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a b s t r a c t

In this work, the problem of designing observers for estimating a single nonlinear functional of the
state is formulated for general nonlinear systems. Notions of functional observer linearization are also
formulated, in terms achieving exactly linear error dynamics in transformed coordinates and with
prescribed rate of decay of the error. Necessary and sufficient conditions for the existence of a lower-
order functional observer with linear dynamics are derived. The results provide a direct generalization
of Luenberger’s linear theory of functional observers to nonlinear systems.
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1. Introduction

The problem of estimating a function of the state vector,
ithout the need of estimating the entire state vector, arises

n many applications. The design of output feedback controllers
ased on a state feedback design is a classical example, where
t is only the state feedback function that needs to be estimated
nd not the entire state vector. Another class of applications is
elated to the design of inferential control systems, where one
utput is measured and a different output, which is unmeasured,
eeds to be regulated. From a practical point of view, the most
ommon class of applications is related to condition monitoring
f dynamic systems.
These applications motivate the development of functional

bservers, the aim being a reduction of dimensionality relative
o a full-state observer. The notion of a functional observer was
irst defined in Luenberger’s pioneer work on observers for linear
ultivariable systems [1,2]. Luenberger proved that for a linear
ystem, it is feasible to construct a functional observer with
umber of states equal to observability index minus one.
The basic theory of linear functional observers can be found

n standard linear systems texts, e.g. [3]. In recent years, there
as been a renewed interest in linear functional observers [4–9],
he goal being to find the smallest possible order of the linear
unctional observer.

For nonlinear systems, there have been significant develop-
ents in the theory of full-state observers, with a variety of
ethods and approaches. In particular, in the context of exact

inearization methods [10–17], Luenberger theory for full-state
bservers has been extended to nonlinear systems in a direct and
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https://doi.org/10.1016/j.sysconle.2021.105021
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analogous manner. The main goal of the present work is to de-
velop a direct generalization of Luenberger’s functional observers
to nonlinear systems.

The present work studies the design of functional observers
for nonlinear systems from the point of view of exact observer
error linearization. Necessary and sufficient conditions for the
existence of functional observers with linear error dynamics are
derived, leading to simple formulas for observer design with
eigenvalue assignment. In particular, in the present work, we
consider unforced nonlinear systems of the form
dx
dt

= F(x)

y = H(x)

z = q(x)

(1.1)

where:
x ∈ Rn is the system state
y ∈ Rp is the vector of measured outputs
z ∈ R is the (scalar) output to be estimated

and F:Rn
→ Rn, H:Rn

→ Rp, q:Rn
→ R are smooth

nonlinear functions. The objective is to construct a functional
observer of order ν < n, which generates an estimate of the
output z, driven by the output measurement y.

Section 2 will define the notion of functional observer for a
system of the form (1.1) in a completely analogous manner to
Luenberger’s definition for linear systems. Section 3 will pose the
problem of functional observer design and point out its chal-
lenges. Section 4 will define notions of exact linearization for
the functional observer problem, in the same vein as they have
been defined for full-state observers in the literature. Section 5
will develop necessary and sufficient conditions for the solution
of the functional observer linearization problem, when both the
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bserver dynamics and its output must be linear, as well as a
imple formula for the resulting functional observer. The results
f Section 5 will be specialized to linear time-invariant systems
n Section 6, leading to simple and easy-to-check conditions for
he design of lower-order functional observers. In Section 7, nec-
ssary and sufficient conditions for solvability of a more general
unctional observer linearization problem will be derived.

. Definition of a functional observer for a nonlinear dynamic
ystem

In complete analogy to Luenberger’s construction for the linear
ase, we seek for a mapping

= T (x) =

⎡⎢⎢⎣
T1(x)

...

Tν(x)

⎤⎥⎥⎦ (2.1)

rom Rn to Rν , to immerse system (1.1) to a νth order system (ν
n), with input y and output z:

dξ
dt

= ϕ(ξ, y)

z = ω(ξ, y)
(2.2)

here ϕ:Rν
× Rp

→ Rν, ω:Rν
× Rp

→ R, the aim being
hat system (2.2), driven by the measured output y of (1.1), can
enerate an estimate of unmeasured output z of (1.1).
But in order for system (1.1) to be mapped to system (2.2)

nder the mapping T (x), the following relations have to hold:
∂T

∂x
(x)F(x) = ϕ (T (x),H(x)) (2.3)

(x) = ω (T (x),H(x)) (2.4)

The foregoing considerations lead to the following definition
f a functional observer:

efinition 1. Given a dynamic system (1.1), with y being the
ector of measured outputs and z is the scalar output to be
stimated, the system
dξ̂
dt

= ϕ(ξ̂ , y)

ẑ = ω(ξ̂ , y)
(2.5)

here ϕ:Rν
× Rp

→ Rν, ω:Rν
× Rp

→ R (ν < n) is called a
unctional observer for (1.1), if in the series connection

the overall dynamics
dx
dt

= F(x)

dξ̂
dt

= ϕ(ξ̂ ,H(x))
(2.6)

ossesses an invariant manifold ξ̂ = T (x) with the property that
(x) = ω (T (x),H(x)).

In the above definition, the requirement that ξ̂ = T (x) is an
nvariant manifold of (2.6), i.e. that ξ̂ (0) = T (x(0)) ⇒ ξ̂ (t) =

(x(t)) ∀t > 0, translates to ∂T
∂x (x)F(x) = ϕ (T (x),H(x)), which is

ondition (2.3) stated earlier.
If the functional observer (2.5) is initialized consistently with

he system (1.1) i.e. if ξ̂ (0) = T (x(0)), then ξ̂ (t) = T (x(t)), and
herefore

ˆ(t) = ω

(
ξ̂ (t), y(t)

)
= ω (T (x(t)) ,H (x(t))) = q (x(t)) ∀t > 0
2

which means that the functional observer will be able to exactly
reproduce z(t).

In the presence of initialization errors, additional stability
requirements will need to be imposed on the ξ̂ -dynamics, for the
estimate ẑ(t) to asymptotically converge to z(t).

At this point, it is important to examine the special case of a
linear system, where F(x) = Fx , H(x) = Hx , q(x) = qx with F,
H, q being n× n, p× n, 1× n matrices respectively, and a linear
mapping T (x) = Tx is considered. Definition 1 tells us that for a
linear time-invariant system
dx
dt

= Fx

y = Hx

z = qx

(2.7)

the system
dξ̂
dt

= Aξ̂ + By

ẑ = Cξ̂ + Dy
(2.8)

will be a functional observer if the following conditions are met:

TF = AT + BH (2.9)

q = CT + DH (2.10)

for some ν×n matrix T. These are exactly Luenberger’s conditions
for a functional observer for a linear time-invariant system [2].

3. Designing lower-order functional observers for nonlinear
systems

In order to design of a functional observer for a nonlinear

system, one must be able to find a mapping T (x) =

⎡⎢⎢⎣
T1(x)

...

Tν(x)

⎤⎥⎥⎦ to

satisfy conditions (2.3) and (2.4), i.e. such that:

•
∂Tj
∂x

(x)F(x), j = 1, . . . , ν is a function of

T1(x), . . . , Tν(x), H(x)

• q(x) is a function of T1(x), . . . , Tν(x), H(x)

However, such scalar functions T1(x), . . . , Tν(x) may not exist if
< n – p.
Moreover, even when they do exist, there is an additional very

mportant requirement: Since ∂T
∂x (x)F(x) = ϕ (T (x),H(x)) will

define the right-hand side of the functional observer’s dynamics,
it must be such that the functional observer’s dynamics is stable
and the decay of the error is sufficiently rapid.

This paper will address the functional observer design prob-
lem, focusing on finding conditions under which low-order func-
tional observers are feasible.

4. Exact linearization of a functional observer

The concept of exact observer linearization has been formu-
lated in the literature for full-state observers. We will start this
section with a brief necessary review, following [10–12]. Subse-
quently we will propose an extension of the concept of exact
linearization to functional observers, and we will discuss both
the inherent similarity and the fundamental difference with exact
linearization of full-state observers.

Consider a nonlinear system
dx
dt

= F(x)
(4.1)
y = H(x)
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f a mapping ξ = T (x) from Rn to Rν can be found to map system
4.1) to a linear system

dξ
dt

= Aξ + By (4.2)

here A and B are ν×ν and ν×p matrices respectively, the idea is
o use system (4.2) as the basis for a state observer. The mapping
(x) must satisfy

∂T

∂x
(x)F(x) = AT (x) + BH(x) (4.3)

Assuming for the moment that the partial differential equation
(4.3) can be solved, it will be possible to reconstruct the state if the
mapping x ↦→ ξ is injective or if x ↦→(ξ , y) is injective. The observer
ill then consist of a replica of (4.2)

dξ̂
dt

= Aξ̂ + By (4.4)

along with an algebraic equation to calculate the state estimate.
In particular,

– for ν = n (full-order observer), the state estimate will be
alculated as x̂ = T −1(ξ̂ ),

– for ν = n – p (reduced-order observer), the state estimate will

be the solution of

{
T (x̂) = ξ̂

H(x̂) = y

}
.

In both cases, the observer’s error dynamics will follow

d
dt

(
ξ̂ − T (x)

)
= A

(
ξ̂ − T (x)

)
(4.5)

hich is linear, and it will converge exponentially to 0 when the
atrix A is chosen to be Hurwitz.
In summary, existence of a full-state observer with linear error

ynamics reduces to two main questions:

Solvability of the partial differential equation (4.3)

i Injectivity of the mapping x ↦→ T (x) or x ↦→ (T (x), H(x)).

i. has affirmative answer under mild assumptions (see specific
esults later in this section), whereas for ii. to hold, appropriate
bservability conditions on (4.1) must be imposed (see [10–12]).
Let us now consider the functional observer, as defined by

efinition 1 in Section 2. In the spirit of full-state observer lin-
arization, we seek for a functional observer of the form (2.5)
hose dynamics is linear, i.e.

(ξ, y) = Aξ + By (4.6)

hen, condition (2.3) will become the partial differential equation
4.3), but we also need to satisfy condition (2.4), which states that
(x) must be expressible as a function of T (x) and H(x). This is a
unctional dependence condition, whose satisfaction depends on
he order of the functional observer.

If ν = n – p and the reduced-order full-state observer lin-
arization problem can be solved, this will automatically solve the
unctional observer linearization problem, for any functional q(x).

If ν < n – p, the functional dependence requirement from (2.4)
ay or may not be feasible, depending on q(x) and the observer’s
ynamics.
In summary, the possibility of extension of exact linearization

o functional observers reduces to two main questions:

Solvability of the partial differential equation (4.3)
ii Compatibility of T (x) with the functional q(x), in the sense of

the functional dependence specified through (2.4).
3

Thus, we see that the solvability problem for the partial differ-
ntial equation (4.3) is common both for the functional and the
ull-state observer linearization problems. This problem has been
esolved.

For locally Lipschitz F(x) and H(x), local existence of a (weak)
olution of (4.3) may be established under very mild assumptions.
he following proposition is an immediate consequence of a
heorem by Andrieu and Praly [[10], Theorem 2]:

roposition 1. Let O be an open set. Assume there exists a strictly
ositive number δ such that the dynamics dx

dt = F(x) is backward
omplete within the set O + δ = {x ∈ Rn: ∃χ ∈ O: |x − χ | < δ}.
hen, for every Hurwitz matrix A, there exists a continuous function
(x), defined on the closure of O, which satisfies (4.3).

The above proposition establishes existence of a solution. It
urns out that the solution is unique within the class of locally
nalytic functions, but under stronger assumptions. The following
roposition is an immediate consequence of Lyapunov’s Auxiliary
heorem [18] (see also [11]).

roposition 1′. Let F:Rn
→ Rn, H:Rn

→ Rp be real analytic
functions with F(0) = 0,H(0) = 0 and denote by σ (F) the set of
eigenvalues of ∂F

∂x (0). Also, let A and B be ν×ν and ν×p matrices
respectively. Suppose:

1. All the eigenvalues of A are non-resonant with σ (F), i.e. no
eigenvalue λj of A is of the form λj =

∑n
i=1 miκi , with

κi ∈ σ (F) and mi non negative integers, not all zero.
2. 0 does not lie in the convex hull of σ (F).

hen the partial differential equation (4.3) with initial condition
(0) = 0, admits a unique real analytic solution T (x) in a neigh-

ourhood of x = 0.

Because the subproblem of solvability of the partial differential
quation (4.3) has been resolved, the focus of the present paper
ill be on the second subproblem: under what conditions could the
olution T (x) be compatible with q(x), in the sense specified through
2.4). The goal will be to find conditions to check feasibility of
owering the order of the functional observer, below (n – p).

In the next section we will study a special form of the func-
ional observer linearization problem, where in addition to re-
uiring linear observer dynamics, we will also require linearity
f the observer’s output map. In particular, we will consider the
ollowing:

unctional Observer Linearization Problem
Given a system of the form (1.1), find a functional observer of

he form
dξ̂
dt

= Aξ̂ + By

ẑ = Cξ̂ + Dy
(4.7)

where A, B, C, D are ν × ν, ν × p, 1 × ν, 1 × p matrices
respectively, with A having stable eigenvalues. Equivalently, find
a continuously differentiable mapping T : Rn

→ Rν such that
∂T

∂x
F(x) = AT (x) + BH(x) (4.3)

and

q(x) = CT (x) + DH(x) (4.8)

Assuming that the above problem can be solved, the resulting
error dynamics will be linear:
d
dt

(
ξ̂ − T (x)

)
= A

(
ξ̂ − T (x)

)
ẑ − z = C

(
ξ̂ − T (x)

) (4.9)
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a
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rom which ẑ(t) − z(t) = CeAt
(
ξ̂ (0) − T (x(0))

)
. With the ma-

rix A having stable eigenvalues, the effect of the initialization
rror ξ̂ (0) − T (x(0)) will die out, and ẑ(t) will approach z(t)
symptotically.
In Section 7, we will consider a more general functional ob-

erver linearization problem, where the observer dynamics is
inear in the observer state but might involve a nonlinear function
f y, and the observer output depends on a linear function of
he states but might involve a nonlinear function of the observer
utput and y. In particular, we will consider the following:

more general Functional Observer Linearization Problem
Given a system of the form (1.1), find a functional observer of

he form
dξ̂
dt

= Aξ̂ + B(y)

ẑ solution of G(ẑ, y) = Cξ̂

(4.10)

where A, C are ν × ν, 1 × ν matrices respectively, with A having
table eigenvalues, and where B:Rp

→ Rν, G:R × Rp
→ R are

continuous functions, with G invertible with respect to its first
argument (i.e., such that the equation G(z, y) = ζ is uniquely
solvable with respect to z, for every y and ζ ). Equivalently, find a
continuously differentiable mapping T : Rn

→ Rν such that
∂T

∂x
(x)F(x) = AT (x) + B(H(x)) (4.11)

nd

G(q(x),H(x)) = CT (x) (4.12)

ssuming that the foregoing functional observer linearization
roblem can be solved, the resulting error dynamics will be
inear:
d
dt

(
ξ̂ − T (x)

)
= A

(
ξ̂ − T (x)

)
G(ẑ,H(x)) − G(z,H(x)) = C

(
ξ̂ − T (x)

) (4.13)

rom which

G
(
ẑ(t),H(x(t))

)
− G(z(t),H(x(t))) = CeAt

(
ξ̂ (0) − T (x(0))

)
.

ith the matrix A having stable eigenvalues, the effect of the
nitial error ξ̂ (0) − T (x(0)) will die out, ξ̂ (t) will approach T (x(t))
symptotically and because of the invertibility assumption on
G, ẑ(t) will approach z(t). This generalized Functional Observer
inearization Problem will be solved in Section 7.

. Necessary and sufficient conditions for solvability of the
unctional observer linearization problem

To be able to develop a practical approach for designing func-
ional observers, it would be helpful to develop criteria to check if
or a given set of ν eigenvalues, there exists a functional observer
hose error dynamics is governed by these eigenvalues. This
ill be done in the present section for the Functional Observer
inearization Problem.
The main result is as follows:

roposition 2. For a nonlinear system of the form (1.1), there exists
functional observer of the form

dξ̂
dt

= Aξ̂ + By

ẑ = Cξ̂ + Dy
(4.7)

ith the eigenvalues of A being the roots of a given polynomial λν
+

1λ
ν−1

+· · ·+αν−1λ+αν , if and only if Lν
Fq(x)+α1Lν−1

F q(x)+· · ·+

αν−1LFq(x)+ ανq(x) is R-linear combination of Hj(x), LFHj(x), . . . ,
Lν
FHj(x), j = 1, . . . , p, where LF =

∑n
k=1 Fk(x)

∂
∂xk

denotes the Lie
erivative operator.
 +

4

Proof. (i) Necessity
Suppose that there exists a functional observer of the form

(4.7) for the system (1.1). Then, condition (4.3) will be satisfied for

some T (x) =

⎡⎢⎢⎣
T1(x)

...

Tν(x)

⎤⎥⎥⎦. Using the Lie derivative operator notation,

this condition may be written component-wise as

⎡⎢⎢⎣
LFT1(x)

...

LFTν(x)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
T1(x)

...

Tν(x)

⎤⎥⎥⎦ +

⎡⎢⎢⎣
B1H(x)

...

BνH(x)

⎤⎥⎥⎦ where B1, . . . , Bν denote the rows of

matrix B. Applying the Lie derivative operator LF to each compo-
ent in the above equation (k – 1) times, we find that for k = 2,
, . . .

LkFT1(x)
...

LkFTν(x)

⎤⎥⎥⎦ = Ak

⎡⎢⎢⎣
T1(x)

...

Tν(x)

⎤⎥⎥⎦ + Ak−1

⎡⎢⎢⎣
B1H(x)

...

BνH(x)

⎤⎥⎥⎦

+ Ak−2

⎡⎢⎢⎣
LF (B1H(x))

...

LF (BνH(x))

⎤⎥⎥⎦ + · · · +

⎡⎢⎢⎣
Lk−1
F (B1H(x))
...

Lk−1
F (BνH(x))

⎤⎥⎥⎦
from which we can calculate:⎡⎢⎣

(
Lν
F + α1Lν−1

F + · · · + αν−1LF + αν I
)

T1(x)
...(

Lν
F + α1Lν−1

F + · · · + αν−1LF + αν I
)

Tν(x)

⎤⎥⎦
(
Aν−1

+ α1Aν−2
+ · · · + αν−1I

)⎡⎢⎣B1H(x)
...

BνH(x)

⎤⎥⎦
(
Aν−2

+ α1Aν−3
+ · · · + αν−2I

) ⎡⎢⎣LF (B1H(x))
...

LF (BνH(x))

⎤⎥⎦ + · · ·

(A + α1I)

⎡⎢⎣Lν−2
F (B1H(x))
...

Lν−2
F (BνH(x))

⎤⎥⎦ +

⎡⎢⎣Lν−1
F (B1H(x))
...

Lν−1
F (BνH(x))

⎤⎥⎦
pplying the operator

(
Lν
F + α1Lν−1

F + · · · + αν−1LF + αν I
)
on (4.8)

nd using the previous expression, we conclude that(
Lν
F + α1Lν−1

F + · · · + αν−1LF + αν I
)
q(x)

(
CAν−1

+ α1CAν−2
+ · · · + αν−1C

)⎡⎢⎣B1H(x)
...

BνH(x)

⎤⎥⎦
(
CAν−2

+ · · · + αν−2C
)⎡⎢⎣LF (B1H(x))

...

LF (BνH(x))

⎤⎥⎦ + · · ·

(CA + α1C)

⎡⎢⎣Lν−2
F (B1H(x))
...

Lν−2
F (BνH(x))

⎤⎥⎦ + C

⎡⎢⎣Lν−1
F (B1H(x))
...

Lν−1
F (BνH(x))

⎤⎥⎦
ν ν−1
LF (DH(x)) + α1LF (DH(x)) + · · · + αν−1LF (DH(x)) + ανDH(x)
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o

L

.

t

T (x) =

⎡⎢⎢⎣
Lν−1
F q(x) + α1Lν−2

F q(x) + · · · + αν−1q(x) − Lν−1
F (β0H(x)) − Lν−2

F (β1H(x)) − · · · − βν−1H(x)
...

LFq(x) + α1q(x) − LF (β0H(x)) − β1H(x)
q(x) − β0H(x)

⎤⎥⎥⎦ (5.4)

Box I.
C

i

p
f

b
λ
t

β
s

C

(
t
r
m
a

r
ν
Fq(x) + α1Lν−1

F q(x) + · · · + αν−1LFq(x) + ανq(x)

= Lν
F (β0H(x)) + Lν−1

F (β1H(x)) + · · ·

+LF (βν−1H(x)) + βνH(x)

=

p∑
j=1

(
β0jL

ν
FHj(x) + β1jL

ν−1
F Hj(x) + · · ·

+β(ν−1)jLFHj(x) + βνjHj(x)
)

(5.1)

where

β0 = D

β1 = CB + α1D

β2 = CAB + α1CB + α2D
...

βν−1 = CAν−2B + · · · + αν−2CB + αν−1D

βν = CAν−1B + α1CAν−2B + · · · + αν−1CB + ανD

(5.2)

This proves that Lν
Fq(x)+α1Lν−1

F q(x)+· · ·+αν−1LFq(x)+ανq(x) is
R-linear combination of Hj(x), LFHj(x), . . . , Lν

FHj(x), j = 1, . . . , p.
(ii) Sufficiency: Suppose that Lν

Fq(x) + α1Lν−1
F q(x) + · · · +

αν−1LFq(x)+ανq(x) is R-linear combination of Hj(x), LFHj(x), . . . ,
Lν
FHj(x), j = 1, . . . , p, i.e. there exist constant row vectors β0, β1,

. . , βν ∈ Rp such that (5.1) holds. Consider the partial differen-
ial equation:

∂T

∂x
(x)F(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 −αν

1 0 . . . 0 −αν−1

0 1 . . . 0 −αν−2
...

...
...

...

0 0 . . . 1 −α1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
T (x)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

βν − ανβ0

βν−1 − αν−1β0

βν−2 − αν−2β0
...

β1 − α1β0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
H(x) (5.3)

It is straightforward to verify that, T (x) of Eq. (5.4) given in Box I
satisfies the PDE (5.3) and we see that its νth component is
Tν(x) = q(x) − β0H(x), therefore,

q(x) = [0 0 · · · 0 1] T (x) + β0H(x) (5.5)

Hence T (x) given by (5.4) satisfies conditions (4.3) and (4.8) for

the solution of the Functional Observer Linearization Problem,

5

and system (4.7) with

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −αν

1 0 · · · 0 −αν−1

0 1 · · · 0 −αν−2
...

...
...

...

0 0 · · · 1 −α1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

βν − ανβ0

βν−1 − αν−1β0

βν−2 − αν−2β0
...

β1 − α1β0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= [0 0 · · · 0 1] , D = β0

(5.6)

s a functional observer. This completes the proof. □

It is important to emphasize that the sufficiency part of the
roof is constructive, and it immediately leads to a design method
or the functional observer:

Once a set of constant row vectors β0, β1, . . . , βν ∈ Rp have
een found to satisfy (5.1) for a specific characteristic polynomial
ν

+ α1λ
ν−1

+ · · · + αν−1λ + αν , formula (5.6) immediately gives
he A, B, C and D matrices of the linear functional observer.

Also, it should be noted that there may be multiple sets of
0, β1, . . . , βν ∈ Rp that satisfy (5.1), leading to multiple
olutions for the functional observer linearization problem.

hemical reactor with hazardous reactants
Consider a non-isothermal Continuous Stirred Tank Reactor

CSTR) where an exothermic chemical reaction A+B → C+D
akes place. The reactor is cooled through a cooling jacket. The
eactor dynamics can be modelled through standard component
ass balances and energy balances, assuming constant volume
nd constant thermophysical properties, as follows ( [19,20]):
dcA
dt

=
F
V
(cAin − cA) − R (cA, cB, θ )

dcB
dt

=
F
V
(cBin − cB) − R (cA, cB, θ )

dθ
dt

=
F
V

(θin − θ) +
(−∆H)R

ρcp
R (cA, cB, θ ) −

UA
ρcpV

(θ − θJ )

dθJ
dt

=
FJ
VJ

(
θJin − θJ

)
+

UA
ρJcpJVJ

(θ − θJ )

(5.7)

where cA and cB are the concentrations of species A and B respec-
tively in the reacting mixture, θ and θJ are the temperatures of the
reacting mixture and the jacket fluid respectively; these are the
system states. The function R (cA, cB, θ ) represents the reaction
rate and it is a given algebraic function, specified in terms of an
empirical correlation. The rest of the symbols represent constant
parameters: cAin and cBin are the feed concentrations of species A
and B respectively, F and FJ are the feed and coolant flowrates
respectively, V and VJ are the reactor volume and cooling jacket
volume respectively, (−∆H)R is the heat of reaction, ρ, cp and
ρJ , cpJ are the densities and heat capacities of the reactor con-
tents and cooling fluid respectively, U and A are the overall heat
transfer coefficient and heat transfer area respectively.
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When the reactants A and B are potentially hazardous, special
precautions are taken in terms of using relatively dilute feeds
and the reaction taking place at a relatively low temperature. In
terms of monitoring the operation of the reactor, the temperature
θ of the reacting mixture as well as the total sum of hazardous
chemicals’ concentrations cA + cB are critical quantities to be
monitored. Temperature is easy and inexpensive to measure, but
concentrations generally need to be estimated from temperature
measurements. Consider therefore the problem of building an
observer for the dynamic system (5.7), driven by the temperature
measurements
y1 = θ

y2 = θJ
(5.8)

he objective being to estimate the sum of the reactant concen-
rations

= cA + cB (5.9)

iquid-phase oxidation reactions are a very important class of
hemical reactions that are notorious for being highly exother-
ic and for involving serious safety threats. One well-studied
xample is the reaction of N-methyl pyridine (A) with hydrogen
eroxide (B) in the presence of a catalyst [19].
For this reaction, the reaction rate expression is (see [19]):

(cA, cB, θ ) =
A1e−

E1
θ A2e−

E2
θ cAcBZ

1 + A2e−
E2
θ cB

+ A3e−
E3
θ cAcB (5.10)

where A1, A2, A3 and E1, E2, E3 are the reaction rate parameters,
pre-exponential factors and rescaled activation energies respec-
tively, and Z is the catalyst concentration (constant).

To derive a functional observer, it is convenient to perform
appropriate translation of axes to shift the equilibrium point to
the origin. In particular, defining c ′

A = cA−cA,s, c ′

B = cB−cB,s, θ ′
=

θ − θs, θ
′

J = θJ − θJ,s, where (cA,s, cB,s, θs, θJ,s) is the steady state
(equilibrium point) of the reactor. For the above system, a scalar
functional observer can then be built (ν = 1), with the necessary
and sufficient conditions (5.1) being satisfied for:

β0 =

[
−

2ρcp
(−∆H)R

0
]
,

β1 =

[
−

2ρcp
(−∆H)R

(
F
V

+
UA

ρcpV

)
2UA

(−∆H)RV
]
, α1 =

F
V
(5.11)

he corresponding transformation map is T (c ′

A, c
′

B, θ
′, θ ′

J ) = c ′

A +

′

B +
2ρcp

(−∆H)R
θ ′, and the resulting functional observer is given by:

dξ̂
dt

= −
F
V

ξ̂ −
2UA

(−∆H)RV
(y′

1 − y′

2)

ẑ = ξ̂ −
2ρcp

(−∆H)R
y′

1

(5.12)

For the following parameter values (see [19]):
cA,in = 4 mol

l , cB,in = 3 mol
l , θin = 333 K, θJ,in = 300 K,

= 0.02 l
min , Fj = 1 l

min ,
= 1 l, VJ = 3 × 10−2 l, A1 = e8.08 l mol−1 s−1,

A2 = e28.12 l mol−1 s−1,
A3 = e25.12 l mol−1, E1 = 3952 K, E2 = 7927 K,
E3 = 12 989 K, ∆HR = −160 kJ

mol ,
ρ = 1200 g

l , ρJ = 1200 g
l , cpJ = 3.4 J

gK . cp = 3.4 J
gK , UA = 0.942

W
K , Z = 0.0021 mol

l
he corresponding reactor steady state is:

A,s = 1.211
mol
l

, cB,s = 0.211
mol
l

,

s = 386.20 K, θJ,s = 300.02 K,
 w

6

Fig. 1. (a) System’s and observer’s response for
ξ̂ (0) − T (c ′

A(0), c
′

B(0), θ
′(0), θ ′

J (0)) = 1 mol
l (b) Estimation error ẑ(t) − z(t).

nd we have simulated the reactor start-up, under the following
nitial conditions:

A (0) = 0, cB (0) = 0, θ (0) = 300 K, θJ (0) = 300 K.

Fig. 1 compares the functional observer’s estimate ĉA + ĉB =

ẑ + cA,s + cB,s to the system’s total reactant concentration cA + cB,
nd provides a plot of the corresponding estimation error, when
he initialization error is 1 mol

l .

6. Lower-order functional observers for linear systems

The results of the previous section can now be specialized
to linear time-invariant systems. The following is a corollary to
Proposition 2.

Proposition 3. For a linear time-invariant system of the form
dx
dt

= Fx

y = Hx

z = qx

(2.7)

there exists a functional observer of the form
dξ̂
dt

= Aξ̂ + By

ẑ = Cξ̂ + Dy
(2.8)

with the eigenvalues of A being the roots of a given polynomial
λν

+ α1λ
ν−1

+ · · · + αν−1λ + αν , if and only if

qFν
+ α1qFν−1

+ · · · + αν−1qF + ανq)

∈ span
{
Hj,HjF, . . . ,HjFν , j = 1, . . . , p

}
(6.1)

he above proposition provides a simple and easy-to-check fea-
ibility criterion for a lower-order functional observer with a
re-specified set of eigenvalues governing the error dynamics.
oreover, an immediate consequence of Proposition 3 is the

ollowing:

orollary. Consider a linear time-invariant system of the form (2.7)
ith observability index νo. Then, there exists a functional observer
f the form (2.8) of order ν = νo – 1 and arbitrarily assigned
igenvalues.
The result of the corollary is exactly Luenberger’s result for

unctional observers for linear time-invariant systems [1,2], which
as derived through a different approach.
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. Solvability of a more general functional observer lineariza-
ion problem

Consider now the more general functional observer lineariza-
ion problem defined in Section 4. An observer of the form (4.10)
s sought.

Using the same method as in the proof of Proposition 2, we
an prove the following:

roposition 2′. For a system of the form (1.1), there exists a
unctional observer of the form (4.10)with the eigenvalues of A being
he roots of a given polynomial λν

+ α1λ
ν−1

+ · · · + αν−1λ + αν ,
f and only if there exist functions B0:R × Rp

→ R, invertible with
espect to its first argument, andB1, . . . , Bν :Rp

→ R such that(
Lν
F + α1Lν−1

F + · · · + αν−1LF + αν I
)

B0(q(x),H(x))

= B1 (H(x)) + LF (B2 (H(x))) + · · · + Lν−1
F (Bν (H(x))) (7.1)

roof. (i) Necessity: Following exactly the same steps as in the
roof of Proposition 2, we can first conclude from (4.11) that(
Lν
F + α1Lν−1

F + · · · + αν−1LF + αν I
)

T1(x)
...(

Lν
F + α1Lν−1

F + · · · + αν−1LF + αν I
)

Tν(x)

⎤⎥⎥⎦
(
Aν−1

+ α1Aν−2
+ · · · + αν−1I

)⎡⎢⎢⎣
B1 (H(x))

...

Bν (H(x))

⎤⎥⎥⎦
(
Aν−2

+ α1Aν−3
+ · · · + αν−2I

) ⎡⎢⎢⎣
LFB1 (H(x))

...

LFBν (H(x))

⎤⎥⎥⎦ + · · ·

(A + α1I)

⎡⎢⎢⎣
Lν−2
F B1 (H(x))

...

Lν−2
F Bν (H(x))

⎤⎥⎥⎦ +

⎡⎢⎢⎣
Lν−1
F B1 (H(x))

...

Lν−1
F Bν (H(x))

⎤⎥⎥⎦
hen, applying the operator

(
Lν
F + α1Lν−1

F + · · · + αν−1LF + αν I
)

n (4.12) and using the previous expression, we conclude that(
Lν
F + α1Lν−1

F + · · · + αν−1LF + αν I
)
G(q(x),H(x))

(
CAν−1

+ α1CAν−2
+ · · · + αν−1C

)⎡⎢⎣B1 (H(x))
...

Bν (H(x))

⎤⎥⎦
(
CAν−2

+ · · · + αν−2C
)⎡⎢⎣LFB1 (H(x))

...

LFBν (H(x))

⎤⎥⎦ + · · ·

(CA + α1C)

⎡⎢⎣Lν−2
F B1 (H(x))

...

Lν−2
F Bν (H(x))

⎤⎥⎦ + C

⎡⎢⎣Lν−1
F B1 (H(x))

...

Lν−1
F Bν (H(x))

⎤⎥⎦
or(
Lν
F + α1Lν−1

F + · · · + αν−1LF + αν I
)

B0(q(x),H(x))

= B1 (H(x)) + LF (B2 (H(x))) + · · · + Lν−1
F (Bν (H(x)))
7

where

B0(z, y) = G(z, y)

B1(y) =
(
CAν−1

+ α1CAν−2
+ · · · + αν−1C

)
B(y)

B2(y) =
(
CAν−2

+ · · · + αν−2C
)
B(y)

...

Bν−1(y) = (CA + α1C) B(y)

Bν(y) = CB(y)

(7.2)

(ii) Sufficiency: Assuming that (7.1) holds, we can follow the
same steps as in the proof of Proposition 2 and prove that, T (x) of
Eq. (7.3) given in Box II satisfies both conditions (4.11) and (4.12)
of the generalized functional observer linearization problem, with

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 −αν

1 0 . . . 0 −αν−1

0 1 . . . 0 −αν−2
...

...
...

...

0 0 . . . 1 −α1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, B(y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B1(y)

B2(y)

B3(y)
...

Bν (y)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

C = [0 0 · · · 0 1] , G(z, y) = B0(z, y)

(7.4)

Therefore, system (7.1) with A, B(·), C, G(·, ·) given by (7.4) is
a functional observer. □

Example. Consider the following system

dx1
dt

= −x1 − x63
dx2
dt

= sin(x21) − x23 − x2

dx3
dt

= −x3 + x1x2 −
1

1 + x23
y = x23
z = x1 + x43

(7.5)

A scalar (ν = 1) linear functional observer can be built with

B0(z, y) = z − y2

B1 (y) = −y3
(7.6)

which satisfy condition (7.1) with and α1 = 1. The resulting
functional observer (from (4.10) and (7.4)) is
dξ̂
dx

= −ξ̂ − y3

ˆ = ξ̂ + y2
(7.7)

. Conclusion

The present work has developed a direct generalization of
uenberger’s functional observers to nonlinear systems. It has
ormulated notions of exact linearization for functional observer
esign and has derived specific criteria for linearization to be
easible, including a simple formula for the resulting functional
bserver. Unlike full-order and reduced-order state observers that
an be designed to have linearizable error dynamics for almost all
eal analytic nonlinear systems in the Poincaré domain without
estrictions, functional observers can only be linearized under
ather restrictive conditions.
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T (x) =

⎡⎢⎢⎢⎢⎢⎣

(
Lν−1
F + α1Lν−2

F + · · · + αν−2LF + αν−1I
)

B0(q(x),H(x)) − B2 (H(x)) − · · · − Lν−2
F (Bν (H(x)))

...(
L2F + α1LF + α2I

)
B0(q(x),H(x)) − Bν−1 (H(x)) − LF (Bν (H(x)))

(LF + α1I) B0(q(x),H(x)) − Bν (H(x))
B0(q(x),H(x))

⎤⎥⎥⎥⎥⎥⎦ (7.3)
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