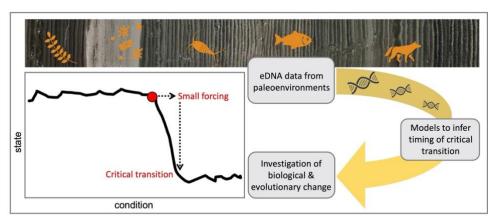
PaleoEcoGen – Unlocking the power of ancient environmental DNA to understand past ecological trends



Marie-Eve Monchamp^{1,2} (ORCiD 0000-0001-5361-5162), Linda Armbrecht^{3,4} (ORCiD 0000-0002-1213-1257), Eric Capo⁵ (ORCiD 0000-0001-9143-7061), Marco J.L. Coolen⁶ (ORCiD 0000-0002-0417-920X), Tristan Cordier⁷ (ORCiD 0000-0001-7398-4790), Isabelle Domaizon⁸ (0000-0001-9785-3082), Laura S. Epp⁹ (ORCiD 0000-0002-2230-9477), Charline Giguet-Covex¹⁰ (ORCiD 0000-0002-5141-4815), Irene Gregory-Eaves^{1,2} (ORCiD 0000-0002-0380-5061), Ulrike Herzschuh¹¹ (ORCiD 0000-0003-0999-1261), Laura Parducci¹² (ORCiD 0000-0003-1956-4757), Kathleen R. Stoof-Leichsenring¹³ (ORCiD 0000-0002-6609-3217), John W. Williams¹⁴ (ORCiD 0000-0001-6046-9634)

PaleoEcoGen is a new working group that was launched with the aim of bringing together scientists from around the world who use ancient environmental DNA (ancient eDNA) as a novel proxy to examine the response of past biological communities to environmental changes (pastglobalchanges.org/paleoecogen). Our working group is particularly interested in exploiting the added value of these emerging ancient eDNA tools to advance our knowledge of critical transitions in Earth's Quaternary history. To this end, PaleoEcoGen wants to stimulate and enhance international ancient eDNA research by organising topical workshops to discuss new methodologies in the field (including synthetic analyses and modelling approaches), and to coordinate research efforts for bigger picture analyses that, ultimately, will help to inform conservation efforts and future biodiversity assessments.

Changes in ecosystem dynamics can occur gradually over centuries to millennia, or abruptly (i.e., at decadal to annual timescales). Rapid changes may challenge the fitness and survival of organisms, including those that are essential for ecosystem maintenance. Even small disturbances may weaken the stability and resilience of an ecosystem (Fig. 1), and ultimately lead to "critical transitions" where the system is pushed from one equilibrium state to another (Taranu et al. 2018). These 'tipping points' are often hard to predict because of the complexity of the interactions between organisms and their environment and they imply prolonged ecosystem consequences that may not be reversible.

Critical transitions have been documented for terrestrial and aquatic ecosystems, as well as social-ecological systems, and they have been studied across many scientific disciplines (Scheffer et al. 2009; 2012). In the context of global changes, especially the "Great Acceleration" (Steffen et al. 2015). studying critical transitions has been identified as paleoecological priority research area by the scientific community (Seddon et al. 2014). new methodological With approaches on the rise in the paleo-sciences, there now is a

Figure 1. (Left) Schematic representation of a critical transition between two states triggered by a small forcing. (Right) Simplified workflow of the proposed approach to identify past critical transitions and evaluate subsequent biological changes based on ancient environmental DNA time-series.

good opportunity to describe past critical transitions and their effects on biological communities (Taranu et al. 2018, Capo et al. 2021).

Our working group is motivated to address two key questions:

- 1.) How can we use (sedimentary) ancient eDNA time-series to better identify and characterise past critical transitions?
- 2.) What are the subsequent evolutionary and ecological trajectories and which projections for future biodiversity and ecosystem change can be drawn from past critical transitions during the Quaternary?

The detailed study of critical transitions in paleoecology requires the generation of the most comprehensive view possible - of an ecosystem, its drivers, and interactions within. To meet this challenge, stratigraphic analysis of ancient eDNA is a key analytical approach because of its potential to provide new insights into: 1) the composition of biological communities across multiple trophic levels including organisms that do not fossilize; 2) species interactions within communities; 3) the response of organisms, from individual taxa to communities, to past environmental changes (Coolen et al., 2013; Domaizon et al. 2017, Schulte et al. 2020, Liu et al. 2021; More et al., 2018). Like any other proxy, ancient eDNA has its limitations (Capo et al. 2021), but the field is now sufficiently mature to offer exciting new opportunities to expand our knowledge using paleoenvironmental data.

Upcoming activities

Our first online workshop will be in 2022 in collaboration with the <u>sedaDNA scientific society</u>. The workshop will be dedicated to improving inclusion of African ancient eDNA researchers by offering a collaborative platform and training opportunities in molecular techniques applied to sedimentary ancient eDNA. A second workshop (in-person or online; depending on COVID-19 pandemic regulations) will focus on developing a multivariate modeling approach based on

ancient eDNA temporal data (Taranu et al. 2018, Taranu et al. unpublished) to investigate the timing and magnitude of shifts in paleo-environmental records.

You can visit our website at <u>pastglobalchanges.org/paleoecogen</u> and register to our mailing list to keep up to date with our activities and find more information on how to get involved. PaleoEcoGen is also on Twitter: @PaleoEcoGen

AFFILIATIONS

- ¹ Monchamp & Gregory-Eaves: Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
- ² Monchamp & Gregory-Eaves: Groupe de recherche interuniversitaire en limnologie (GRIL), Quebec, Canada
- ³ Armbrecht: Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, North Terrace, South Australia 5005, Australia;
- ⁴ Armbrecht: Institute for Marine and Antarctic Studies, Centre for Ecology and Biodiversity, 20 Castray Esplanade, Battery Point, Tasmania 7004, Australia
- ⁵ Capo: Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- ⁶ Coolen: Western Australia Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, Curtin University, Bentley, WA 6102, Australia
- ⁷ Cordier: NORCE Climate, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Norway
- ⁸ Domaizon: INRAE, CARRTEL, USMB, R&D Pole ECLA, 74500 Thonon les bains, France
- ⁹ Epp: Limnological Institute, Department of Biology, University of Konstanz, Konstanz, Germany
- ¹⁰ Giguet-Covex: EDYTEM, UMR 5204 CNRS, Univ. Savoie Mont Blanc, Pôle Montagne, 73376 Le Bourget du Lac, France
- ¹¹ Herzschuh: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, Telegrafenberg A45, 14473 Potsdam, Germany
- ¹² Parducci: Department of Environmental Biology, La Sapienza University of Rome, Italy
- ¹³ Stoof-Leichsenring: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, Telegrafenberg A45, 14473 Potsdam, Germany
- ¹⁴ Williams Department of Geography, University of Wisconsin, 550 North Park St, Madison, Wisconsin, 53706, USA

CONTACT

me.monchamp@gmail.com

REFERENCES

Taranu et al. (2018) Ecosphere 9:10, 1–18 Scheffer et al. (2009) Nature 461, 53–59 Scheffer et al. (2012) Science 338:6105, 344–348 Steffen et al. (2015) Science 347:6223 Seddon et al. (2014) J Ecol 102:256–267 Capo et al. (2021) Quaternary 4:6, 1-58 Domaizon et al. (2017) J Paleolimnol 58, 1–21 Coolen et al. (2013) PNAS 110(21):8609-8614 Schulte et al. (2021) Mol Ecol Res 21:801–815 Liu et al. (2021) Nat Commun 12:2995 More et al. (2018) Earth Planet Sci Lett 496:248-256