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a b s t r a c t

This work deals with the problem of designing functional observers for fault diagnosis in nonlinear
systems in the presence of noises. It follows up previous work of the authors on design of functional
observers (residual generators) for deterministic systems from the point of view of observer error
linearization. Here, we consider the effect of noises on residual generation. The effect of sensor
noises on the residuals is studied analytically and the associated probability distributions are derived.
Following this, a well-known statistical hypothesis testing approach, Generalized Likelihood Ratio, is
used to track changes in the mean of the residual to enable robust fault detection. The approach is also
extended to process noises (plant-model mismatch) numerically. Throughout the study the methods
presented are tested on a non-isothermal CSTR case study. The results show that the fault diagnosis
scheme is able to quickly and accurately detect faults in the presence of both sensor and process
noises.

© 2021 Published by Elsevier Ltd.
1. Introduction

Higher demand for safety in process industries has made fault
etection and isolation an active research area over the past
wo decades. A fault is an abnormal incident resulting in a large
eviation in process variables from the usual conditions. They
ould arise due to numerous factors such as mechanical failures,
uman errors, and power failures. The consequences of faults
an range from off spec production that can result in loss of
evenue, to explosions that result in fatalities. A case in point
eing the 2007 T2 laboratories explosion in Jacksonville Florida,
hat occurred due to cooling system failure and resulted in four
atalities [1–3] and the 2013 William Olefins plant explosion in
eismar Louisiana, that resulted in two fatalities [4,5]. Such dis-
strous consequences warrant the need for robust fault diagnosis
chemes that quickly detect and isolate the faults in the system
nd enable engineers or an automated fault-tolerant controller to
ake corrective action.

In literature fault diagnosis methods are broadly divided into
wo categories, (i) model-based (ii) statistical /data-driven [6–8].
odel-based methods are based on exploiting analytical redun-
ancies present in the system. This comprises of a digital twin
sing a process model which is implemented in software form on
computer [9–14]. Analytical redundancy is achieved through the
nown interdependence among the process variables provided
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by the model [9–11,13–15]. The evolution of process variables
of the digital twin will follow the outputs of the real system
in the absence of faults and will show a measurable deviation
in the presence of faults. The essence of analytical redundancy
in fault diagnosis is checking consistency of the actual system
behavior against the available system model. Any inconsistency is
measured in terms of residuals that deviate from zero only in the
presence of a specific fault. Moreover, since accurate modeling of
a real system is difficult and the effect of unknown disturbances
or uncertainties could corrupt the residual signal, it is important
to carefully define the residual in a way that makes it unaffected
by those disturbances. The central objective in model-based fault
diagnosis is to develop a residual generator for each of the pos-
sible faults, in a way that the residual is unaffected by the other
faults and unknown disturbances.

One of the most widely studied approaches in the area of
model-based fault detection and isolation (FDI) is the observer-
based fault diagnosis approach. The first observer-based FDI
method for linear systems was proposed by Beard and Jones in
the early 1970s [9,16,17] which was a historic milestone in the
area of fault diagnosis. In general, observer based FDI methods
for linear systems can be grouped into the following four cate-
gories [9,11,15] (i) Fault Detection Filter (ii) Diagnostic Observer
(iii) Parity Space Approach (iv) Frequency Domain Approach. For a
review of fault diagnosis for linear systems the reader is referred
to excellent surveys by Frank and Ding [10,15]. There have been
efforts seeking extensions of observer-based FDI methods to
nonlinear systems in the spirit of linear systems methods. For
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xample, [18] used the generalized inverse approach to design
unctional observers for FDI in Lipschitz non-linear systems in
he presence of disturbances/uncertainties. [19,20] used concepts
rom input–output stability and L2 stability respectively to de-
velop a scheme for integrated design of observer-based fault
detection systems in affine nonlinear systems. Recently, [21,22]
proposed an observer based FDI approach from the point of
view of observer error linearization for non-linear systems. The
methods were a direct nonlinear generalization of standard linear
FDI methods found in [9].

In practical processes, random disturbances resulting in mea-
surement noises and/or plant-model mismatch are common,
which necessitates formulating the system in a probabilistic set-
ting [7,9]. In contrast to deterministic systems (the focal point
of model-based methods), the future state of stochastic systems
is not completely determined by the past and present states [7].
The measurements are considered to be a statistical time series
and when the process is operating normally the observations
(or residuals generated from the observations) correspond to a
given probability distribution, and in the event of a fault/mishap
(out of control) the underlying distributions change and can be
characterized by a change in mean and/or variance. This en-
ables the utilization of statistical methods, where samples of the
output are taken sequentially and decisions (whether a change
in mean/variance has occurred or not) can be made based on
observations up to the current time.

Statistical methods have been implemented both as a purely
data-driven scheme, where no knowledge of a quantitative model
is assumed, and through hybrid frameworks as an add-on to
existing model-based fault diagnosis schemes [7,23–26]. Purely
data driven approaches in literature have made use of a variety
of statistical techniques such as Principal Component Analysis
(PCA)/Partial Least Squares (PLS) [7,27–30], Generalized Likeli-
hood Ratio (GLR) [23,27,31–34], neural networks [7,23,27,35–39],
and autoencoders [40,41] to name a few. A recent study [27]
showed that an interval PCA-based GLR algorithm for fault de-
tection and classification was able to outperform a number of
neural network-based approaches. This demonstrates that the
GLR technique when appropriately designed and integrated can
even outperform certain sophisticated neural network-based al-
gorithms, thus encouraging its implementation and use in our
current work.

Schemes that integrate model-based and data-driven meth-
ods, however, make use of quantitative models and model-based
fault diagnosis techniques augmented with statistical classifica-
tion techniques to tackle any noises and uncertainties prevalent
in the system [7,9]. In general, such schemes use the disturbance
decoupled model-based fault diagnosis schemes for residual gen-
eration, where the residual is now a statistical time series with
a known probability distribution (calculated analytically or em-
pirically) when in control. Statistical tools are then used down-
stream to analyze the residual for changes in mean/ variance to
detect faults (out of control). In linear systems, prior research
on such integrated schemes has focused on integrating Kalman
filters with maximum likelihood estimation [7,9,26,42,43], par-
ity space methods with temporal and spatial whitening of the
residuals [42], and Markov models with Monte Carlo estima-
tion [44]. For nonlinear systems however, methods integrating
model-based methods with statistical tools have been limited.

The goal of this work is to design an integrated model-based
and statistical fault diagnosis scheme for nonlinear processes
with random disturbances (sensor noises and plant model mis-
match) that cannot be decoupled by deterministic methods in [9,
21,22]. The model-based part focuses on building observers for
residual generation from the point of view of observer error

linearization [21,22,45]. The advantages of model-based schemes
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stem from the fact that it is closely connected to physical vari-
ables and easily lends itself to fault isolation. The presence of
noises, however, corrupt the residuals generated by these
schemes, in turn leading to false alarms. In the first part of this
work, the effect of sensor noises on the residuals generated by
model-based schemes will be studied analytically. Following this,
GLR is applied on the residuals to distinguish between normal
and faulty operating conditions on the basis of exceeding a GLR-
based threshold that are functions of the residual data. Finally,
the approach will be extended to process noises in an entirely
numerical manner.

In the next section, a review of disturbance decoupled detec-
tion of a single fault in the absence of noises will be presented.
Then, the problem of fault detection in the presence of Gaussian
sensor noises will be tackled and the probability distributions
of the residuals will be derived. Following this, the hypothesis
testing method, GLR, will be reviewed and an algorithm using
GLR for detecting faults in the presence of sensor noises will
be presented. Finally, the approach will be extended to process
noises, where a numerical approach will be used to obtain the
fault free distribution before using GLR to evaluate the residual.

2. Disturbance decoupled fault detection in the absence of
noises

Consider a nonlinear process described by:

x (k + 1) = F (x (k) ,W (k) , f (k)) (2.1)
y(k) = H (x (k)) + G (x(k))W (k) + E (x(k)) f(k)

where x(k)ϵRn denotes the vector of states, y(k)ϵRp denotes the
vector of measured outputs. f(k)ϵR and W(k)ϵRm are the fault
and the disturbances/uncertainties respectively (system inputs)
and E (x) , F (x) ,G (x) ,H (x) , J (x) ,K(x) are smooth functions.

We will study the problem of disturbance-decoupled fault de-
tection on the basis of calculating a quantity ẑ called the residual,
whose evolution differs depending on the presence (i.e. when
f(k)̸=0) or absence of faults (i.e. when f(k)=0), and is unaffected
by the disturbances W.

More specifically, this work will study the design of a linear
functional observer, called the residual generator, of the form

ξ̂ (k + 1) = Aξ̂ (k) + By(k) (2.2)

ẑ(k) = Cξ̂ (k) + Dy(k)

where ξ̂ (k) ϵRν is the observer state and ẑ (k) ϵR is the scalar
residual. It is desired that the response of the residual ẑ in the
series connection of (2.1) followed by (2.2)[

x(k + 1)
ξ̂ (k + 1)

]
=

[
F (x(k),W (k) , f(k))

Aξ̂ (k) + B [H (x (k)) + G (x(k))W (k) + E (x(k)) f(k)]

]
ẑ(k) =

[
Cξ̂ (k) + D [H (x (k)) + G (x(k))W (k) + E (x(k)) f(k)]

]
(2.3)

has the following properties:

(a) ẑ(k) asymptotically approaches zero when f is identically
zero

(b) ẑ(k) is unaffected by the disturbances W
(c) ẑ(k) is affected by the fault f.

In other words, for any initial conditions
[

x (0)
ξ̂ (0)

]
and any

disturbances W(k),

limk→∞ ẑ(k) = 0 iff k = 0

limk→∞ ẑ(k) ̸= 0 iff k ̸= 0
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he responsiveness of ẑ to faults and insensitivity to disturbances
nsures fault detection while precluding the possibility of false
larms.
For (a) to hold in the absence of disturbances, there must exist

differentiable map T (x) from Rn to Rν such that:

T(F∗ (x)) = AT (x) + BH (x) (2.4)

0 = CT (x) + DH (x) (2.5)

here F∗ (x) = F(x, 0, 0). If conditions (2.4) and (2.5) are satisfied,
the functional observer’s error dynamics, with error defined as
e (k) = ξ̂ (k) − T(x(k)), is as follows:

e(k + 1) = Ae(k) + B [G (x(k))W (k) + E (x(k)) f(k)]

− [T (F (x (k) ,W (k) , f(k))) − T (F∗(x(k)))] (2.6)
ẑ (k) = Ce(k) + D [G (x(k))W (k) + E (x(k)) f(k)]

It should be noted here that the zero-input (W = 0, f = 0)
dynamics of (2.6) becomes e(k + 1) = Ae(k) i.e. is exactly linear
and moreover, if the matrix A has eigenvalues in the unit disc,
the zero-input response is

e(k) = Ake(0) → 0

ẑ (k) = CAke(0) → 0

which means that the residual ẑ (k) asymptotically approaches
zero. It is possible to derive the following necessary and sufficient
condition that Eqs. (2.4) and (2.5) can hold if and only if there
exist β0, β1, . . . , βν ∈ Rp such that [21,45]:

β0HFν
∗
(x) + β1HFν−1

∗
(x) + · · · + βν−1HF∗(x) + βνH (x) = 0

(2.7)

where in the equation above we have used the notation Fj (x) =

F ◦ F . . . F ◦ F(x)  
j times

and HF (x) = (H ◦ F)(x) with A, B, C, D given by

A =

⎡⎢⎢⎢⎢⎣
0
1
...

0
0

0
0
...

· · ·

· · ·

· · ·

· · ·

. . .

1
0

0
0
...

0
1

−αν

−αν−1
...

−α2
−α1

⎤⎥⎥⎥⎥⎦ ,

B =

⎡⎢⎢⎢⎢⎣
βν − ανβ0

βν−1 − αν−1β0
βν−2 − αν−2β0

...

β1 − α1β0

⎤⎥⎥⎥⎥⎦ , C = [0 0 · · · 0 1] ,D = β0

(2.8)

nd

T (x) =

⎡⎢⎢⎣
−β0HF∗

ν−1(x) − · · · − βν−2HF∗(x) − βν−1H (x)
...

−β0HF∗(x) − β1H (x)
−β0H (x)

⎤⎥⎥⎦
(2.9)

The second requirement for the functional observer is that the
residual ẑ must remain completely unaffected by any distur-
bances W (k) present in the system. From (2.6), disturbance de-
coupling can be achieved if
∂Ω (x,W, f)

∂W
= 0 ∀W

G (x) = 0 (2.10)

here Ω (x,W, f) = B [G (x)W + E (x) f] − [T (F(x,W, f)) −

F (x) ]. The third and final requirement for the functional
( ∗ )
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observer is that the residual must be affected by the input f, so
that the fault can be detected by monitoring the residual. For this
to be possible the following equations must hold,[

Ω (x,W, f)
DE (x)

]
̸= 0 ∀f ̸= 0 (2.11)

Thus, to construct a functional observer (2.2) for fault detection
in the process (2.1):

(i) Find a set of constant row vectors β0, β1, . . . , βν that sat-
isfy (2.7)

(ii) Construct T(x) and (A, B, C, D) using (2.8) and (2.9) respec-
tively

(iii) Substitute in (2.10) and (2.11) to see if the disturbance
decoupling and fault detectability condition hold. If they
hold, the residual generator matrices (A,B,C,D) are given by
(2.8), else, look for a different set of vectors in step (i).

Remark 2.1. The conditions (2.7), (2.10) and (2.11) are mathe-
matically restrictive, however they can be applied to a variety of
chemical engineering systems. This is because in many chemical
processes, dynamic models are composed of conservation equa-
tions and inventory rate equations of the form: (Accumulation)
= (In) – (Out) + (Generation), with the nonlinearities appearing
only in the generation terms. This makes them amenable to the
design conditions (2.7), (2.10) and (2.11).

Remark 2.2. In the presence of only sensor disturbances, the
disturbance decoupling condition (2.10) becomes⎡⎢⎢⎢⎢⎢⎢⎣

βν

βν−1
βν−2

...

β1
β0

⎤⎥⎥⎥⎥⎥⎥⎦G (x) = 0.

Remark 2.3. The row vectors β0, β1, . . . , βν provide information
about the measurements that are being used in the residual
generator. For example, if the jth element of all of these vectors
happens to be 0, it means that the measurement yj is not used
for fault detection since both B and D will have their jth column
identically zero.

Remark 2.4. Although dynamic systems are continuous systems,
the focus of this work is on designing observers for discrete-
time nonlinear systems because fault diagnosis tools use sampled
data [8]. Alternatively, one could design a functional observer
for the original continuous-time system using methods devel-
oped [21], discretize the resulting observer and follow the steps
in Sections 3–5.

The disturbance decoupled fault detection approach reviewed
in this section can be directly extended to build a fault isolation
scheme. For example, in a system with nf faults, nf functional
observers can be designed, one for each fault, where for functional
observer i, fault i is to be detected and all the other nf − 1 faults
re disturbances that are decoupled (see Fig. 1).

. Disturbance decoupled fault detection in the presence of
ensor noises

Consider a nonlinear process described by:

(k + 1) = F (x (k) ,W (k) , f (k)) (3.1)
y(k) = H (x (k)) + G (x(k))W (k) + E (x(k)) f(k) + η (k)
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Fig. 1. Fault Isolation scheme, based on a set of observers, one for each fault.
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here x (k) ϵRn denotes the vector of states, y(k)ϵRp denotes the
ector of measured outputs. f(k)ϵR andW(k)ϵRm are the fault and
he disturbances/uncertainties respectively and E (x) , F (x) ,G (x) ,

(x) , J (x) are smooth functions and η is the Gaussian noise
ector with mean 0 and covariance Σ2

η .
Suppose that we have already built a linear functional observer

f the form (2.2) for the noise-free system (2.1). We would like
o use the same functional observer, but now driven by the noisy
easurement signal y(k) from (3.1):

ξ̂η(k + 1) = Aξ̂η (k) + By (k)
ẑη (k) = Cξ̂η (k) + Dy (k)

(3.2)

here ξ̂η (k) ϵRν and ẑη(k)ϵR, and A, B, C and D are given by
2.8), the objective being to detect faults in (3.1). The functional
bserver’s error dynamics with error defined as eη (k) = ξ̂η (k) −

(x(k)), with T(x) given by (2.9), is

eη (k + 1) = Aeη (k) + B [G (x(k))W (k) + E (x (k)) f (k) + η(k)]
− [T(F (x (k) ,W (k) , f(k))) − T(F∗(x(k)))]

(3.3)
ẑη (k) = Ceη (k) + D [G (x(k))W (k) + E (x (k)) f (k) + η(k)]

We would like to analyze the effect of noise vector η on the
bserver output ẑη . To this end, Eq. (2.6) is subtracted from (3.3)
nd as a result the following holds:

η (k + 1) − e (k + 1) = A
(
eη (k) − e (k)

)
+ Bη (k) (3.4)

ˆη (k) − z (k) = C
(
eη (k) − e (k)

)
+ Dη (k)

Now one can express eη (k) − e(k) in terms of the error l time
teps before as

η (k) − e(k) = Al (eη (k − l) − e (k − l)
)
+

l∑
i=1

Ai−1Bη(k − i)

f the eigenvalues of A lie in the unit disc, then for large l,
η (k) − e(k) =

∑l
i=1 A

i−1Bη(k − i) and hence

ẑη (k) − z (k) = C
∑l

i=1 A
i−1Bη(k − i) + Dη (k) (3.5)

rom the above equation, one can see that ẑη (k) − z (k) follows
Gaussian distribution with mean µ0 = 0 and variance

σ 2
0 = D

(
Σ2

η

)
DT

+ ĥΣ̂2
η ĥ

T (3.6)

here ĥ =
[
CB CAB CA2B . . . CAl−1B

]
and Σ̂2

η is the covariance

atrix of

⎡⎢⎢⎣
η (k − 1)
η (k − 2)

...

⎤⎥⎥⎦ [46].
η(k − l)
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The foregoing analysis leads to the conclusion that ẑη (k) for
arge k is a Gaussian distribution with mean equal to the output of
he observer (2.2) for the deterministic system (2.1) and variance
iven by (3.6). Therefore, in the absence of faults (null hypothesis
0), ẑη (k) follows a Gaussian distribution(

µ0 = 0, σ 2
0 = D

(
Σ2

η

)
DT

+ ĥΣ̂ηĥT
)
. This distribution gives the

ensitivity of the residual to sensor noises and to achieve robust
ault detection one must be able to accurately distinguish devia-
ions in the residual due to a fault from deviations due to noises.
his leads to the next section, where an algorithm using GLR will
e presented to detect faults on the basis of changes in the mean
f the residual.

. Generalized likelihood ratio (GLR)

We know from the previous section that the fault free distri-
ution is N

(
µ0, σ

2
0

)
. But, suppose the residual generated from

he functional observer designed in the previous section has
N
(
µ1, σ

2
1

)
distribution. The goal is to detect any fault that

roduces a shift in mean away from µ0. To this end, in this
ection a well-known hypothesis testing technique in statistics
nown as Generalized Likelihood Ratio [43], that has had signif-
cant applications in data driven fault diagnosis of engineering
ystems [23,31,32], is reviewed.
Say we have k observations, r1, . . . ., rk, the null hypothesis H0

s that there has been no mean shift (µ = µ0) and under this
ypothesis the likelihood function at sample k can be represented
s:

L(∞, µ0|r1, r2, . . . , rk) = (2π)−
k
2 σ

−
k
2

0

× exp

(
−

1
2σ2

0

(
k∑

i=1

(ri − µ0)
2

))
(4.1)

For the alternate hypothesis H1 that a mean shift of some value
µ1 ̸= µ0 has occurred at some time τ ∗ between samples τ and
τ + 1 where τ < k, the likelihood function at sample k is [23,43]

L (τ , µ1|r1, r2, . . . , rk) = (2π)−
k
2 σ

−
k
2

0

× exp

(
−

1
2σ2

0

(
τ∑

i=1

(ri − µ0)
2
+

k∑
i=τ+1

(ri − µ1)
2

))
(4.2)

If there has been a shift to an unknown µ1 between samples
and τ + 1, then the maximum likelihood estimator of µ1 is

µ̂1,τ ,k =
1

k−τ

k∑
ri (4.3)
i=τ+1
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hen a log likelihood-ratio statistic for determining whether there
as in fact been a mean shift is

GLRk = ln
max0≤τ<k,−∞<µ1<∞ L(τ ,µ1|r1,r2,....,rk)

L(∞,µ0|r1,r2,....,rk)
(4.4)

= max
0≤τ≤k

(
µ̂1,τ ,k − µ0

)
σ 2
0

k∑
i=τ+1

[
(ri − µ0) −

1
2

(
µ̂1,τ ,k − µ0

)]
From the maximum likelihood estimate µ̂1,τ ,k the above equa-

ion reduces to

GLRk = max0≤τ<k
k−τ

2σ2
0

(
µ̂1,τ ,k − µ0

)2
(4.5)

e will use the above equation to calculate the GLR statistic at
ny time k given the data from [0, k].
The following maximum likelihood estimation algorithm is

presented to compute the threshold for the GLR statistic for a
residual dataset with a given mean and variance of the fault free
distribution and a desired false alarm rate.

Maximum Likelihood Estimation Algorithm:

a. Obtaining the threshold for the GLR Statistic.

1. Generate random normal distribution of a sufficiently large
size (e.g., 10000 observations) using known fault-free mean
(µ0) and variance

(
σ 2
0

)
.

2. Compute GLR statistic using the random normal distribu-
tion that was generated:
To monitor mean

GLRk =
max

0 ≤ τ < k
(k − τ)

2σ 2
0

(
µ̂1,τ ,k − µ0

)2
here, µ̂1,τ ,k is the maximum likelihood estimates (MLEs) of the
ean computed utilized the available data. k and τ correspond

o the current time instant, and the position in the time window
hat provides the maximum detection rate for a fixed false alarm
ate, respectively.

3. Use the computed generalized likelihood ratio statistic to
compute its empirical distribution.

4. Use the desired confidence interval (α), e.g., 99% to obtain
the fault detection threshold by extracting the correspond-
ing percentile from the computed cumulative empirical
distribution.

GLRtreshold,α = ecdfα (GLRk (mean))

ote: In this study we are interested in the detecting faults that
ring about a change in the mean of the residual. However, one
ould also use GLR to detect faults that cause changes in the
ariance of the residual. There exists significant literature on this
opic and the interested reader is referred to these papers [32,47].

. Using the threshold to detect faults

1. Compute the GLR statistic online using the available for-
mula:

a. To monitor mean:

GLRtest,k =
max

0 ≤ τ < k
(k − τ)

2σ 2
0

(
µ̂1,τ ,k − µ0

)2
2. Declare fault if: GLRtest,k > GLRthreshold,α

emark 4.1. In theory, all observations in the interval [0,k] are
equired to calculate the GLR statistic for sample k. This would re-
uire the storage and use of all past data, where at each sampling
oint k the maximum value in (4.5) over 0 < τ < k needs to be
omputed. This becomes cumbersome as k increases in size. Thus,
72
one could adopt a modification of GLRk in which the maximum
is taken over a window of past l samples [43]

GLRl,k =
max

k − l ≤ τ < k
(k − τ)

2σ 2
0

(
µ̂1,τ ,k − µ0

)2
s a rule of thumb, one could use l = 400 as Reynolds and co-

workers [43] obtained comparable results are obtained for l =

00 and l = 10000 for all fault magnitudes.

. Proposed methodology for fault detection in the presence
f sensor noises

In Sections 2 and 3, a model-based approach to generate resid-
als using functional observers was discussed and the behavior
f these residuals in the presence of sensor noises was studied.
n the previous section, a well-known statistical hypothesis test-
ng method, Generalized Likelihood Ratio, capable of detecting
hanges in the mean of the residual, was reviewed. A specific
lgorithm was presented, including the steps for calculating the
LR threshold and online computation of the GLR statistic.
The following steps should be followed to integrate the model-

ased and statistical methods presented in the previous sections
o detect faults in any physical process affected by sensor noises.

.1. Offline calculations

I. Using the steps of Section 2, design a functional observer
for the deterministic physical model

II. Analytically calculate the distribution of the residual in the
presence of sensor noises (using Eq. (3.6))

III. Use the analytical distribution to obtain the GLR threshold
(Part a in the algorithm in Section 4)

n the above steps, it is essential to account for the effect of
bserver eigenvalues on the sensitivity of the residual to faults
nd noises. The observer eigenvalues are tunable parameters and
ust be tuned to maximize fault sensitivity and minimize noise
ensitivity. This analysis will be used to evaluate the robustness
f the fault detection scheme for a variety of possible fault sizes.

.2. Online calculations

I. Feed the output from the noisy sensor to the designed
functional observer and generate the residuals

II. Use the residual data to calculate and track the GLR statistic
(Part b in the algorithm in Section 4)

III. Flag faults if GLR threshold is violated (Part b in the algo-
rithm in Section 4).

he steps above constitute a methodology to compute thresholds
sing residual data and automate fault detection in the presence
f sensor noises.

.3. Evaluation metrics

The fault detection methodology will be evaluated utilizing
hree metrics

a. False alarm rate (%)- The percentage of fault free observa-
tions incorrectly classified as faulty. This metric should be
as low as possible (≤ 1%) for a good fault detection scheme.

b. Missed detection rate (%) - The percentage of faulty obser-
vations incorrectly classified as fault-free. An accurate fault
detection scheme should have low missed detection rates.

c. Out-of-control Average Run Length (ARL1)- Number of ob-
servations required since fault occurrence to detect faults,
corresponding to the speed of detection. A low ARL1 means

the detection is fast.
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he fault detection methodology proposed in this section will be
llustrated and tested through a non-isothermal chemical reactor
ase study in the next section.

. Case study — fault detection in a non-isothermal CSTR in
he presence of sensor noises

Consider a non-isothermal Continuous Stirred Tank Reactor
CSTR) undergoing N-alkyl pyridine oxidation with hydrogen per-
xide. The product of the reaction, Alkyl Pyridine N-Oxides is
n important intermediate in several important reactions in the
harmaceutical industry, including the production of anti-ulcer
nd anti-inflammatory drugs [48].
It is assumed the reactor is well-mixed and has constant

olume with an inlet stream containing N-methyl pyridine (A) +
atalyst Z (assumed to be fully dissolved) and hydrogen peroxide
B). The catalyst is assumed to be completely dissolved in the
yridine stream and its concentration is assumed to be constant
n the reactor [48] The dynamics of the reactor [48] is described
y:
dCA

dt
=

F
V

(
CA,in − CA

)
− R (CA, CB, θ,w)

dCB

dt
=

F
V

(
CB,in − CB

)
− R (CA, CB, θ,w)

dθ
dt

=
F
V

(θin − θ) −
USA
ρcpV

(
θ − θj

)
+

−∆HR

ρcp
R (CA, CB, θ,w)

dθj
dt

=
Fj
Vj

(
θj,in + f2(t) − θj

)
+

USA
ρjcpjVj

(
θ − θj

)
1 = CA + η1 (t) + f1(t)

y2 = θ + η2(t)

y3 = θj + η3(t)
(6.1)

The state vector X =
[
CA, CB, θ, θj

]
consists of N-methyl

pyridine concentration, hydrogen peroxide concentration, reactor
temperature and outlet coolant temperature. The noise vector
H= [η1, η2, η3] has zero mean and variance

Σ2
η =

⎡⎣ 0.001
(mol

L

)2
0 0

0 0.01K2 0
0 0 0.01 K2

⎤⎦.

R (CA, CB, θ,w) =
(A1+w)e−

E1
θ A2e

−
E2
θ CACBZ

1+A2e
−

E2
θ CB

+ A3e−
E3
θ CACB is the

reaction rate. Parameters A1,A2,A3 are the pre-exponential fac-
tors in the reaction rate and w is the uncertainty/disturbance
in A1. CA,in, CB,in, θin, θj,in represent the inlet values of the state
values. F and Fj are the inlet feeds and coolant flowrates, respec-
tively. V and Vj are the reactor volume and cooling jacket volume,
respectively. ∆HR is the enthalpy of the reaction. ρ, cp andρj, cpj
are the densities, heat capacities of the reactor contents and cool-
ing fluid, respectively. f1 (t) represents a possible concentration
ensor fault and f2(t) represents a possible fault that could affect
he inlet temperature of the coolant.

The parameter values are as follows, CA,in = 2mol
L , CB,in =

.5mol
L , θin = 373K, θj,in = 300 K, F = 0.1 L

min , Fj = 1 L
min ,V =

.5 L,Vj = 3 × 10−2 L,A1 = e8.08 Lmol−1 s−1,A2 = e28.12

mol−1s−1,A3 = e25.12Lmol−1.∆HR = −160 kJ
mol , ρ = 1200 g

L , ρj =

000 g
L , cpj = 3 J

gK . cp = 3.4 J
gK U=0.942 W

m2K
, SA = 1m2, Z =

.0021 mol
L , E1 = 3952 K, E2 = 7927 K, E3 = 12989 K, and the

nitial conditions are CA = 0mol
L , CB = 0mol

L , T = 300K, Tj = 300K.
The model equations are discretized using Euler’s method

with sampling period δ = 0.5 s. This is easy to implement
t z
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and preserves the nonlinearities of the original continuous-time
system. The discretized equations are

CA (k + 1) = CA (k)

+ δt

(
F
V

(
CA,in − CA(k)

)
− R (CA(k), CB(k), θ (k),w(k))

)
CB(k + 1) = CB (k)

+ δt

(
F
V

(
CB,in − CB

)
− R (CA(k), CB(k), θ (k),w(k))

)
θ (k + 1) = θ (k)
+δt

(
F
V (θin − θ (k)) −

USA
ρcpV

(
θ (k) − θj (k)

))
+

δt(−∆HR)
ρcp

(R (CA(k), CB(k), θ (k),w(k)))
(6.2)

θj (k + 1) = θj (k)

+ δt

(
Fj
Vj

(
θj,in (k) + f2(k) − θj(k)

)
+

USA
ρjcpjVj

(
θ (k) − θj(k)

))
1 = CA (k) + f1 (k) + η1(k)

2 = θ (k) + η2(k)

y3 = θj (k) + η3(k)
The equations are converted to deviation form to remove the

constants corresponding to the inlet conditions with C′

A = CA −

CA,ref, θ
′

= θ − θref and θ ′

j = θj − θj, ref (where the subscript
ref denotes the reference steady state value of the system in
the absence of noises, uncertainties, and faults) representing the
deviation variables. The outputs in deviation form are y′

1 = y1 −

CA,ref, y′

2 = y2 − θref andy′

3 = y3 − θj,ref.
The following two functional observers are built using the

steps presented in Section 2.
Functional Observer 1: Detection of the analytical sensor fault

f1 while considering f2 as an additional disturbance.

β0 =

[
1,

ρcp
(−∆H)

, 0
]

(6.3)

1 =

[(
δtF
V

− 1
)

, −
ρcp

(−∆H)

(
1 −

δtF
V

−
USAδt
ρcpV

)
,

−
USA

(−∆H)V
δt

]
The resulting functional observer (with α1 = −0.99) is

ξ̂η (k + 1) = −α1ξ̂η (k) +

[
δtF
V

− 1 − α1

]
y′

1 (k)

−
ρcp

(−∆H)

(
1 + α1 −

δtF
V

−
USAδt
ρcpV

)
y′

2 (k) −
USAδt

(−∆H)V
y′

3 (k)

ẑη (k) = ξ̂η (k) + y′

1 (k) +
ρcp

(−∆H)
y′

2 (k) (6.4)

At large times (k → ∞) the residual follows a Gaussian
distribution with mean 0 and variance=0.001 in the absence of
faults (calculated analytically using 3.6).

Functional Observer 2: Detection of inlet coolant temperature
fault f2 while considering f1 as an additional disturbance.

β0 = [0, 0, 1] (6.5)

β1 =

[
0, −

USAδt
ρjcpjVj

, −

(
1 −

δtFj
Vj

−
USAδt
ρjcpjVj

)]
The resulting functional observer with α1 = −0.1. is:

ξ̂η (k + 1) = −α1ξ̂η (k) −
USAδt
ρjcpjVj

y′

2 (k)

−

[
1 + α1 −

δtFj
Vj

−
USAδt
ρjcpjVj

]
y′

3 (k)
(6.6)

ˆ k = ξ̂ k + y′ (k)
η ( ) η ( ) 3
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Fig. 2. (a) Residual vs time (seconds) for functional observer 1 (b) Difference between functional observer output in deterministic and stochastic case (ẑη − ẑ)
corresponding to a N(0,0.001) distribution (numerically observed).
At large times (k → ∞) the residual follows a Gaussian
distribution with mean 0 and variance =0.01385 in the absence
of faults (calculated analytically using 3.6).

The fault scenario is as follows

f1 (t) =

{
0, t < 100s
1, t ≥ 100s,

f2 (t) =

{
0, t < 150s
10, t ≥ 150s

, w (t) = 105.

A false alarm rate of less than 1% is desired. It is to be noted when
evaluating the fault detection scheme that the out-of-control
average run length (ARL1) is given in terms of the sampling rate.
For example, ARL1 = 10 would indicate 10 observations are
required, each spaced 0.5s apart, for fault detection.

The proposed fault detection framework is implemented in
MATLAB (MathWorks R2019b). The computation is performed on
a Dell OptiPlex 9020 with Intel R⃝ CoreTM i7-4770 CPU @3.40 GHz
and 16GB of total memory. The average computation time of
the GLR statistic for each iteration is 0.01 s, implying that the
algorithm can be implemented in real-time to enable efficient
online fault detection. It is important to note that at each iteration
the GLR statistic evaluates a window size of 400 as recommended
by Reynolds [43].

The residuals generated from the functional observer 1 in the
presence and absence (deterministic) of noises is plotted in Fig. 2.
Analytically, using Eqs. (3.5) and (3.6), one can show that the
difference between the observer output in the stochastic and
deterministic cases i.e, ẑη − ẑ is a Gaussian distribution with 0
mean and variance 0.001(Note: this is also confirmed numerically
see Fig. 2b). In Fig. 3, the residuals generated from functional
observer 2 in the presence and absence of noises is plotted.
ẑη − ẑ in this case is supposed (using Eqs. (3.5) and (3.6)) to be
a Gaussian distribution with 0 mean and a variance 0.01385. The
plot on Fig. 3b confirms this analytical calculation.
74
Table 1
Fault detection metrics in the presence of sensor noises.

Functional observer 1
(sensor fault)

Functional observer 2
(coolant fault)

Missed Detection Rate (%) 0.00 0.06
False Alarm Rate (%) 0.00 0.00
ARL1 1.00 2.00

6.1. GLR calculation

The fault free distributions of the output of the two functional
observers are used to develop thresholds of the GLR statistic
(Steps i and ii in algorithm in Section 4). The thresholds for
residuals from functional observer 1 and functional observer 2
are 2.193 and 2.203, respectively. The time series evolution of
the GLR statistic for the two residuals is plotted in Figs. 4 and
5, respectively. In both cases when the respective fault occurs
a sharp increase in the GLR statistic is observed, which then
settles to a value higher than the threshold for fault free data in
turn facilitating rapid fault detection rate with near 0% missed
detection rate.

The fault detection metrics are summarized in Table 1. For
sensor and coolant faults, the missed detection rate (percentage
of faulty observations flagged fault free) is 0% and 0.06%, respec-
tively, the false alarm rate (percentage of fault free observations
flagged faulty) is 0% in both cases. This highlights the ability of
the fault diagnosis scheme to accurately detect and isolate faults
of interest in the presence of sensor noises. Furthermore, the
detection is rapid since the out of control run length average run
length (ARL1) for sensor fault is 1, meaning only 1 observation is
required since fault occurrence to detect faults, and for coolant
fault the ARL is 2.
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Fig. 3. (a) Residual vs time (seconds) for functional observer 2 (b) Difference between functional observer output in deterministic and stochastic case (ẑη − ẑ)
corresponding to a N(0,0.0136) distribution (numerically observed).
Fig. 4. (a) GLR statistic vs time for functional observer 1 in the presence of sensor noises (b) GLR statistic vs time zoomed in to show the behavior when fault
occurs at t=100s.
7. Eigenvalue analysis for sensor noises

The eigenvalues of the observer play an important role in the
etermining the sensitivity of the observer to noises, and fault of
nterest. For the example considered in the previous section, the
ffect of the choice of eigenvalue (-α1) on the fault free residual
ariance for functional observer and the residual mean after fault
ccurrence is studied in this section.

.1. Functional observer 1

In Fig. 6, the fault free residual variance for functional observer
vs eigenvalue (-α ) is plotted analytically (using Eq. (3.6)) and
1

75
numerically (by calculating the variance of the simulated ob-
server output). In both the cases, variance decreases monotonously
with eigenvalue. Therefore, to minimize fault sensitivity, one is
better off with a slower eigenvalue (close to 1).

To study the sensitivity of the functional observers to the fault
of interest, the mean of the residual is calculated for different
eigenvalues a long time after the fault has occurred and the
residual has settled to its random distribution. In Fig. 7, the plot
of the mean of the residual after fault occurrence vs eigenvalue
is shown for two fault values (f1 = 1mol

L , 10mol
L ). In both the

cases, the mean of the residual increases with eigenvalue and this
increase is more pronounced for eigenvalues close to 1. Therefore,
to maximize fault sensitivity it is advised to choose an eigenvalue
close to 1.
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Fig. 5. (a) GLR statistic vs time for functional observer 2 in the presence of sensor noises (b) GLR statistic vs time zoomed in to show the behavior when fault
occurs at t=150s.
Fig. 6. Fault free variance vs eigenvalue (functional observer 1) in the presence of sensor noises for eigenvalues in [0.1,0.999].
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In summary, for functional observer 1 a slower eigenvalue
ill have low noise sensitivity and high fault sensitivity. Thus,

ault detection for the same fault value will be easier when the
igenvalue is close to 1. Once can also see this in Fig. 8 where the
volution of the residual vs time is plotted for two eigenvalues
α1 = −0.5 and − 0.99, and fault = 1 mol/L). For α1 = −0.5,
he residual after fault occurrence settles in the same region as
he pre-fault residual making fault detection difficult but for α1 =

0.99, there is a clear shift in the mean compared to the pre-fault
egion.

.2. Functional observer 2

The fault free residual variance from functional observer 2
s eigenvalue is plotted in Fig. 9. Here, the variance decreases
76
ith the eigenvalue initially but increases as the eigenvalue ap-
roaches 1 (Fig. 9a) and shoots up rapidly very close to 1 (Fig. 9b).
he mean of the residual vs eigenvalue for two different fault
izes is plotted in Fig. 10. In both the cases, mean of the residual
ncreases with eigenvalue in this increase is profound for slower
igenvalues (closer to 1). It is to be noted that even though,
oise sensitivity and fault sensitivity increase with eigenvalue,
oise sensitivity (fault free variance) is much lower than fault
ensitivity (residual mean at long times) and therefore, a faster
igenvalue can be used to detect faults robustly. In the previous
ection α1 = −0.1 was used to in the functional observer and
the missed detection rate was much below 1%. Thus, in general,
a careful study of the noise and fault sensitivities of the residual
must be performed before choosing the eigenvalue.
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Fig. 7. Mean of the residual from functional observer 1 vs eigenvalue. (1a) For f1 = 1mol
L with eigenvalues in [0.01,0.9] (1b) f1 = 1mol

L with eigenvalues in [0.9,0.999]
2a) f1 = 10mol

L with eigenvalues in [0.01,0.9] (2b) f1 = 10mol
L with eigenvalues in [0.9,0.999].
Fig. 8. Residual vs time from functional observer 1 for two eigenvalues (0.99 and 0.5).
. Fault detection metrics for different fault magnitudes

The fault detection capabilities of the scheme presented in
his paper is tested for different sensor fault magnitudes in
he presence of sensor noises. The following scenario is as-
umed to occur: a sensor noise vector of zero mean and variance
77
Σ2
η =

⎡⎣ 0.001
(mol

L

)2
0 0

0 0.01K2 0
0 0 0.01 K2

⎤⎦ and a fault f1 ={
0, t < 0
M, x ≥ 100s

, Mϵ[0.01, 0.1] mol/L. Functional observer 1 of

Section 6 with eigenvalue α1 = −0.99 is used and false alarm rate
of below 1% is desired. In Fig. 11, the missed detection rate for
different fault sizes is plotted. As expected, for extremely small



S. Venkateswaran, M.Z. Sheriff, B. Wilhite et al. Journal of Process Control 108 (2021) 68–85

(

f

(

Fig. 9. Fault free variance vs eigenvalue (functional observer 2) in the presence of sensor noises. (a) For eigenvalues in [0.1,0.9] (b) For eigenvalues in [0.9,0.999].
Fig. 10. Mean of the residual from functional observer 2 vs eigenvalue. (1a) For f2 = 1K with eigenvalues in [0.01,0.9] (1b) f1 = 1K with eigenvalues in [0.9,0.999]
2a) f1 = 10K with eigenvalues in [0.01,0.9] (2b) f1 = 10K with eigenvalues in [0.9,0.999].
ault sizes (< 0.02 mol/L), the missed detection rate is very high

> 80%). However, as the fault size increases a drastic decrease in
78
the missed detection rate is observed and for fault sizes greater

than 0.05 mol/L, the missed detection rate goes to 0.
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Fig. 11. Missed detection rate (%) vs sensor fault size.
9. Disturbance decoupled fault detection in the presence of
process noises

Consider a nonlinear process described by:

x (k + 1) = F (x (k) ,W (k) , f (k)) + ζ (k)
y(k) = H (x (k)) + G (x(k))W (k) + E (x(k)) f(k) (9.1)

here x (k) ϵRn denotes the vector of states, y(k)ϵRp denotes the
ector of measured outputs. f(k)ϵR andW(k)ϵRm are the fault and
he disturbances/uncertainties respectively and E (x) , F (x) ,G (x) ,

(x) , J (x) are smooth functions and ζ is the process noise vector
ith mean

ξ̂ζ (k + 1) = Aξ̂ζ (k) + By (k)
ẑζ (k) = Cξ̂ζ (k) + Dy (k)

(9.2)

here ξ̂ζ (k)ϵRν , ẑζ (k)ϵR, and A, B, C and D are given by (2.8) to
etect faults in (9.1).
It is assumed that the response of the residual in the ab-

ence of faults at large times follows a Gaussian distribution of
nknown mean and variance. A fault-free scenario needs to be
imulated for the functional observers and the functional ob-
erver output will constitute the training data for obtaining the
hreshold for the GLR statistic (replaces step 1 in part a of the
lgorithm in Section 4). Once the fault-free random distribution
s found the same steps of the algorithm in Section 4 for sensor
oises for can be followed.
In what follows the non-isothermal CSTR example will be

onsidered again. Simulations will be performed in the presence
f process noises.
 A

79
Consider the CSTR seen in the previous section

CA (k + 1) = CA (k)

+δt

(
F
V

(
CA,in − CA(k)

)
− R (CA(k), CB(k), θ (k),w(k))

)
+ ζ1(k)

CB (k + 1) = CB (k)

+δt

(
F
V

(
CB,in − CB

)
− R (CA (k) , CB (k) , θ (k) ,w (k))

)
+ ζ2(k)

θ (k + 1) = θ (k) + δt

(
F
V (θin − θ (k)) −

USA
ρcpV

(
θ (k) − θj (k)

))
+

δt(−∆HR)
ρcp

(R (CA(k), CB(k), θ (k),w(k))) + ζ2(k)

θj (k + 1) = θj (k) + δt

(
Fj
Vj

(
θj,in (k) + f2(k) − θj(k)

)
+

USA
ρjcpjVj

(
θ (k) − θj(k)

))
+ ζ3(k)

y1 = CA (k) + f1 (k)

y2 = θ (k)

y3 = θj (k)
(9.3)

The sampling period is again δt = 0.5s. The model is converted
to deviation form and the same functional observers in Section 6
are used here. The noise vectors N = [ζ1, ζ2, ζ3] are Gaussian with
zero mean and variance

Σ2
ζ =

⎡⎢⎣ 0.0001
(mol

Ls

)2
0 0

0 0.001
( K
s

)2
0

0 0 0.001
( K
s

)2
⎤⎥⎦.

The fault scenario is as follows

f1 (t) =

{
0, t < 100s
1, t ≥ 100s,

f2 (t) =

{
0, t < 150s
10, t ≥ 150s

, w (t) = 105.

false alarm rate of less than 1% is desired.
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Fig. 12. Residual vs time for functional observer 1 in the presence of process noises.
Fig. 13. Residual vs time for functional observer 2 in the presence of process noises.
.1. GLR calculation

The residuals generated from the functional observer 1 and
unctional observer 2 are plotted in Figs. 12 and 13. The fault
ree distributions of the output of the two functional observers
re used to develop thresholds of the GLR statistic (Part a of
he algorithm in Section 4). The thresholds for residuals from
unctional observer 1 and functional observer 2 are 33.01 and
.205, respectively. The time series evolution of the GLR statistic
or the two residuals is plotted in Figs. 14 and 15. In both cases
hen the respective fault occurs as sharp increase GLR statistic is
80
observed which then settles to a value higher than the threshold
for fault free data in turn facilitating rapid fault detection with 0%
missed detection.

The fault detection metrics are summarized in Table 2. For
sensor and coolant faults, both the missed detection rate and
the false alarm rate is 0% and average run length (ARL) is 1 for
the sensor fault and 2 for the coolant fault. Therefore, even for
process noises, the fault diagnosis scheme is able to both rapidly
and accurately detect and isolate faults of interest.
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Fig. 14. (a) GLR statistic vs time for functional observer 1 in the presence of process noises (b) GLR statistic vs time zoomed in to show the behavior when fault
occurs at t=100s.
Fig. 15. (a) GLR statistic vs time for functional observer 2 in the presence of process noises (b) GLR statistic vs time zoomed in to show the behavior when fault
occurs at t=150s.
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Table 2
Fault detection metrics in the presence of process noises.

Observer 1 Observer 2

Missed Detection Rate (%) 0.0000 0.0000
False Alarm Rate (%) 0.0000 0.0000
ARL1 1.0000 2.0000

9.2. Eigenvalue tuning for process noises

In Fig. 16, the fault free residual variance for functional ob-
erver 1 vs eigenvalue (-α1) numerically (by calculating the vari-
nce of the simulated observer output). The fault free residual
ariance increases with eigenvalue and this increase is drastic as
he eigenvalue tends to 1. Therefore, to minimize fault sensitivity
ne is better off with a faster eigenvalue. In Fig. 17, the plot of
he mean of the residual after fault occurrence vs eigenvalue is
hown for two fault values (f1 = 1mol

L , 10mol
L ). In both the cases,

he mean of the residual increases with eigenvalue. However, the
ncrease in the residual mean is much higher than the increase
n noise sensitivity for eigenvalues close to 1. Therefore, to have
ow missed detection rate it is advisable to choose an eigenvalue
loser to 1.
 f
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For functional observer 2, the fault free residual variance for
functional observer 2 vs eigenvalue (-α1) is plotted in Fig. 18.
he fault free residual variance increases with eigenvalue and it
hoots up as the eigenvalue tends to 1. Thus, to minimize fault
ensitivity one is better off with a faster eigenvalue. In Fig. 19,
he plot of the mean of the residual after fault occurrence vs
igenvalue is shown for two fault values (f1 = 1K, 10K). In both
he cases, the mean of the residual increases with eigenvalue.
t is to be noted that even though noise sensitivity and fault
ensitivity increase with eigenvalue, noise sensitivity (fault free
ariance) is much lower than fault sensitivity (residual mean) and
herefore, a faster eigenvalue can be used to detect faults robustly.
or example, in functional observer 2, α1 = −0.1 was used and
he missed detection rate was significantly below 1%. In general,
careful study of the noise and fault sensitivities of the residual
ust be performed before choosing the eigenvalue.

0. Conclusions

This work tackled the problem of detecting faults in nonlinear
ystems in the presence of noises. A methodology based on de-
igning model-based functional observers to generate residuals
or fault diagnosis is proposed. The behavior of the residuals in
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Fig. 16. Residual variance (fault free) vs eigenvalue for functional observer 1 in the presence of process noises.
Fig. 17. Functional observer 1 residual mean vs eigenvalue for different sensor fault magnitudes in the presence of process noises.
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Fig. 18. Fault free variance vs eigenvalue for functional observer 2 in the presence of process noises.
Fig. 19. Functional observer 2 residual mean vs eigenvalue for different coolant fault magnitudes in the presence of process noises.
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he presence of Gaussian sensor noises can be analyzed analyti-
ally and the resulting probability distributions can be derived.
nce the fault free mean and variance have been derived, a
ell-known statistical hypothesis testing method known as Gen-
ralized Likelihood Ratio, can be used to detect changes in the
ean of the residual to enable fault detection. The applicability of

he proposed scheme was illustrated using a non-isothermal CSTR
ase-study to detect and isolate sensor and inlet coolant temper-
ture faults. The results show that the fault diagnosis scheme is
ble to quickly and accurately detect faults. The case study also
ighlighted the crucial role the functional observer’s eigenvalue
lays in the observer’s ability to detect faults and highlights the
eed to carefully tune this parameter to ensure maximum fault
ensitivity and minimal noise sensitivity. Finally, using an entirely
mpirical approach, the methodology was successfully extended
o process noises.
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