if LiQ(X)+on Ly Tq(x)+ - -+

a,-1Lrq(x) + a,q(x) is R-linear combination of H;(x), LeH;(x), ...,

LiH(x), j = 1,...,p, where Ly = ZL] Fk(x);deenotes the Lie

derivative operator.
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Proof. (i) Necessity
Suppose that there exists a functional observer of the form

(4.7) for the system (1.1). Then, condition (4.3) will be satisfied for
71(x)

some 7(X) = . Using the Lie derivative operator notation,

7,(X)
Le7i(X)

this condition may be written component-wise as : =

Le 73, (x)

7i(X) B1H(x)

A + where By, ..
7,(x) B, H(x)

matrix B. Applying the Lie derivative operator Lg to each compo-

nent in the above equation (k - 1) times, we find that for k = 2,

3, ...

., B, denote the rows of

L¥7i(x) 7(x) B1H(x)
N — Al( _,’_Akfl
L¥,(x) 7,(x) B,H(x)
Ly (B{H(x)) Ly~ (B{H(x))
+ A2 : fo |
Lr (B,H(x)) Ly (B,H(x))

from which we can calculate:

(LE 4ol + -+ oo iLe + o)1) H(X) ]

(L + oLy - 4 ey Le + ) (%)

[B1H(x) |
=(A" AT+ ) |
| B,H(x)
[Le (B1H(x))
+ (AP A oy ol) : 4o
| Lr (B,H(x))

Ly % (B{H(x))
+A+aD| +
Ly ™% (B,H(x))

Ly~ (B4H(x))

q;%BJﬂM)

Applying the operator (L} + oLy ™" + -+ - + ory_1Lp + 1) on (4.8)
and using the previous expression, we conclude that

(L; + alL;_l +---+ al)*]LF + av[) q(x)

B1H(x)
= (CA" "+ CA? 4+ oy C) |
B,H(x)
Lr (B1H(x))
+(CA" 2+ - + &, 50) : + -
Lr (B,H(x))
L% (BiH(x)) L~ (BiH(x)

+(CA+ a0 | +C

Ly ™% (B,H(x)) q;WBJﬂM)
+Lp (DH(x)) + 1Ly (DH(x)) + - - - + oy 1L (DH(x)) + o, DH(x)
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L' + oLy 2 q(x) + -+ @-1q(x) = L7 (BoHX) — L2 (BiH(X) — - - = Bu—1H(X)
7(x) = : (5.4)
Lrq(x) + a1q(x) — L (BoH(x)) — B1H(x)
q(x) — BoH(x)
Box 1.
or and system (4.7) with
Lya(x) + ealy (%) + -+ + ety 1Lrq(x) + 04, q(%) 00 0 - Pu — v
= Lt (BoH(0) + 1y (BIH(O) + - PO O e Pros = b
+Le (Bu-HX)) + B, H(x) A=10 1 o 0 maa, B= | P~
. (5.1) .. . . :
=Y (BoLiHi(x) + BuyLy Hi(x) + -+ -
=1 [0 0 1 —o L Bi—aifo
+Bu—1)LeHj(x) + By, Hj(x))
where c=[0o0 0 1], D=p
By =D (5.6)
By = CB+ ;D is a functional observer. This completes the proof. O
_ It is important to emphasize that the sufficiency part of the
P2 = CAB + 1 (B + aoD (5.2) proof is constructive, and it immediately leads to a design method

ﬂv—l = CAV?ZB +---+ Olu_2CB + a,_1D
B, = CA” "B+ ;CA" 2B+ -+ 4+ a,_1CB + a,D

This proves that L;q(x)—i—cle;’]q(x)—k- - 4o, 1Lpq(X) + o, q(X) is
R-linear combination of Hj(x), LeH;(x), ..., LyHj(x), j=1,...,p.

(ii) Sufficiency: Suppose that Liq(x) + alL;’]q(x) + -+
a,—1Lrq(x)+a, q(x) is R-linear combination of Hj(x), LeH;j(x), ...,
LiHj(x), j =1, ..., p, i.e. there exist constant row vectors By, B,
..., By € RP such that (5.1) holds. Consider the partial differen-
tial equation:

0 0 0 —u, 7
1 0 ... 0 —a,_q
T
—(XFx)=1]0 1 0 —o,2|7(x)
0x
L0 0 ... 1 —oq |
B ,Bv - 0‘\1130 7]
Bv—1 —oay_1Bo
+ | Bv—2 —av—2B0 | H(x) (5.3)
L Bi—aifo

It is straightforward to verify that, 7(x) of Eq. (5.4) given in Box [
satisfies the PDE (5.3) and we see that its vth component is
7,(x) = q(x) — BoH(x), therefore,

qx)=1[0 0 0 1]7(x) + BoH(x) (5.5)

Hence 7 (x) given by (5.4) satisfies conditions (4.3) and (4.8) for
the solution of the Functional Observer Linearization Problem,

for the functional observer:

Once a set of constant row vectors o, B1, ... , By € RP have
been found to satisfy (5.1) for a specific characteristic polynomial
A 4+ A+ 4y 1A + ay, formula (5.6) immediately gives
the A, B, C and D matrices of the linear functional observer.

Also, it should be noted that there may be multiple sets of
Bo, B1, ..., By € RP that satisfy (5.1), leading to multiple
solutions for the functional observer linearization problem.

Chemical reactor with hazardous reactants

Consider a non-isothermal Continuous Stirred Tank Reactor
(CSTR) where an exothermic chemical reaction A+B — C+D
takes place. The reactor is cooled through a cooling jacket. The
reactor dynamics can be modelled through standard component
mass balances and energy balances, assuming constant volume
and constant thermophysical properties, as follows ( [19,20]):

dc F

?? = V(cAm —ca) — R(ca, Cp, 0)

dc, F

7: = V( Bin — CB) - R(CA7 CB79)

9 F @ — ) + (—AH)g (Ca. €. 0) UA 6 - ) (5.7)
ac — v pe BT g T

a9 _ K

at v 1 =) peyV

where ¢4 and cp are the concentrations of species A and B respec-
tively in the reacting mixture, 6 and 6; are the temperatures of the
reacting mixture and the jacket fluid respectively; these are the
system states. The function ®(cy, cg, ) represents the reaction
rate and it is a given algebraic function, specified in terms of an
empirical correlation. The rest of the symbols represent constant
parameters: ca, and cp,, are the feed concentrations of species A
and B respectively, F and F; are the feed and coolant flowrates
respectively, V and V; are the reactor volume and cooling jacket
volume respectively, (—AH)g is the heat of reaction, p, ¢, and
Py, Cp, are the densities and heat capacities of the reactor con-
tents and cooling fluid respectively, U and A are the overall heat
transfer coefficient and heat transfer area respectively.
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When the reactants A and B are potentially hazardous, special
precautions are taken in terms of using relatively dilute feeds
and the reaction taking place at a relatively low temperature. In
terms of monitoring the operation of the reactor, the temperature
6 of the reacting mixture as well as the total sum of hazardous
chemicals’ concentrations ¢4 + cp are critical quantities to be
monitored. Temperature is easy and inexpensive to measure, but
concentrations generally need to be estimated from temperature
measurements. Consider therefore the problem of building an
observer for the dynamic system (5.7), driven by the temperature
measurements

yi=20
Y2=0

the objective being to estimate the sum of the reactant concen-
trations

(5.8)

Z==Cs+Cp (5.9)

Liquid-phase oxidation reactions are a very important class of
chemical reactions that are notorious for being highly exother-
mic and for involving serious safety threats. One well-studied
example is the reaction of N-methyl pyridine (A) with hydrogen
peroxide (B) in the presence of a catalyst [19].

For this reaction, the reaction rate expression is (see [19]):

Eq Ey
Aie” 0 Are” U cacgZ
R(Ca, Cg, 0) = B)
1+ Aze_7 Cp
where A1, A, As and Eq, E,, E3 are the reaction rate parameters,
pre-exponential factors and rescaled activation energies respec-
tively, and Z is the catalyst concentration (constant).

To derive a functional observer, it is convenient to perform
appropriate translation of axes to shift the equilibrium point to
the origin. In particular, defining ¢, = ca—cas, ¢y = cg—cp5, 0’ =
0 — 05,0/ = 6, — 6,5, where (cas, Cgs, 65, 6)5) is the steady state
(equilibrium point) of the reactor. For the above system, a scalar
functional observer can then be built (v = 1), with the necessary
and sufficient conditions (5.1) being satisfied for:

_EB
+ Asze” 0 cacp

(5.10)

20¢p
_[-—2 o
bo="Camy °]:
2pc, (F UA 2UA .
hr= [_(_AH)R (V pch> (—AH)RV]’ =g

(5.11)

The corresponding transformation map is 7(cy, ¢z, 0',0)) = c; +

g+ 206 0’, and the resulting functional observer is given by:

 (—AHR
d F . 2UA ,
= b= (Y] — ))
dt V> (—AH)RV
~ 2 2pc, (5.12)
=& - y
(—AH)™!
For the following parameter values (see [19]):
caim = 4 ™ g = 329, = 333K 6, = 300K,
_ 1 _ 1
F=002 L F=1-"L,
V. = 1LV, = 3 x 1072 LA} = €% | mol™! s77,
Ay =e*®2 1mol ! s,
A; = €2 1 mol™Ey = 3952 K.E, = 7927 K,

Es = 12989 K, AHg = —160 .,
— — — J — J —

p = 1200 £, p; = 1200 £, Cp =34 5. ¢ = 345, UA=0942

W,z =0.0021 =

the corresponding reactor steady state is:

mol mol
cas = 1.211 s = 0.211 —,

1
0s = 386.20 K, 6, ; = 300.02 K,
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Fig. 1. (a) System’s and observer’s response for
£(0) — 7(c;(0), c5(0), 6'(0), 6;(0)) = 1 mT"l (b) Estimation error Z(t) — z(t).

and we have simulated the reactor start-up, under the following
initial conditions:

ca(0) =0,c3(0) =0,0 (0) = 300K, 6 (0) = 300 K.

Fig. 1 compares the functional observer’s estimate ¢4 + ¢z =
Z + a5 + cps to the system’s total reactant concentration ¢4 + ca,
and provides a plot of the corresponding estimation error, when

the initialization error is 1 mT"'

6. Lower-order functional observers for linear systems

The results of the previous section can now be specialized
to linear time-invariant systems. The following is a corollary to
Proposition 2.

lc’]roposition 3. For a linear time-invariant system of the form
X

— =K

dt

y = Hx (2.7)

Z=0Qx

there exists a functional observer of the form

d A

&« = A§ + By

de - (2.8)
z=C& + Dy

with the eigenvalues of A being the roots of a given polynomial
A+ AT+ a,_1A + a,, if and only if

(@F" + o1qF" ' 4 - 4 @, 1qF + 0,q)
€ span {H;, HF, ... . HF", j=1,...,p} (6.1)

The above proposition provides a simple and easy-to-check fea-
sibility criterion for a lower-order functional observer with a
pre-specified set of eigenvalues governing the error dynamics.
Moreover, an immediate consequence of Proposition 3 is the
following:

Corollary. Consider a linear time-invariant system of the form (2.7)
with observability index v,. Then, there exists a functional observer
of the form (2.8) of order v = v, - 1 and arbitrarily assigned
eigenvalues.

The result of the corollary is exactly Luenberger’s result for
functional observers for linear time-invariant systems [ 1,2], which
was derived through a different approach.
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7. Solvability of a more general functional observer lineariza-
tion problem

Consider now the more general functional observer lineariza-
tion problem defined in Section 4. An observer of the form (4.10)
is sought.

Using the same method as in the proof of Proposition 2, we
can prove the following:

Proposition 2'. For a system of the form (1.1), there exists a
functional observer of the form (4.10) with the eigenvalues of A being
the roots of a given polynomial A’ + a;A"™' + -+ + oy 1A + oy,
if and only if there exist functions B: R x RP — R, invertible with
respect to its first argument, ands,, ..., 8,:RP — R such that

(L¥ 4+ arly ™ + -+ + oo 1Le + ) Bo(q(x), H(x))
= 31 (H(X)) + L (8 (H(X))) + - - - + Ly~ " (8, (H(x))) (7.1)

Proof. (i) Necessity: Following exactly the same steps as in the
proof of Proposition 2, we can first conclude from (4.11) that
(LE 4ol + -+ oo iLe + 1) B(x)

L4 aly ™+ + oo Le + o) ()

[ &1 (H(x))
_ (Av—l T+ A +05v—1[) .

| %, (H(x))

[ e (H(x))

+ (A2 + A+t ay o) : oo
| LeB, (H(x))

Ly~ "%, (H(x))

Ly 2%, (H(x))
+(A+aql) : +

L 2%, (H(x)) L', (H(x))

Then, applying the operator (L} + oLy ™" + -+ + a1l + 1)
on (4.12) and using the previous expression, we conclude that

(L 4+ iy + -+ o1 Le + o,1) B(q(x), H(X))

A1 (H(x))
= (CA" "+ CA? + -+ + &, _1C) :
%, (H(x))
L% (H(x))
+(CA"? + - + &, 50) : o

L%, (H(x))
Ly %1 (H(x)) Ly ' %1 (H(x))
+ (CA+ «10) : +C :
Ly, (H(x)) Ly~ 'a, (H(x))

or

(L +only ' + - 4 apoiLe + o) Bo(q(x), H(x))
= 3 (H(X)) + Lr (3 (H(X))) + -+ + Ly " (8, (H(x)))

Systems & Control Letters 157 (2021) 105021

where
#(z,y) = %(z,y)
B1(y) = (CA" '+ a1CA" > + -+ + a,_1C) B(y)

B(y) = (CA" > + -+ + 01, 2C) B(y)
. (7.2)

3,_1(y) = (CA + a1C) B(y)
3,(y) = CA(y)

(ii) Sufficiency: Assuming that (7.1) holds, we can follow the
same steps as in the proof of Proposition 2 and prove that, 7(x) of
Eq. (7.3) given in Box II satisfies both conditions (4.11) and (4.12)
of the generalized functional observer linearization problem, with

0 0 ... 0 —a, 7] " B1(y) T
10 ... 0 —a, g B(y)
A=1|0 1 ... 0 —oya|, By =] 3)
: (7.4)
[0 0 1 —ap LB, ()
C=[00 0 1], €zy)=5zYy)

Therefore, system (7.1) with A, %&(-), C, €(-,
a functional observer. O

-) given by (7.4) is

Example. Consider the following system

dX] - _x X6

a ~ '

dx

ditz =sin(x}) — x5 — x,

i, X (75)
= = X3+ X1Xg —

dt 3 1+x3

y=2x5

Z=x;+x5

A scalar (v = 1) linear functional observer can be built with

w(z,y) =2y’

3 (7.6)
B1(y) =—-Yy
which satisfy condition (7.1) with and «; = 1. The resulting
functional observer (from (4.10) and (7.4)) is
dé .
—=—5-y
dx (7.7)
2=¢+y

8. Conclusion

The present work has developed a direct generalization of
Luenberger’s functional observers to nonlinear systems. It has
formulated notions of exact linearization for functional observer
design and has derived specific criteria for linearization to be
feasible, including a simple formula for the resulting functional
observer. Unlike full-order and reduced-order state observers that
can be designed to have linearizable error dynamics for almost all
real analytic nonlinear systems in the Poincaré domain without
restrictions, functional observers can only be linearized under
rather restrictive conditions.
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%o(q(x), H(x))

L oy 4 -+ oL + 1) Bo(q(x), H(X)) — B (HX)) — - - — L 72 (3, (H(X)))

(L2 + oL + eal) Bo(q00). H(X)) — %1 (H)) — Le (5, (H()))
(Lr 1+ D) 50(q(x). Hx)) — 5, (H(x)

(7.3)

Box II.
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