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The purpose of this paper is to present the concept of an autonomous Stirling-like engine powered by

anisotropy of thermodynamic fluctuations. Specifically, simultaneous contact of a thermodynamic system with

two heat baths along coupled degrees of freedom generates torque and circulatory currents—an arrangement

referred to as a Brownian gyrator. The embodiment that constitutes the engine includes an inertial wheel to

sustain rotary motion and average out the generated fluctuating torque, ultimately delivering power to an external

load. We detail an electrical model for such an engine that consists of two resistors in different temperatures

and three reactive elements in the form of variable capacitors. The resistors generate Johnson-Nyquist current

fluctuations that power the engine, while the capacitors generate driving forces via a coupling of their dielectric

material with the inertial wheel. A proof-of-concept is established via stability analysis to ensure the existence

of a stable periodic orbit generating sustained power output. We conclude by drawing a connection to the

dynamics of a damped pendulum with constant torque and to those of a macroscopic Stirling engine. The sought

insights aim at nanoengines and biological processes that are similarly powered by anisotropy in temperature

and chemical potentials.
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I. INTRODUCTION

Carnot’s 1824 abstraction of a heat engine [1] led to the

discovery of entropy and to the birth of thermodynamics. In

the intervening two centuries, in spite of great strides, very

many conundrums lingered, largely due to the absence of

models that capture the time-scale separation of processes in-

volved. Today, we are witnessing the emergence of finite-time

thermodynamics [2–4] and of stochastic models [5,6] that

have brought about a finer understanding of those issues that

were raised by Maxwell, Boltzmann, Loschmidt, and other

founders of the field long ago.

The present paper explores the coupling between (fast)

thermal fluctuations and a (slow) mechanical component in

a way that allows generation of mechanical power. Inspired

by nature’s ability to harvest energy from fluctuations and

anisotropic chemical concentrations in conjunction with vary-

ing electrochemical potentials [7,8], we introduce an “engine

concept” based on the model of a Brownian gyrator—a

system with two degrees of freedom that exhibits a charac-

teristic nonequilibrium steady-state circulating current due an

anisotropic temperature field.

Previous work on the Brownian gyrator focused on the

circulating current and torque generated at steady state

[9–15]—experimentally validated in [10,12,13,16], on op-

timal transitioning between states [17], and the role of
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information flow [18,19]. Other works focused on under-

damped mesoscopic systems [20], non-Markovian noise [21],

active reservoirs [22], and the effect of external forces [23]

on such two-dimensional stochastic systems. More recently,

Ref. [24] considered the energetics of the cyclic operation

of Brownian gyrators and derived theoretical bounds on ef-

ficiency and power that can be extracted from the anisotropy

of the temperature field.

Our embodiment of the Brownian gyrator, following

Refs. [10,12,16], consists of a simple electrical network com-

posed of two resistors and three capacitors. Johnson-Nyquist

fluctuating currents at the two resistors, due to uneven ambient

temperatures, allow for the potential to generate torque. We

postulate variable capacitors with movable dielectric material.

Forces on the dielectric material are exerted by the fluctu-

ating currents as well as by a coupling to a flywheel. This

mechanical component provides inertia and dissipation that

absorbs generated power. We provide detailed analysis as a

proof-of-concept for the feasibility of this power generating

mechanism, and explain the mechanics responsible for energy

transfer between the fluctuating currents and the rotational

subcomponent of the engine.

Proposals for heat engines that are powered by ther-

mal excitations date back to Maxwell’s demon [25,26] and

the Feynman ratchet [27]. Experiments to validate relevant

thought experiments have been reported recently [28–32].

However, these experimental demonstrations are mostly based

on manipulating particles in a nonautonomous manner, via

optical traps and externally specified cyclic control protocols

[33,34]. Such nanomanipulation requires considerable energy

that far exceeds work that is being produced. The point of our

paper is to present an analysis for the coupling between the
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FIG. 1. Electrical embodiment of the Brownian gyrator [12].

system responsible for thermal fluctuation with a slower me-

chanical component that renders the operation of the engine

autonomous.

II. BROWNIAN GYRATOR

We consider an electrical embodiment of a Brownian gy-

rator, see Ref. [12], that consists of three capacitors and

two resistors as shown in Fig. 1. The resistors are in con-

tact with heat baths of different temperature. The state of

this electrical-thermal system comprises of the charges at

two of the capacitors. Specifically, let q1(t ) and q2(t ) denote

the charges at capacitances C1(t ) and C2(t ) (that are time-

varying), and set

qt =
[

q1(t )

q2(t )

]

, R =
[

R1 0

0 R2

]

,

and

C(t ) =
[

C1(t ) + Cc(t ) −Cc(t )

−Cc(t ) C2(t ) + Cc(t )

]

,

for the charge vector, and the resistance and capacitance

matrices, respectively. The dynamics are expressed in the

following two-dimensional stochastic differential equation:

dqt = −R−1C−1(t )qt dt + R−1DdBt , (1)

where {Bt } is a two-dimensional Brownian motion that models

Johnson-Nyquist noise R−1DdBt at the two resistors [35],

with

D =
[√

2kBR1T1 0

0
√

2kBR2T2

]

,

kB the Boltzmann constant, and T1 and T2 the temperature to

which the corresponding resistors are subjected to.

Let U (t, q) = 1
2
q′C−1(t )q be the (potential) energy in the

system of capacitances [C1(t ),C2(t ),Cc(t )], where ′ denotes

transpose. Then, the state equation (1) becomes

dqt = −R−1∇qU (t, q)dt + R−1DdBt ,

where ∇q is the gradient operator with respect the charge

vector. This is a two-dimensional overdamped Langevin equa-

tion, analogous to the equation that describes the motion of

a particle with two-degrees of freedom, in a time-varying

potential well, with R playing the role of a viscosity matrix.

Equation (1) represents a stochastic system whose state

comprises of a probability distribution, denoted by p(t, q).

This satisfies the Fokker-Planck equation

∂ p

∂t
+ ∇q · J = 0,

with probability current

J =
[

J1

J2

]

= −R−1

[

∇qU +
1

2
DD′R−1∇q log(p)

]

p.

If the initial state p(t, q) is Gaussian with mean 0 and

covariance �0, denoted by N (0, �0), then, under time-varying

quadratic potential (as in here), p(t, q) remains Gaussian for

all times t , with mean 0 and covariance �(t ) that satisfies the

Lyapunov equation

�̇(t ) = −R−1C−1(t )�(t ) − �(t )C−1(t )R−1 + R−1DD′R−1.

(2)

The periodic variation of the capacitances that generates an at-

tractive periodic orbit in the space of probability densities has

been previously studied [24]. In that case, the periodic orbit is

specified by a periodic covariance matrix for the charge vector

qt .

The coupling in Eq. (1) with the two heat baths allows

transference of heat between the two, as well as exchange of

energy with the environment through coupling with the time-

varying potential U . Indeed, the total energy in the system

(averaged over realizations) is

E = Ep{U (t, q)} =
∫

U p dq =
1

2
Tr[C−1(t )�(t )],

where Tr[·] denotes trace. Likewise, the power delivered to

the system via changes in the potential, is

Ẇ = Ep{Ẇ } =
∫

∂U

∂t
p dq =

1

2
Tr[Ċ−1(t )�(t )],

where

Ẇ =
∂U (t, q)

∂t

denotes the work rate along a single realization of the pro-

cess. The heat uptake from the respective thermal baths with

temperature T1 and T2 is

Q̇k =
∫

Jk∂qk
U dq = −

∫

U∂qk
Jk dq,

for k ∈ {1, 2}, respectively, resulting in a total heat uptake

Q̇ = Q̇1 + Q̇2 = −
∫

U∇q · J dq =
1

2
Tr[C−1(t )�̇(t )].

Note that d
dt
E = Ẇ + Q̇, in agreement with the first law, and

that the time integrals of Ẇ , Q̇ depend on the paths.

Basic physics dictates that the capacitance matrix C(t ) is

positive definite at all times t . In the case were C(t ) = Cconst

is constant, the covariance matrix specified in (2) satisfies

�(t ) → �∞ as t → ∞ and, thereby, the system reaches a

stationary steady state [36]. At steady state ∇ · J = 0, which

implies vanishing total heat uptake. However, unless the

detailed balance condition J = 0 is satisfied, the stationary

steady state N (0, �∞) is not an equilibrium distribution. In

such a stationary steady state, referred to as nonequilibrium

steady state (NESS), the nonzero probability current mediates

a heat transfer flux Q̇1 = −Q̇2 �= 0 between the two thermal

baths. Quantifying this heat flux has been the subject of earlier

papers [9–12,14].

In the sequel we are interested in the case where the ca-

pacitances Ck (t ) (k ∈ {c, 1, 2}) vary with time so as to allow
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FIG. 2. Engine embodiment with actuated dielectric pads. The

angular position θt of the wheel forces the dielectric material in and

out of the capacitors, rendering the capacitance matrix a function

of θt .

extracting thermodynamic work out of the system. In our

earlier paper [24] we quantified trade-offs between dissipation

and work that can be extracted in similar Langevin systems

via externally and periodically varying parameters. Herein,

we pursue an alternative route where the relevant parameters

(capacitances) are a function of added degrees of freedom,

introduced via coupling of the components, specifically the

dielectric material in the capacitors, with an inertial wheel.

This allows the autonomous function of the Brownian gyrator

as a genuine autonomous thermodynamic engine.

III. ENGINE CONCEPT

Let us consider the presence of dielectric padding in the

three capacitors, that can vary in position through mechanical

coupling to a rotating wheel, as shown with a schematic in

Fig. 2. In this way, the angular position θt of the (inertial)

wheel forces the dielectric material in and out of the respective

capacitors. This mechanical coupling renders the capacitance

matrix variable with time, being function of the dynamic

variable θt .

We select a geometry of the linkages actuating the dielec-

tric material that gives the capacitance matrix as a function of

θ in the form

C(θ ) = C0

[

2 + βg1(θ ) −1 − β cos(θ )

−1 − β cos(θ ) 2 + βg2(θ )

]

,

where g1(θ ) = cos(θ + φ1) + cos(θ ), g2(θ ) = cos(θ + φ2) +
cos(θ ) and 0 < β < 1. The specific form follows if we assume

that (i) the linkages are long enough so that the capacitances,

to a good approximation, vary sinusoidally with the angular

position θ of the wheel, and (ii) that the links are attached to

suitable positions to account for the phase differences φ1, φ2.

The purpose of the mechanical coupling is to transfer the

torque generated by the thermal fluctuations at the capacitors

to the inertial wheel so as to average out, as well as provide

needed phase difference (reflected in the parameters φ1, φ2)

between the elements of the engine so as to sustain its contin-

uous operation.

The model for the coupled system of the (electrical) Brow-

nian gyrator, the inertial subsystem with linkages shown in

Fig. 2, and the external torque −γωt to transfer work to the

environment, is

dqt = −R−1C−1(θt )qt dt + R−1DdBt , (3a)

dθt = ωt dt, (3b)

Idωt = − 1
2
q′

t∂θC−1(θt )qt dt − γωt dt . (3c)

In the above, the symbol I represents the inertia of the wheel,

and γ can be thought of as a friction coefficient in a process

that helps extracting the work out of the engine. We will refer

to the term −γωt as external dissipation, although it could just

as well represent torque proportional to ω exchanged with an

external subsystem.

Noticing that

Ẇ =
∂U (t, qt )

∂t
=

1

2
q′

t∂θC−1(θt )qtωt ,

we rewrite Eq. (3c),

Iωt dωt = −Ẇ dt − γω2
t dt,

and integrate over time from 0 to t to obtain

1

2
I (ω2

t − ω2
0 ) = −Wt − γ

∫ t

0

ω2
s ds,

where Wt =
∫ t

0
Ẇ ds. Therefore, the change in the kinetic en-

ergy of the wheel equals the work produced by the engine,

minus the energy transferred via the torque γωt to the envi-

ronment (as friction or coupled to another system). Thus, it is

intuitively clear that as long as the engine produces work, the

parameter γ can be adjusted to ensure that the wheel keeps

rotating.

IV. ANALYSIS

We present an analysis that supports our claim and shows

that, for a suitable set of parameters, the autonomous system

generates positive work output over a cycle, which sustains the

rotational motion of the wheel and at the same time supplies

torque to an external dissipative load.

We adopt the assumption that there is a significant

time-scale separation between the electrical and mechanical

subcomponents of the engine, in that τelec ≪ τmech, where

τelec and τmech are the time-scales governing the electric and

mechanical subsystems, respectively. With this time-scale

separation, at every time-instant qt can be viewed as a ran-

dom vector, which follows the stationary distribution of (3a)

associated with θt . The distribution is Gaussian with zero

mean and covariance matrix �(θ ) that satisfies the algebraic

Lyapunov equation

−R−1C−1(θ )�(θ ) − �(θ )C−1(θ )R−1 + R−1DD′R−1 = 0.

(4)

Moreover, the correlation of qt is localized over time due to its

fast dynamics. Thus, the randomness it injects to (3c) averages

out fast so that, effectively, the mechanical subsystem is driven

by the covariance �(θ ) of the charge vector qt . Hence, the

dynamics of the mechanical components can be approximated

by the deterministic dynamics

θ̇t = ωt , (5a)

Iω̇t = − 1
2

Tr[∂θC−1(θ )�(θ )] − γωt . (5b)
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FIG. 3. Schematic phase portrait of Eq. (5). The red-dotted line

marks the isoclene, while solid lines display different solutions in

state space (θ, ω). The point p1 and p2 label an stable and an

unstable equilibrium point, respectively. In the blow up figure we

have displayed a solution that crosses the neighborhood of the saddle

point from above. The behavior of this solution helps establish the

existence of the stable periodic orbit. This periodic orbit is seen in

the figure to “weave” at about 90o-phase difference with the isoclene.

The accuracy of the above approximation is positively cor-

related with the magnitude of the time-scale separation.

Elaborating further, the assumption on time-scale separation

allows us to write θ and ω as functions of the time average of

qt q
′
t over τmech, i.e., 1

τmech

∫ t+τmech

t
qsq

′
sds. Since the stochastic

system (3a) is linear and the matrix R−1C−1 has positive

eigenvalues, qt will approach, relatively fast, a steady state

Gaussian distribution with variance �(θ ). Thereby, we can

replace this time average with �(θ ).

A. Phase portrait

The system of equations (5) describes motion in a force

field,

I θ̈ + γ θ̇ = −F (θ )

where F (θ ) = − Tr[∂θC−1(θ )�(θ )]/2. The dynamics are

analogous to those of a forced pendulum [37], and while in

our case F may not be exactly sinusoidal, qualitatively the

response is quite similar.

A schematic of a phase plot, for a suitable choice of pa-

rameters, is shown in Fig. 3. In this, the red-dotted curve

highlights the isoclene

ω = −
1

γ
F (θ ),

which is periodic in θ . The flow field above this curve points

“southeast,” whereas below the curve, it points “northeast.”

Points of equilibrium exist at the intersection of the isoclene

with the ω = 0 axis, i.e., at points (θ, ω = 0) where F (θ ) = 0.

Over a 2π -interval there are two such points of equilibrium.

The first, labeled p1 in Fig. 3, is a stable focus, whereas the

second, labeled p2, is a saddle point (unstable). Their pattern

repeats with a period equal to 2π .

Only two types of trajectories are possible. Either the

system settles to a oscillatory motion about a point of equi-

librium, or it settles about a persistent periodic orbit where θ

monotonically increases. Such a trajectory “weaves” with the

isoclene and is highlighted in the figure (Fig. 3) by a periodic

solid line.

The existence of a stable periodic orbit requires sufficient

work production over a cycle. A sufficient condition that guar-

antees existence of such a stable periodic orbit can be deduced

from the Poincare map P that relates the value of ω(θ ) along

orbits corresponding to values of θ that differ by 2π :

P : ω(θ0) 
→ ω(θ0 + 2π ).

To this end, we consider a trajectory that “scrapes” past the un-

stable equilibrium at p2 as shown in the blowup of Fig. 3. This

trajectory can be numerically evaluated integrating forward

and backwards in time, starting from a neighborhood of p2.

The inequality ω(θ0 + 2π ) � ω(θ0) guarantees the existence

of a periodic orbit.

In fact, if this periodic orbit exists, it must be unique, since

there can only exist one periodic orbit that dissipates exactly

the amount of work that is produced over a cycle. Specifically,

work produced over a cycle is given by

Wcycle = −
1

2

∫ 2π

0

Tr[∂θC−1(θ )�(θ )]dθ,

independently of the initial conditions. On the other hand,

dissipation over a cycle is given by γ
∫ 2π

0
ω(θ )dθ , which is

monotonic in the initial velocity ω(θ0). Therefore, if a periodic

orbit exists, it is unique, since only one solution curve can

satisfy γ
∫ 2π

0
ω(θ )dθ = Wcycle.

In the following, we pursue an alternative route to ensure

the existence of a periodic orbit. Our phase portrait analysis,

however, helps assess numerically the existence of such an

orbit.

B. Persistence of motion

To continue with our analysis, we express the solution

�(θ ) of Eq. (4) explicitly in terms of θ as follows:

�(θ ) =
∫ ∞

0

e−R−1C−1(θ )τ R−1DD′R−1e−R−1C−1(θ )τ dτ.

Note that �(θ ) is bounded for all θ .

In light of the structure of (5), we may view θ as an

independent variable (as long as ω > 0) and combine the

two equations into a single equation that specifies the de-

pendence of ω(θ ) on θ . Considering a dimensionless velocity

� = γ /(kBT1)ω, we can write

d�

dθ
(θ ) = ǫ f (θ,�), (6)

where ǫ = γ 2/(IkBT1), and

f (θ,�) = −
1

2kBT1

1

�
Tr[∂θC−1(θ )�(θ )] − 1

is a 2π -periodic function of θ . Note that f (θ,�) is continuous

and bounded, and so are its derivatives with respect to � up to

second order on (θ,�) ∈ [0,∞) × [�min,�max] with �max >

�min > 0. Therefore, we can infer stability from the averaged

system as long as ǫ is small enough [38, Theorem 10.4], as

explained below.
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FIG. 4. Dimensionless quasistatic work over a cycle, W0, for dif-

ferent values of the phase differences φ1, φ2. Note that the maximum

of W0 is found at the point (φ∗
1 , φ

∗
2 ) ≈ (4.25, 2.15).

Following [38, Sec. 10.4], define the averaged system

d�̄

dθ
(θ ) = ǫ

(W0

�̄
− 1

)

,

where

W0 =
Wcycle

2πkBT1

, (7)

is the dimensionless averaged work output over a complete

rotation of the (deterministic) wheel. It readily follows that

�̄ = W0 is an exponentially attractive equilibrium for the av-

eraged system. Therefore, if �̄(0) = W0 ∈ [�min,�max] and

�(0) − W0 = O(ǫ), there exists ǭ such that for all ǫ ∈ (0, ǭ),

�(θ ) is defined and

�(θ ) − W0 = O(ǫ) for all θ ∈ [0,∞).

Moreover, �(θ ) is a unique, exponentially stable, 2π -periodic

solution of (6).

Consequently, the wheel keeps rotating [i.e., �(θ ) > 0]

provided that W0, the dimensionless averaged work output in

(7), dominates the O(ǫ) discrepancy. Such a condition can be

ensured by selecting the parameters φ1 and φ2 so that W0 is

positive, as can be seen in Fig. 4, and selecting ǫ sufficiently

small. While, a precise bound on the size of ǫ as a function

of W0 is not available, it can be numerically determined as

shown in Fig. 5. The figure divides the space of parameters

(ǫ,W0) into two regions, depending on the type of equilibrium

obtained. In region (a) the wheel will eventually come to

a stall, regardless of the initial conditions, since dissipation

(characterized by ǫ) dominates the work production. On the

other hand, for parameters in region (b), the wheel will settle

to a periodic orbit, as long as the system starts with sufficient

momentum, e.g., with initial conditions above the blue curve

in the blow up of instance (b) in Fig. 3.

V. NUMERICAL EXPERIMENTATION

To demonstrate the validity of our results, we numerically

compute realizations of the original process (3) and compare

them to the solutions of the deterministic system (5). In order

to do so, we ensure the time-scale separation by selecting our

parameters such that
√

R1R2C0 ≪ γ /(kBT1) and
√

R1R2C0 ≪
I/γ , where

√
R1R2C0 is the time-scale governing the elec-

FIG. 5. Space of parameters (ǫ,W0 ) numerically divided into two

regions [by testing whether ω(θ0 + 2π ) � ω(θ0)]. (a) Parameters

for which the only stable solution is the stationary solution, and

(b) both the stationary solution and the periodic solution are stable.

In the blow up figures we have, for each of the regions, an example

trajectory in state-space.

trical subsystem, while γ /kBT1 and I/γ are the time-scales

governing the oscillation and the damping, respectively, of the

mechanical subsystem.

Figure 6 shows the solutions to the stochastic differential

equations (3) in solid red, while those to the deterministic

equations (5) are portrayed in dotted blue. The top panels (a)

and (b) display a solution for which the work output is positive

and increasing, thus augmenting the wheel’s velocity (at least

until it reaches the periodic orbit). On the other hand, panels

(c) and (d) showcase the opposite situation, the case where the

wheel eventually comes to a stall because the work output is

not sufficient to overcome dissipation. To produce these plots

we have used experimentally realizable parameters (given in

Table I), which are kept constant except for φ1 and φ2, that

vary from panels (a) and (b) to panels (c) and (d), from taking

the optimal values to taking suboptimal ones. We remark that

although the stochastic solution in solid red constitutes only

one realization, the time-scale separation ensures that all real-

izations behave approximately like the deterministic solution,

and, therefore, typical solutions to the stochastic equation do

not differ much from one realization to another.

We remark that the rate of total entropy production for the

Brownian gyrator at the level of single trajectory is Ṡtot =
Ṡenv + Ṡsys, where Ṡsys = − d

dt
log( p(t, qt )) and Ṡenv = − Q̇1

T1
−

Q̇2

T2
with

Q̇k = ∂qk
U (t, q) ◦ dqk, for k = 1, 2,

023218-5
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FIG. 6. Solutions to the stochastic system (3) are displayed in

solid red, while those to the deterministic system (5) are shown in

dotted blue. Panels (a) and (b) are the result of a successful choice of

parameters in that work output is produced and the wheel’s motion

is enhanced. On the other hand, in panels (c) and (d) the work

production is not sufficient to overcome dissipation and thus the

wheel oscillates around the static equilibrium point.

where ◦ denotes Stratonovich integration. By taking the ratio

of probabilities of forward and backward trajectories it can be

shown that a fluctuation relationship of the form E[e−
Stot ] =
1 holds. However, unlike in the standard single heat-bath

setting [2], it is not clear how to relate this fluctuation rela-

tionship to work and free energy differences. It is expected

that in the quasi-static regime, the total entropy production is

large and dominates the work output. This is due to the fact

that, even in equilibrium, there is a continuous flux of heat

from one heat bath to the other through the electrical degrees

of freedom leading to a continuous increase of the entropy of

the environment.

VI. FINAL REMARKS

It is in order to point out the resemblance of the dynamical

behavior of our stochastic heat engine with that of a damped

pendulum with constant torque [37]. Indeed, due to the simi-

larity of the shape of F (θ ) to a shifted sine, it must be of no

surprise that both systems share the same type of equilibria

in the different regions of their parameter space. However,

the damped pendulum [37] has a qualitatively different be-

havior when the constant torque applied is higher than the

TABLE I. Parameters in numerical simulation.

Parameter Value Units

I 5× 102 kg nm2

γ 10−2 kg nm2/s

ω0 3.8×10−4 1/s

θ0 π/2 rad

t f 2×104 s

R1 1 �

R2 1 �

T1 200 K

T2 400 K

kB 10 −23 J/K

C0 2 mF

β 0.1

φ1 (a)&(b): 4.25 / (c)&(d): π rad

φ2 (a)&(b): 2.15 / (c)&(d): π rad

amplitude of undulations of the potential. In such a case, only

the periodic solution is a stable solution. We have not been

able to replicate such a behavior in our stochastic heat engine,

which can be attributed to the fact that the amplitude of F (θ )

is always greater than its vertical shift due to restrictions of

the work production.

Besides the resemblance of the engine dynamics to those

of a damped forced pendulum, there is also a qualitative

resemblance to the dynamical behavior of the Stirling engine

as explained in [39,40]. Specifically, a Stirling engine can be

modeled as a periodic nonlinear pendulum, and its equilib-

rium modes have been experimentally shown to be same as

those of our stochastic heat engine [41]. Thus, the analysis

presented herein can be used to establish the existence of

periodic orbits for the macroscopic Stirling engine, and to

identify conditions for which periodic motion persists.
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