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lower order functional observers with linear dynamics and linear output map are derived. The results
provide a direct generalization to Luenberger’s linear theory of functional observers.
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1. Introduction

In control theory, a functional observer is an auxiliary system
hat is driven by the available system outputs and mirrors the
ynamics of a physical process in order to estimate one or more
unctions of the system states (Luenberger, 1966, 1971). Besides
eing of theoretical importance, the use of functional observers
rises in many applications. For example, functional estimates
re useful in feedback control system design because the control
ignal is often a linear combination of the states, and it is possible
o utilize a functional observer to directly estimate the feedback
ontrol signal (Kravaris, 2016; Luenberger, 1966, 1971). From a
ractical point of view, the most common class of applications is
elated to condition monitoring of dynamic systems.

Over the past fifty years, considerable research has been car-
ied out on estimating functions of the state vector for linear
ystems ever since Luenberger introduced the concept of func-
ional observers in 1966 (Luenberger, 1966) and proved that it is
easible to construct a functional observer with number of states
qual to observability index minus one. Subsequent research has
ocused on lower order functional observers where necessary
nd sufficient conditions for their existence and stability have
een derived (Darouach, 2000; Fairman & Gupta, 1980; Moore
Ledwich, 1975; Tsui, 1986), and parametric approaches to the
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design of lower order functional observers (Trinh & Fernando,
2011; Trinh, Tran, & Nahavandi, 2006) and algorithms for solving
the functional observer design conditions have also been devel-
oped (Fairman & Gupta, 1980; Moore & Ledwich, 1975; Trinh,
Nahavandi, & Tran, 2008; Tsui, 1986). In a parallel direction,
the problem of designing unknown input/ disturbance decoupled
functional observers (Trinh, Fernando, & Nahavandi, 2004; Trinh,
Teh, & Ha, 2008; Xiong & Saif, 2003) and functional observers for
systems with time delays (Trinh, 1999; Trinh, Teh, & Fernando,
2010) have also been tackled. In fact, strong connections between
the design of functional observers for linear systems with un-
known inputs and the design of delay-free functional observers
for time-delay systems have been established (Trinh & Fernando,
2011). This implies that the design of linear functional observers
for these systems can be done under the general framework of
linear functional unknown input observers (Trinh & Fernando,
2011).

For nonlinear systems, there has been significant literature in
the theory of full-state observers, with a variety of methods and
approaches (Andrieu & Praly, 2006; Bernard & Andrieu, 2018;
Califano, Monaco, & Normand-Cyrot, 2003; Ciccarella, Dalla Mora,
& Germani, 1993, 1995; Kazantzis & Kravaris, 1998, 2001; Lee &
Nam, 1991; Xiao et al., 2003). In particular, in the context of exact
linearization methods, Luenberger theory has been extended to
nonlinear systems in a direct and analogous manner for both
continuous (Andrieu & Praly, 2006; Bernard & Andrieu, 2018;
Kazantzis & Kravaris, 1998) and discrete-time systems (Kazantzis
& Kravaris, 2001; Xiao et al., 2003). Recently, the authors devel-
oped a direct generalization of Luenberger’s functional observers
to continuous time nonlinear systems (Kravaris & Venkateswaran,
2021). The main goal of this study is to develop a generalization
of Luenberger’s functional observers to discrete-time nonlinear
systems.
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The outline of this present study is as follows. In the next
couple of sections, the notion of functional observer for discrete
time nonlinear systems will be defined in a manner completely
analogous to Luenberger’s definition (Luenberger, 1966, 1971) for
linear systems and different approaches to solve the functional
observer design problem will be outlined. Following this, notions
of observer error linearization will be defined, and then necessary
and sufficient conditions will be derived for the solution of the
linearization problem, as well as a simple formula for the result-
ing functional observer. Finally, the methodology will be tested
on a mathematical example.

2. Functional observers for discrete-time nonlinear systems

Consider a discrete-time nonlinear system described by:

x(k + 1) = F(x(k)) (2.1)
y(k) = H(x(k))
z(k) = q(x(k))

where:
x ∈ Rn is the system state
y ∈ Rp is the vector of measured outputs
z ∈ R is the (scalar) output to be estimated

and F :Rn
→ Rn,H :Rn

→ Rp, q :Rn
→ R are smooth nonlinear

functions. The objective is to construct a functional observer of
order ν < n, which generates an estimate of the output z, driven
by the output measurement y.

In complete analogy to Luenberger’s construction for the linear
case, we seek a mapping

ξ = T(x) =

⎡⎢⎢⎣
T1(x)
...

Tν(x)

⎤⎥⎥⎦
from Rn to Rν , to immerse system (2.1) to a νth order system (ν
< n), with input y and output z:

ξ (k + 1) = ϕ(ξ (k), y(k)) (2.2)
z(k + 1) = ω(ξ (k), y(k))

But in order for system (2.1) to be mapped to system (2.2)
under the mapping T(x), the following relations have to hold

ϕ(T(x),H(x)) = T(F(x)) (2.3)

ω(T(x),H(x)) = q(x) (2.4)

The foregoing considerations lead to the following definition
of a functional observer:

Definition 1. Given a dynamic system

x(k + 1) = F(x(k)) (2.1)
y(k) = H(x(k))
z(k) = q(x(k))

where F : Rn
→ Rn,H : Rn

→ Rp, q : Rn
→ R are smooth

nonlinear functions, y is the vector of measured outputs and z
is the scalar output to be estimated, the system

ξ̂ (k + 1) = ϕ(ξ̂ (k), y(k)) (2.5)

ẑ(k + 1) = ω(ξ̂ (k), y(k))

is called a functional observer for (2.1) if in the series connection
2

the overall dynamics

x(k + 1) = F(x(k))
ˆ (k + 1) = ϕ(ξ̂ (k),H(x(k)))

possesses an invariant manifold ξ̂ = T(x) with the property that
q(x) = ω(T(x),H(x)).

If the functional observer (2.5) is initialized consistently with
the system (2.1) i.e. if

ξ̂ (0) = T(x(0)), then ξ̂ (k) = T(x(k)), ∀ k ∈ N and therefore
ẑ(k) = ω

(
ξ̂ (k), y(k)

)
= ω(T(x(k)),H(x(k))) = q(x(k))

∀k ∈ N, which means that the functional observer will be able to
exactly reproduce z(k).

In the presence of initialization errors, additional stability
requirements will need to be imposed on the ξ̂ -dynamics, for the
estimate ẑ(k) to asymptotically converge to z(k).

At this point, it is important to examine the special case of a
linear system, where F(x) = Fx,H(x) = Hx, q(x) = qx with F, H,
q being n × n, p × n, 1 × n matrices respectively, and a linear
mapping T(x) = Tx is considered. Definition 1 tells us that for a
linear time-invariant system

x(k + 1) = Fx(k) (2.6)
y(k) = Hx(k)
z(k) = qx(k)

the system

ξ̂ (k + 1) = Aξ̂ (k) + By(k) (2.7)

ẑ(k) = Cξ̂ (k) + Dy(k)

will be a functional observer if the following conditions are met:

TF = AT + BH
q = CT + DH

for some ν × n matrix T. These are exactly the discrete-time ver-
sion of Luenberger’s conditions for a functional observer for linear
continuous time-invariant systems (Luenberger, 1966, 1971).

3. Designing lower order functional observers

For the design of a functional observer, one must be able to

find a continuous map T(x) =

⎡⎢⎢⎣
T1(x)
...

Tν(x)

⎤⎥⎥⎦ to satisfy conditions

(2.3) and (2.4) i.e. such that Tj(F(x)), j = 1, . . . , ν is a function
of T1(x), . . . , Tν(x),H(x) and q(x) is a function of T1(x), . . . , Tν(x),
H(x)

However, such scalar functions T1(x), . . . , Tν(x) may not exist,
if ν is too small. Moreover, even when they do exist, there is an
additional very important requirement:
Since T(F(x)) = ϕ(T(x),H(x)) will define the right-hand side
of the functional observer’s dynamics, it must be such that the
functional observer’s dynamics is stable and the decay of the
error is sufficiently rapid. This paper will address the functional
observer design problem, focusing on finding conditions under
which low-order functional observers are feasible

4. Exact linearization of a functional observer

The concept of exact observer linearization has been formu-
lated in the discrete-time literature for full-state observers. We
will start this section with a brief necessary review, follow-
ing Kazantzis and Kravaris (2001), Xiao et al. (2003) and Brivadis,



S. Venkateswaran, B.A. Wilhite and C. Kravaris Automatica 143 (2022) 110420

A
e
f

x

w
h

d

r
o
m
2

D
e
w

ϕ

,
b
q
a
o

l
t
q

(
o

t

e
s
r
o
c

T
(

P
g
r
K
f

n
e
n
c

z

w

T

a

q

e

ξ

ndrieu, and Serres (2019). Subsequently we will propose an
xtension of the concept of exact linearization to discrete-time
unctional observers.

Consider a discrete-time nonlinear system

(k + 1) = F(x(k)) (4.1)
y(k) = H(x(k))

If a mapping ξ =T(x) from Rn to Rν can be found to map
system (4.1) to a linear system

ξ (k + 1) = Aξ (k) + By(k) (4.2)

where A and B are ν x ν and ν x p matrices respectively, the idea is
to use system (4.2) as the basis for a state observer. The mapping
T(x) must satisfy

T(F(x)) = AT(x) + BH(x) (4.3)

Assuming for the moment that the functional equation (4.3) can
be solved, it will be possible to reconstruct the state if the mapping
x → ξ is injective or if x → (ξ , y) is injective. The observer will
then consist of a replica of (4.2)

ξ̂ (k + 1) = Aξ̂ (k) + By(k) (4.4)

along with an algebraic equation to calculate the state estimate.
In particular,

– for ν = n (full-order observer), the state estimate will be
calculated as x̂ = T−1(ξ̂ ),

– for ν = n – p (reduced-order observer), the state estimate

will be the solution of

{
T(x̂) = ξ̂

H(x̂) = y

}
.

In both cases, the observer’s error dynamics will follow

ξ̂ (k + 1) − T(x(k + 1)) = A
(
ξ̂ (k) − T(x(k))

)
(4.5)

hich is linear, and it will converge exponentially to 0 when A
as spectral radius of less than 1.
In summary, existence of a full-state observer with linear error

ynamics reduces to two main questions:

i. Solvability of the functional equation (4.3)
ii. Injectivity of the mapping x → T(x) or x → (T(x), H(x)).

i. has affirmative answer under mild assumptions (see specific
esults later in this section), whereas for ii. to hold, appropriate
bservability or backward distinguishability conditions on (4.1)
ust be imposed (see Brivadis et al., 2019; Kazantzis & Kravaris,
001; Xiao et al., 2003).
Let us now consider the functional observer, as defined by

efinition 1 in Section 2. In the spirit of full-state observer lin-
arization, we seek for a functional observer of the form (2.5)
hose dynamics is linear, i.e.

(ξ, y) = Aξ + By (4.6)

Then, condition (2.3) will become the functional equation (4.3)
ut we also need to satisfy condition (2.4), which states that
(x) must be expressible as a function of T(x) and H(x). This is
functional dependence condition, whose satisfaction depends
n the order of the functional observer:
– If ν = n – p and the reduced-order full-state observer

inearization problem can be solved, this will automatically solve
he functional observer linearization problem, for any functional
(x).
– If ν < n – p, the functional dependence requirement from

2.4) may or may not be feasible, depending on q(x) and the
bserver’s dynamics.
In summary, the possibility of extension of exact linearization

o functional observers reduces to two main questions:
3

i. Solvability of the functional equation (4.3)
ii. Compatibility of T(x) with the functional q(x), in the sense

of the functional dependence specified through (2.4).

Thus, we see that the solvability problem for the functional
quation (4.3) is common both for the functional and the full-
tate observer linearization problems. This problem has been
esolved, and there are alternative existence results, depending
n the regularity assumptions on the functions F and H (Lipschitz
ontinuity or local analyticity).
The following Proposition is an immediate consequence of a

heorem by Brivadis, et al. (see Theorem 2 in Brivadis et al.
2019)).

roposition 1. Assume that F is invertible, and F−1and H are
lobally Lipschitz. Also, let A and B be ν×ν and ν×p matrices
espectively, with the spectral radius ρ(A) < min

{
1, 1/KF−1

}
, where

F−1 is the Lipschitz constant of F−1. Then, there exists a continuous
unction T(x) from Rn to Rν that satisfies (4.3).

Moreover, under additional conditions, it is possible to prove
that the solution is unique (see Theorem 4 in Brivadis et al.
(2019)).

The following Proposition is an immediate consequence of
Smajdor’s Theorem (Smajdor, 1968) (see also Kazantzis & Kravaris,
2001).

Proposition 1’. Let F : Rn
→ Rn, H : Rn

→ Rp be real analytic
functions with F(0) = 0,H(0) = 0. Also, let A and B be ν × ν and
ν × p and matrices respectively. Suppose that the eigenvalues ki of
∂F
∂x (0) all lie either entirely inside or outside the unit disc, and are
ot related to the eigenvalues λj(j = 1, 2, . . . , ν) of A through any
quation of the form

∏n
i=1 k

mi
i = λj with mi nonnegative integers,

ot all zero. Then the system of functional equations (4.3) with initial
ondition T(0) = 0, admits a unique analytic solution T(x) in a
neighborhood of x = 0.

Because the subproblem of solvability of the functional equa-
tion (4.3) has been resolved, the focus of the present paper will
be on the second subproblem: under what conditions could the
solution T(x) be compatible with q(x), in the sense specified through
(2.4). The goal will be to find conditions to check feasibility of
lowering the order of the functional observer, below (n – p).

In the next section we will study a special form of the func-
tional observer linearization problem, where in addition to re-
quiring linear observer dynamics, we will also require linearity
of the observer’s output map. In particular, we will consider the
following:

Functional Observer Linearization Problem
Given a system of the form (2.1), find a functional observer of the

form

ξ̂ (k + 1) = Aξ̂ (k) + By(k) (4.7)

ˆ(k) = Cξ̂ (k) + Dy(k)

here A, B, C, D are ν × ν, ν ×p, 1× ν, 1×p matrices respectively,
with A having stable eigenvalues. Equivalently, find a continuously
differentiable mapping T :Rn

→ Rν such that

(F(x)) = AT(x) + BH(x) (4.3)

nd

(x) = CT(x) + DH(x) (4.8)

Assuming that the above problem can be solved, the resulting
rror dynamics will be linear:

ˆ (k + 1) − T(x(k + 1)) = A
(
ξ̂ (k) − T(x(k))

)
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ẑ(k) − z(k) = C
(
ξ̂ (k) − T(x(k))

)
(4.9)

rom which ẑ(k) − z(k) = CAk
(
ξ̂ (0) − T(x(0))

)
.

With the matrix A having eigenvalues in the interior of the
nit disc, the effect of the initialization error ξ̂ (0) − T(x(0)) will
ie out, and ẑ(k) will approach z(k) asymptotically.

emark. It is possible to formulate a linearization problem in
slightly more general manner by including additive nonlinear
utput injection terms in the functional observer and a possibly
onlinear output map

ˆ (k + 1) = Aξ̂ (k) + B(y(k)) (4.10)

ˆ(k) = ω(ξ̂ (k), y(k))

here B: Rp
→ Rν is the nonlinear output injection term. This

eneralization will also be considered in the next section.

. Necessary and sufficient conditions for solvability of the
unctional observer linearization problem

To be able to develop a practical approach for designing func-
ional observers, it would be helpful to develop criteria to check if
or a given set of ν eigenvalues, there exists a functional observer
hose error dynamics is governed by these eigenvalues. This
ill be done in the present Section for the Functional Observer
inearization Problem
The main result is as follows:

roposition 2. For a nonlinear system of the form (2.1), there exists
functional observer of the form

ˆ (k + 1) = Aξ̂ (k) + By(k) (4.7)

ˆ(k) = Cξ̂ (k) + Dy(k)

ith the eigenvalues of A being the roots of a given polynomial λν
+

1λ
ν−1

+· · ·+αν−1λ+αν , if and only if qFν(x)+α1qFν−1(x)+· · ·+

ν−1qF(x) + ανq(x) is R-linear combination of Hj(x),HjF (x), . . . ,
jF ν(x), j = 1, . . . , p, where in the above we have used the notation
j(x) = F ◦ F . . . F ◦ F (x)  

j times

and HjF (x) = (Hj ◦ F )(x).

Proof. (i) Necessity: Suppose that there exists T(x) =

⎡⎢⎢⎢⎢⎣
T1(x)

T2(x)
...

Tν(x)

⎤⎥⎥⎥⎥⎦
such that (4.3) is satisfied, i.e⎡⎢⎢⎢⎢⎣
T1F(x)

T2F(x)
...

TνF(x)

⎤⎥⎥⎥⎥⎦ = A

⎡⎢⎢⎢⎢⎣
T1(x)

T2(x)
...

Tν(x)

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
B1H(x)

B2H(x)
...

BνH(x)

⎤⎥⎥⎥⎥⎦
where B1, . . . , Bν denote the rows of the matrix B. Now, we find
that for k = 1,2,3. . .⎡⎢⎢⎢⎢⎣

T1Fk(x)

T2Fk(x)
...

k

⎤⎥⎥⎥⎥⎦

TνF (x)

4

= Ak

⎡⎢⎢⎢⎢⎣
T1(x)

T2(x)
...

Tν(x)

⎤⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎣
(Ak−1B)1H(x) + (Ak−2B)1HF(x) + · · · + (B1HFk−1(x))

(Ak−1B)2H(x) + (Ak−2B)2HF(x) + · · · + (B2HFk−1(x))
...

(Ak−1B)νH(x) + (Ak−2B)νHF(x) + · · · + (BνHFk−1(x))

⎤⎥⎥⎥⎥⎦
and we can calculate

TiFν(x) + α1TiFν−1(x) + · · · + ανTi(x)

=
(
Aν

+ α1Aν−1
+ · · · + αν I

)
i

⎡⎢⎢⎢⎢⎣
T1(x)

T2(x)
...

Tν(x)

⎤⎥⎥⎥⎥⎦
+ ((Aν−1B)i + α1(Aν−2B)i + · · ·

+ αν−1Bi)H(x) + ((Aν−2B)i + · · ·

+ αν−2Bi)HF(x) + · · · + (BiHFν−1(x))

where α1, α2, . . . , αν are the coefficients of the characteristic
polynomial of the matrix A. By the Cayley–Hamilton theorem,
Aν

+ α1Aν−1
+ · · · + αν I = 0 and we have,

TiFν(x) + α1TiFν−1(x) + · · · + ανTi(x)

= ((Aν−1B)i + α1(Aν−2B)i + · · ·

+ αν−1Bi)H(x) + ((Aν−2B)i + · · ·

+ αν−2Bi)HF(x) + · · · + (BiHFν−1(x))

At the same time the mapping T(x) must satisfy (4.8) and we
can conclude

qFν(x) + α1qFν−1(x) + · · · + ανq(x)

=
(
CAν−1B + α1CAν−2B + · · · + αν−1CB

+ ανD)H(x)

+
(
CAν−2B + · · · + αν−2CB + αν−1D

)
HF(x) + · · ·

+ (CB + α1D)HFν−1(x) + DHFν(x)

i.e.,

qFν(x) + α1qFν−1(x) + · · · + ανq(x)

= β0HFν(x) + β1HFν−1(x) + · · · + βν−1HF(x) + βνH(x) (5.1)

where
β0 = D

β1 = CB + α1D

β2 = CAB + α1CB + α2D
...

βν−1 = CAν−2B + · · · + αν−2CB + αν−1D

βν = CAν−1B + α1CAν−2B + · · · + αν−1CB + ανD

(5.2)

hich proves that qFν−1(x)+α1qFν−1(x)+· · ·+αν−1qF(x)+ανq(x)
s R-linear combination of Hj(x),HjF(x), . . . ,HjFν(x), j = 1, . . . , p,

(ii) Sufficiency: Suppose that qFν(x) + α1qFν−1(x) + · · · +

ν−1qF(x) + ανq(x) is R-linear combination of Hj(x),HjF(x), . . . ,
jFν(x), j = 1, . . . , p, i.e. there exist constant row vectors β0, β1,
. . , β , β that satisfy (5.1).
ν−1 ν
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Consider the functional equation:

T(F(x)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −αν

1 0 · · · 0 −αν−1
...

...
. . .

...
...

0 · · · 1 0 −α2

0 · · · 0 1 −α1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
T(x)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

βν − ανβ0

βν−1 − αν−1β0

βν−2 − αν−2β0
...

β1 − α1β0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
H(x) (5.3)

It is straightforward to verify that

(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
−β0HFν−1(x) − · · · − βν−2HF(x) − βν−1H(x)

+qFν−1(x) + α1qFν−2(x) + · · · + αν−1q(x)

)
...

−β0HF(x) − β1H(x) + qF(x) + α1q(x)

−β0H(x) + q(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.4)

atisfies the functional equation (5.3) and we see that its νth
component is Tν(x) = −β0H(x) + q(x), therefore,

(x) = [0 0 . . . 01] T(x) + β0H(x) (5.5)

Hence T(x) given by (5.4) satisfies conditions (4.3) and (4.8)
or the solution of the Functional Observer Linearization Problem
nd system (4.7) with

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −αν

1 0 · · · 0 −αν−1
...

...
. . . · · · · · ·

0 · · · 1 0 −α2

0 · · · 0 1 −α1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

βν − ανβ0

βν−1 − αν−1β0

βν−2 − αν−2β0
...

β1 − α1β0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
C =

[
0 0 · · · 0 1

]
, D = β0 (5.6)

s a functional observer.
It is important to observe that the sufficiency part of the proof

s constructive, and it immediately leads to a design method for
he functional observer.

Once a set of constant row vectors β0, β1, . . . , βν−1, βν ∈ Rp have
een found to satisfy (5.1) for a specific characteristic polynomial
ν

+ α1λ
ν−1

+ · · · + αν−1λ + αν , formula (5.6) immediately gives
the A, B, C and D matrices of the linear functional observer.

Also, it should be noted that there may be multiple sets
of β0, β1, . . . , βν ∈ Rp that satisfy (5.1), leading to multiple
solutions for the functional observer linearization problem.

Remark 5.1. The linear functional observer is amenable to a
slight generalization involving additive nonlinear output injection
terms:

ξ̂ (k + 1) = Aξ̂ (k) + B(y(k)) (4.10)

ẑ(k + 1) = ω(Cξ̂ (k), y(k))

and in particular, with an implicitly defined output map:

ˆ ˆ
ξ (k + 1) = Aξ (k) + B(y(k))

5

ẑ(k) is the solution of ℘
(
ẑ(k), y(k)

)
= Cξ̂ (k) (5.7)

where ℘ : R × Rp
→ R is a function such that the equation

℘(z, y) = ζ is uniquely solvable with respect to z.
A system of the above form will be a functional observer for

system (2.1) if there exists a mapping T(x) that satisfies

T(F(x)) = AT(x) + B(H(x)) (5.8)

and

℘(q(x),H(x)) = CT(x) (5.9)

Following the same steps as in the proof of Proposition 2, we
can prove the following:

Proposition 2’. For a nonlinear system of the form (2.1), there exists
a functional observer of the form (5.7) with the eigenvalues of A
being the roots of a given polynomial λν

+α1λ
ν−1

+· · ·+αν−1λ+αν ,
if and only if there exist functions β0 :R × Rp

→ R invertible with
respect to its first argument, and β1, . . . , βν :Rp

→ R such that

β0
(
qFν(x),HFν(x)

)
+ α1β0

(
qFν−1(x),HFν−1(x)

)
+ · · ·

+ αν−1β0(qF(x),HF(x)) + ανβ0(q(x),H(x))

= β1(H(x)) + β2(HF(x)) + · · · + βν

(
HFν−1(x)

)
(5.10)

Proof. (i) Necessity: Following the same steps as in the proof of
Proposition 2, we have⎡⎢⎢⎣

T1Fν(x) + α1T1Fν−1(x) + · · · + αν−1T1F(x) + ανT1(x)
...

TνFν(x) + α1TνFν−1(x) + · · · + αν−1TνF(x) + ανTν(x)

⎤⎥⎥⎦

=
(
Aν−1

+ α1Aν−2
+ · · · + αν−1I

)⎡⎢⎢⎣
B1(H(x))

...

Bν(H(x))

⎤⎥⎥⎦

+
(
Aν−2

+ α1Aν−3
+ · · · + αν−2I

)⎡⎢⎢⎣
B1(HF(x))

...

Bν(HF(x))

⎤⎥⎥⎦+ · · ·

+ (A + α1I)

⎡⎢⎢⎣
B1
(
HFν−2(x)

)
...

Bν

(
HFν−2(x)

)
⎤⎥⎥⎦

+

⎡⎢⎢⎣
B1
(
HFν−1(x)

)
...

Bν(HFν−1(x))

⎤⎥⎥⎦
Using (5.9) and the previous expression, we can also conclude

that

℘(qFν(x),HFν(x)) + α1℘(qFν−1(x),HFν−1(x)) + · · ·

+ αν−1℘(qF(x),HF(x)) + αν℘(q(x),H(x))

=
(
CAν−1

+ α1CAν−2
+ · · · + αν−1C

)⎡⎢⎢⎣
B1(H(x))

...

Bν(H(x))

⎤⎥⎥⎦

+
(
CAν−2

+ · · · + αν−2C
)⎡⎢⎢⎣

B1(HF(x))
...

⎤⎥⎥⎦+ · · ·
Bν(HF(x))
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s

A

s

+ (CA + α1C)

⎡⎢⎢⎣
B1 HFν−2(x)

...

Bν

(
HFν−2(x)

)
⎤⎥⎥⎦

+ C

⎡⎢⎢⎣
B1
(
HFν−1(x)

)
...

Bν(HFν−1(x))

⎤⎥⎥⎦
or

β0
(
qFν(x),HFν(x)

)
+ α1β0

(
qFν−1(x),HFν−1(x)

)
+ · · ·+

αν−1β0(qF(x),HF(x)) + ανβ0(q(x),H(x)) =

β1(H(x)) + β2(HF(x)) + · · · + βν

(
HFν−1(x)

)
(5.11)

where

β0(z, y) = ℘(z, y)

β1(y) =
(
CAν−1

+ α1CAν−2
+ · · · + αν−1C

)
B(y)

β2(y) =
(
CAν−2

+ · · · + αν−2C
)
B(y)

...

βν−1(y) = (CA + α1C)B(y)

βν(y) = CB(y) (5.12)

(ii) Sufficiency: Assuming that (5.10) holds, we can follow the
same steps as in the proof of Proposition 2 and prove that

T1(x) = β0
(
qFν−1(x),HFν−1(x)

)
+ α1β0

(
qFν−2(x),HFν−2(x)

)
+ · · · + αν−2β0(qF(x),HF(x))
+ αν−1β0(q(x),H(x)) − β2(H(x)) − · · ·

− βν

(
HFν−2(x)

)
...

Tν−2(x) = β0
(
qF2(x),HF2(x)

)
+ α1β0(qF(x),HF(x))+

α2β0(q(x),H(x)) − βν−1(H(x)) − βν(HF(x)) (5.13)
Tν−1(x) = β0(qF(x),HF(x)) + α1β0(q(x),H(x)) − βν(H(x))

Tν(x) = β0(q(x),H(x))

atisfies (5.8) and (5.9) with

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −αν

1 0 · · · 0 −αν−1
...

...
. . .

...
...

0 · · · 1 0 −α2

0 · · · 0 1 −α1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, B(y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

β1(y)

β2(y)

β3(y)
...

βν(y)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
C =

[
0 0 · · · 0 1

]
, ℘(q(x),H(x)) = β0(z, y) (5.14)

Therefore, system (5.7) with A,B(.), C, ℘(., .) given by (5.14) is a
functional observer.

6. Lower order functional observers for linear systems

The results of the previous section can now be specialized
to linear time-invariant systems. The following is an immediate
consequence to Proposition 2.

Proposition 3. For a linear time-invariant system of the form

x(k + 1) = Fx(k) (2.6)
y(k) = Hx(k)
z(k) = qx(k)
6

there exists a functional observer of the form

ξ̂ (k + 1) = Aξ̂ (k) + By(k) (2.7)

ẑ(k) = Cξ̂ (k) + Dy(k)

with the eigenvalues of A being the roots of a given polynomial
λν

+ α1λ
ν−1

+ · · · + αν−1λ + αν , if and only if(
qFν

+ α1qFν−1
+ · · · + αν−1qF + ανq

)
∈

pan
{
Hj,HjF, . . . ,HjFν, j = 1, . . . , p

}
(6.1)

The above Proposition provides a simple and easy-to-check
feasibility criterion for a lower-order functional observer with a
pre-specified set of eigenvalues governing the error dynamics.
Moreover, an immediate consequence of Proposition 3 is the
following:

Corollary. Consider a linear time-invariant system of the form
(2.6) with observability index νo (Luenberger, 1966) i.e. the least

positive integer such that rank of

⎡⎢⎢⎢⎢⎣
H

HF
...

HFν0−1

⎤⎥⎥⎥⎥⎦ = n. Then, there

exists a functional observer of the form (2.7) of order ν = νo– 1
and arbitrarily assigned eigenvalues.

The result of the Corollary, derived through a different ap-
proach, is exactly the discrete-time version of Luenberger’s re-
sult for functional observers for continuous linear time-invariant
systems (Luenberger, 1966, 1971).

7. Case study

Consider the following discrete-time dynamical system with
states x = [x1, x2, x3, x4].

x1(k + 1) = 0.9967x1(k) − e−x3(k)x2(k)x1(k) (7.1)

x2(k + 1) = 0.9967x2(k) − 3e−x3(k)x2(k)x1(k)

x3(k + 1) = 0.9867x3(k) + 40e−x3(k)x2(k)x1(k)
+ 0.01x4(k)

x4(k + 1) = 0.83x4(k) + 0.15x3(k)
y1(k) = x3(k)
y2(k) = x4(k)

The initial condition is x1(0) = 2, x2(0) = −1, x3(0) = 23,
x4(0) = 14. The objective is to use the measurements y1(k) and
y2(k) to estimate the sum x1(k) + x2(k).

To this end, a scalar functional observer is built (ν = 1) and
the necessary and sufficient condition (5.1) is satisfied for the
following choice of β0, β1 ∈ R2 and α1 ∈ R

β0 = [−0.1, 1]

β1 = [−0.05133, −0.829] (7.2)
α1 = −0.9967

The resulting functional observer is

ξ̂ (k + 1) = −0.9967ξ̂ (k) − 0.151y1(k) + 0.1677y2(k) (7.3)

ẑ(k) = ξ̂ (k) − 0.1y1(k) + y2(k)

The estimate generated by the functional observer and the
estimation error are plotted in Fig. 1.



S. Venkateswaran, B.A. Wilhite and C. Kravaris Automatica 143 (2022) 110420

(

8

d
p
i
f
d

R

A

B

B

C

C

C

D

F

K

K

T

T

T

X

X
Fig. 1. Top—Estimates and true profiles in the presence of initialization error
(ξ̂ (0) − T(x(0)) = 0.5) where T(x) is given by (5.4). Bottom—Estimation error
ẑ(k) − z(k)).

. Conclusions

A generalization of Luenberger’s functional observer to
iscrete-time nonlinear systems is presented in this work. The
roblem of exact linearization of the functional observer dynam-
cs has been studied and conditions for the linearization to be
easible have been derived including a simple formula for the
esign of the resulting functional observer.
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