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ABSTRACT
A systematicmethod for the design of disturbance-decoupled linear residual generators for fault detection
and isolation (FDI) in nonlinear systems is developed. Necessary and sufficient conditions for the existence
of linear residual generators for nonlinear systems are derived. As long as these conditions are satisfied,
we obtain explicit design formulas for the residual generator, with eigenvalue assignment. The proposed
formulation and results provide a nonlinear generalisation of standard FDI methods for linear systems. The
method is applied to three case studies: a bio reactor, a continuous stirred tanked reactor (CSTR) and a
process network.

ARTICLE HISTORY
Received 31 July 2020
Accepted 5 September 2020

KEYWORDS
Nonlinear system fault
diagnosis; residual
generators for nonlinear
systems; functional observers
for nonlinear systems

1. Introduction

Higher demand for safety and reliability has made fault diagno-
sis a major topic of research over the past three decades (Ding,
2008; Frank et al., 2000; Frank&Ding, 1997). A fault is an unex-
pected/unpermitted major deviation in the process variables
from normal conditions (Ding, 2008). Faults could arise due to
several reasons, including mechanical failures, power failures,
human errors, etc. Faults could lead to consequences ranging
from off- spec product resulting in loss of profit, to potentially
catastrophic explosions causing fatalities. These considerations
provide a strong motivation for the development of methods
and strategies for quick fault diagnosis that would guide the
operator to bring the system back to normal operation (Ding,
2008).

Fault diagnosis techniques can be broadly grouped into
two categories: hardware-redundancy-based fault diagnosis
and analytical-redundancy-based fault diagnosis (Ding, 2008).
Hardware-redundancy-based techniques consist of a recon-
struction of the system using identical hardware components
parallel to the process (Ding, 2008). This has been used in some
safety-critical systems including aircrafts and nuclear power
plants. However, while this technique certainly has its advan-
tages in terms of reliability, it is limited by high costs, as con-
structing an identical redundant system for the sole purpose of
fault diagnosis may not make economic sense in capital inten-
sive industries (Ding, 2008). Analytical redundancy on the other
hand comprises of a virtual reconstruction of the system using
a process model which is implemented in software form on a
computer (Ding, 2008; Frank, 1987a, 1987b; Frank et al., 2000;
Frank & Ding, 1997; Gertler, 1991). Analytical redundancy is
achieved through the known interdependence among the pro-
cess variables provided by the model (Ding, 2008; Frank, 1987a,
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1987b, 1990; Frank et al., 2000; Frank & Ding, 1997). The evo-
lution of process variables of the virtual system will follow the
outputs of the real system in the absence of faults and will show
a measurable deviation in the presence of faults. The essence
of analytical redundancy in fault diagnosis is checking consis-
tency of the actual system behaviour against the system model.
Any inconsistency is measured in terms of residuals that deviate
from zero only in the presence of a specific fault.Moreover, since
accurate modelling of a real system is difficult and the effect
of unknown disturbances or uncertainties could be corrupt the
residual signal, it is important to carefully define the residual in a
way that makes it unaffected by those disturbances. The central
objective in model-based fault diagnosis is to develop a residual
generator for each of the possible faults, in away that the residual
is unaffected by the other faults and unknown disturbances.

One of the most widely studied approaches in the area of
model-based fault detection and isolation (FDI) is the observer-
based fault diagnosis approach. The first observer-based FDI
method for linear systems was proposed by Beard and Jones
in the early 1970s (Beard, 1971; Jones, 1973) which was a his-
toric milestone in the area of fault diagnosis. Following this,
many authors approached the fault diagnosis using a single
or multiple Luenberger observers or Kalman filters (Clark,
1978a, 1978b; Clark et al., 1975; Ding, 2008; Frank, 1987a,
1987b; Frank & Ding, 1997; Frank & Keller, 1980; Mehra &
Peschon, 1971). In the late 70s the question of sensitivity of fault
diagnosis schemes to modelling errors and unknown distur-
bances was raised which led to the development of FDI schemes
that included disturbance decoupling conditions(Frank, 1987a,
1987b, 1990; Patton et al., 1987;Watanabe &Himmelblau, 1982;
Wüunnenberg & Frank, 1987). In general, observer-based FDI
methods for linear systems can be grouped into the following
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four categories (Ding, 2008; Frank, 1990; Frank et al., 2000)
(i) Fault Detection Filter (ii) Diagnostic Observer (iii) Par-
ity Space Approach (iv) Frequency Domain Approach. In the
90s interconnections between the amongst these methods were
studied and equivalence between thesemethods has been estab-
lished(Ding, 2008; Ding et al., 1999; Frank et al., 2000; Gertler,
1991; Magni & Mouyon, 1994). Thus parameters of the resid-
ual generator obtained using one approach can be transformed
to derive the parameters of the residual generator for any other
approach (Ding, 2008; Ding et al., 1999; Frank et al., 2000;
Magni & Mouyon, 1994). For a review of fault diagnosis for
linear systems the reader is referred to excellent surveys by
Frank and Ding (Frank, 1990; Frank & Ding, 1997) and for
more details on linear methods including the interconnections
amongst different implementations the reader is referred to
(Ding, 2008).

Many industrial systems, like chemical processes, exhibit
strong nonlinearities which may render the application of lin-
earmethods ineffective. To design a reliable FDI system, explicit
consideration of the nonlinear dynamics is needed for resid-
ual generation. Some fundamental results on the feasibility of
disturbance decoupled fault detection and isolation have been
derived in (De Persis & Isidori, 2001) using a differential geo-
metric perspective, where the problem of fault detection was
formulated in terms of the existence of an unobservability sub-
space and a quotient observable subsystem solely affected by the
fault of interest. Following this, there have been studies dedi-
cated to actuator fault detection and subsequent fault tolerant
control in nonlinear systems including detection of a single
fault (Mhaskar et al., 2006, 2012) using a replica of the process
model, and isolation amongst multiple faults (Mhaskar et al.,
2008, 2012) based on the assumption that each input in the
system can directly affect only one state equation. There have
also been approaches based on banks of high gain observers
for generating residuals, with rigorously established conver-
gence properties via Lyapunov methods, that have been shown
to be applicable to the detection of a single sensor fault at a
time (Du & Mhaskar, 2014) and at most two faults (sensor
and/or actuator) in which case a potentially large number of
observers are required to distinguish between the two faults
(Du et al., 2013; Shahnazari & Mhaskar, 2018). In another
work, linear matrix inequalities were used to prove convergence
properties of a class of nonlinear state observers in Lipschitz
nonlinear systems under full state observability from each one
of the measurements, that was subsequently used for diag-
nosis of sensor faults occurring one at a time (Rajamani &
Ganguli, 2004).

In another direction, there have been efforts seeking exten-
sions of observer-based FDI methods to nonlinear systems
in the spirit of linear systems methods (Frank et al., 2000;
Seliger & Frank, 1991), and the challenges of building observer-
based disturbance-decoupled residual generators became evi-
dent (Gertler, 2000). So far, concrete results have been restricted
to special classes of nonlinear systems, including bilinear sys-
tems (Kinnaert, 1999) and globally Lipschitz systems with tri-
angular structure (De Persis & Isidori, 2001; Hammouri et al.,
1999).

The present work will approach observer-based FDI for non-
linear systems from the point of view of exact observer error

linearisation (Kazantzis & Kravaris, 1998). The residual gener-
ator will be constructed to be an observer which, in the absence
of faults, has linear disturbance-decoupled error dynamics, with
the residual function identically vanishing on the observer
invariant manifold. It will be shown that, with the proposed
formulation, easy-to-check necessary and sufficient conditions
for the existence of such a residual generator can be derived,
leading to simple formulas for observer design with eigenvalue
assignment. Moreover, fault isolation can be accomplished via
multiple residual generators, one for each fault, decoupled from
the other faults and the system disturbances. The proposed for-
mulation and results provide a direct nonlinear generalisation
of standard linear FDI methods (Ding, 2008).

The outline of the paper is as follows. In the next section,
the disturbance decoupled fault detection problem for a nonlin-
ear system using a linear residual generator is formulated, and
the pertinent design equations are derived. This is followed by
necessary and sufficient conditions for the existence of distur-
bance decoupled linear residual generators, including a design
formula for the residual generator. Then, the problem of fault
isolation in the presence of multiple faults is handled via multi-
ple residual generators. Finally, the applicability of the method
is demonstrated through chemical engineering examples.

2. Disturbance-decoupled detection of a single fault
using a linear residual generator

Consider a nonlinear process described by:

ẋ = F(x) + G(x)f +
m∑
i=1

Ei(x)wi

y = H(x) + J(x)f +
m∑
i=1

Ki(x)wi (2.1)

where x ∈ R
n denotes the vector of states, y ∈ R

p denotes the
vector of measured outputs. f ∈ R and wi ∈ R, i = 1, 2, . . . ,m
are the fault and the disturbances/uncertainties respectively
(system inputs) andF(x),G(x),Ei(x),H(x), J(x),Ki(x) are smooth
functions. Under normal operation of the process, the input f
(fault) is identically equal to zero, however in an abnormal situ-
ation (equipment failure), f becomes nonzero, and this is what
needs to be detected on the basis of the measurements. The
inputswi describe normal variability of process conditions (dis-
turbances) and/ormodel uncertainty. It is in the presence of this
variability that the fault must be detected, and the conclusion
(normal or faulty operation)must be unaffected by the presence
of wi (disturbance-decoupled detection).

In this work, we will study the problem of disturbance-
decoupled fault detection on the basis of calculating a quantity
r called the residual, which is identically zero under normal
operation (i.e. when f (t) = 0) and nonzero under an abnormal
situation (i.e. when f (t)�=0), and is unaffected by the distur-
bances wi. More specifically, this work will study the design of a
linear filter, called the residual generator, of the form

ż = Az + By

r = Cz + Dy (2.2)
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Figure 1. Fault detection scheme.

with state z ∈ R
s, output r ∈ R (the residual), and parametersA,

B,C, D being s × s, s × p, 1 × s and 1 × p matrices respectively
with (C,A) observable pair, so that the response of the residual r
in the series connection of (2.1) followed by (2.2) (see Figure 1)

d
dt

[
x
z

]
=
[

F(x)
Az + BH(x)

]
+
[
G(x)
BJ(x)

]
f +

m∑
i=1

[
Ei(x)
BKi(x)

]
wi

r = [Cz + DH(x)] + [DJ(x)]f +
m∑
i=1

[DKi(x)]wi (2.3)

has the following properties:

(i) r(t) asymptotically approaches zero when f is identically
zero

(ii) r(t) is unaffected by the disturbances wi
(iii) r(t) is affected by the fault f

In other words, for any initial conditions
[

x(0)
z(0)

]
and any

disturbances wi(t),

lim
t→∞ r(t) = 0 if f (t) = 0

lim
t→∞ r(t) �= 0 if f (t) �= 0

The responsiveness of r to faults and insensitivity to distur-
bances ensures fault detection while precluding the possibility
of false alarms.

The present study focuses on designing linear residual gen-
erators for nonlinear systems given by (2.1) because of the
practicality of linear filters in design and implementation. We
will derive necessary and sufficient conditions for the existence
of a linear residual generator based on a disturbance-decoupled
linear functional observer. As long as these conditions are sat-
isfied, we will derive simple design formulas for the residual
generator, with eigenvalue assignment capability.

2.1 Design conditions for the residual generator for
disturbance decoupled fault detection

In this subsection we derive specific design conditions that the
residual generatormust satisfy tomeet the requirements (i)-(iii).
The first and foremost requirement of the residual generator
is that the residual must vanish in the absence of faults or
disturbances (asymptotically converge to zero in the presence
of initialisation errors). In other words, the residual generator
should act as a functional observer that tracks an output iden-
tically equal to zero. Consequently (Ding, 2008; Kravaris, 2011,

2016; Luenberger, 1971), there must exist a differentiable map
T(x) from R

n to R
s such that:

∂T(x)
∂x

F(x) − AT(x) − BH(x) = 0 (2.4)

CT(x) + DH(x) = 0 (2.5)

Conditions (2.4) and (2.5) state that z = T(x) is an invariant
manifold of the zero-input dynamics of system (2.3), on which
the residual r is identically equal to zero. It will be seen in Propo-
sition 3.1 in the next section that the necessary and sufficient
conditions for existence of such an invariant manifold depend
on F(x) and H(x) only, and not on the (A, B, C, D) matrices of
the residual generator.

If conditions (2.4) and (2.5) are satisfied, the observer error
dynamics (expressed in terms of the off-the-manifold coordi-
nate e = z − T(x)) and the residual are given by:

d(z − T(x))
dt

= A(z − T(x)) +
(
BJ(x) − ∂T(x)

∂x
G(x)

)
f

+
m∑
i=1

(
BKi(x) − ∂T(x)

∂x
Ei(x)

)
wi (2.6)

r = C(z − T(x)) + DJ(x)f +
m∑
i=1

DKi(x)wi (2.7)

It should be noted here that the zero-input dynamics of
(2.6)–(2.7) is exactly linear and moreover, if the matrix A is
Hurwitz, the zero-input response is

z(t) − T(x(t)) = eAt(z(0) − T(x(0))) → 0

r(t) = CeAt(z(0) − T(x(0))) → 0

which means that the manifold z = T(x) is attractive and the
residual r(t) asymptotically approaches zero.

The second requirement for the residual generator is that
the residual must remain completely unaffected by any distur-
bances wi(t) present in the system. Disturbance decoupling can
be achieved if the coefficients of wi in (2.6) and (2.7) vanish, i.e,
for all i= 1, . . . ,m,

∂T(x)
∂x

Ei(x) − BKi(x) = 0 (2.8)

DKi(x) = 0 (2.9)

The third requirement for the residual generator is that the
residual rmust be affected by the input f, so that the fault can be
detected by monitoring the residual. Therefore, the coefficients
of the input f in (2.6) and (2.7) must not be all zero:

[
∂T
∂x

(x)G(x) − BJ(x)
DJ(x)

]
�=
[

0
0

]
(2.10)

In summary, the residual generator should satisfy the following
design conditions:

(i) The functional observer conditions (2.4) and (2.5)
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(ii) The disturbance decoupling conditions (2.8) and (2.9) for
all disturbances

(iii) The fault detectability condition (2.10)

Remark 2.1: Someparallels can be drawnbetween the observer
approach formulated here and the differential geometric per-
spective in (De Persis & Isidori, 2001). Specifically, the dis-
turbance decoupling and fault detectability conditions can be

expressed in geometric terms as
[

Ei(x)
Ki(x)

]
∈ �⊥∀i = 1, ..,m

and
[

G(x)
J(x)

]
/∈ �⊥, where �⊥ is the annihilator of the codis-

tribution� spanned by the rows of the matrix
[

∂T(x)
∂x −B
0 D

]
.

3. Solution of the design conditions

For the design of the residual generator (2.2), one must be able
to find the matrices A, B, C and D and a differentiable map
T(x) so that the design conditions (2.4), (2.5), (2.8) and (2.9)
are satisfied. In addition, it is desired that the matrix A is Hur-
witz with prescribed eigenvalues for stability and fast response
of the error dynamics. The following proposition provides nec-
essary and sufficient conditions for the residual generator (2.2)
to satisfy (2.4) and (2.5).

Proposition 3.1: There exists a residual generator of the form
(2.2) satisfying the functional observer design conditions (2.4) and
(2.5) if and only if there exist constant row vectors v0,v1, . . . ,
vs−1, vs R

p that satisfy:

v0H(x) + LF(v1H(x)) + . . .

+ Ls−1
F (vs−1H(x)) + LsF(vsH(x)) = 0 (3.1)

where LF denotes the Lie derivative operator LF =
n∑
j=1

Fj(x) ∂
∂xj .

Proof: (i) Necessity: Suppose that there exists T(x) =
⎡
⎣ T1(x)

T2(x)
...

Ts(x)

⎤
⎦

such that (2.4) is satisfied, i.e.⎡
⎢⎢⎢⎣

LFT1(x)
LFT2(x)

...
LFTs(x)

⎤
⎥⎥⎥⎦ = A

⎡
⎢⎢⎢⎣

T1(x)
T2(x)

...
Ts(x)

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

B1H(x)
B2H(x)

...
BsH(x)

⎤
⎥⎥⎥⎦

where B1, . . . , Bs denote the rows of the matrix B. Applying
the Lie derivative operator LF to each component of the above
equation (k–1) times, we find that for k= 1,2,3 . . .

⎡
⎢⎢⎢⎣
LkFT1(x)
LkFT2(x)

...
LkFTs(x)

⎤
⎥⎥⎥⎦ = Ak

⎡
⎢⎢⎢⎣
T1(x)
T2(x)

...
Ts(x)

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

(Ak−1B)1H(x) + LF((Ak−2B)1H(x)) + . . . + Lk−1
F (B1H(x))

(Ak−1B)2H(x) + LF((Ak−2B)2H(x)) + . . . + Lk−1
F (B2H(x))

...
(Ak−1B)sH(x) + LF((Ak−2B)sH(x)) + . . . + Lk−1

F (BsH(x))

⎤
⎥⎥⎥⎦

and we can calculate

(LsF + α1Ls−1
F + . . . + αsI)Tι(x)

= ((As−1B)i + α1(As−2B)i + . . . + αs−1Bi)H(x)

+ LF(((As−2B)i + . . . + αs−2Bi)H(x)))

+ . . . + Ls−1
F (BiH(x)) (3.2)

where α1, . . . ,αs are the coefficients of the characteristic poly-
nomial of the matrix A.

At the same time, the mapping T(x) must satisfy (2.5),
hence applying (LsF + α1Ls−1

F + . . . + αsI) on each component
of equation (2.5) and using (3.2) gives:

0 = (CAs−1B + α1CAs−2B + . . . + αs−1CB + αsD)H(x)

+ LF((CAs−2B + . . . + αs−2CB + αs−1D)H(x)))

+ . . . + Ls−1
F ((CB + α1D)H(x)) + LsF(DH(x))

which proves that (3.1) is satisfied.
(ii) Sufficiency: Suppose that there exist constant row vec-

tors v0,v1, . . . , vs−1, vs that satisfy (3.1). Consider the following
choices of (A, B, C, D) matrices:

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −αs
1 0 · · · 0 −αs−1
0 1 · · · 0 −αs−2
...

...
. . .

...
...

0 0 · · · 1 −α1

⎤
⎥⎥⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎢⎢⎣

αs
αs−1
...

α2
α1

⎤
⎥⎥⎥⎥⎥⎦ vs −

⎡
⎢⎢⎢⎢⎢⎣

v0
v1
...

vs−2
vs−1

⎤
⎥⎥⎥⎥⎥⎦ ,

C = [0 0 · · · 0 1],D = −vs (3.3)

For the aboveA andCmatrices (in observer canonical form),
the design conditions (2.4) and (2.5) can be written component-
wise as follows:

∂T1(x)
∂x

F(x) + αsTs(x) − B1H(x) = 0 (3.4)

∂T2(x)
∂x

F(x) − T1(x) + αs−1Ts(x) − B2H(x) = 0 (3.5)

...
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∂Ts(x)
∂x

F(x) − Ts−1(x) + α1Ts(x) − BsH(x) = 0 (3.6)

Ts(x) + DH(x) = 0 (3.7)

We observe that the above equations are easily solvable
sequentially for Ts(x),Ts−1(x), . . . ,T1(x), starting from the last
equation and going up. In particular, for the chosen B and D
matrices, we find from (3.7), (3.6), . . . , (3.5):

Ts(x) = vsH(x)

Ts−1(x) = LF(vsH(x)) + vs−1H(x)

...

T2(x) = Ls−2
F (vsH(x)) + . . . + v2H(x)

T1(x) = Ls−1
F (vsH(x)) + . . . + LF(v2H(x)) + v1H(x)

whereas (3.4) gives:

LsF(vsH(x)) + Ls−1
F (vs−1H(x))

+ . . . + LF(v1H(x)) + v0H(x) = 0

which is exactly (3.1). Thus, we have proved that

T(x) =

⎡
⎢⎢⎢⎢⎢⎣

v1H(x) + LF(v2H(x)) + . . . + Ls−1
F (vsH(x))

v2H(x) + . . . + Ls−2
F (vsH(x))

...
vs−1H(x) + LF(vsH(x))

vsH(x)

⎤
⎥⎥⎥⎥⎥⎦
(3.8)

satisfies the design conditions (2.4) and (2.5) when v0, v1, . . . ,
vs−1, vs satisfy (3.1) and the A, B, C, D matrices are chosen
according to (3.3).

It is important to observe that the sufficiency part of the
proof is constructive: it gives an explicit solution of the design
equations (2.4) and (2.5) in terms of the vectors v0,v1, . . . ,
vs−1, vs that satisfy (3.1). Moreover, the eigenvalues of the A-
matrix of the derived residual generator are the roots of the
polynomial λs + α1λ

s−1 + . . . + αs−1λ + αs, therefore they are
assignable. The following Proposition provides necessary and
sufficient conditions for the derived residual generator to meet
the disturbance decoupling specifications (2.8) and (2.9). �

Proposition 3.2: Suppose that there exist constant row vectors
v0,v1, . . . , vs−1, vs R

p that satisfy (3.1) and that the residual gen-
erator matrices (A, B, C, D) have been chosen according to (3.3),
so that (2.4) and (2.5) hold with T(x) given by (3.8). The residual
generator will satisfy the disturbance decoupling conditions (2.8)
and (2.9) if and only if for all i= 1,2 . . . ,m:

v0Ki(x) + LEi(v1H(x)) + LEiLF(v2H(x))

+ . . . + LEiL
s−1
F (vsH(x)) = 0

v1Ki(x) + LEi(v2H(x)) + . . . + LEiL
s−2
F (vsH(x)) = 0

...

vs−2Ki(x) + LEi(vs−1H(x)) + . . . + LEiLF(vsH(x)) = 0

vs−1Ki(x) + LEi(vsH(x)) = 0

vsKi(x) = 0 (3.9)

Proof: The disturbance decoupling conditions (2.8) and (2.9)
can be written in component form, for i= 1,2, . . . m, as follows:

∂T1(x)
∂x

Ei(x) − B1Ki(x) = 0

∂T2(x)
∂x

Ei(x) − B2Ki(x) = 0

...
∂Ts−1(x)

∂x
Ei(x) − Bs−1Ki(x) = 0

∂Ts(x)
∂x

Ei(x) − BsKi(x) = 0

DKi(x) = 0

Substituting the expressions for B, D and T(x)from (3.3) and
(3.8) to the above equations lead to the following conditions:

LEiL
s−1
F (vsH(x)) + . . . + LEiLF(v2H(x)) + LEi(v1H(x))

− αsvsKi(x) + v0Ki(x) = 0

LEiL
s−2
F (vsH(x)) + . . . + LEiLF(v3H(x)) + LEi(v2H(x))

− αs−1vsKi(x) + v1Ki(x) = 0

...

LEIL
2
F(vsH(x)) + LEiLF(vs−1H(x)) + LEi(vs−2H(x))

− α3vsKi(x) + vs−3Ki(x) = 0

LEiLF(vsH(x)) + LEi(vs−1H(x)) − α2vsKi(x) + vs−2Ki(x) = 0

LEi(vsH(x)) − α1vsKi(x) + vs−1Ki(x) = 0

−vsKi(x) = 0

which can be written equivalently as

LEiL
s−1
F (vsH(x)) + . . . + LEiLF(v2H(x))

+ LEi(v1H(x)) + v0Ki(x) = 0

LEiL
s−2
F (vsH(x)) + . . . + LEiLF(v3H(x))

+ LEi(v2H(x)) + v1Ki(x) = 0

...
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LEIL
2
F(vsH(x)) + LEiLF(vs−1H(x))

+ LEi(vs−2H(x)) + vs−3Ki(x) = 0

LEiLF(vsH(x)) + LEi(vs−1H(x)) + vs−2Ki(x) = 0

LEi(vsH(x)) + vs−1Ki(x) = 0

vsKi(x) = 0

This completes the proof.

The following Proposition provides necessary and sufficient
conditions for the derived residual generator to meet the fault
detectability condition (2.12). �

Proposition 3.3: Suppose that there exist constant row vectors
v0,v1, . . . , vs−1, vs R

p that satisfy (3.1) and that the residual gen-
erator matrices (A, B, C, D) have been chosen according to (3.3),
so that (2.4) and (2.5) hold with T(x) given by (3.8). The residual
generator will satisfy the fault detectability condition (2.10) if and
only if

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v0J(x) + LG(v1H(x)) + LGLF(v2H(x)) + . . . + LGLs−1
F (vsH(x))

v1J(x) + LG(v2H(x)) + . . . + LGLs−2
F (vsH(x))

...
vs−2J(x) + LG(vs−1H(x)) + LGLF(vsH(x))
vs−1J(x) + LG(vsH(x))
vsJ(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.10)

Proof: For B and D defined via (3.3) and T(x) given by (3.8),
condition (2.10) is equivalent to: is ‘either vsJ(x) �= 0’ or

⎡
⎢⎢⎢⎢⎢⎣

αs
αs−1
...

α2
α1

⎤
⎥⎥⎥⎥⎥⎦ vsJ(x) −

⎡
⎢⎢⎢⎢⎢⎣

v0J(x) + LG(v1H(x)) + LGLF(v2H(x)) + . . . + LGLs−1
F (vsH(x))

v1J(x) + LG(v2H(x)) + . . . + LGLs−2
F (vsH(x))

...
vs−2J(x) + LG(vs−1H(x)) + LGLF(vsH(x))

vs−1J(x) + LG(vsH(x))

⎤
⎥⎥⎥⎥⎥⎦ �=

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎦

and further to

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v0J(x) + LG(v1H(x)) + LGLF(v2H(x)) + . . . + LGLs−1
F (vsH(x))

v1J(x) + LG(v2H(x)) + . . . + LGLs−2
F (vsH(x))

...
vs−2J(x) + LG(vs−1H(x)) + LGLF(vsH(x))
vs−1J(x) + LG(vsH(x))
vsJ(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

Summarising the results of Propositions 3.1–3.3, we con-
clude that the design of a an s-th order linear residual generator
is feasible if and only if there exist constant row vectors v0,v1,
. . . , vs−1, vs R

p that satisfy

(1) LsF(vsH(x)) + Ls−1
F (vs−1H(x)) + . . . + LF(v1H(x))

+ v0H(x) = 0

(2) �

[
Ei(x)
Ki(x)

]
= 0 ∀ i = 1, ..,m and

(3) �

[
G(x)
J(x)

]
�= 0

where
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� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
[Ls−1

F (vsH(x))] + . . . + ∂

∂x
[LF(v2H(x))] + ∂

∂x
(v1H(x)) v0

∂

∂x
[Ls−2

F (vsH(x))] + . . . + ∂

∂x
(v2H(x)) v1

...
...

∂

∂x
[LF(vsH(x))] + ∂

∂x
(vs−1H(x)) vs−2

∂

∂x
(vsH(x)) vs−1

0 vs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The last two conditions state that the vectors
[

Ei(x)
Ki(x)

]
, i =

1, ..,m belong to the annihilator of the codistribution spanned

by the rows of the matrix �, whereas
[

G(x)
J(x)

]
does not (cf.

Remark 2.1). Also, it is important to note that all three con-
ditions are independent of the choice of eigenvalues for the
residual generator; if constant row vectors v0,v1, . . . , vs−1, vs
can be found to satisfy them, any arbitrary eigenvalues can be
assigned.

Remark 3.1: In case
[
G(x)
J(x)

]
∈ span

([
E1(x)
K1(x)

]
,
[
E2(x)
K2(x)

]
, . . . ,[

Em(x)
Km(x)

])
for all x, the disturbance decoupling conditions

become incompatible with the fault detectability condition,
hence fault detection is infeasible in the presence of distur-
bances.

Remark 3.2: Using the Lie derivative notation on a vector func-
tion as the vector of the Lie derivatives of its components, e.g.

LF

⎡
⎢⎣

H1(x)
...

Hp(x)

⎤
⎥⎦ =

⎡
⎢⎣

LFH1(x)
...

LFHp(x)

⎤
⎥⎦, and accordingly notation for

higher-order Lie derivatives of vector functions, the conditions
of Propositions 3.1–3.3 may be written in a compact form as

[v0 v1 . . . vs−1 vs][�o(x)�w1(x) . . . �wm(x)�f (x)] = [0 0 ∗]
(3.11)

where:

�o(x) =

⎡
⎢⎢⎢⎢⎢⎣

H(x)
LFH(x)

...
Ls−1
F H(x)
LsFH(x)

⎤
⎥⎥⎥⎥⎥⎦

�wi(x) =

⎡
⎢⎢⎢⎢⎢⎣

Ki(x) 0 · · ·
LEiH(x) Ki(x) · · ·

...
...

. . .
LEiL

s−2
F H(x) LEiL

s−3
F H(x) · · ·

LEiL
s−1
F H(x) LEiL

s−2
F H(x) · · ·

0 0
0 0
...

...
Ki(x) 0

LEiH(x) Ki(x)

⎤
⎥⎥⎥⎥⎥⎦

�f (x) =

⎡
⎢⎢⎢⎢⎢⎣

J(x) 0 · · ·
LGH(x) J(x) · · ·

...
...

. . .
LGLs−2

F H(x) LGLs−3
F H(x) · · ·

LGLs−1
F H(x) LGLs−2

F H(x) · · ·

0 0
0 0
...

...
J(x) 0

LGH(x) J(x)

⎤
⎥⎥⎥⎥⎥⎦

and the symbol * indicates a nonzeromatrix block. In this form,
the linear dependence of the conditions on the unknown vectors
v0,v1, . . . , vs−1, vs becomes explicit.

For the special case when the system (2.1) is linear, i.e.

ẋ = Fx + Gf +
m∑
i=1

Eiwi (3.12)

y = Hx + Jf +
m∑
i=1

Kiwi

the design conditions (2.4), (2.5), (2.8) and (2.9) become the
standard design conditions for linear residual generators for
linear system (Ding, 2008)

TF − AT − BH = 0 (3.13)

CT + DH = 0 (3.14)

TE − BK = 0 (3.15)

DK = 0 (3.16)

where E = [E1 . . .Em] and K = [K1 . . .Km], whereas the fault

detectability condition (2.10) becomes
[

TG − BJ
DJ

]
�= 0.
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For the choices of A,B,C,D matrices given by (3.3),

T =

⎡
⎢⎢⎢⎢⎢⎣

v1H + v2HF + . . . + vsHFs−1

v2H + . . . + vsHFs−2

...
vs−1H + vsHF

vsH

⎤
⎥⎥⎥⎥⎥⎦

and the conditions on the residual generator can be combined
in a compact form as

[v0 v1 . . . vs−1 vs][�̃o�̃w�̃f ] = [0 0 ∗] (3.17)

where

�̃o =

⎡
⎢⎢⎢⎢⎢⎣

H
HF
...

HFs−1

HFs

⎤
⎥⎥⎥⎥⎥⎦

�̃w =

⎡
⎢⎢⎢⎢⎢⎣

K
HE
...

HFs−2E
HFs−1E

0
K
...

HFs−3E
HFs−2E

· · ·
· · ·
. . .
· · ·
· · ·

0
0
...
K
HE

0
0
...
0
K

⎤
⎥⎥⎥⎥⎥⎦

�̃f =

⎡
⎢⎢⎢⎢⎢⎣

J
HG
...

HFs−2G
HFs−1G

0
J
...

HFs−3G
HFs−2G

· · ·
· · ·
. . .
· · ·
· · ·

0
0
...
J

HG

0
0
...
0
J

⎤
⎥⎥⎥⎥⎥⎦

and the symbol * indicates a nonzero matrix block. Equation
(3.17) is exactly the condition given by Ding (Ding, 2008) for
linear systems of the form (3.12).

Thus, the results of Propositions 3.1, 3.2 and 3.3 provide a
direct generalisation of standard results on linear systems to
nonlinear systems.

Remark 3.3: In the linear systems literature (Ding, 2008), the
vectors v0, v1, . . . , vs−1, vs that satisfy (3.17) are called parity vec-
tors, and the set of parity vectors, when nonempty, defines a
linear space which is called the parity space(Chow & Willsky,
1984). The nonlinear generalisation developed in this section
offers a nonlinear analog of parity vectors, defined as the ones
satisfying (3.1), (3.9) and (3.10) or equivalently (3.11).

Remark 3.4: The parity vectors v0, v1, . . . , vs−1, vs provide
information about the measurements that are being used in the
residual generator. If the j-th element of all of these vectors hap-
pens to be 0, this means that the measurement yj is not used for
fault detection since both B and D will have their j-th column
identically zero. This situationmay arise in applications andwill
be discussed in the applications section. In the event of multi-
ple solutions for the set of parity vectors v0, v1, . . . , vs−1, vs, this
featuremight be usedminimise the total number of sensors that
are used.

Remark 3.5: In the majority of applications, process distur-
bances do not affect sensors and sensor disturbances do not
affect the process. This motivates considering the following
special case:

ẋ = F(x) + G(x)f +
∑
i
Ei(x)w

p
i (3.18)

y = H(x) + J(x)f +
∑
i
Ki(x)ws

i

where wp
i denotes a process disturbance and ws

i a sensor dis-
turbance. For this special class of systems, the disturbance
decoupling conditions (3.9) get simplified since for every dis-
turbance, either Ei(x) or Ki(x) vanishes, depending on whether
it is a process or sensor disturbance. A sensor disturbance gen-
erally places more restrictions than a process disturbance. In
particular, we see from (3.9) that

(a) A process disturbance wp
i places no restriction on v0 since

the corresponding Ki(x) = 0.
(b) A sensor disturbance ws

i imposes the restriction that
[v0 v1 . . . vs−1 vs]Ki(x) = 0. In case a disturbance affects
only a specific sensor measuring yj, this implies that the j-
th element of v0, v1, . . . , vs−1, vs must equal to 0, hence the
measurement yj must not be used in the residual generator.

Remark 3.6: For the special case of a scalar residual generator
(s= 1), the design conditions become

v0H(x) + LF(v1H(x)) = 0

v0Ki(x) + LEi(v1H(x)) = 0, i = 1, . . . ,m

v1Ki(x) = 0, i = 1, . . . ,m

[
v0J(x) + LG(v1H(x))

v1J(x)

]
�=
[

0
0

]

The above conditions take an even simpler form in case all states
are measurable, i.e. H(x) = x:

v0x + v1F(x) = 0

v0Ki(x) + v1Ei(x) = 0, i = 1, . . . ,m

v1Ki(x) = 0, i = 1, . . . ,m

[
v0J(x) + v1G(x)

v1J(x)

]
�=
[

0
0

]

Remark 3.7: The linear residual generator formulation devel-
oped in the previous and the present section is amenable to a
slight generalisation. Instead of using residual generator (2.2),
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it is possible to use a residual generator involving additive
nonlinear output injection terms:

ż = Az + β(y) (3.19)

r = Cz + δ(y)

where β(·) and δ(·) are smooth functions R
p → R

s and R
p →

respectively. Then, themappingT(x) fromR
n toR

s must satisfy
the functional observer conditions:

∂T(x)
∂x

F(x) − AT(x) − β(H(x)) = 0 (3.20)

CT(x) + δ(H(x)) = 0 (3.21)

and the observer error dynamics, in the absence of faults and
disturbances, will still be linear:

d(z − T(x))
dt

= A(z − T(x))
r = C(z − T(x))

therefore it will have the same convergence properties when A
is Hurwitz. Proposition 3.1 gets modified as follows:

Proposition 3.4: There exists a residual generator of the form
(3.19) satisfying the functional observer design conditions (3.20)
and (3.21) if and only if there exist functions v0(y),v1(y), . . . ,
vs−1(y), vs(y) fromR

p to R that satisfy:

v0(H(x)) + LF(v1(H(x))) + . . . + Ls−1
F (vs−1(H(x)))

+ LsF(vs(H(x))) = 0 (3.22)

If such functions can be found, the residual generator can be built
by using

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −αs
1 0 · · · 0 −αs−1
0 1 · · · 0 −αs−2
...

...
. . .

...
...

0 0 · · · 1 −α1

⎤
⎥⎥⎥⎥⎥⎦ ,

β(y) =

⎡
⎢⎢⎢⎢⎢⎣

αs
αs−1
...

α2
α1

⎤
⎥⎥⎥⎥⎥⎦ vs(y) −

⎡
⎢⎢⎢⎢⎢⎣

v0(y)
v1(y)
...

vs−2(y)
vs−1(y)

⎤
⎥⎥⎥⎥⎥⎦ ,

C = [0 0 · · · 0 1], δ(y) = −vs(y)

(3.23)

and it is possible to verify that

T(x) =

⎡
⎢⎢⎢⎢⎢⎣

v1(H(x)) + LF(v2(H(x))) + . . . + Ls−1
F (vs(H(x)))

v2(H(x)) + . . . + Ls−2
F (vs(H(x)))

...
vs−1(H(x)) + LF(vs(H(x)))
vs(H(x))

⎤
⎥⎥⎥⎥⎥⎦

(3.24)
satisfies (3.20) and (3.21).

One can accordingly define disturbance decoupling and fault
detectability design conditions for the residual generator, which
will impose extra conditions on the functions v0(y),v1(y), . . . ,
vs−1(y), vs(y) mutatis mutandis.

�

4. Fault isolation

Till now we considered the problem of detecting a single scalar
fault in the presence of disturbances. However, for systems
with multiple faults, in addition to detecting the occurrence of
faults it is necessary to correctly identify which fault/faults have
occurred. To this end, consider the following system involving
nf possible faults:

ẋ = F(x) +
nf∑
i=1

Gi(x)fi (4.1)

y = H(x) +
nf∑
i=1

Ji(x)fi

with state x ∈ R
n, output y ∈ R

p and inputs fi ∈ R, i =
1, 2, . . . , nf , and with F(x),H(x),Gi(x), Ji(x) smooth functions,
and assume that

(i) nf ≤ p i.e. that the number of faults does not exceed the
number of measurements.

(ii) the vectors
[

Gi(x)
Ji(x)

]
, i = 1, . . . , nf are linearly indepen-

dent for every x. In other words, that no fault can enter the
model equations the same way as a linear combination of
some other faults.

The above are clearly necessary conditions fault distinguisha-
bility.

Remark 4.1: In general, fault distinguishability may be
defined as injectivity or left invertibility of the input/outputmap
(f1, . . . , fnf ) � y. Sufficient conditions may be derived by tak-
ing derivatives of each output of order up to the relative orders,
and checking the left invertibility of the matrix of the coeffi-
cients of the input vector. Specifically, denoting by ρ j the relative
order of output yj with respect to the input vector and by C(x)
the p × nf characteristic matrix, with entries

Cji(x) =
{

LGiL
ρj−1
F Hj(x), if ρj > 0

Jji(x), if ρj = 0

a sufficient condition for left invertibility of the input/output
map is Rank C(x) = nf .

The residual generator formulated in Section 3 can be applied
to build a fault isolation scheme in a straightforward manner.
To isolate a specific fault fk, one can try to construct a residual
generator of the form:

żk = Azk + Bky (4.2)

rk = Czk + Dky

which satisfies the fault detectability condition (3.10) for fault fk
and the disturbance decoupling conditions (3.9) for wi = fi, i �=
k, along with the functional observer condition (3.1).

If this is feasible for every fault, then one can build an overall
system of residual generators, working in parallel, and each one
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Figure 2. Fault isolation scheme.

detecting a specific fault (see also Figure 2):

ż1 = Az1 + B1y

...

żnf = Aznf + Bnf y (4.3)

r1 = Cz1 + D1y

...

rnf = Cznf + Dnf y

where for any initial condition

⎡
⎢⎣

x(0)
z1(0)
...

znf (0)

⎤
⎥⎦, limt→∞ ri(t)= 0 if fi(t)= 0

lim
t→∞ ri(t) �= 0 if fi(t) �= 0

This will solve the fault isolation problem.

Remark 4.1: In the foregoing formulation, the same pair of
(C,A) matrices are used in all residual generators, leading to
the same assigned eigenvalues for all residual generators. More
generally, different pairs of (C,A) matrices could be used.

Remark 4.2: System (4.1) involves faults but no disturbances.
More generally, one could consider

ẋ = F(x) +
nf∑
i=1

Gi(x)fi +
m∑
i=1

Ei(x)wi (4.7)

y = H(x) +
nf∑
i=1

Ji(x)fi +
m∑
i=1

Ki(x)wi

Every residual generator in this case,must satisfy disturbance
decoupling conditions for all wi in addition to the disturbance
decoupling conditions for the other faults. In general, the distur-
bance decoupling conditions for wi may impose an increase in
the number of necessary measurements p, beyond the number
of faults nf .

5. Representative applications to chemical processes

In this section, case studies are presented to demonstrate the
use of linear residual generators for fault diagnosis in nonlin-
ear chemical process systems. In chemical processes, dynamic
models are generally composed of conservation equations and
inventory rate equations of the form: (Accumulation) = (In) –
(Out)+ (Generation), with the nonlinearities often appearing
only in the generation terms, associatedwith kinetic rate expres-
sions. This makes them amenable to the design conditions, with
parity vectors that are independent of the reaction rates, which
are often uncertain. Three application examples are studied in
this section, specifically an anaerobic digester (bio-reactor), a
continuous stirred tank reactor (CSTR) and a process network
consisting of a CSTR and flash separator with a recycle stream.

5.1 Bio-reactor

Anearobic digestion is a complex biochemical system, in which
organic compounds are converted to biogas, consisting primar-
ily of methane and carbon dioxide. Anerobic digestion of a
soluble susbtrate can be modelled as a two-step process: The
acidogenic bacteria first convert the organic soluble substrate
to a volatile fatty acid mixture and then the acids are utilised by
methanogenic bacteria to produce the biogas. It is assumed that
the digestion occurs in a CSTR (see Figure 3) and the feed only
consists of soluble substrates and no biomass and no volatile
fatty acids. The mathematical model is as follows:

dX1

dt
= −(Dr + f (t))X1 + (μmax1 + w(t))S1

Ks1 + S1
X1

dS1
dt

= (Dr + f (t))(S0 − S1) − 1
Y1

(μmax1 + w(t))S1
Ks1 + S1

X1

dX2

dt
= −(Dr + f (t))X2 + μmax2S2

Ks2 + S2
X2 (5.1)

dS2
dt

= −(Dr + f (t))S2 + c12
Y1

(μmax1 + w(t))S1
Ks1 + S1

X1

− μmax2S2
Ks2 + S2

X2

Y2

y1 = X1

y2 = S1

y3 = X2

y4 = S2

where S1 and S2 are the concentration of the soluble organic
substrate and volatile fatty acids respectively, X1 and X2 are
the concentration of acidogenic and methanogenic biomass
respectively,μ1(S1) = μmax1S1

Ks1+S1 and μ2(S2) = μmax2S2
Ks2+S2 are the spe-

cific growth rates of acidogenic and methanogenic bacteria
respectively, with μmax1,μmax2, the corresponding maximum
specific growth rates and KS1,KS2 the saturation constants,
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Figure 3. Bio-reactor schematic.

Table 1. Bio-reactor parameters.

Parameter Value Parameter Value

Dr 0.2d−1 μmax2 0.36d−1

μmax1 4d−1 Y1 0.11 g/g
Ks1 0.023g/L Y2 0.003 g/mmol
S0 10 g/L c12 16.95mmol/g
Ks2 2.3mmol/L

Y1,Y2 are the biomass yield coefficients, c12 is the stoichiomet-
ric coefficient of conversion of S1 to S2, S0 is the concentration
of organic substrate in the feed and Dr is the dilution rate.
f (t) represents a fault in the dilution rate and w(t) represents
the uncertainty in the maximum growth rate of acidogenic
bacteria.

The bio-reactor parameters are listed in Table 1 and the
initial conditions are X1(0) = 0.1 g/L,X2(0) = 40 g/L , S1(0) =
10 g/L, S2(0) = 0.1mmol/L.

The model (5.1) can be converted to deviation form, relative
to reference steady state conditions corresponding to absence of
faults or uncertainties: X′

1 = X1 − X1,ref , S′
1 = S1 − S1,ref ,X′

2 =
X2 − X2,ref , S′

2 = S2 − S2,ref and y′
1 = X′

1, y
′
2 = S′

1, y
′
3 = X′

2, y
′
4

= S′
2, where the subscript ref denotes reference steady state

value. The goal is to build a residual generator to detect the dilu-
tion rate fault f (t) in the presence of the disturbance w(t) in the
acidogenic reaction rate expression.

To this end, a scalar residual generator is built (s= 1), with
the design conditions (see Remark 3.6) satisfied for following
choice of parity vectors

v0 =
[
Dr ,Dr ,Dr

(
−1 + 1

Y1

)
Y1

Y2c12
,Dr

(
−1 + 1

Y1

)
Y1

c12

]
(5.2)

v1 =
[
1, 1,

(
−1 + 1

Y1

)
Y1

Y2c12
,
(

−1 + 1
Y1

)
Y1

c12

]
Using the parity vectors (5.2) and the design parameters

A = −α1 = −1,B = α1v1 − v0,C = 1,D = −v1, leads to the
following first order residual generator:

dz
dt

= −z + (1 − Dr)

(
y′
1 + y′

2 +
(

−1 + 1
Y1

)
Y1

Y2c12
y′
3

+
(

−1 + 1
Y1

)
Y1

c12
y′
4

)

r = z −
(
y′
1 + y′

2 +
(

−1 + 1
Y1

)
Y1

Y2c12
y′
3

+
(

−1 + 1
Y1

)
Y1

c12
y′
4

)

From (5.3), we see that at steady state, the residual is given by

rs = −Dr

(
X′

1,s + S′
1,s +

(
−1 + 1

Y1

)
Y1

Y2c12
X′

2,s

+
(

−1 + 1
Y1

)
Y1

c12
S′
2,s

)
(5.4)

and it is zero in the absence of fault and disturbances (when
system is at reference steady state). One can also observe, from
the steady state equations of the system (5.1) in deviation form,
that the new steady state obtained in the presence of only dis-
turbances and no fault, satisfies (5.4) with rs = 0, as a result of
the disturbance-decoupling property of the residual generator.
On the other hand, again from (5.1) in deviation form, in the
presence of a constant fault of size fs,

Dr

(
X′

1,s + S′
1,s +

(
−1 + 1

Y1

)
Y1

Y2c12
X′

2,s

+
(

−1 + 1
Y1

)
Y1

c12
S′
2,s

)

+ fs
(
X1,s + S1,s +

(
−1 + 1

Y1

)
Y1

Y2c12
X2,s

+
(

−1 + 1
Y1

)
Y1

c12
S2,s
)

= 0 (5.5)

where the subscript s denotes the new steady state of the biore-
actor.

Combining (5.4) and (5.5), the conclusion is that

rs = fs
(
X1,s + S1,s +

(
−1 + 1

Y1

)
Y1

Y2c12
X2,s

+
(

−1 + 1
Y1

)
Y1

c12
S2,s
)

(5.6)

From (5.6) it is clear that a constant fault of size fs �= 0, leads to
a residual rs �= 0.

The residual generator is simulated for two cases: (i) No
fault in the dilution rate but under uncertainty in the maximum
growth rate of acidogenic bacteria of size w(t) = 0.5μmax1. (ii)
A fault in the dilution rate which is a step of size 0.5 applied at
t = 2 and w(t) = 0.5μmax1.

The residuals for cases (i) and (ii) are plotted in Figure 4. For
the fault-free case the residual shows no deviation for all times
whereas in case (ii), there is a deviation that starts at time t = 2
d (when the fault occurs) and settles at rs = 1.431.

Remark 5.1: As noted in Remark 3.4, parity vectors are not
uniquely defined; multiple solutions could exist for v0, v1. For
example, in the present problem,

v0 =
[
1
Y1

, 1, 0, 0
]

(5.7)

v1 =
[
D
Y1

, D, 0, 0
]

is an alternative pair of parity vectors. With this choice, only
twomeasurements are required namely, the acidogenic biomass
y1 = X1 and the soluble organic substrate y2 = S1.
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Figure 4. Residual as a function of time. Fault f (t) = 0.5 occurs at time t = 2 d.
The final value of the residual is 1.431.

5.2 Non-isothermal Continuous Stirred Tank Reactor
(CSTR)

Consider a non-isothermal Continuous Stirred Tank Reactor
(see Figure 5) where a chemical reaction A→ B takes place. It is
assumed the reactor is well-mixed and has constant volume and
the feed does not contain species B. The dynamics of the reactor
are as follows:

dCA

dt
= F

V
(CA,in − CA) − (k0 + w(t)) · R(CA, θ)

dθ
dt

= F
V

(θin − θ) − UA
ρcpV

(θ − θj)

+ −�HR

ρcp
(k0 + w(t)) · R(CA, θ) (5.8)

dθj
dt

= Fj
Vj

(θj,in + f2(t) − θj) + UA
ρjcpjVj

(θ − θj)

y1 = CA + f1(t)

y2 = θ

y3 = θj

where CA, θ , θj and CA,in, θin, θj,in represent the concentration,
reactor temperature and coolant temperature of the outlet and
inlet streams respectively. F and Fj are the feed and coolant
flowrates respectively. V and Vj are the reactor volume and
cooling jacket volume respectively. k0R(CA, θ) is the reaction
rate, with R(CA, θ) = e

−E
Rθ C1.2

A . �HRis the enthalpy of the reac-
tion. ρ, cp and ρj, cpjare the densities and heat capacities of the
reactor contents and cooling fluid respectively. All three states
are assumed to be measurable. There is an uncertainty in the
pre-exponential factor w(t) of the reaction rate. Two faults are
considered namely a sensor fault in the concentration measure-
ment (f1(t)) and a process fault in the inlet jacket temperature
(f2(t)).

Figure 5. Continuous stirred tank reactor schematic.

The model (5.8) can be converted to deviation form rela-
tive to reference conditions corresponding to absence of faults
and uncertainties: C′

A = CA − CA,ref , θ ′ = θ − θj,ref , θ ′
j = θj −

θj,ref , where the subscript ref denotes reference steady state
value.

Our goal is to design a fault diagnosis scheme that can detect
and isolate faults f1 and f2 in the presence of uncertainties in the
reaction rate. To this end, two scalar residual generators of the
form (6.2) are built (i) to estimate the analytical sensor fault (f1)
while considering f2 as an additional disturbance. (ii) to estimate
inlet jacket temperature fault f2 considering f1 as an additional
disturbance.

Residual generator 1: Detection of the analytical sensor fault
f1 while considering f2as an additional disturbance.

A scalar (s = 1) residual generator can be designed with the
following parity vectors:

v0 = −
[
1,
Fρcp + UA
F(−�HR)

,
−UA

F(−�HR)

]
(5.9)

v1 = −
[
V
F
,

Vρcp
F(−�HR)

, 0
]

and design parameters A = −α1 = −1, B = α1v1 − v0, C =
1, D = −v1:

dz1
dt

= −z1 +
(

−V
F

+ 1
)
y′
1

+
(

− Vρcp
F(−�HR)

+ Fρcp + UA
F(−�HR)

)
y′
2 − UA

F(−�HR)
y′
3

r1 = z1 + V
F
y′
1 + Vρcp

F(−�HR)
y′
2 (5.10)

From (5.10), we see that at steady state, the residual is given
by

r1,s = (C′
A,s + f1,s) + ρcp

(−�HR)
θ ′

s + UA
F(−�HR)

(θ ′
s − θ ′

j,s)

(5.11)
On the other hand, from the first two steady state equations of
the system (5.8) in deviation form,

C′
A,s + ρcp

(−�HR)
θ ′

s + UA
F(−�HR)

(θ ′
s − θ ′

j,s) = 0 (5.12)
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irrespective of the presence or absence of disturbance w or fault
f2. Therefore,

r1,s = f1,s (5.13)

The steady state of the residual is nonzero when fault f1 is
nonzero.

Residual Generator 2: Detection of the inlet cooling jacket
temperature fault f2 considering f1 as an additional disturbance.

A scalar (s = 1) residual generator can be designed with the
following parity vectors:

v0 =
[
0,+ UA

ρjCpjFj
,−1 − UA

ρjCpjFj

]
(5.14)

v1 = −
[
0, 0,

Vj

Fj

]
and design parameters A = −α1 = −1, B = α1v1 − v0, C =
1, D = −v1:

dz2
dt

= −z2 −
(

UA
ρjcpjFj

)
y′
2 −

(
Vj

Fj
− 1 − UA

ρjcpjFj

)
y′
3

r2 = z2 + Vj

Fj
y′
3 (5.15)

From (5.16), we see that at steady state, the residual is given
by

r2,s = −
(

UA
ρjcpjFj

)
θ ′

s +
(
1 + UA

ρjcpjFj

)
θ ′

j,s (5.16)

On the other hand, from the third steady state equation of the
system (5.8) in deviation form,

(f2,s − θ ′
j,s) + UA

ρjcpjVj
(θ ′

s − θ ′
j,s) = 0 (5.17)

From (5.16) and (5.17), it is evident that the residual tracks
the closure of the jacket energy balance with or without the fault
and we have

r2,s = f2,s (5.18)

The two residual generators are tested on the following scenario:

f1(t) =
{

0, t < 1
0.1, t ≥ 1 , f2(t) =

{
0, t < 2
10, t ≥ 2 . w(t) is uni-

formly distributed in the interval [−0.05k0, 0.05k0]. The data
used for simulations are in Table 2 and the initial conditions
of the state variables areCA(0) = 0, θ(0) = 300, θj(0) = 278.15.
The residuals are plotted in Figure 6.

Both residuals from time t = 0–1 hr are identically 0. When
the sensor fault occurs at time t = 1 hr a deviation is seen in
r1 whereas r2 is identically zero. At time t = 2 hr a deviation
is observed in r2 indicating the presence of a fault in the inlet
coolant temperature.

Remark 5.2: We see from (5.13) and (5.18) that in this partic-
ular application, the residuals at steady state are equal to the
values of the respective faults. This can also be seen in Figure
6 where the residuals r1 and r2 tend to f1and f2 asymptotically.
Thus, in addition to disturbance decoupled fault detection and
isolation, the residuals provide estimates of the sizes of the faults.

Figure 6. Residuals vs time for non-isothermal CSTR. Fault f 1 occurs at t = 1 hr
and f 2 at t = 2 hr.

Table 2. CSTR parameters.

Parameter Value Parameter Value

F 4m3/hr ρ 1000 kg/m3

V 1m3 cp 0.23 kJ/(kg K)
Vj 0.03m3 ρj 1000 kg/m3

CA,in kmol/m3 cpj 4 kJ/(kg K)
θin 300 K U 500W/(m2 K)

θjin 278.15 K A 10m2

k0 3 × 108hr−1m0.6kmol−0.2 Aj 1m2

E 5 × 104 kJ/kmol R 8.314 kJ/(kmol K)
�HR −5 × 104 kJ/kmol

5.3 Process network

As our final example, we consider a process network consisting
of a CSTR and a flash separator (see Figure 7). This process is
considerably more complex than the previous two case studies
due to the presence of parallel reactions and a recycle stream.
In this plant, two parallel exothermic chemical reactions A →
B,A + A → C with B being the desired product. The outlet
streamof the reactor goes to the separator and a part of it is recy-
cled back to the reactor. The mathematical model of the process
takes the following form:

Reactor Mass Balance

dCA

dt
= F

V
(CA,in − CA) + Fr

V
(CAr − CA)

− (k1 + w1(t)) · e−E1
Rθ CA − (k2 + w2(t)) · e−E2

Rθ C2
A

dCB

dt
= Fr

V
(CBr − CB) − F

V
CB + (k1 + w1(t)) · e−E1

Rθ CA

Reactor Energy Balance

dθ
dt

= F
V

(θin − θ) + Fr
V

(θr − θ) − (U + f2(t))A
ρcpV

(θ − θJ)

+ −�HR1

ρcp
(k1 + w1(t)) · e−E1

Rθ CA

+ −�HR2

ρcp
(k2 + w2(t)) · e−E2

Rθ C2
A
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Figure 7. Reactor separator network.

Cooling Jacket Energy Balance

dθj
dt

= Fj
Vj

(θj,in − θj) + (U + f2(t))A
ρjcpjVj

(θ − θj) (5.15)

Flash Separator Mass Balance

dCAf

dt
= Fb

Vf
(CA − CAf ) + Fr

Vf
(CA − CAr) + w3

dCBf

dt
= Fb

Vf
(CB − CBf ) + Fr

Vf
(CB − CBr) + w4

CAr = αACBf ρ

ρ + (αA − 1)CBfMWA

CBr = αBCBf ρ

ρ + (αB − 1)CBfMWB

Flash Separator Energy Balance

dθr
dt

= Fb + Fr
Vf

(θ − θr) + Qf + f3(t)
ρCpVf

Outputs

y1 = CA + f1(t)

y2 = CB − f1(t)

y3 = θ

y4 = θj

y5 = CAr + f1(t)

y6 = CBr − f1(t)

y7 = θr

The reactor contains an inlet feed F consisting of only species
A with concentration CA,in and a recycle feed Fr consisting of
both A and B (CAr and CBr). CA and CB are the concentrations

of A and B in the reactor and the reactor temperature is θ , the
inlet feed temperature is θin and heat is removed from the reac-
tor via a coolant jacket with inlet temperature θj,in and outlet
temperature θj. Vand Vj are the reactor and cooling jacket vol-
umes respectively. The desired reaction A → B has a rate given
by k1e−

E1
Rθ CA and the undesired parallel reaction has a rate given

by k2e−
E2
Rθ C2

A where E1,E2 and k1, k2 are the activation energies
and pre-exponential factors of the two reactions respectively
and R in the exponential term of the reaction rate is the uni-
versal gas constant. �HR1 and �HR2 are the enthalpies of the
two reactions respectively. ρ, cp and ρj, cpj are the densities and
heat capacities of the reactant and cooling fluid respectively.
The outlet of the reactor feeds into a separator with volume Vf ,
operated at a temperature θr and has a heat input Qf . The con-
centrations of A and B at the bottom of the flash separator are
given by CAf and CBf respectively with a flow rate Fb. The rel-
ative volatilities and molecular weights of the two compounds
are given by αA,αb andMWA,MWB respectively. The parame-
ters used for the simulations are listed in Table 3 and the ini-
tial conditions are CA(0) = 0,CB(0) = 0, θ(0) = 300, θj(0) =
300,CAs(0) = 0,CBs(0) = 0, θr(0) = 300.

It is assumed that there are uncertainties, given byw1 and w2,
in the pre-exponential factors of both the reaction rates. In
addition, there are modelling uncertainties in the concentration
equations for the flash separator characterised by w3 and w4.
Three different faults are considered namely, (i) a sensor fault
f1affecting the measurements of CA,CB, CAr and CBr . (ii) a fault
in the cooling jacket given by f2, (iii) a fault in the heat input to
the separator given by f3. Our goal is to detect and isolate the
presence of the three faults decoupled from the four uncertain-
ties in the system. To this end, three residual generators are built,
one for each fault of interest.

Like in the previous applications, the model is converted
to deviation form relative to reference conditions corre-
sponding to absence of faults and uncertainties: C′

A = CA −
CA,ref ,C′

B = CB − CB,ref , θ ′ = θ − θj,ref , θ ′
j = θj − θj,ref , C′

Af =
CAf − CAf ,ref ,C′

Bf = CBf − CBf ,ref , θ ′
r = θr − θr.ref , where the

subscript ref denotes reference steady state value.
Residual generator 1: Detection of sensor fault f1 with all the

other faults as disturbances.
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v0 =

⎡
⎢⎢⎣

−�HR2

(
F
V

+ Fr
V

)
ρcp

,
(−�HR2

ρcp
− −�HR1

ρcp

)(
Fr
V

+ F
V

)
,
(
Fr
V

+ F
V

)
,
Fjρjcpj
ρcpV

,

− −�HR2Fr
ρcpV

,

(−�HR1

ρcp
− −�HR2

ρcp

)
Fr

V
,−Fr

V

⎤
⎥⎥⎥⎦

v1 =
[−�HR2

ρcp
,
(−�HR2

ρcp
− −�HR1

ρcp

)
, 1,

ρjcpjVj

ρcpV
, 0, 0, 0

]
(5.16)

and design parameters A = −α1 = −1,B = α1v1 − v0,C =
1,D = −v1:

dZ′

dt
= −z′ +

⎛
⎝−�HR2

ρcp
−

−�HR2

(
F
V + Fr

V

)
ρcp

⎞
⎠ y′

1

+
(−�HR2

ρcp
− −�HR1

ρcp

)(
1 −

(
Fr
V

+ F
V

))
y′
2

+
(
1 −

(
Fr
V

+ F
V

))
y′
3 +

(
ρjcpjVj

ρcpV
− Fjρjcpj

ρcpV

)
y′
4

+ −�HR2Fr
ρcpV

y′
5 −

(−�HR1
ρcp − −�HR2

ρcp

)
Fr

V
y′
6 + Fr

V
y′
7

r1 = z′ − −�HR2

ρcp
y′
1 −

(−�HR2

ρcp
− −�HR1

ρcp

)
y′
2

− y′
3 − ρjcpjVj

ρcpV
y′
4 (5.17)

Following the same steps as before, we have the following
expression of the residual in terms of the fault of interest at
steady state:

r1,s =
⎛
⎝−

⎛
⎝−�HR2

(
F
V + Fr

V

)
ρcp

⎞
⎠

Table 3. CSTR and separator parameters.

Parameter Value Parameter Value

F 4m3/hr ρ 1000 kg/m3

Fr 0.2m3/hr cp 0.23 kJ/(kg K)
V 1m3 ρj 1000kg/m3

Vj 0.03m3 cpj 4 kJ/(kg K)
CAin kmol/m3 U 500W/(m2 K)

θin 300 K A 10m2

θjin 278.15 K Aj 1m2

k1 3 × 108hr−1 Vf 1m2

k2 3 × 1010hr−1m3mol−1 R 8.314 kJ/(kmol K)
E1 5 × 104 kJ/kmol MWA 50 kg/kmol
E2 5.1 × 104 kJ/kmol MWB 100 kg/kmol
�HR1 −5 × 104 kJ/kmol αA 10
�HR2 −5.5 × 104 kJ/kmol αB 1
Qf 104kJ/ hr

+
(−�HR2

ρcp
− −�HR1

ρcp

)((
Fr
V

+ F
V

))

+ −�HR2Fr
ρcpV

+
(−�HR1

ρcp − −�HR2
ρcp

)
Fr

V

⎞
⎠ f1,s (5.18)

Residual generator 2: Detection of cooling jacket fault f2 with
all the other faults as disturbances. A scalar (s= 1) residual
generator can be designed with the following parity vectors:

v0 =
[
0, 0,− UA

ρjcpjVj
,

UA
ρjcpjVj

+ Fj
Vj

, 0, 0, 0
]

v1 = [0, 0, 0, 1, 0, 0, 0]

and design parameters A = −α1 = −1, B = α1v1 − v0, C =
1, D = −v1:

dZ′

dt
= −z′ +

(
UA

ρjcpjFj

)
y′
3 +

(
1 − UA

ρjcpjVj
− Fj

Vj

)
y′
4

r2 = z′ − y′
4 (5.19)

Following the same steps as before, we have the following
expression of the residual in terms of the fault of interest at
steady state.

r2,s = − f2,sA
ρjcpjFj

(θs − θj,s) (5.20)

Residual generator 3: Detecting fault in flash separator heat
input f3 with all the other faults as disturbances.

A scalar (s= 1) residual generator can be designed with the
following parity vectors:

v0 =
[
0, 0,−Fb + Fr

Vf
, 0, 0, 0,

Fb + Fr
Vf

]

v1 = [0, 0, 0, 0, 0, 0, 1]
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Figure 8. Residuals vs time for Process Network. Faults f 1, f 2, f 3 occur at t = 1,2,3
hr respectively.

and design parameters A = −α1 = −1, B = α1v1 − v0, C =
1, D = −v1:

dZ′

dt
= −z′ +

(
Fb + Fr
Vf

)
y′
3 +

(
1 − Fb + Fr

Vf

)
y′
8

r3 = z′ − y′
8 (5.21)

Following the same steps as before, we have the following
expression of the residual in terms of the fault of interest at
steady state.

r3,s = −f3,s
ρCpVf

(5.22)

The three residual generators are tested in a scenario with faults

occurring in the following way: f1(t) =
{

0, t < 1
0.1, t ≥ 1 , f2(t) ={

0, t < 2
−100e0.01t , t ≥ 2 , f3(t) =

{
0, t < 3

1000, t ≥ 3 . Uncertaintiesw1 and

w2 are uniformly distributed in the intervals [−0.05k10, 0.05k10]
and [−0.05k20, 0.05k20] respectively. w3 and w4 are Gaussian
distributions N(0, 1) and N(0, 2) respectively. The plots of the
three residuals are shown in Figure 8. In the interval t = [0,1]
all residuals are identically zero. When the sensor fault occurs
at time t = 1 hr there is a deviation in r1 from sensor fault f 1
whereas residuals r2 and r3 are unaffected. After the onset of
cooling jacket fault f 2 at time t = 2 hr, r2 shows a deviation but
r3 remains identically equal to zero, until the fault f 3 in the heat
input to the flash separator occurs at time t = 3 hr.

Remark 5.3: It is to be noted that the requirement of full
state measurements can be done away with if f1 is absent or is
assumed to be an additional disturbance. Isolation of faults f2
and f3 requires only the 3 temperature measurements, namely
reactor, cooling jacket, and separator temperature.

6. Conclusions

This work derived necessary and sufficient conditions of exis-
tence of a linear residual generator for disturbance-decoupled

fault detection in a nonlinear system. As long as these condi-
tions are satisfied, we have shown that the design of residual
generators with eigenvalue assignment is straightforward.Using
a linear residual generator for every fault, decoupled from the
other faults and the system disturbances, immediately gives rise
to a linear fault diagnoser for the nonlinear system.

Not every nonlinear system satisfies the feasibility conditions
for a linear residual generator. However, a large class of chemi-
cal processes involve ‘localised’ nonlinearities in a way that they
permit the design of linear residual generators. Therefore, the
results of this work are expected to enable future industrial fault
diagnosis applications.
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