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Abstract—An affordable Remotely Operated Vehicle (ROV)
has been modified for under-ice sensing. In this paper, we present
the system upgrade, including sensor integration, electronics and
navigation stack. The new ROV is equipped with a Doppler
Velocity Log (DVL) and an attitude heading reference system
(AHRS) for navigation, and a stereo camera and a forward-
looking imaging sonar for perception. Field experiments were
conducted in March 2021 on a frozen waterway in Michigan.
The ROV was controlled to stay within 2 meters away from the
ice keel. Dead-reckoning navigation based on the DVL, AHRS
and Extended Kalman Filter (EKF) are implemented with results
presented in the paper. Using the navigation result and DVL
beam range measurements, ice-thickness was estimated along the
vehicle’s path. The ice thickness is found to be about 25 to 30 cm
that is coincident with manual observation from drilled ice holes.
Besides that, we also present and discuss interesting features
embedded in the frozen ice observed by our stereo camera and
the forward-looking imaging sonar.

Index Terms—Remotely Operated Vehicle (ROV), Under-ice
Navigation, Extended Kalman Filter (EKF)

I. INTRODUCTION

The ocean in polar regions plays a vital role in affecting
global overturning circulation, biological pumping, and carbon
cycle ( [1]–[4]). Sparse in-situ measurements from ice coring
[5] and tethered sampling stations [6] have revealed fascinating
physical and biogeochemical processes in this region, such
as biological plume, air bubbles [7], sub-platelet layers [8],
and basal ice melting [9]. In fact, our understanding of
these physical and biogeochemical processes, especially their
spatial extent, is still limited because they are severely under-
sampled due to the existence of ice. Ice coring and ice-tethered
platforms are still popular for sampling the ocean under the
ice. However, these approaches prefer thinner ice [10] that
is more accessible, and they deform the ice structure during
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anchoring and coring [11]. As a result, the measurements may
be subject to bias. They are also sparsely placed, sufficient for
observing large-scale (over 10 km) processes, but, fail to detect
and quantify smaller sub-mesoscale phenomena.

Robotic platforms, i.e., Autonomous Underwater Vehicles
(AUVs), are a highly promising tool for obtaining high-
resolution spatial coverages on small-scale biogeochemical
processes under the ice. Almost all the AUVs are initially
developed for open-water applications. Thus, a long list of
modifications needs to be made for under-ice sampling [12].

In this paper, we present our progress on modifying an
affordable ROV for under-ice sensing. The remaining paper
is organized as follows. In Section II, we will review related
works on AUV-based under-ice operations. The ROV sensor
integration and navigation system are discussed in Section III
and Section IV. Under-ice field tests have been conducted with
results shown in Section V. We will conclude the paper and
introduce our future works in Section VI.

II. RELATED WORKS

Operating AUVs under the ice is challenging, but it does
not prevent researchers from pushing the frontier of AUV-
based under-ice explorations. During the Spinnaker project
[13] in the 1980s, the Theseus AUV, an 8-meter-long vehicle,
was deployed under the ice in the Arctic. The AUV traveled
hundreds of kilometers to lay communication cables on the
seabed for detecting foreign submarines that may travel under
permanent ice through deep channels. Several notable under-
ice AUV deployments were performed in the 21st Century.
Following the first under-ice sidescan image collection from
an AUV in 2002 [14], several groups from the USA, UK,
and Japan accomplished multiple transects under ice floes and
obtained underside ice topography. Autosub another large-size
AUV has been developed and deployed for under-ice sensing
[15] [16]. The AE2000a AUV was deployed in the Okhotsk
Sea to map the underside of an ice floe using a multibeam



sonar [17]. Another seminal under-ice mapping operation was
done in 2015 [18] with the SEABED [19], a twin-hull AUV,
where the AUV performed lawnmower-pattern surveys under
several ice floes. The result, 3D topography maps, enabled
an accurate characterization of the physical dimensions of the
surveyed ice floes. More recently, a Kongsberg HUGIN AUV
was deployed to fly under the Thwaite Glacier ice shelf for
seabed mapping and water column assessment [20]. While the
above AUVs are relatively large, several research groups have
looked into compact and affordable AUVs, such as the Gavia
AUV [21]–[23], REMUS AUV [24], Seagliders [25], and
Icefin [26], which are easier to operate (without ice camp or
icebreakers) at relatively lower prices, but with limited sensing
capability and endurance. Among these successful under-ice
AUVs, there are few deployments targeted at exploring the
ice-water boundary layer that is within 4 meters under the
bottom of the ice. Rather, most of the AUVs were programmed
to fly at a constant depth further away from the ice and
used upward-looking sonar to map the ice bottom topography,
which only provides limited information on the existence of
sub-ice platelet layers, macroalgae plumes, or radiance budget.

III. UNDER-ICE ROV DESIGN

We selected BlueROV-2 platform as our test bed since
they are open-source and has a wide user community. Due
to the lack of sensors on the base BlueROV model for a good
localization result, we integrated a suit of sensors to greatly
improve the visual sensing and navigation capability of the
vehicle.
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Fig. 1. The Modified BlueROV for under-ice sensing

Figure 1 shows the upgraded BlueROV for under-ice sens-
ing. For navigation and collision avoidance, we have inte-
grated an upward-looking Doppler Velocity Log (DVL) from
Nortek Inc., an attitude heading reference system (Parker Lord
MicroStrain), and a forward-looking image sonar (Blueprint
Subsea). For ice sensing, we have developed a stereo camera
system mounted in an upward-looking configuration. Two Li-
ion battery packs are integrated in separated pressure housings,
providing an overall energy of about 500 Watt-hour. All the
electronics are enclosed inside a 4-inch aluminum pressure

housing in the lower level. A Jetson NX Xavier embeded
computer is integrated to interface with all the add-on sensors
using the Robotic Operating System (ROS) middleware. On
the topside computer, we have the BlueROV user-interface for
remote control and a customized RViz interface for visualizing
perceptual sensor measurements.

IV. NAVIGATION SYSTEM

In order to deploy the localization method into the ROV
for real-time processing in the future, Extended Kalman Filter
(EKF) [27] framework is selected for its low computational
cost. A ROS package, robot localization [28], is used to fuse
multiple sensors with different sources (e.g. IMU, velocity,
odometry) using EKF. EKF implemented in robot localization
will be reviwed in this section first. Then, we will present our
EKF setup and parameters tested with our field data.

A. Extended Kalman Filter

The estimation process can be described as a nonlinear
dynamic system

xk = f(xk�1) +wk�1 (1)

where xk = [x, y, z,�, ✓, , u, v, w, p, q, r, u̇, v̇, ẇ]T pre-
senting vehicle’s 15 states at time k, including position
(x, y, z), orientation expressed by Euler angle roll, pitch and
yaw (�, ✓, ), body-frame linear velocities (u, v, w), angular
velocities (p, q, r) and linear accelerations (u̇, v̇, ẇ). f is the
nonlinear state transition function, wk�1 is the process noise,
which is assumed to be a Gaussian distribution.

The measurement model is

zk = h(xk) + vk (2)

where zk is the measurement at time k, h is the nonlinear
sensor model which relates the state xk to the measurement
zk, vk is the measurement noise, which is a Gaussian distri-
bution.

Prediction equations, also known as state and covariance
propagation, are shown in the following equations.

x̂k = f(xk�1) (3)

P̂k = FPk�1F
T +Q (4)

where f is a standard 3D kinematic model derived from
Newtonian mechanics. The state propagation function can be
a nonlinear function. The covariance, Pk, is updated based on
F , the Jacobian of f , and Q, the process noise covariance.

The measurement update equations are shown in Eq.5 to 7

K = P̂kH
T (HP̂kH

T +R)�1 (5)
xk = x̂k +K(z �Hx̂k) (6)

Pk = (I �KH)P̂k(I �KH)T +KRK
T (7)

where K is the Kalman gain that is calculated based on
P̂k, R, the measurement covariance, and the H , the Jacobian
matrix of the observation model (shown in Eq. 2) over the
vehicle states.



B. EKF Setup

In the first step, we calibrated the magnetometer in the
AHRS at the testing site to correct for the hard iron bias.
In the tests, we used the raw IMU data and the Madgwick
Filter [29] to perform the pose estimation.

Nortek DVL bottom-track velocities [30] and depth mea-
surements from its pressure sensor are used in our odometry
estimation. The bottom-track velocities are sound-speed cor-
rected as the default sound-speed is configured at 1500m/s
and the actual sound speed is 1417m/s at our testing site. The
pressure measurements are “zeroed” at the water surface to
remove the pressure bias.

The diagonal elements in the process noise covariance,
Q, is presented in Tab. I. Since the DVL, AHRS and the
Base (located at the rear-back corner), are located at different
locations, we used the TF ROS package to transform data
between the frames. The values for the transformation is
presented in Tab. II.

TABLE I
PROCESS NOISE COVARIANCE MATRIX DIAGONAL VALUES.

Q0,0 1e�8 Q1,1 1e�8 Q2,2 0.9
Q3,3 0.3 Q4,4 0.3 Q5,5 0.9
Q6,6 0.5 Q7,7 0.5 Q8,8 0.3
Q9,9 0.3 Q10,10 0.3 Q11,11 0.3
Q12,12 0.3 Q13,13 0.3 Q14,14 0.3

TABLE II
TRANSFORMS BETWEEN BASE AND DVL, DVL AND AHRS.

x(m) y(m) z(m) �(rad) ✓(rad)  (rad)
Base�DVL -0.139 0.172 0.391 0.0 0.0 0.0

DVL�AHRS 0.434 -0.088 -0.301 3.132 0.003 3.13

V. PRELIMINARY FIELD RESULTS

In March 2021, field experiments were carried out in the
Keweenaw Waterway, Michigan, where the ice thickness is
about 10 to 12 inches. As shown in Fig. 2, multiple ice-
holes were drilled in a straight line on the ice surface. The
largest ice-hole was used for ROV deployment, while the
others were mainly designed to place artificial targets with
AR tags [31] that could provide ground truth information for
post-processing camera images. Field tests were conducted at
different locations and various weather conditions that helped
us to understand how the illumination affects the under-ice
images.

During the deployment, the ROV was remotely controlled
using sonar images as shown in Fig. 2, and upward-looking
cameras to navigate the ROV along the artifical targets we
placed at 10 to 20 meter intervals. In order to capture clear ice
features safely, the ROV was kept to move within 2-3 meters
off the ice. The ROV was piloted to move back-and-forth in
a straight-line multiple times.

We applied the EKF-based odometry estimator mentioned in
Section IV, and Fig. 3 presents the resulting vehicle trajectory.
We noticed moderate drift while the ROV is moving at a slow

speed which could be observed at the end of the transects.
In order to quantify the errors in the odometry, we have tried
existing visual odometry algorithms, e.g., ORB-SLAM [32],
but the result was not satisfying and the algorithm failed to
track and match features in such a low-contrast images. As
discussed in Section VI, other feature detection and image
processing algorithms needs to be developed.

Fig. 2. The ROV deployed through an ice hole. Artificial targets are set along
ROV’s move track. (Image credit to Brice Loose)

(a)

(b)

Fig. 3. EKF Odometry based om AHRS, DVL and the pressure sensor. The
ROV was deployed and recovered from the same ice hole. a) Top view, (b)
X-Z plane.The X-Y plane error distance in the odometry between the start
and the end points is 5.75 m.

In here, we could validate our odometry using the images
with observation of the same ice-hole or ice-block, but col-
lected at different times. As shown in Fig. 4, we presented two
pairs of images that were take at different time but containing
the same feature. Therefore, the images in each pair should
be taken at a similar location.

The EKF odometry at these selected positions is displayed
in Fig. 5. In Tab. III, we show the X-Y distance errors between



the odometry at each paired locations. The averaged error is
about 2 meters and 4.5 meters for two transects. We also
calculated the drift rate which is the average distance error
divided by the average distance travelled between each pair
of image for every transect. The overall travelled distance in
the mission is about 200 meters, all the travel distance are
calculated based on the EKF odometry.

(a) (b)

(c) (d)

Fig. 4. Image pairs for slected positions. (a) and (b) are the first pair of
images with ice-block observed at different times; (c) and (d) are the fourth
image pairs with ice-hole observed at different times.

Fig. 5. The top view of the EKF odometry with the locations of the selected
image pairs shown in different marker styles.

Besides the current profile and the bottom-track, the DVL
also provides a rough estimate of the distance between the
ROV and the bottom of the ice. Using such distance mea-
surements and the EKF estimated depth, we estimated the ice
thickness. The result is shown in Fig. 6. The DVL ranges
are corrected using the sound speed as mentioned in Section
IV, and the DVL’s mounting offsets are also measured and
corrected to provide an accurate ice thickness measurements.
As seen in Fig. 6, the ice thikcness averaged from 4 beam

measurements contains noise in some locations, where the ice-
holes are located. The noise is mainly caused by the multi-path
at the water opennings. This condition can be observed in Fig.
6 at time 580 seconds when the ROV is moving beneath the
deployment ice-hole. Least squares line fitting is applied to
estimated ice thickness from noise ice thickness. As shown
in Fig. 6, it indicated the flat ice keel has a roughly 0.3m
thickness, which agrees with our manual observation while
driling ice holes.

TABLE III
EKF ODOMETRY ERROR IN X-Y PLANE, UNIT: (M)

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6
Err. 1.542 2.156 1.895 4.096 4.544 4.782
Avg. Err. 1.864 4.474
Dis. 101.948 101.318 101.646 117.308 117.492 117.755
Avg. Dis. 101.637 117.518
Drift Rate 1.83% 3.49%

Fig. 6. ROV depths over time (Green), and ice thickness measurements
(yellow and red)

One important purpose of this mission is to gather under-
ice visual and acoustic images for developing feature tracking
and target detection algorithms. As shown in Fig. 2, imaging
sonar is capable of detecting ice openings. The ice-hole edge
is highlighted as rectangle, and the other patch of bright area is
due to an ice block that was pushed below the ice. The rough
ice-hole edge and relative smooth ice will have diffusion and
specular reflection respectively, this reflection property will
also help to make acoustic fiducial marker [33].

Stereo camera images captured the ice-hole, around 6
inches, are shown in Fig. 4. During this mission, the light field
is sufficient such that onboard LED were no longer needed.
Also, we removed the artificial target since those AR tags
were dark due to the natural light coming from above. We
expect vision-aided solution [34] will increase the navigation
accuracy compare to inertial sensor solution. Ice features,
such as the air bubbles, are visible in the images when the
ROV maintained within 2 meters to the ice. However, those
features are ubiquitous and similar in the image, descriptor-



based tracking, e.g., the ORB-SLAM, was not capable of
tracking and matching these features from our test.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we demonstrated the upgraded ROV with
multi-modality sensors for under-ice environment research.
The collected filed data including stereo images and sonar
images were displayed. An EKF navigation is implemented
with result shown in the paper. By comparing to the camera
images collected at the same location but different times, we
estimated the odometry errors. The average errors are about
2 meters and 4.5 meters at different locations on the transects
and drift rate are around 1.83% and 3.49%.

Currently, we are integrating other visual odometry meth-
ods, e.g., the Kanade–Lucas–Tomasi (KLT) [35]. We will also
explore new image processing algorithms to highlight the
air bubbles and other textures to reduce drift by introducing
the loop-closure. We will also examine the usage of sonar
images to provide additional feature constraints to improve
the localization precision. In March 2022, we plan to perform
additional field experiments to test our developed algorithms.
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