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Abstract
We present a convection–diffusion inverse problem that aims to identify an unknown 
number of sources and their locations. We model the sources using a binary func-
tion, and we show that the inverse problem can be formulated as a large-scale 
mixed-integer nonlinear optimization problem. We show empirically that current 
state-of-the-art mixed-integer solvers cannot solve this problem and that applying 
simple rounding heuristics to solutions of the relaxed problem can fail to identify the 
correct number and location of the sources. We develop two new rounding heuristics 
that exploit the value and a physical interpretation of the continuous relaxation solu-
tion, and we apply a steepest-descent improvement heuristic to obtain satisfactory 
solutions to both two- and three-dimensional inverse problems. We also provide the 
code used in our numerical experiments in open-source format.
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1  Introduction

Many applications in science and engineering require the solution of an opti-
mization problem where decision variables are both integral and continuous. For 
instance, the design of nuclear plants depends on selecting different types of core 
(fuel rod) configurations while controlling flow rates to maximize the heat extrac-
tion process Committee (2010). Remediating contaminated sites and maximizing oil 
recovery both involve flow through porous media to determine the number of well-
bores, in addition to calculating optimal flow rates (Ozdogan 2004; Fipki and Celi 
2008) and operational schedule (Bangerth et  al. 2005, 2006; Bellout et  al. 2012). 
Related applications also arise in optimally scheduling shale-gas recovery (Sharma 
2013). Next-generation solar cells face complicated geometric and discrete design 
decisions to achieve effective electromagnetic performance (Reinke et al. 2011). In 
disaster-recovery scenarios, such as oil spills (You and Leyffer 2010, 2011), wild-
fires (Donovan and Rideout 2003; Fügenschuh et  al. 2009), and hurricanes (Legg 
et al. 2013), resources need to be scheduled for mitigation purposes while predicting 
material properties and boundary conditions to calibrate the underlying dynamics 
for accurate forecasts. Many other science and engineering examples have similar 
decision-making characteristics, including wind farm design (Zhang et al. 2013) and 
the design, control, and operation of gas networks (De Wolf and Smeers 2000; Mar-
tin et al. 2006; Ehrhardt and Steinbach 2005; Steinbach 2007; Zavala 2014; Gugat 
et al. 2018; Hahn et al. 2017). The common theme of these applications is a need to 
address integral and continuous optimization variables in the context of large-scale 
multiphysics applications.

In this paper we consider an inverse problem in which the optimization variables 
are discrete and constrained by partial differential equations (PDEs), specifically 
in our case to describe convection–diffusion. We are interested in determining the 
number and location of a set of sources by reconciling the difference between meas-
urements and numerical prediction of the concentration. Our work is motivated by 
applications in groundwater flow, where we want to find the location of pollutants 
in the subsurface; see, for example (Ozdogan 2004; Fipki and Celi 2008), for more 
detailed background.

The combination of discrete optimization variables and PDE constraints presents 
difficult problems, providing a range of new mathematical challenges; see, for exam-
ple, Leyffer et al. (2013). These challenges arise out of the combination of the com-
binatorial complexity of integer variables and the computational difficulties of the 
discretized PDE. Little is known about this class of problems or solution approaches, 
and one motivation of this paper is to experiment with state-of-the-art mixed-integer 
solvers for solving this class of problems. Our solution strategy leverages concepts 
from topology optimization (Sigmund and Maute 2013b; Borzì and Schulz 2009). 
We chose the steady-state convection–diffusion equation as our model problem 
because it allows us to solve the resulting mixed-integer PDE-constrained optimi-
zation (MIPDECO) problems in a reasonable amount of time. We stress, however, 
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that our results and approaches generalize to time-dependent convection–diffusion 
processes.

We advance the state of the art in MIPDECO in a number of ways. First, we 
develop new rounding schemes that take the physics of the problem into account 
by preserving the mass of the source when we move from a relaxation to a rounded 
solution. Second, we apply a simplified version of the trust-region method  (Hahn 
et al. 2020), and show that it already provides competitive integer solutions. Third, 
we improve the trust-region approach by developing a new problem-specific neigh-
borhood that takes the topology of our problem into account, and we use a special-
ized knapsack solve for the resulting trust-region subproblem. Using the modified 
trust-region method we show that we can solve 3D instances of MIPDECO effi-
ciently and in a reasonable amount of time, and we provide our Julia (Bezanson 
et al. 2012) code under a permissible open-source license. We also provide AMPL 
(Fourer et al. 1993) models of 2D instances to promote experimentation with exist-
ing mixed-integer programming (MIP) solvers.

In the next section, we provide background on MIP and PDECO that is relevant 
to our developments, and we discuss the challenges of MIPDECO in more detail. 
In Sect. 3, we describe the variational description of our model problem in terms 
of topology optimization, introduce our finite-element discretization, and discuss 
suitable regularization terms. In Sect.  4, we introduce problem-specific rounding 
schemes and a new trust-region approach. We also comment on how the resulting 
trust-region subproblem can be solved efficiently by formulating it as a knapsack 
problem. In Sect. 5 we give implementation details and describe our experimental 
setup. In Sect. 6 we present the results of our numerical experiments. We derive val-
ues for the regularization parameter and then show empirically that current state-of-
the-art MINLP solvers cannot handle even two-dimensional instances of our MIP-
DECO on a realistic mesh. We also show that standard rounding schemes do not 
provide competitive solutions and may fail to identify sources. We demonstrate that 
our trust-region scheme can produce good solutions with moderate effort. In Sect. 7 
we summarize our conclusions and briefly discuss avenues for future research.

2 � Background

Mixed-integer PDE-constrained optimization brings together complicated elements 
from two algorithmic areas to solve relevant application problems. Because consid-
erable development history is associated with each area, we provide only a general 
overview to highlight the most relevant features needed to introduce MIPDECO.

2.1 � Mixed‑integer programming

Nonlinear MIPs are a challenging class of problems in their own right: they are 
in general NP-hard (Kannan and Monma 1978) and in the worst case undecidable 
(Jeroslow 1973). Most nonlinear MIP methods use a tree search to resolve the inte-
grality restrictions. We distinguish three basic classes of methods: branch-and-bound 
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or single-tree methods, multitree methods such as outer approximation, and hybrid 
techniques. Branch-and-bound (Dakin 1965; Gupta and Ravindran 1985) searches 
a tree where each node corresponds to a nonlinear subproblem. Branching corre-
sponds to adding integer bounds on fractional integer variables that separate the 
fractional solution from the integer feasible set, creating two new nonlinear sub-
problems. Branch-and-bound methods can be improved by adding cutting planes 
(Stubbs and Mehrotra 1999; Akrotirianakis et al. 2001; Frangioni and Gentile 2006; 
Günlük and Linderoth 2008; Drewes 2009; Drewes and Ulbrich 2012; Çezik and 
Iyengar 2005) to tighten the continuous relaxations, resulting in a smaller tree that 
needs to be searched. Outer approximation (Duran and Grossmann 1986), Benders 
decomposition (Geoffrion 1972), and the extended cutting plane method (Still and 
Westerlund 2006) are multitree techniques. These methods define a lower-bound-
ing linear MIP master problem that can be solved efficiently by using commercial 
solvers. The solution of the MIP master problem typically violates the nonlinear 
constraints, and new linearizations obtained from the solution of a nonlinear sub-
problem are added to the MIP master problem, resulting in an alternating sequence 
of linear MIP and nonlinear optimization subproblem. Hybrid methods (Quesada 
and Grossmann 1992; Abhishek et al. 2010; Bonami et al. 2008) combine nonlinear 
branch-and-bound with methods such as outer approximation and form the basis of 
the most efficient nonlinear MIP solvers (Abhishek et al. 2010; Bonami et al. 2008). 
The LP/NLP-based branch and bound method starts by solving a linear relaxation 
obtained by outer-approximating nonlinear constraints at the solution of the continu-
ous relaxation of the problem. Whenever a new integer assignment is found, the lin-
ear tree-search is interrupted, and a nonlinear problem is solved obtained by fixing 
all integer variables to this assignment. The master problem is then updated by add-
ing outer approximations from the solution of the nonlinear problem. More details 
can be found in the monographs (Floudas 2000; Tawarmalani and Sahinidis 2002), 
the collection (Lee and Leyffer 2011), and the survey papers (Burer and Letchford 
2012; Grossmann and Kravanja 1997; Grossmann 2002; Belotti et al. 2013a; Bus-
sieck and Pruessner 2003).

Adding PDE-constraints leads to a range of computational and conceptual chal-
lenges for MINLP. First, the computational expense of solving PDE-constrained 
optimization problems is much higher than the computational expense of solving 
standard NLP. Second, the number of optimization variables is typically very large, 
and if the integer variables are functions defined over the computational domain, 
then the number of integer variables typically also grows as we refine the discre-
tization, resulting in huge combinatorial search spaces. Third, the solutions of the 
relaxations of the PDE-constrained optimization problem are typically only locally 
optimal and do not provide valid lower bounds for nonlinear PDE-constrained opti-
mization problems.

2.2 � PDE‑constrained optimization

PDE-constrained optimization (PDECO) refers to the optimization of systems 
governed by partial differential equations. In most cases the goal is to optimize 
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an objective function with respect to a quantity that is defined on subregions or 
everywhere in the computational domain. The inversion for initial conditions and 
the reconstruction of material properties are examples of typical optimization 
problems.

The PDE-constrained optimization problem is an infinite-dimensional opti-
mization problem, and two approaches exist for obtaining a finite-dimensional 
approximation: the optimize-then-discretize approach and the discretize-then-opti-
mize approach. In the former, one finds the necessary optimality conditions of the 
PDECO in function spaces and then discretizes this system of equations. In the lat-
ter, one first discretizes the PDE and then uses nonlinear optimization techniques to 
solve the large-scale optimization problem. Both approaches lead to an optimization 
problem with a large number of variables and a large system of equations (the dis-
cretized PDEs) that describe the underlying physics. The large-scale nature of these 
problems dictates the use of efficient sensitivities (adjoints), Newton-based methods 
to handle the nonlinearity of the optimization formulation, the coordination of glo-
balization, and the use of parallel matrix-vector operators to address the computa-
tional requirements (Nocedal and Wright 2000; Biegler et al. 2001, 2007). The com-
bination of these technologies poses formidable challenges to achieve efficient and 
accurate solutions. Considerable research and development have been conducted; 
the interested reader is referred to Vogel (1999), Ascher and Haber (2001), Haber 
and Ascher (2001), Vogel (2002), Laird et  al. (2005), Hintermuller and Vicente 
(2005), Hazra and Schulz (2006), Borzi (2007), Hinze et al. (2009). Advances have 
been made to accelerate the convergence of these algorithms, with recent examples 
in special preconditioners, reduced-space methods, full-space algorithms, and mul-
tigrid approaches (Biros and Ghattas 2005a, b; Akcelik et  al. 2005; Bartlett et  al. 
2005; Heinkenschloss and Ridzal 2008; Borzì and Schulz 2009; Simon 2008).

A full-space solution algorithm forms the Lagrangian function and takes varia-
tions with respect to the state variables, the adjoint variables, and the optimization 
variables. This approach results in the first-order optimality conditions, which form 
a nonlinear system of equations. This system is typically solved by using Newton’s 
method, requiring the solution of large structured systems of equations.

Alternatively, a reduced-space method eliminates the state variables by using the 
discretized PDE, resulting in an optimization problem in the optimization or con-
trol variables only, where the effect of the states in represented implicitly. The gra-
dient of the objective function can be computed via the chain rule; and the solu-
tion process consists of an iterative process in which forward, adjoint, and gradient 
equations are successively solved. Even though there are advantages to using the 
full-space methods, in particular when the solution of the forward solve is slow to 
converge, we use the reduced-space method here because it has advantages in the 
mixed-integer case, resulting in an easy-to-solve subproblem.

PDE-constrained optimization problems with integer optimization variables have 
been solved with PDE-constrained optimization methods. Topological optimiza-
tion is an example where the discrete optimization variables are approximated with 
continuous variables with the unfortunate consequence of errors (nonintegral val-
ues, or gray areas) at the boundaries of the topological solution. Although excellent 
practical results are obtained for a host of problems, establishing rigorous optimality 
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proofs for this approach remains a challenge (Bendsøe and Sigmund 2004; Sigmund 
and Maute 2013a).

2.3 � MIPDECO

Practical approaches to MIPDECO must tackle the challenges posed by the number 
of integer variables in the discretized problem and the computational complexity of 
solving PDECO problems. We briefly discuss how recent approaches to MIPDECOs 
tackle these challenges.

The two classical approaches for solving PDECO problems are optimize-then-
discretize and discretize-then-optimize. We do not believe that it is possible to 
apply the optimize-then-discretize to obtain first-order conditions for MIPDECOs, 
because such a generalization would also imply a set of first-order conditions for the 
(global) optimality of integer solutions for MINLPs, which seems unlikely. Hence, 
we consider only the discretize-then-optimize approach as a practical way to solve 
MIPDECOs.

If the integer controls are functions over the computational domain, then the dis-
cretization of the PDE and the controls results in MINLPs with a large number of 
integer variables, which has implications for standard MINLP solvers. Current state-
of-the-art solution methods for MINLP employ a branch-and-bound tree search 
(Belotti et al. 2013b; Bonami et al. 2008) at some stage of the solution process and 
the large number of integer variables arising in discretized MIPDECOs means that 
this tree can become huge, even for coarse discretization levels. In some cases, the 
tree search can be customized for solving discretized MIPDECO by using problem 
specific branching rules; see, for example, (Hahn et  al. 2017), which introduces a 
new branching rule and backtracking strategy that work well for time-dependent 
control problems.

Another solution approach for discretized MIPDECO is penalty-based methods, 
which avoid the branch-and-bound tree altogether by penalizing the violation of 
integrality. The resulting nonlinear optimization problem is solved iteratively for an 
increasing penalty parameter, until all integer variables are integral. Unfortunately, 
the penalty is in general nonconvex, and stationary points of the nonlinear optimi-
zation problem correspond only to feasible points of the discretized MIPDECO 
without any optimality guarantees. See (Costa et al. 2016; Lucidi and Rinaldi 2013; 
Garmatter et  al. 2019) for penalty-based methods in the context of MINLP and 
MIPDECO.

There are other notable solution approaches for MIPDECOs that avoid a tree 
search, including decomposition methods that solve a relaxed form of the original 
problem and approximate the effect of the relaxed optimal control with that of an 
integer-valued one. For ODE- and DAE-constrained problems, heuristics such as 
sum-up rounding (SUR) (Sager 2006, 2009) and next-forced rounding (NFR) (Jung 
2013) can produce arbitrarily good approximations of the optimal relaxed behavior 
given sufficiently high grid resolutions (Gerdts and Sager 2012; Sager et al. 2012). 
These heuristics are special cases of the combinatorial integral approximation (CIA) 
approach (Sager et  al. 2011), which formulates the approximation problem as an 
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MILP. Efficient problem-specific tree-based solvers have also been developed to 
solve the CIA problem directly (Bürger et al. 2020; Jung et al. 2015).

Early extensions of CIA heuristics to PDE-constrained problems (Hante and Sager 
2013; Hante 2017) limited themselves to rounding purely time-distributed controls 
where the arrow of time can be exploited as part of rounding heuristics such as SUR 
and NFR. More recent results, however, have shown that SUR can be applied to ellip-
tic PDEs with spatially distributed controls by imposing an order through space-fill-
ing Hilbert curves (Manns and Kirches 2018, 2019a, b), though other orders have 
also been used successfully (Yu and Anitescu 2019). Rounding methods for topology 
optimization problems are also explored in (Garmatter et al. 2019).

These methods are collectively based on the recognition that spatially distributed 
integer-valued controls are not truly discrete, but form a continuum. This is explored 
in Hahn et al. (2020), where a trust-region steepest-descent method for binary opti-
mal control is developed that is closely related to our approach. The authors show 
convergence to first-order stationarity in a topological sense, provided that the mesh 
is refined. This is a remarkable result because it replaces the combinatorial challenge 
of MIPDECO by a set-based approach. This method avoids the combinatorial com-
plexity of the tree search and instead solves a sequence of knapsack problems that 
can be interpreted as a local improvement strategy. A similar model to ours has been 
studied in Guo et  al. (2019), where pollution sources are identified and a genetic 
algorithm heuristic is employed to resolve the integrality restrictions.

3 � Mathematical formulation of the model

We formulate the constrained source inversion problem as a mixed-integer PDE-
constrained optimization problem with binary inversion parameters. We discretize 
the PDEs with finite elements and present the resulting finite-dimensional formula-
tion. We also present an alternative finite-difference discretization that provides self-
contained AMPL models to run state-of-the-art MINLP solvers.

3.1 � Variational formulation of the source inversion problem

The goal of the inverse problem is to estimate the source w from measurements � 
assuming that the properties of the PDE are known and assuming a sparse set of sen-
sors. The problem can be written as follows:

where c > 0 is the diffusion coefficient, v ∶ � → ℝ
d is the velocity vector, and 

w ∶ � → {0, 1} represents the source terms. The boundary of the domain, �  , is 

(1)

⎧⎪⎪⎨⎪⎪⎩

minimize
u,w

J(u,w) =
1

2𝜎

m�
i=1

��⟨p(ri), u⟩ − �i
��2 + 𝛼R(w)

subject to − c𝛥u + v⊤∇u = w, in 𝛺
𝜕u

𝜕n
= 0, on 𝛤N

u = g, on 𝛤D,
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partitioned into �N and �D for Neumann and Dirichlet conditions, respectively, 
n ∶ � → ℝ

d denotes the outward normal vector; and g ∶ �D → ℝ defines the Dir-
ichlet condition. Let 𝛺 ⊂ ℝ

d denote the computational domain, where in this work 
d = 2, 3 . Discrete measurements � ∈ ℝ

m are given as

where u is the concentration of the pollutant, p(ri) ∶ � → ℝ are the receiver func-
tions at the locations ri for i = 1,… ,m, ⟨⋅, ⋅⟩ denotes the L2 inner product, and 
�1, �2,… , �m represent measurement noise. To model point measurements of the 
PDEs, we consider the receiver function p(r) to be a Dirac �-function centered at 
r. In our numerical demonstrations, we generate the sensor data synthetically and 
assume that the measurement noise is independent and identically distributed (iid) 
Gaussian noise with constant, known standard deviation 𝜎 > 0.

R is a regularization functional that promotes the existence and regularity 
of solutions. This is important because the inverse problem is underdetermined 
and ill-conditioned as a result of data sparsity and noise. The term R can also 
be used to penalize undesirable features. The regularization parameter 𝛼 > 0 bal-
ances between fitting the data (for small values of � ) and ensuring regularity of 
the solution (for large values of � ). Choosing an “optimal” � , is both crucial and 
nontrivial. No general rule exists for picking � ; however, strategies using general-
ized cross validation (Golub et al. 1979; Haber and Oldenburg 2000), discrepancy 
principle (Engl et  al. 1996), and L-curve (Hansen 1998) are commonly used. In 
practice, any of these methods will require us to approximately solve (1) for a set 
of regularization parameters. Because of the binary constraints, the source w will 
be continuous only in trivial cases. In general, we expect piecewise constant solu-
tions with finite edge measure. This guides our choice of the regularization func-
tion and motivates us to use the total variation (TV) semi-norm. With this choice, 
the solution of the relaxed problem will have bounded variation (Chan and Shen 
2005; Rudin et al. 1992; Vogel 2002). In our numerical experiments, we formally 
write the total variation regularizer as

which is well-defined for all w ∶ � → [0, 1] with bounded variation; for non-dif-
ferentiable functions (e.g., binary-valued functions) R(w) can be computed using 
the co-area formula (Scherzer et al. 2013, Thm 9.75). This regularizer is isotropic, 
which means that its value does not depend on the orientation the source w. In other 
words, its value is invariant to rotations of the coordinate system. This is an advan-
tage over the also commonly used anisotropic version of TV (obtained by replacing 
the Euclidean norm with the �1-norm in (3)), which is sensitive to rotations of the 
domain. Problem (1) is not a quadratic program, because the TV regularization term 
involves a square-root. It is easy to show that (3) is second-order-cone representable. 
However, we do not exploit this fact in our results.

(2)�i = ⟨p(ri), u⟩ + �i, i = 1, 2,… ,m,

(3)R(w) = ∫�

‖∇w(x)‖2dx,
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3.2 � Finite‑dimensional approximations of the source inversion problem

In the following, we briefly outline a finite-element discretization of the PDE and 
boundary condition and comment on the structure these discretizations imply for 
the finite-dimensional MINLPs. To make the mathematics as well as the implemen-
tation more accessible, we include additional details in "Appendix 1". For ease of 
presentation, we assume a rectangular domain � = [0, 1]d.

The finite-element approach partitions the domain � into a mesh �N contain-
ing Nd congruent elements (pixels or voxels; see an additional explanation in 
"Appendix  1") in d = 2 and d = 3 , respectively. We note however that a strength 
of the finite-element method is that it extends easily to a wide class of non-rectan-
gular domains. We then approximate the concentration u in a finite-dimensional 
subspace consisting of globally continuous and piecewise bi/trilinear functions on 
�N . Similarly, we approximate the sources w in the space of all piecewise constant 
functions. This approach allows us to replace u and w by finite-dimensional vectors, 
� ∈ ℝ

(N+1)d and � ∈ {0, 1}N
d , respectively, where �i corresponds to the value of u 

at node i of the finite-element mesh and �i is the value of w inside element i. Even 
though the basis functions are nonlinear, the expansion of u and w is linear in the 
coefficients of the basis functions, and results in a set of linear equality constraints, 
leading to the finite-dimensional PDE constraint

where � is the stiffness matrix and � is the mass matrix, whose entries are obtained 
by integrating the weak form of the PDE constraint in (1); see (23) for details. 
Because of the compact support of the Ansatz functions for u and w, both matrices 
are sparse. The discrete objective function is obtained after discretizing the receiver 
functions and gradient operators on the finite-element mesh. To discretize the inner 
products in  (2), we use a midpoint rule. The resulting finite-dimensional convex 
MINLP is 

 which is a finite-dimensional MINLP with a convex objective and linear constraints. 
Here, the matrix � is the interpolation of the states to the point-measurement loca-
tions. In particular, the ith row of the matrix � ∈ ℝ

m×(N+1)d contains the discretiza-
tion of the receiver function p(ri) on the mesh. In our experiments below, we assume 
point measurements at the locations r1,… , rm and use a bi/trilinear spline interpola-
tion to obtain the PDE solutions at those points. Hence, each row of � contains only 
four/eight nonzero elements that correspond to the interpolation weights. The dis-
cretized regularizer, R(�) , is derived in (27).

We note that the MINLP (5) contains special structure that is not typically pre-
sent in standard MINLPs, and we exploit this structure in the solution of the 

(4)�� = ��,

(5a)minimize
�,�

1

2�
‖�� − �‖2 + �R(�)

(5b)
subject to �� = ��

� ∈ {0, 1}N
d

,
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problem. Because the stiffness matrix, � , is nonsingular by design, we can solve (4) 
uniquely for � , given any choice of the discretized controls, � . Formally, we obtain 
� = �−1�� and eliminate � , resulting in a pure integer nonlinear program over the 
controls, � , only. This corresponds to a reduced-space approach. The feasibility of 
this approach hinges on an efficient way to solve the PDE (operate with �−1 ). For 
some problems, one may be able to obtain a factorization of the stiffness matrix 
and reuse it to evaluate the reduced-space objective and gradients. For large-scale 
problems the reduced-space approach may still be feasible if an effective iterative 
method is available. This approach leads to the discretized MIPDECO 

 We note that the regularization term in problem (6) can be reformulated so that (6) 
becomes a mixed-integer second-order cone problem. The relaxation of (6) is 

 which we solve using a projected Gauss-Newton algorithm.

Remark 1  (Structure of the MINLP (6)) 

1.	 The reduced-space approach presented here can be generalized to nonlinear PDEs. 
In this case, however, the solution operator of the PDE ( �−1 in the linear case) 
is no longer a linear operator. This observation implies that we can no longer 
reuse the factors of � and instead must “reinvert” the solution for every iterate in 
a quasi-Newton process; see (Biros and Ghattas 2005a, b; Akçelik et al. 2006) 
on how the reduced-space methods are applied to nonlinear PDEs. The iterative 
process consists of a linearization of the optimality conditions, a gradient calcula-
tion with adjoint-based sensitivities, which consists of a linear system solve with 
�T and a linearized objective function as a right hand side.

2.	 The reduced-space objective function in (6) will typically have a dense Hes-
sian matrix, even if � is sparse, and this can cause computational difficulties for 
MINLP solvers as we increase the mesh size.

3.	 In general, it is difficult to obtain closed-form expressions for the coefficients of 
the matrices � and � , making it cumbersome to state these equations in a self-
contained model.

The last point motivates us to present an alternative finite-difference discretiza-
tion that provides closed-form expressions for the coefficients of the discretized 
PDE to facilitate the reproducibility of our experiments; see "Appendix  2". The 

(6a)minimize
�

J(�) =
1

2�

‖‖‖��
−1�� − �

‖‖‖
2

+ �R(�)

(6b)subject to � ∈ {0, 1}N
d

.

(7a)minimize
�

J(�) =
1

2�

‖‖‖��
−1�� − �

‖‖‖
2

+ �R(�)

(7b)subject to � ∈ [0, 1]N
d

,
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finite-difference discretization again results in a MINLP with linear constraints and 
a convex objective function. As before, we can eliminate the state variables using 
the discretized PDE and boundary conditions.

In the remainder of this paper, we present our integrated rounding and trust-
region heuristic and our numerical results. We note that the rounding and trust-
region schemes are agnostic to the discretization scheme.

4 � An integrated rounding and trust‑region heuristic

We show in our numerical results that standard MINLP methods cannot solve the 
discretized MIPDECOs from the preceding section within a reasonable amount 
of time, even for coarse discretization levels, because the search tree becomes 
too large and the subproblems at every node take too much time to solve. Hence, 
one must consider heuristic techniques. We present a new ‘two-phase heuristic’ 
for MIPDECO. In the first phase, we deploy a problem-specific rounding scheme 
whose solution is passed as an initial guess to the next phase. The second phase is 
an ‘improvement heuristic’ that is motivated by trust-region methods for nonlinear 
optimization; see, for example, (Conn et al. 2000), as well as local-branching heu-
ristics for MINLP (Fischetti and Lodi 2002; Nannicini et  al. 2008). We start our 
approach by first solving the continuous relaxation, which is then rounded using 
different heuristics. In Sect.  6.3, we numerically illustrate that starting from vari-
ous rounded initial points, we arrive at different final solutions due to the differ-
ent trust-region subproblems obtained at these initial solutions. Other heuristics that 
have been proposed for MINLPs are large neighborhood search (Danna et al. 2005) 
and feasibility pump (Fischetti et al. 2005; Bonami et al. 2009). However, we do not 
believe that the latter is practical for MIPDECOs because it would require factori-
zations and rank-one updates of the basis matrices involving the discretized PDE, 
which may be prohibitive or even impossible for small mesh sizes.

Our heuristic is agnostic to the discretization of the PDE or to the solution of the 
continuous relaxation. Hence, we assume in the remainder that the control variables, 
�i , either represent the values of the control in element i from the finite-element dis-
cretization of Sect. 3.2 or represent a lexicographical ordering of the cell-centered 
controls, �kl , in the finite-difference discretization (see "Appendix 2").

4.1 � Rounding schemes for MIPDECO

The improvement heuristic used in our proposed method requires a starting solu-
tion. To obtain such an integer feasible solution we present several rounding based 
schemes in this section. Our results show that the naïve/standard rounding (using 
a cut-off of 0.5) could fail to identify some sources. On the other hand, the exist-
ing NLP-based rounding heuristics from the literature (Sigmund and Maute 2013b) 
does not produce competitive solutions in the sense that our trust-region method can 
improve these solutions objective value by around 24% . Hence, we propose two new 
rounding schemes to obtain an integer feasible solution, starting from the optimal 
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solution of the continuous relaxation, which can be used as a starting solution for 
our heuristics. The first scheme takes the objective function into account while 
rounding, and the second aims to preserve the mass of the sources; that is, it tries to 
keep ∫

�
wdx invariant. For both proposed heuristics, we let �̃ ∈ [0, 1]Nd be the solu-

tion of the relaxation (7) or (29).
First we briefly discuss existing NLP-based heuristics followed by the proposed 

rounding schemes: objective-gap-reduction and mass-preserving.
Penalization-Based NLP Heuristics We implemented a penalty-based rounding 

scheme from the literature (Sigmund and Maute 2013b) in which we relax the inte-
grality restrictions and instead solve a sequence of penalized NLPs for an increasing 
value of penalty parameter to drive the integrality gap to zero. In particular, we add 
a penalty term to the objective of (7) and (29), respectively, resulting in the follow-
ing (nonconvex) penalized formulation of (7) (the approach for (29) is similar):

where q is a positive integer and � is a penalty parameter that we increase until the 
integrality gap is sufficiently small. In our implementation, we use q = 1 . We solve 
the continuous relaxation with � = 0 , set � = 10−6 , and increase � by a factor 2 until 
the integrality gap, max

i

{
min{�i, 1 − �i}

}
 , is sufficiently small ( ≤ � ∶= 10−4 ), and 

then round the final � to its nearest integer. We summarize this approach in 
Algorithm 1.

Let w 0 be a solution of (8) with β 0;
Choose integrality gap 0, iteration limit, Kmax, set k : 0, and β0 : βmin 0;

while k Kmax and max
i

min w k
i , 1 w k

i do

Let w k 1 solve the penalized relaxation (8) with β βk;
Set βk 1 : 2 βk and k : k 1;

return Rounded w k 0, 1 ;

Algorithm 1: Penalization-Based NLP Heuristic for FEM Discretiza-
tion.

Objective-gap-reduction rounding Given �̃ ∈ [0, 1]Nd , the first scheme selects a 
cut-off value t such that the resulting rounded solution defined as

is as close as possible to the relaxation solution in terms of its objective value. Math-
ematically, the desired cut-off value, t, is the minimizer of the following optimiza-
tion problem:

(8)minimize
�

1

2�

‖‖‖��
−1�� − �

‖‖‖
2

+ �R(�) + �

Nd∑
i=1

(
�i

(
1 − �i

))q

subject to � ∈ [0, 1]N
d

,

(9)�i(t) =

{
1, if �̃i ≥ t

0, otherwise,
∀i = 1,… ,Nd

(10)minimize
0≤t≤1 J(�(t)) − J(�̃) ⇔ minimize

0≤t≤1 J(�(t)).
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Consequently, we call this scheme objective gap-reduction rounding. The optimiza-
tion problem in (10) can be written as a convex MINLP and the upper bound on t 
can be tightened to max

i=1,…,Nd

�̃i . Because this problem is hard to solve, we propose a 

simple iterative algorithm to obtain an acceptable cut-off value for the rounding (see 
Algorithm 2), because we are interested only in the approximate solution of (10). 
The process starts by iteratively increasing t by a constant step T ∈ (0, 1) from a 
small initial value until t exceeds tmax = max

i=1,…,Nd

�̃i and outputs the best cut-off value 

t∗ . When t∗ = 0.5 , this scheme is the same as naïve rounding.

Let T 0, 1 ;
Set k : 0, tk : min

i 1,...,Nd

wi, t : 0, J : , and tmax : max
i 1,...,Nd

wi;

while tk tmax do
Form w tk ;
Solve the discretized PDE (6a) with w w tk and evaluate J w tk ;
if J w tk J then

Set J : J w ck and t : tk;

Set k : k 1 and tk : tk 1 T ;

Output: The best cut-off value t and the rounded solution, w w t ;

Algorithm 2: Objective-gap-reduction rounding.

Mass-Preserving Rounding. The scheme rounds the relaxation solution while 
preserving the mass of the sources in the relaxation solution as much as possible. 
The mass of the sources in the relaxation solution is given by S̃ =

∑Nd

i=1
�̃i . Let 

S̄ =
[
�S
]
 be the nearest integer to S̃ . To compute the rounded solution � , we first 

arrange the components of � in decreasing order of �̃i values:

Next, the largest S̄ entries are set to 1, and the remaining entries are set to zero. The 
resulting rounded solution is

It follows that the difference in the mass of the sources between the rounded and 
the relaxed solutions is less than 1. Unlike the first rounding scheme, this rounding 
scheme does not require the solution of any additional PDEs once the relaxed prob-
lem (7) has been solved.

4.2 � Trust‑region‑based improvement heuristic

Our trust-region-based heuristic for solving (6) starts from a binary vector, 
�(0) ∈ {0, 1}N

d , and iterates on the binary variables, � . Here �(0) = � , an inte-
ger feasible solution from a rounding scheme in the first phase. At iteration k, we 
assume that we have solved the discretized PDE in (6) with fixed binary vector 
�(k) ∈ {0, 1}N

d and have evaluated the objective function and its adjoint; see, for 

1 ≥ �̃i1
≥ �̃i2

≥ … ≥ �̃iNd
≥ 0.

(11)�ik
=

{
1, k = 1,… , S̄,

0, k = S̄ + 1,… ,Nd.
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example, (Biegler et al. 2003; Akçelik et al. 2006), with respect to the (relaxation of 
the) binary variables,

We then define the trust-region subproblem that aims to find an improved point, �̂:

where 𝛥k > 0 is the trust-region radius and �k ∈ ℤ is the maximum number of com-
ponents of � that can flip from 0 to 1 or 1 to 0 during an iteration. It is well known 
that we can rewrite the �1 trust-region constraint of (12) equivalently as a knapsack 
constraint:

because �(k) ∈ {0, 1}N
d . This reformulation is the motivation for using the �1 , 

rather than the �2 trust-region, because it results in an easier to solve trust-region 
subproblem.

We also introduce an alternative trust-region subproblem that, in addition to the 
�1 trust-region constraint of (12), restricts the changes in � to components that are 
close to current source locations. In particular, we let 𝜃 > 0 be a bound on the topo-
logical distance from the current solution, and we define the center of C(�i) as the 
coordinates of the center of the element or cell, i, corresponding to �i . We define the 
topological �-neighborhood of the current iterate �(k) as

which defines an index set of the finite elements whose centroid is within a distance 
� to the centroids of the current estimate of the source, �(k)

j
= 1 . Our alternative 

trust-region subproblem is then defined as the following problem in which the 
binary variables that lie outside the neighborhood, N�(�

(k)) , are fixed at their cur-
rent values, 0:

Unlike (12), this problem takes the topology of the current iterate into account when 
defining the trust-region subproblem, because values of �i that are far from the 

J(k) ∶= J(�(k),�(k)) and J�
(k)

∶= ∇�J(�
(k),�(k)).

(12)
minimize

�
J(k) + J�

(k)T
(� − �(k))

subject to ‖‖� − �(k)‖‖1 ≤ �k, � ∈ {0, 1}N
d

,

∑
i∶�

(k)

i
=0

�i +
∑

i∶�
(k)

i
=1

(1 − �i) ≤ �k

⇔

∑
i∶�

(k)

i
=0

�i −
∑

i∶�
(k)

i
=1

�i ≤ �k −
||||
{
i ∶ �

(k)

i
= 1

}||||,

(13)N�(�
(k)) ∶=

{
i ∶ ∃j with

‖‖‖C(�i) − C(�
(k)

j
)
‖‖‖2 ≤ � and �

(k)

j
= 1

}
,

(14)
minimize

�
J(k) + J�

(k)T
(� − �(k))

subject to ‖‖� − �(k)‖‖1 ≤ �k,

�i = 0,∀i ∉ N�(�
(k)), � ∈ {0, 1}N

d

.
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current sources are fixed at zero. Given either of these trust-region subproblems, we 
now state our improvement heuristic in Algorithm 3.

Set the initial trust-region radius, ∆0 Z , and let w 0 0, 1 Nd
;

Choose constant 0 γ 1, and set k : 0;
while ∆k 1 do

Solve subproblem (12) or (14) for w : argmin(12) or (14);
Solve the PDE for u : u w and evaluate the objective J w ;
Compute the ratio of actual over predicted reduction:

ρk :
J w k J w

J k T
w w k

if ρk γ then
Accept the new point: w k 1 w, solve the adjoint PDE to get J k 1 ;
if w k 1 w k

1 ∆k then
Increase the trust-region radius ∆k 1 : 2∆k;

else if γ ρk 0 then
Accept the new point w k 1 : w, solve the adjoint PDE to get J k 1 ;
Leave the trust-region unchanged ∆k 1 ∆k;

else
Reject the new point, set w k 1 : w k , and set J k 1 : J k ;
Reduce the trust region ∆k 1 ∆k 2 ;

Set k : k 1;

Algorithm 3: Trust-Region-Based Improvement Heuristic.

In Algorithm 3, we increase the trust-region radius if we observe good agreement 
(as measured by �k ) between the objective function in (6) and its linear approximation 
in (12). If the two do not agree, then we reduce the trust-region radius in the hope of 
getting better agreement in a smaller region. We use the �1-norm trust-region, because 
it corresponds to the Hamming distance for binary vectors, and the trust-region radius 
can be interpreted as limiting the number of binary variables that can change from the 
current iterate �(k) . We also ensure that the trust-region radius is always an integer, and 
the algorithm stops, once the radius becomes zero. The trust-region radius becomes 
zero after a finite number of iterations, because the objective is bounded below by zero, 
there exists a finite number of integer assignments, � , and the trust-region reduction 
uses the floor operator.

4.3 � Solving the trust‑region subproblems

The trust-region subproblems (12) and (14) are linear binary optimization problems 
with a single constraint. One can easily see that as long as the trust-region radius is 
non-negative (i.e., as long as �k ≥ 0 ), the problem is feasible. Here we show that this 
binary optimization problem can be solved to optimality efficiently by observing that 
it can be reduced to a special knapsack problem for which efficient solution methods 
exist.

We start by writing the trust-region subproblem as a generic binary linear program,

where � ∈ ℝ
p is the gradient, � ∈ {−1, 1}p , and b ≥ 0 is a positive integer.

(15)minimize
�

�T� subject to �T� ≤ b, � ∈ {0, 1}p,
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To extend the knapsack solution approach to our problem, we distinguish the fol-
lowing cases: 

1.	 �i = 1 and �i > 0 implies that �i = 0 at a solution of (15) (because increasing �i 
deteriorates both the objective and the constraint satisfaction).

2.	 �i = −1 and �i < 0 implies that �i = 1 at a solution of (15) (because decreasing 
�i deteriorates both the objective and the constraint satisfaction).

3.	 �i = −1 and �i ≥ 0 : We replace the variable �i by its “inverse”, �̌i ∶= 1 − �i . This 
change of variable reverses the signs of �i and �i , which can be handled by the 
knapsack approach. We also need to update the right-hand side of the constraint 
as b̌ ∶= b − �i = b + 1 > b.

We can now remove the variables �i that correspond to the first two cases and con-
sider a reduced knapsack problem in standard form with m̌ ≤ p binary variables in 
the transformed data �̌ , �̌ , b̌:

where �̌ = (1,… , 1)T , and b̌ ≥ 0 . We now sort the indices in increasing order of 
coefficients:

where ties are broken arbitrarily, and we set ik = 0 if �̌i ≥ 0 for all indices i. The 
solution of the reduced knapsack problem (16) is obtained by setting �̌il

= 1 for all 
l = 1,… , min(b̌, ik) and �̌il

= 0 for all l > min(b̌, ik) ; see, for example, (Balas 1975; 
Horowitz and Sahni 1974; Martello and Toth 1990, 1988; Pisinger and Toth 1998; 
Pisinger 1995; Martello et al. 1999).

5 � Implementation and experimental setup

In this section, we describe our implementation and the generation of the test 
instances, and we briefly comment on the calibration of the regularization param-
eter. We also review a popular NLP-based rounding heuristic that we use in our 
comparisons.

5.1 � Implementation details

We implemented prototype versions and test instances of the proposed algorithms 
in Julia (Bezanson et al. 2012), which will enable future algorithmic developments 
thanks to Julia’s rapid prototyping capabilities, and AMPL, which facilitates test-
ing different MINLP solvers and relaxation ideas for our problem. To enable the 
reproducibility of our results, we provide a Julia module containing the source inver-
sion problem and an implementation of the trust-region method freely at www.githu​
b.com/Julia​Inv/ConvD​iffMI​PDECO​.

(16)minimize
�̌

�̌T�̌ subject to �̌T�̌ ≤ b̌, �̌ ∈ {0, 1}m̌,

�̌i1 ≤ �̌i2 ≤ �̌ik < 0 ≤ �̌ik+1 ≤ ⋯ ≤ �̌im̌ ,

http://www.github.com/JuliaInv/ConvDiffMIPDECO
http://www.github.com/JuliaInv/ConvDiffMIPDECO
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The module provides methods to compute the forward problem and matrix-vector 
products with the adjoint. It also contains several interactive examples that can be 
modified and extended. The module depends on and extends jInv (Ruthotto et  al. 
2017), a toolbox for PDE-parameter estimation problem. Our module uses the exist-
ing methods in jInv for numerical optimization, PDE solvers, regularization, and 
visualization in our experiments. All models are solved on a system with two 64-bit 
Intel(R) Xeon(R) E5-2670 v2, 2.50 GHz CPUs having 10 cores each and sharing 
128 GB of RAM. Using the module JuMP (Dunning et al. 2017), our module can 
also be used to interface with a variety of integer-programming solvers.

In addition we created AMPL code that discretizes the PDE constraint and for-
mulates the MIPDECO, using the finite-difference discretization described below in 
"Appendix 2". The models and run scripts are freely available at https​://githu​b.com/
Julia​Inv/ConvD​iffMI​PDECO​/tree/maste​r/examp​les/ampl

We provide the AMPL model as well as scripts that run the penalization-based 
NLP heuristic described in Sect. 4.1 and scripts that allow the user to output images 
for further processing in MATLAB. We do not directly compare the Julia runs with 
the AMPL runs in terms of CPU time because this performance measure is strongly 
dependent on how well the solvers can exploit the structure of the PDE constraint.

5.2 � Generation of test problems and regularization parameter

Two-dimensional instance Using the domain � = [0, 2] × [0, 1] , we construct a 2D 
source model by evaluating MATLAB peaks function at the cell centers of a grid 
with 550 × 256 equally sized cells. Rounding the function with a threshold of 2 
results in two sources, one of which we shift right along the x-axis. The true model 
can be seen in the upper-left subplot of Fig. 1.

To generate the measurements, we solve the PDE using the finite-element method 
(FEM) discretization on this mesh with a velocity of v = (1, 0)⊤ and a diffusion 
of c = 0.01 and then evaluate the PDE solution at 200 random receiver locations 
sampled from a uniform distribution on � . We visualize the PDE solution and the 
receiver locations (marked by red dots) in the upper-right subplot of Fig. 1.

Three-dimensional instance The data for the 3D instance is generated along the 
same lines. Here, we choose the domain � = [0, 2] × [0, 1] × [0, 1] , a mesh size of 
128 × 64 × 64 , and construct a 3D source model by adding three scaled and shifted 
norm balls. We visualize the true model in the lower-left subplot of Fig. 1.

To generate the measurements, we solve the PDE using the FEM on this mesh 
with a velocity of v = (1, 0, 0)⊤ and a viscosity of � = 0.01 , and we then evaluate 
the PDE solution at 200 randomly spaced boreholes whose first two components 
are sampled from a uniform distribution on [0, 2] × [0, 1] . In the third dimension, 
we place one receiver at each mesh cell, which yields overall 12,800 measurements. 
We visualize the PDE solution using an isocontour plot and the receiver locations 
(marked by red lines) in the lower-right subplot of Fig. 1. In Table 1 we show the 
problem sizes of the instances that we solve in our experiments.

Because our inverse problem is underdetermined (we have fewer measurements 
than unknown optimization variables, � ), we must add a regularization term, R(�) , 

https://github.com/JuliaInv/ConvDiffMIPDECO/tree/master/examples/ampl
https://github.com/JuliaInv/ConvDiffMIPDECO/tree/master/examples/ampl
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in (3). This regularization term requires us to choose the regularization parameter, � , 
in (5a). To find an effective regularization parameter, we use the continuous relaxa-
tion (7) and follow the L-curve approach that we describe in more detail in "Appen-
dix 3". Using this process, we select the regularization parameters � = 8.531 × 10−3 
for the 2D instance and � = 5.298 × 10−3 for the 3D instance, respectively.

6 � Numerical results and discussion

In this section, we illustrate the performance of the different approaches to the dis-
crete source inversion problem using numerical experiments in two and three dimen-
sions with known ground truth. We show empirically that state-of-the-art MINLP 
solvers cannot solve even small-scale two-dimensional instances of this problem. 

Fig. 1   Visualization of the ground-truth sources (left column) and the generated test data (right column) 
for the 2D (top row) and 3D (bottom row) instance. The data is obtained by sampling the PDE solution 
associated with the source model at the randomly chosen receiver locations (indicated by red dots and 
lines, respectively)

Table 1   Problem size for 2D 
and 3D MIPDECO instances: 
For each method and mesh size, 
we show the number of discrete 
state, control variables, and 
constraints. 2D and 3D instances 
have 200 and 12, 800 number of 
measurements, respectively

Method Mesh size # States # Binary control # Constraints

FDM 16 × 8 180 128 180
32 × 16 612 512 612
64 × 32 2244 2048 2244
128 × 64 8580 8192 8580
256 × 128 33540 32768 33540

FEM 256 × 128 33153 32768 33153
96 × 48 × 48 232897 221184 232897
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Next, we consider naïve rounding (also referred to as standard rounding) and two 
proposed rounding heuristics applied to the relaxed problem, and we show that they 
also fail to solve the problem. The latter rounding schemes yield better solution 
than does naïve rounding. We then show that our trust-region heuristic improves 
on rounding heuristics to produce good-quality solutions in a reasonable amount of 
time in both two- and three-dimensional cases.

6.1 � Performance of MINLP solvers on 2D instances

In this section, we explore the effectiveness of state-of-the-art MINLP solvers for 
tackling the discretized MIPDECO (6) for the 2D instance. We use six state-of-
the-art MINLP solvers: Scip Achterberg 2009, Bonami and Lee (2007) using its 
hybrid (Bonmin-Hyb), branch-and-bound (Bonmin-BnB), and outer-approximation 
(Bonmin-OA) algorithms, and Minotaur Mahajan et al. (2017) with both its branch-
and-bound (Minotaur-Bnb) and LP/NLP based branch-and-bound (Minotaur-QG) 
algorithms. We use the self-contained finite-difference discretized MIPDECO model 
(presented in (29)) for this comparison, because it allows us to easily explore the 
effect of increasing the discretization and enables others to easily reproduce our 
results. Otherwise, we use the same problem setup as described in Sect. 5.

We solve a number of instances of the 2D test problem for mesh sizes between 
16 × 8 to 256 × 128 . Table 1 reports the sizes of these instances. In this experiment, 
we use the regularization parameter, � = 8.531 × 10−3 , obtained following the 
L-curve approach. We limit the CPU time for the MINLP solvers to 10 hours. We 
report the number of nodes processed, runtime, lower and upper bounds, and per-
centage gap which is a measure of the optimality gap, and is defined as 100 × UB−LB

|UB|  , 
where UB and LB are the upper and lower bounds, respectively, from these solvers. 
If any of these bounds is unknown, we set the percentage gap to infinity. We note 
that Scip reports that the optimality gap is infinite if the lower and upper bounds 
have opposite signs.

We use the intersection-over-union (IoU) score (also known as Jaccard index) 
to quantify the overlap between the true source and the reconstruction source; 
see  (Csurka et  al. 2013). Let Mtrue and Mrecon denote the sets for which the true 
source, w, and the reconstructed source, wrecon , are indicator functions, respectively. 
The IoU score is then defined as the volume of the intersection divided by the vol-
ume of the union of these sets:

Higher values of the IoU score indicate a better overlap. Since the inversion is per-
formed on coarser meshes, we use a next-neighbor interpolation to refine the recon-
structed sources.

In Table 2, we summarize the performance of the MINLP solvers. We observe 
that only the two branch-and-bound solvers, Bonmin-Bnb and Minotaur-Bnb, are 
able to solve the smallest 16 × 8 instance; Bonmin-BnB also solved 32 × 16 but took 
around 454 minutes. All other runs time out after 10 CPU-hours, and in many cases 

IoU =
|Mtrue ∩Mrecon|
|Mtrue ∪Mrecon| ∈ [0, 1].
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the solvers fail to even produce a feasible source, � , or at least one of the bounds 
(lower or upper), indicated by ∞ in the last column. Bonmin-OA finds only the triv-
ial feasible point, � = 0 , on all the instances, indicating that there are no sources. 
Hence, we excluded the Bonmin-OA results.

Figure 2 shows the best solution, � , obtained by the MINLP solvers. The results 
for the 16 × 8 case show that the upper bound by Scip and Bonmin-Hyb are far from 

Table 2   Performance of state-of-the-art MINLP solvers for instances of the 2D test problem with mesh 
sizes ranging from 16 × 8 to 256 × 128

The rows represent different solvers and are grouped by mesh sizes. The columns show (left to right) the 
mesh size, the name of the solver, the number of nodes processed, the run-time in seconds (where TIME-
OUT indicates that we reached the time limit of 10 CPU-hours), the lower and upper bounds, and the 
percentage gap remaining

Solver # nodes  Runtime (s) Bound Gap (%)

Lower Upper

16 × 8 Scip 225,691 TIME-OUT − 0.5609 0.1733 ∞

Bonmin-Bnb 266 10.71 0.0530 0.0530 0
Bonmin-Hyb 2,087,613 TIME-OUT 0.0413 0.0612 32.40
Minotaur-Bnb 1043 163.87 0.0530 0.0530 0
Minotaur-QG 560,436 TIME-OUT 0.0416 0.0530 21.51

32 × 16 Scip 32,868 TIME-OUT − 1.6063 − ∞

Bonmin-Bnb 242,126 27222.15 0.0393 0.0393 0
Bonmin-Hyb 1,606,956 TIME-OUT 0.0347 0.0634 45.24
Bonmin-OA 2,087,613 TIME-OUT 0.0413 0.0612 32.40
Minotaur-Bnb 58,115 TIME-OUT 0.0364 0.0575 36.71
Minotaur-QG 265,309 TIME-OUT 0.0347 0.0470 26.08

64 × 32 Scip 183 TIME-OUT -2.0189 1.7104 ∞

Bonmin-Bnb 13,569 TIME-OUT 0.0338 0.0369 8.38
Bonmin-Hyb 293,128 TIME-OUT 0.0329 0.0859 61.64
Bonmin-OA 2,087,613 TIME-OUT 0.0413 0.0612 32.40
Minotaur-Bnb 956 TIME-OUT 0.0329 0.1570 79.03
Minotaur-QG 322,969 TIME-OUT 0.0329 0.0449 26.61

128 × 64 Scip 1 TIME-OUT − − ∞

Bonmin-Bnb 1 TIME-OUT 0.0323 0.0481 32.79
Bonmin-Hyb 17,316 TIME-OUT 0.0293 0.1696 82.69
Bonmin-OA 2,087,613 TIME-OUT 0.0413 0.0612 32.40
Minotaur-Bnb 8 TIME-OUT 0.0322 − ∞

Minotaur-QG 77,295 TIME-OUT 0.0322 0.0696 53.74
256 × 128 Scip 811 TIME-OUT − − ∞

Bonmin-Bnb 1 TIME-OUT 0.0355 − ∞

Bonmin-Hyb 17,316 TIME-OUT 0.0119 0.1725 93.1
Bonmin-OA 2,087,613 TIME-OUT 0.0413 0.0612 32.40
Minotaur-Bnb 1 TIME-OUT − − ∞

Minotaur-QG 1 TIME-OUT − − ∞
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optimal; Minotaur-QG found the upper bound (which in this case is also optimal) 
but could not improve its lower bound and thus finished with a positive optimality 
gap. As we increase the size of the problem, the MINLP solvers tend to obtain poor 
reconstructions with speckled areas that would make a source identification difficult. 
The worst performance is at the finest discretization level, where only Bonmin-Hyb 
returns some speckled sources and all other solvers fail to identify the sources.

One reason for this poor performance is that all MINLP methods solve a large 
number of relaxations of the original problem, such as linear programs, nonlinear 
programs, and mixed-integer linear programs, depending on the specific method. 
Moreover, the problem size increases as we refine the computational mesh, making 
these problems larger and computationally harder to solve. None of the off-the-shelf 
solvers exploit the special structure that is inherent in the discretized PDEs and, for 
example, do not take advantage of the fact that the stiffness matrix needs to be fac-
torized only once.

Another factor that prevents the MINLP solvers from solving our problem is 
the presolve techniques that SCIP and Minotaur employ, such as bound tightening, 
and the derivation of implications, before starting (and intermittently during) the 
tree-search (Achterberg 2005; Mahajan et  al. 2011). SCIP, for example, reformu-
lates the original problem by decomposing the nonlinear objective function into a 
set of quadratic and nonlinear constraints whose number increases with the size of 
the instance. For mesh size 128 × 64 , the SCIP preprocessing step took 425.95 sec-
onds and resulted in 8,002 added quadratic constraints, making relaxations harder 
to solve, especially in view of the fact that our problem can be solved as a bound-
constrained NLP by eliminating the PDE states and constraint.

We note that the heuristics used in SCIP and cutting planes used in Bonmin-OA 
to find better feasible solutions seem to be ineffective for our problems. For exam-
ple, the best solutions reported by Bonmin-OA for all instances is W = 0 , which 

Fig. 2   Solutions ( � ) from MINLP solvers SCIP, Bonmin-Bnb, Bonmin-Hyb, Minotaur-Bnb, and Mino-
taur-QG (row-wise) on mesh sizes of 16 × 8 , 32 × 16 , 64 × 32 , 128 × 64 , 256 × 128 (column-wise). We 
indicate the IoU value in the lower-right corner of each image
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indicates that there are no sources, which - even though feasible - is not a meaning-
ful solution.

We also observe that the optimality gap is high for most solvers, because the 
lower and upper bounds are quite weak, leading to slow convergence. For mesh-size 
256 × 128 , Bonmin (in all algorithms) could not improve its starting lower bound 
even after the 10 CPU-hours, and Minotaur failed to report even a single lower 
bound because of a restoration failure in IPOPT that assumed local infeasibility. 
Initially, we allowed only two CPU-hours. Raising this limit to ten hours did not 
change the quality of the bounds, indicating that these problems are unlikely to be 
solved within a reasonable time with existing MINLP solvers.

6.2 � Results for rounding approaches

Here, we compare the effectiveness of the different rounding schemes discussed 
in Sect. 4.1, on the finest mesh ( 256 × 128 ). The naïve, mass-preserving, and gap-
reduction rounding schemes start from the continuous relaxation solution of (5) 
given by (7). In contrast, the NLP-based rounding heuristic solves a sequence of 
NLPs, taking 11 and 7 iterations for the 2D and 3D case, respectively. In Table 3 we 
report the objective value, the solution time, and the number of PDEs of the solu-
tions obtained from these rounding schemes. For the first two rounding schemes, the 
number of PDE solves is due to solving the relaxation (7). While the computational 
costs of the naïve and mass-preserving scheme are negligible, the gap reduction 
rounding requires repeated evaluation of the objective function and thus the PDE 
solves. Note that the factorizations of the discretized PDEs were computed during 
the solution of the relaxed problem and reused during the rounding. The additional 
costs are 16 and 13 PDE solves in the 2D and 3D cases, respectively. The majority 
of the time required by these three rounding schemes is from solving the relaxation. 
All the objective values reported henceforth are the objective value as in (7).

In Figs.  6 and 7 the first column shows the solution � from these rounding 
schemes. The NLP-based rounding resulted in a better solution than the rest but 
took around 33 (22) times more time for 2D (3D) case. We applied the different 
schemes at every iteration of the NLP-based rounding heuristic. In the 2D case, we 
obtain better solutions with proposed rounding schemes (mass-preserving and gap-
reduction) than with a simple rounding scheme, and in some iterations, our rounded 

Table 3   Comparison of objective value, solving time, and number of the PDE solves of different round-
ing schemes

Rounding 2D 3D

Obj Time (s) # PDE solves Obj Time (s) # PDE solves

Naïve 0.1098 24.29 462 0.0246 587.27 565
Mass-pres 0.0780 24.25 462 0.0262 587.24 565
Gap-red 0.1027 24.76 478 0.0246 600.36 578
NLP-based 0.0530 794.10 2750 0.0204 12920.39 1518
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solutions are better than any solution of the NLP-based rounding heuristic. In the 3D 
case, the naïve and gap-reduction roundings resulted in the same solution. Figure 3 
reports iteration statistics of the NLP-based rounding heuristic. The top row corre-
sponds to the 2D case and bottom row to the 3D case. In a row, the leftmost figure 
shows the number of PDE solves and solution time at each iteration; the middle fig-
ure reports the optimal objective value (Obj val) and objective value of the integer 
solution obtained by employing different rounding schemes (naïve, mass-preserving, 
and gap-reduction) to the solution of NLP-based heuristic at each iteration; the right-
most figure shows the IoU values associated with different integer feasible solution 
reported in the middle figure. These results encourage us to believe that NLP-based 
heuristic with higher integrality tolerance can also give a good-quality integer solu-
tion when used in conjunction with the proposed simple rounding schemes. We note 
that at iteration 10 of the 2D instance the objective value from the NLP-based heu-
ristic is more than the rounded solution given by the gap-reduction rounding. This 
means that the former is not a valid lower bound, because problem (8) is nonconvex, 
and we solve it only with a (local) projected Gauss-Newton method.

6.3 � An integrated rounding heuristic and trust‑region approach

We now apply our new trust-region approach to the intermediate solutions from the 
NLP-based rounding approach of Sect. 6.1 for both the 2D and 3D instances. Note 
that the first iteration in the NLP-based heuristic corresponds to the relaxation of 
(5). For each iteration we consider three rounding schemes (naïve, mass-preserving, 
and objective gap-reduction) and two versions of the trust-region approach (full 

Fig. 3   Detailed summary of solution time, # of PDE solves, objective value of the original problem, 
and objective and IoU values of integer feasible solutions obtained by the naïve, mass-preserving, and 
gap-reduction roundings of the solution at each iteration in the NLP-based heuristic. Top row is for 2D 
instance and bottom row is for 3D instance
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region and neighborhood of 1 pixel), resulting in six combinations of our algorithm 

(at each iteration). We refer to N� in (13) with � =
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 as neighborhood of 1 pixel in our 2D and 3D 

cases, respectively. For the 2D instance, Fig. 4 shows the objective and IoU values 
from each of these combinations at each iteration; left and right columns are for the 
trust-region approach on full-space and neighborhood of one pixel, respectively. 
From our computational results we see that for the 2D instance, for all the iterations 
(other than iteration 7) the mass-preserving has performed better than the other 
rounding schemes. Also, the mass-preserving and objective gap-reduction roundings 
give better solutions in terms of objective than does naïve rounding for the trust-
region approach in all the iterations other than the last two. In the last two iterations 
the integrality gap in small and all three roundings result is the same initial and thus 
final solutions. Similar results for the 3D case are reported in Fig. 5.

Figure  6 shows the source reconstructions for the first iterate of the penalty 
method applied to the 2D instance for each of the six combinations of our algo-
rithm (first three rows), and the last iterate considering only mass-preserving 

Fig. 4   Objective and IoU values of trust-region approach on the solutions obtained by the naïve, mass-
preserving, and gap-reduction roundings of the solution at each iteration in the penalization-based NLP 
heuristic for 2D instance
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rounding (since the integrality gap is small, all the three rounding schemes give 
same initial solution) in the last row. Each row depicts the initial guess, the recon-
struction computed by the full-space trust-region method, and the reconstruction 
from the neighborhood trust-region method for a given rounding scheme. The 
superimposed red lines depict the shape of the true source. In each case, the over-
lap is improved by the trust-region method. Similar results for the 3D case are 
reported in Fig. 7.

In the 2D case, we observe that for the first few iterations in the NLP-based 
heuristics naïve rounding identified the larger of the two sources and completely 
failed to identify the second smaller source. However, the other two roundings, 
mass-preserving and gap-reduction, identified both sources. When only one of the 
sources is recovered by using a rounding schemes the neighborhood trust-region 
approach cannot identify the second source, because it can change �i only near 
the initial guess. On the other hand, the full-space trust-region algorithm discov-
ers the second smaller source as well, independent of the starting guess.

In 2D (3D) instances, the added runtime of the trust-region approaches is 
around 7 seconds (between 58 and 129 seconds) when the initial guess is obtained 

Fig. 5   Objective and IoU values of trust-region approach on the solutions obtained by the naïve, mass-
preserving, and gap-reduction roundings of the solution at each iteration in the penalization-based NLP 
heuristic for 3D instance
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from the first iteration of the NLP-based heuristic and less than 3 (between 10 
and 74 seconds) seconds when the initial guess is from any other iteration (the 
largest number of PDE solves for the trust-region scheme was 102 (82); combin-
ing this with the PDE solves required for solving the relaxed problem, the total 
number of PDE solves was 564 (647)). We note that the number of PDE solves is 
significantly lower than the total number of binary variables, indicating that our 
solution approach is efficient for solving these large-scale MINLPs.

In Table 4 we report the final objective value obtained from our algorithms. In 
the first three rows, the initial guess is obtained from rounding the relaxation solu-
tion. For the NLP heuristic we used as a starting guess the final iteration solu-
tion with the naïve rounding, because the other two rounding schemes also result 

Fig. 6   2D results of the full-space and neighborhood variant of the trust-region approach for different 
rounding heuristics (row-wise). The left column shows the starting guess, obtained by rounding the 
solution of the relaxed problem at the � value selected from the L-curve. The middle and right columns 
depict the solutions obtained using the trust region methods. The superimposed red line indicates the 
location of the true source. The overlap is quantified using the intersection-over-union score (IoU) and 
printed in the lower-right corner of each image

Table 4   Final objective function 
value of rounding heuristics and 
trust-region approach

Rounding 2D 3D

Full region 1 pixel Full region 1 pixel

Naïve 0.0473 0.0784 0.0209 0.0207
Mass-preserving 0.0431 0.0427 0.0208 0.0207
Gap-reduction 0.0428 0.0429 0.0209 0.0207
NLP heuristic 0.0428 0.0428 0.0204 0.0204
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in the same integer feasible solution (due to the very small integrality gap). Using 
the proposed trust-region heuristic, We obtain a percentage improvement of 
132%, 82.67%, 139.39% , and 23.83% in the objective values of naïve, mass-preserv-
ing, gap-reduction, and NLP heuristic rounding solutions, respectively, for 2D case; 
and of 18.84%, 26.57% , and 18.84% in the objective values of naïve, mass-preserv-
ing, and gap-reduction solutions, respectively, for the 3D case.

Figure 8 shows the progress in objective value and the change in the trust-region 
radius for the MIPDECO instances. Here we use the first iteration of the penalty 
method as an initial guess. We observe that the trust-region algorithm terminates in 
a modest number of iterations (typically in the range [25, 51]), which implies that 
we solved at most twice the PDEs to obtain function and adjoint information (we 
do not need to solve the adjoint equation on iterations on which we reject the step). 
These results are encouraging, given that the bulk of the computational effort is the 
initial factorization of the stiffness matrix, which we do once during the solution of 
the relaxed discretized MIPDECO and after which we can reuse the factors for fast 

Fig. 7   3D results of the full-space and neighborhood variant of the trust-region approach for different 
rounding heuristics (row-wise). The left column shows the starting guess, obtained by rounding the 
solution of the relaxed problem at the � value selected from the L-curve. The middle and right columns 
depict the solutions obtained using the trust region methods. The overlap is quantified using the IoU and 
printed in the lower-right corner of each image
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PDE solves. The reduction in the function value that we obtain is also encouraging, 
showing that we can significantly improve the objective value in our trust-region 
iterations.

7 � Conclusions and future work

In this paper, we apply several solution approaches to a discrete source inversion 
problem for the convection–diffusion equation. We discretize the given mixed-inte-
ger PDE-constrained optimization (MIPDECO) problem using finite elements and 
obtain a large-scale convex MINLP. Using numerical examples, we demonstrate that 
the discretization of this problem can be solved neither by rounding solutions of the 
relaxed problem nor by state-of-the-art MINLP solvers. We propose a new heuristic 
for MIPDECO that combines a problem-specific rounding scheme with an improve-
ment heuristic. The method is motivated by trust-region methods for nonlinear opti-
mization and is related to the neighborhood search and local-branching heuristics for 
MINLP.

We show that our proposed heuristic can solve both 2D and 3D problem 
instances with more than 65,000 binary variables. In particular, our full-space 
trust-region approach can add sources even if the initial guess misses an exist-
ing source. The algorithm solves at most two PDEs per iteration, and our Julia 
implementation reuses factorizations of the stiffness matrix for computational 

Fig. 8   Convergence histories of the MIPDECO heuristics. Each plot shows the values of the objec-
tive function (blue line, left y-axis) and the trust-region radius (red line, right y-axis) at each iteration 
(x-axis). The rows correspond to the instances obtained for the naïve, the mass-preserving, and the gap-
reduction rounding, respectively. The columns represent the 2D and 3D results of the full-space and 
reduced space methods
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efficiency. In most cases, the trust-region approach converges in a modest number 
of iterations (often around 30).

There are several ways to further improve the efficiency of MINLP solvers, 
which use IPOPT solve the continuous relaxations and the nodes in the branch-
and-bound tree. Because IPOPT is a general-purpose framework for solving 
optimization problems, it does not take advantage of the structure of the dis-
cretized PDE. In particular, IPOPT refactors the stiffness matrix on every itera-
tion, although in principle one could rewrite the linear algebra inside IPOPT to 
take advantage of these factors. On the other hand, the PDECO solver jInv is 
geared toward PDE-constrained problems and includes a number of choices that 
reduce the runtime for the specific instance. Since in the problem at hand the 
PDE-operator does not depend on the optimization variable, our jInv uses a direct 
method to factorize the stiffness matrix before solving the relaxed problem. While 
computing the factorization in 3D takes a significant amount of time, subsequent 
evaluations of the objective function, gradients, and matrix-vector products with 
the Hessians can be computed quickly. We include open-source implementations 
in Julia and AMPL that allow others to reproduce and improve the results shown 
here.

An interesting question raised by one of the referees is whether our trust-region 
algorithm could be generalized to solve very large-scale MINLPs with a convex 
objective and linear constraints. The challenge in our view is to ensure that the trust-
region subproblem remains tractable. In our case, we can eliminate the continuous 
(state) variables, � , using the linear system (4), and solve a simple knapsack prob-
lem. In general, MINLPs, have additional structure, and it may not be possible to 
simply eliminate the continuous variables and constraints. However, we believe that 
our approach could still be used in certain large-scale MINLPs.
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Appendix 1: Finite‑element discretization of the source inversion 
problem

Here, we briefly review how we discretize the variational problem (1) on a computa-
tional mesh. We employ the first-discretize-then-optimize approach, which is a com-
mon strategy in PDE-constrained optimization; see; for example, (Gunzburger 2003, 
Sec. 2.9).

We begin by discretizing the PDE-constraint in (1) following the usual procedure of 
finite-element methods. To obtain a weak form of the constraint, we multiply both sides 
of the PDE constraint in (1) with a test function � ∈ H1(�,ℝ) , the Sobolev space of all 
functions whose first derivative is square integrable over � , with �(x) = 0 for x ∈ �D , 
��(x)

�n
= 0 for x ∈ �N , and then apply Green’s identity and integration by parts:

where the last identity is obtained by using the Neumann boundary conditions on �N 
and the fact that �(x) = 0 on �D . The weak problem then is to find a u ∈ H1(�,ℝ) 
that satisfies (19) for all test functions � ∈ H1(�,ℝ).

Next, we discretize the state u and the control w in the weak form of the PDE con-
straint (19) using compactly supported Ansatz functions on a computational mesh. For 
ease of presentation we assume that our computational domain � = [0, 1]d is divided 
into Nd quadrilateral finite elements of edge length L = 1∕N . We assume a lexico-
graphical ordering of the elements �1,… ,�Nd in the mesh, which in our case consists 
of pixels and voxels for d = 2, 3 , respectively. We note that extensions to more general 
domains and anisotropic or unstructured meshes are straightforward. For example, the 
implementation used in our numerical experiments uses rectangular meshes whose ele-
ments have different edge lengths along the coordinate direction. We use the standard 
bi-/trilinear Ansatz functions �1,�2,… ,�(N+1)d for d = 2 and d = 3 , respectively, as 
test functions and to discretize the state variable u:

Because the Ansatz functions form a Lagrange basis (i.e., for the jth node of the 
mesh we have �i(xj) = �ij ), the elements in � correspond to the value of u at the 
nodes of the mesh. We represent the control variable w as a linear combination of 
piecewise constant Ansatz functions �1,�2,… ,�Nd:

(17)∫𝛺

w𝜙dx = ∫𝛺

(−c𝛥u + v⊤∇u)𝜙dx

(18)= ∫𝛺

c(∇u)⊤∇𝜙 + (v⊤∇u)𝜙dx + ∫𝜕𝛺

𝜙
(
−c

𝜕u

𝜕n

)
ds

(19)= ∫𝛺

c(∇u)⊤∇𝜙 + (v⊤∇u)𝜙dx,

(20)u(x) =

(N+1)d∑
i=1

�i�i(x).
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Similar to above, the Ansatz functions form a Lagrange basis (i.e., �i(x) = 1 if 
x ∈ �i and �(x) = 0 else); hence the entries in � correspond to the values of w in 
the pixels/voxels of our mesh.

The finite-dimensional approximations of u and w in (20) and (21) allow us to write 
the weak form of the PDE-constraint (19) in terms of the coefficient vectors � and � as

where � ∈ ℝ
(N+1)d×(N+1)d is the (nonsingular) stiffness and � ∈ ℝ

(N+1)d×Nd is the 
(full-rank) mass matrix, respectively. We compute the entries of both matrices, � 
and � , approximately by applying a 5th-order Gaussian quadrature rule to (19):

Because of the compact support of the basis functions, the integrands vanish on all 
but a few elements, which leads to both matrices being sparse.

We now derive our discretization of the total variation regularizer (3). In this work, 
we use a first-order finite-difference discretization of the regularizer. This choice is 
motivated by its simplicity and computational efficiency. We refer to the recent work 
in  Herrmann et al. (2018) for a more extensive discussion and finite-element discre-
tizations of the total variation. Because we assume a quadrilateral mesh, the discrete 
gradient operators for d = 2 and d = 3 are

Here, �N ∈ ℝ
N×N is the identity matrix, ⊗ denotes the Kronecker product, and the 

one-dimensional difference operator is

(21)w(x) =

Nd∑
i=1

�i�i(x).

(22)�� = �� − �,

(23)�ij ≈ ∫𝛺

c(∇𝜙j)
⊤∇𝜙i − 𝜙jv

⊤∇𝜙idx

(24)�ij ≈ ∫�

�j�idx.

(25)�j ≈ ∫𝛤D

𝜙jg(v
⊤n)ds.

(26)� =

�
�N ⊗ �

�⊗ �N

�
and � =

⎛⎜⎜⎝

�N ⊗ �N ⊗ �

�N ⊗ �⊗ �N
�⊗ �N ⊗ �N

⎞⎟⎟⎠
.
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We note that this discretization involves a grid change (from the N cell-centers to the 
N + 1 nodes). To accommodate for the grid change, the relaxed form includes the 
average matrix �

for d = 2 and

for d = 3 , respectively, where we use the one-dimensional average matrix

This leads to the discrete regularization function

where � is a vector of all ones, the factor Ld represents the volume of the cells, and 
𝜅 > 0 is a conditioning parameter (in our experiments, we use � = 10−3 ). Note that 
the square and the square root are applied component-wise.

Appendix 2: Finite‑difference discretization of the source inversion 
problem

We discretize both the source, w, and the state, u, in the cell-centered points of our 
Nx × Ny computational mesh:

where Lx = 2∕Nx and Ly = 1∕Ny are the discretization steps in the x and y direction, 
respectively, and k = 1,… ,Nx, l = 1,… ,Ny , i = 0,… ,Nx + 1, j = 0,… ,Ny . Here, 

� =
1

L

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 ⋯ ⋯ 0

−1 1 0 ⋯ ⋯ 0

0 − 1 1 0 ⋯ 0

⋮ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ 0

0 ⋯ ⋯ 0 − 1 1

0 ⋯ ⋯ 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ ℝ
N+1×N .

� =
(
�N ⊗ � |�⊗ �N

)

� =
(
�N ⊗ �N ⊗ � | �N ⊗ �⊗ �N |�⊗ �N ⊗ �N

)
,

� =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 0 ⋯ ⋯ 0

1 1 0 ⋯ ⋯ 0

0 1 1 0 ⋯ 0

⋮ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ 0

0 ⋯ ⋯ 0 1 1

0 ⋯ ⋯ 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ ℝ
N×N+1.

(27)Riso(�) = Ld�⊤
√
�(��)2 + 𝜅,

�kl ≃ w
(
kLx − Lx∕2, lLy − Ly∕2

)
, �ij ≃ u

(
iLx − Lx∕2, jLy − Ly∕2

)
,
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the variables �i,0,�Nx+1,j
,�i,Ny+1

 approximate the PDE solution at ghost points 
placed along �N , and the variables �0,j are the ghost points near �D.

Let us further define � ∈ ℝ
m to obtain the bilinear interpolation from the cell-cen-

tered points of the mesh closest to the receiver locations r1, r2,… , rm . Mathematically, 
for each receiver location rk = (rk

x
, rk

y
), k = 1,… ,m , we define variable Vk as

where, i = ⌊ r
k
x

Lx
+ 0.5⌋ and j = ⌊

rk
y

Ly
+ 0.5⌋ , leading to the following mixed-integer 

quadratic program:

Here, the fifth row explicitly encodes the Neumann and Dirichlet boundary condi-
tions. As before, we can again eliminate the state variables � using the discretized 
PDE and boundary conditions and the state variables � using (28), resulting in a 
problem that has similar structure to (6). As before, the objective function is second-
order cone representable.

Appendix 3: Selection of regularization parameter for the relaxed 
problem

To find an effective regularization parameter, we consider the continuous relaxa-
tion  (7) and follow the L-curve procedure; see (Hansen 1998) for details. In the 
inversions we use coarser meshes with 256 × 128 and 96 × 48 × 48 cells for the 2D 
instance and 3D instance, respectively. We consider the datasets generated in the 
preceding section and perturb the generated data with 10% iid Gaussian white noise.

(28)Vk =
1

LxLy

⎛
⎜⎜⎜⎝

iLx +
Lx

2
− rk

x

rk
x
− iLx +

Lx

2

⎞
⎟⎟⎟⎠

T �
�i,j �i,j+1

�i+1,j �i+1,j+1

�⎛
⎜⎜⎜⎝

jLy +
Ly

2
− rk

y

rk
y
− jLy +

Ly

2

⎞
⎟⎟⎟⎠
,

(29)

min
�,�

1

2�

( m∑
k=1

(
�k − bk

)2)

+ �LxLy

Nx∑
k=2

Ny∑
l=2

√√√√(
�kl −�(k−1)l

Lx

)2

+

(
�kl −�k(l−1)

Ly

)2

+ �,

s.t. c
4�ij − �(i−1)j − �(i+1)j − �i(j−1) − �i(j+1)

Lx
2Ly

2

+
�ij − �(i−1)j

Lx
= �ij, i = 1,… ,Nx, j = 1,… ,Ny

�Nx+1,j
= �Nx,j

, �i,0 = �i,1, �i,Ny+1
= �i,Ny

,�
0,j = −�

1,j,

i = 0,… ,Nx, j = 0,… ,Ny

� ∈ {0, 1}Nx×Ny ,� ∈ ℝ
(Nx+2)×(Ny+2).
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To compute the L-curve, we solve 30 instances of the continuous relaxation for 
different values of � that are logarithmically spaced between 1 and 10−6 . To acceler-
ate the computation, we initialize the optimization with the solution from the previ-
ous � . For each value of � , we use up to 20 Gauss-Newton iterations and approxi-
mately compute the search direction using 5 iterations of projected preconditioned 
CG that use the Hessian of the regularization function as a preconditioner. For each 
experiment, we store the reconstructed source, the predicted data, the value of the 
misfit function, and the values of the regularization function (without the factor � ). 
The L-curve shown in Fig. 9 show the value of the regularizer and the value of the 
misfit of these optimal solutions. As is common, the axes are scaled logarithmically; 
and to provide additional insight, we have added visualizations of the reconstructed 
sources for the largest and smallest value of � (resulting in overly smoothed and very 
noisy reconstructions, respectively) as well as solutions that provide a good trade-
off. Using this process we select the regularization parameters � = 8.531 × 10−3 
for the two-dimensional instance and � = 5.298 × 10−3 for the three-dimensional 
instance, respectively. Computing the L-curves took about 4 and 48 minutes and 
involved 32,580 and 30,892 PDE solves in 2D and 3D, respectively. The large num-
ber of PDE solves underscores the importance of computing a factorization (or a 
good preconditioner in large-scale problems) apriori.

10−0.2 100 100.2 100.4 100.6 100.8
10−2

10−1

regularizer

m
is
fit

2D instance

10−0.4 10−0.2 100 100.2 100.4 100.6 100.8
10−2

10−1

regularizer

m
is
fit

3D instance

Fig. 9   L-curve plots for the relaxed optimization problem (7) for the two-dimensional instance (left) and 
three-dimensional instance (right). In both cases, we solve the relaxed problem for 30 � values loga-
rithmically spaced between 1 and 10−6 . We plot the value of the regularizer and misfit at the computed 
solution in a loglog plot. To highlight the impact of � on the smoothness of the reconstructed images, we 
provide snapshots of the reconstructed source at the extremal values and one value that provides a good 
trade-off (values are marked with a circle)
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