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ABSTRACT

We analytically predict and numerically demonstrate the existence of a family of bound modes in the continuum (BICs) in bi-layered
spring-mass chains. A coupled array of such chains is then used to illustrate transversely bound waves propagating along a channel in a
lattice. We start by considering the compact region formed by coupling two spring-mass chains with defects and predict bound modes
arising due to reflection symmetries in this region. Dispersion analysis of a waveguide consisting of an array of appropriately coupled
bi-layered chains reveals the presence of a branch having bound modes in the passband. Finally, detailed numerical analyses verify the existence
of a BIC and its propagation through the waveguide at passband frequencies without energy leakage. The framework allows us to achieve BICs
and their propagation for any arbitrary size and location of the compact region. Such BICs open avenues for novel classes of resonators with
extremely high Q factors due to zero energy leakage and allow for guiding confined waves in structures without requiring bandgaps.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0101654

I. INTRODUCTION In the last few years, advances in manufacturing have revived
interest in BICs, particularly using photonic metamaterials, as a route
to achieve resonators with infinite Q factors. Examples of BIC sup-
porting structures include photonic crystal slabs,”*~** waveguide
array,” and metasurfaces.””> Most BICs fall into two categories:
symmetry protected and accidental. Symmetry-protected BICs arise
when spatial symmetry of a localized or defect mode is incompatible
with the symmetry of the propagating modes. They have been
observed experimentally in a dielectric slab with a square array of cyl-
inders,”® a periodic chain of dielectric disks,”” as well as in an optical
waveguide.”® Accidental BICs arise due to the cancelation of coupling
coefficients to the radiating or propagating waves by carefully tuning
one or several system parameters. An example of this category is the
Fabry-Pérot BIC, where a BIC is formed by destructive interference

Bound modes in the continuum (BICs) are a unique class of
localized modes satisfying two properties. The first is that their fre-
quency lies in the continuous spectrum of propagating waves, i.e.,
in the passband, and the second is that the wave amplitude is zero
outside a compact spatial region.' In contrast, conventional bound
modes lie in bandgaps, while localized modes in pass bands are
typically leaky, with the wave amplitude gradually decreasing with
distance from the wave center.”™* BICs were first predicted in 1929
by von Neumann and Wigner in the context of quantum mechan-
ics.” Their idea was based on a complex artificial potential that was
hard to achieve in real materials, so the idea did not get attention
for several decades. The concept of BICs has revived again when

their properties were explored in atomic systems™” and the possibil-
ity of achieving them in other physical domains was revealed. BICs
were first observed experimentally in acoustics by “Wake Shedding
Experiment” in 1966.° Today, BICs are an active research field in
multiple fields, particularly because their zero leakage property
allows the possibility to achieve modes with very high quality
factors (Q factor).” Potential applications of BICs include
lasing,'’~"* filtering,'>'* sensing,'> supersonic surface acoustic

. 16,17 s 1: 18,19
devices,''” and guiding energy.

of waves reflected from a large distance.”” Structures supporting
quasi-BICs**’" with giant Q factors are emerging as an alternative to
BICs, as the number of structures supporting BICs is limited.
Compared to photonics, BICs have been much less investi-
gated in elastic media. The main challenge in achieving elastic BICs
is the simultaneous presence of longitudinal and transverse waves
with distinct dispersion relations. BICs require modes that do not
couple or hybridize with either of these propagating wave types.

Recently, Haq and Shabanov’” theoretically predicted an elastic BIC
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containing coupled in-plane transverse and longitudinal waves in a
system of two periodic arrays of cylinders. Other examples include
the demonstration of three distinct in-plane mechanical BICs in
micro-scale slab-on-substrate phononic crystal’® and the existence of
quasi-BICs in a semi-infinite plate attached to a periodic wave-
guide.”* Cao et al.™* observed the quasi-BIC in an equivalent finite
structure and discussed how to turn the quasi-BICs to BICs by
exploiting Fabry-Pérot resonance frequency. There have also been
works showing mechanical BICs coupled to optical resonance in
various opto-mechanical systems.”>** All these prior works in elastic
media focus on achieving BICs in specific structural configurations,
such as Fabry-Pérot resonators in periodic cylinders separated by
large distance™ or perfect mode conversion in a plate attached to
waveguide.”* A general framework or design paradigm that can
enable the achievement of BICs in various structures such as beams,
plates, shells, and solids, translating across length scales and material
properties, would be of interest. In addition, the coupling of an array
of BIC supporting structures remains unexplored and offers oppor-
tunities for leakage free wave propagation along waveguides.

This work presents a framework to induce BICs in an arbi-
trary region of a one-dimensional (1D) periodic meta-structure.
The meta-structure considered is represented by discrete springs
and masses [schematic in Fig. 1(a)], and BICs are induced by
adding defects in a compact region [Fig. 1(b)]. We present a proce-
dure to achieve a family of BIC modes by exploiting reflection sym-
metries in the compact region. Finally, a waveguide is constructed
using an array of coupled spring-mass chains supporting BICs.
This waveguide supports wave propagation without any energy
leakage into the surrounding structure along the transverse direc-
tion. The paper is organized as follows: Sec. II presents the pro-
posed design and derives the mode shapes of BICs and the
dispersion curves of the waveguide. Numerical simulations verify-
ing the concept are presented in Sec. III and findings are summa-
rized in Sec. IV.

Il. THEORY: BIC MODE SHAPES AND WAVEGUIDES

We first discuss the proposed concept of inducing BICs by
adding defects coupling two spring-mass chains. Then, symmetry

FIG. 1. (a) Chain comprising of point masses (green nodes) connected by
springs. It is challenging to achieve BICs by modifying mass or stiffness in this
chain. (b) Proposed concept: two identical chains coupled with two defects (red
nodes) create a symmetric compact region where bound modes arise.
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conditions are used to derive the resulting mode shapes and verify
if they are BICs. Next, dispersion analysis of a periodic structure
comprising of an array of defect embedded spring-mass chains is
presented. This analysis shows the presence of a dispersion branch
supporting the propagation of transversely bound modes. This dis-
persion branch is used in Sec. III to illustrate leakage free wave
transport along a waveguide.

A. BICs coupled spring-mass chain

Let us consider the problem of achieving BICs in a compact
region of a discrete spring-mass chain, whose schematic is illus-
trated in Fig. 1(a). Each node has a point mass m with one degree
of freedom and can move out of plane. The springs are identical
and linear with stiffness k. The physical system we have in mind is
a string in tension with rigid spheres attached to it at periodic
intervals, similar to the setup considered in Ref. 37. We choose this
spring-mass chain as the candidate for achieving BICs since it is
the simplest structure whose dispersion behavior has a passband
and stopband in the frequency-wavenumber domain.*®

To achieve BICs in a compact region of the chain, say,
between masses a and ' in Fig. 1(a), these two masses have to be
at rest so that they do not induce any displacement outside the
region. In addition, the masses located between them should
vibrate at a frequency lying in the passband. A simple strategy is to
modify the masses and springs in the compact region that leads to
a localized defect mode and keeps the masses a and a’ at rest. Let
us see why this approach cannot lead to BICs. To have a BIC
between a and a’, we require that masses a and c are at rest, while
mass b has non-zero displacement u;. Such a mode cannot satisfy
the force equilibrium of mass a since it is subject to a force k.
Hence, mass b also has to be at rest. Repeating the above argument
for mass b, we see that if masses a, ¢, @, and ¢ are at rest as
required for a BIC, then all masses between them are also at rest
due to force equilibrium condition.

To address this obstacle, let us consider two identical spring-
mass chains and couple them with two defect masses [red nodes in
Fig. 1(b)]. The defect masses (m,) are different from the masses in
a spring-mass chain (green nodes), while the stiffness of springs
connecting them to chains are identical and equal to k. The two
defects create a reflection symmetric compact region about x and y
axes as illustrated in Fig. 1(b). Note that the whole structure need
not have reflection symmetry about the y axis as the location of the
compact region can be completely arbitrary along the structure.

Let us discuss the key idea that leads to BICs in the compact
region between the two defect masses. Note that if the net force
acting on mass a from springs connecting masses b and d are zero,
then mass a will be at rest. In this case, all the masses to its left will
also be at rest. The net force on mass a will be zero when masses b
and d have equal and opposite displacements. Applying a similar
argument to masses V', b”, b, and their corresponding defects, we
see that masses @', a”, and 4" can be at rest and the masses outside
the compact region are also at rest. Hence, if we have a mode shape
satisfying the requirement of the defect mass d moving in opposite
directions to mass b, then BICs can arise in the compact region.

In this work, we will primarily illustrate BICs in a compact
region having five masses of each spring mass chain. However, the
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procedure we introduce here allows us to achieve BICs for any
number of masses in a compact region embedded in a longer
uniform spring-mass chain. We also remark here that this idea of
canceling the force on mass a can also be implemented on a single
spring-mass chain. Indeed, connecting a defect mass d with springs
to masses a and b will give the same effect. Since our motivating
physical setup of a string in tension does not allow for hanging
masses, we chose to implement the idea using two spring-mass
chains.

B. Bound mode shapes

Let us now determine the frequencies and mode shapes of the
bound modes in the compact region in Fig. 1(b). The governing
equation of motion of a mass p subjected to an external force Pp is
miy + D) Kty — 11g) = F,. Here, (p, q) denotes a spring con-
necting mass p and q. Let [ be the distance between two adjacent
masses in the chain and let wy = +/k/m be the reference frequency.
We express the physical quantities non-dimensionally by normaliz-
ing the frequency as Q = w/wy, time as 7 = wyt, defect mass as
a = my/m, and force as fp = F,/kl. Using these quantities, the
equation of motion for the masses in the two main chains [green
nodes in Fig. 1(b)] becomes

2~
d*u,

F+Z(ap_ﬁq):'fp' (1)
(P

The governing equation for the defect is ailg + Z(fi,q} (g — 11g)
= f ;- The resulting system of equations can be expressed in matrix
form as Mii + Kit = f, where M and K are the mass and stiffness
matrices, respectively. Now, to determine the natural frequencies as
well as corresponding mode shapes, we set f = 0 and seek solu-
tions of the form i#(r) = ue*. The governing equations give an
eigenvalue problem of the form Ku = Q*Mu. Here, Q is the non-
dimensional natural frequency and u is the corresponding mode
shape.

We exploit reflection symmetries in the compact region to
determine the mode shapes. There is a close relation between a
spatial symmetry in a structure and its mode shapes.’” In general,
any spatial transformation (like reflection, rotation, and translation)
can be expressed as an operator. If a structure has a symmetry,
then its mode shapes are also eigenvectors of the symmetry opera-
tor. The corresponding eigenvalues yield key information about the
symmetry of the respective mode shapes. For example, let us con-
sider a structure that has reflection symmetry about an axis. The
reflection symmetry operator R has two eigenvalues: + 1. Thus, for
each mode shape v in this structure, we will have Rv = +v or
Rv = —v. The mode shapes satisfying Rv =v are symmetric
(even) about the reflection symmetry axis, while those satisfying
Rv = —v are anti-symmetric (odd) about the symmetry axis.
Hence, reflection symmetry leads to two different classes of mode
shapes in the structure.

Let us apply the above concept to see the type of bound mode
shapes that can exist in the compact region in Fig. 1(b). It has
reflection symmetry about the x and y axes and thus we have two

ARTICLE scitation.org/journalljap

symmetry operators, R, and R,. Thus each bound mode is either
symmetric or anti-symmetric about both axes, in addition to
having zero displacement outside the compact region. These sym-
metry conditions give four types of mode shapes satisfying

® u(x, y) = u(—x, y) = u(x, —y): even about both x and y axes,

o u(x, y) = u(—x, y) = —u(x, —y): even about x axis but odd
about y axis,
® u(x, y) = —u(—x, y) = u(x, —y): odd about x axis but even

about y axis, and
o u(x, y) = —u(—x, y) = —u(x, —y): odd about both x and y axes.

The symmetry conditions relating the displacement u;, of mass p is
expressed in the form u(x, y) above for the convenience of the
reader. For example, u, = u(—1, 1) and uy = u(1, 1), following the
notation in Fig. 1(b).

In the above set of mode shapes, bound modes can only arise
when the displacement is symmetric (even) about the x axis. Let us
see why bound modes that are anti-symmetric (odd) about x-axis
are not possible. In such modes, u; =0 and a bound mode
requires that u, = 0. Equilibrium of mass a requires that u, =0
and thus the displacement of all masses in the compact region is
zero, i.e., not a valid mode shape. Hence, there can be two types of
BICs in the compact structure. The first type is even about both x
and y axes, and the second is even about the x axis but odd about
the y axis, or in short, even and odd BICs about the y axis.

Let us now determine the mode shape and frequency of the
bound modes, followed by the defect mass required to support
them. Recall that in bound modes, the displacement is zero outside
the compact region and so it suffices to consider the masses in this
region. Let us first consider even BIC mode shapes. We apply the
following conditions on the mode shape to reduce the number of
unknown displacements: (1) symmetry about x axis implies
up = Uy, U, = U and u, = uy; (2) symmetry about y-axis implies
Uy = Uy, Uy = uyr and similar constraint for masses ¢ and d; (3)
equal and opposite displacement of masses b and d implies
u, = —ug; and (4) displacements of masses a, a', a”, and a"” are
zero. Using these constraints, the only unknown displacements are
those of masses b, ¢, and e. The mass and stiffness matrices for
even bound modes, M, and K., corresponding to the displacement
vector u, = (up, t, 4,)", then become

0
M, = o, K.=|-1 2 -1
1

S O =
o = O

The resulting eigenvalue problem is K.u, = Q?Mu, and its solu-
tion gives the non-dimensional bound mode frequencies
Q = 0.66, 1.73, 2.14. These are the frequencies of even bound
modes in the compact region illustrated in Fig. 1(b).

Next, let us determine the defect mass « that is required to
support each of these bound modes. Recall that we set uz; = —u; to
derive the above frequencies and we still need to satisfy the govern-
ing equation for the defect mass. To this end, let us first determine
the effective stiffness of the springs connected to d. Since mass a is
stationary, the effective stiffness due to spring (d, a) is k. Similarly,
since the mass b has equal and opposite displacement to mass d, we
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have k(ug — up) = 2kug and thus the effective stiffness due to spring
(d, b) is 2k. Similar arguments can be applied to springs (d, a’) and
(d,t'). Thus the total equivalent stiffness of springs connected to
mass d is 2(k + 2k) = 6k. The non-dimensional governing equation
for d thus becomes (—aQ? + 6)uy = 0. Since a bound mode has
non-zero uy, we have a =6/ Q2. Using this expression, the non-
dimensional defect masses a are 13.68, 2, and 1.32, corresponding to
frequencies 0.662, 1.732, and 2.136, respectively.

Figures 2(a)-2(c) display the three bound mode shapes corre-
sponding to these frequencies. The horizontal axis is for the loca-
tion along the x-axis of the chain and the vertical axis displays the
normalized displacement of the mode shape. In these figures, the
displacements of masses only in the top chain are shown. Recall
that the modes are symmetric about the x axis and thus the top
and bottom chains have identical displacements in each corre-
sponding mass. In addition, these modes are also symmetric about
the y-axis as expected.

Similarly, let us determine the mode shapes of odd bound
modes. In this case, anti-symmetry about the y-axis implies masses
e and ¢ stay at rest. In addition, u, = —uy and similar constraints
hold for masses ¢, b”, and ¢”. Using these relations and the con-
straints on masses d and a discussed previously for the even

\f
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-0.4 \ S @
-7 0 7
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0.4 1
0.2
: \ /
Qoeee Q | sooe ¢ y
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FIG. 2. Bound mode shapes in a spring-mass chain: (a)—(c) even bound mode
shapes and (d) and (e) odd bound mode shapes. (f) Dispersion diagram of a
spring-mass chain, along with markers indicating the frequencies of bound
modes in (a)—(e). Frequency of modes in (a), (b), and (d) lie in the passband
and are thus BICs.
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modes, the unknown displacements are 4, and u.. Therefore, the
mass and stiffness matrices corresponding to the displacement
vector u, = (up, u.)! are

10 4 -1
N E A R

The resulting eigenvalue problem K,u, = Q’M,u, gives the odd
bound mode frequencies 1.259 and 2.101. The corresponding
defect masses, given by o = 6/Q are 3.78 and 1.36, respectively.
Figures (2d) and (2e) display the mode shapes at these two fre-
quencies. Again, only the displacement of the masses in the top
chain are plotted. As expected, these modes are anti-symmetric
about the y-axis.

Finally, recall that a bound mode’s frequency must lie in the
passband to qualify as a BIC. Let us determine the passband of
the infinite spring-mass chain without defects. We do a dispersion
analysis seeking traveling wave solutions of the form
i(n, 7) = Ue¥ " Here, n and U are a mass index and displace-
ment of the corresponding mass in frequency-wavenumber
domain, and y is the non-dimensional wavenumber related to the
wavenumber k by y = xl. Substituting this solution form into the
governing equation for mass n gives the frequency wave-number
relation Q* = 2(1 — cos ). Figure 2(f) displays this relation in the
irreducible Brillouin zone u € [0, 7], showing a passband when
Q<2 and a stopband at Q > 2. In addition, the figure has
markers indicating the frequencies of the various bound modes.
We see that the frequencies of modes in Figs. 2(a), 2(b), and 2(d)
lie in the passband, and they are thus the valid BICs in the
considered structure. The procedure introduced above can be
used to determine a family of bound modes for any size of the
compact region, i.e., any number of masses enclosed by the two
defects. We performed calculations with various sizes of the
compact region and found a family of BICs in each case.
Figure S1 in supplementary material displays the bound modes in
a spring-mass chain with six masses in the compact region
between the defects.

C. BIC propagation through waveguide

Let us demonstrate how to achieve propagation of a BIC mode
along a waveguide. Figure 3 displays a schematic of the proposed
waveguide concept. It consists of an array of bi-layered spring-mass
chains coupled with two defects, identical to the chains in Fig. 1(b).
The masses (green nodes) in each chain are coupled with the corre-
sponding masses in adjacent chains by springs of stiffness k;. In
addition, the defect masses (red nodes) in adjacent chains are con-
nected by springs of stiffness ak;. Hence, we have a spring-mass
lattice that is periodic along z and whose unit cell is the spring-
mass chain in Fig. 1(b).

As discussed earlier, each unit cell supports BICs for specific
value of defect masses. When connected with each other, the lattice
has a channel bounded by the two defects in each unit cell. We will
show below how this lattice supports a BIC mode propagating
along the channel. First, let us discuss the rationale for scaling the
stiffness of springs connecting defect masses by a. To propagate a
BIC through the waveguide, we need equal and opposite
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FIG. 3. Top view of the waveguide. It consists of an array of the coupled chains
in Fig. 1(b), with the masses in adjacent chains connected with springs of stiff-
ness ki. The corresponding defect masses are connected by springs of stiffness
ak1.

displacement of masses b and d in every unit cell at all times. This
requirement i,(7) = —itg(7) implies iy, = —1ig, or equivalently, the
ratio of inertial forces is mgiig/mpiy = —a. To induce equal magni-
tude of acceleration on masses b and d from forces due to adjacent
unit cells, the ratio of forces on mass d from springs connecting it to
defects in adjacent unit cells to corresponding forces on mass b from
adjacent unit cells is also a. Recalling the requirement of u, = —uy
in each unit cell, the defects are connected by spring of stiffness ak;
to satisfy this force ratio condition.

Let us now analyze the wave propagation characteristics along
the waveguide by performing a dispersion analysis. The governing
equation for the masses in unit cell #» may be written in matrix
form as Miu, + K, + K (%1, — &t,,_1) + K, (i, — #1,.1) = 0. Here,
i1, is a vector having the displacement functions of all masses in
unit cell n. M is the mass matrix, the stiffness matrix K contains
the terms due to springs in unit cell n, while the stiffness matrix K;
is for the springs that are connected to adjacent unit cells. Again,
we seek traveling wave solutions of the form i1,(7) = Uel©r—um),
Here, €, u, and U are the non-dimensional frequency,
wavenumber, and displacement field in the frequency-wavenumber
domain, respectively. Substituting this solution form into the
governing equation leads to the eigenvalue problem (K +2
(1 — cosu)K,)U = Q*MU. Its solution gives the dispersion curves
and the number of curves is equal to the number of degrees
of freedom in the unit cell. Figure 4(a) displays these curves for
a = 13.68 and k; = 0.1k. This value of « is chosen as it leads to
the BIC mode in Fig. 2(a) in a single unit cell. Note that the group
velocity of waves increases with k;. The frequencies at u = 0 are
the same as the natural frequencies of an isolated unit cell. The red
branch in the dispersion diagram has BIC modes at all wavenum-
bers. This branch has non-zero group velocity for 4 € (0, 1), indi-
cating the potential of this lattice to propagate BIC modes along
the channel bounded by the two defect masses.

lll. NUMERICAL SIMULATIONS OF A BIC MODE AND A
WAVEGUIDE

Having analytically predicted the existence of BICs in the con-
sidered spring-mass chains, let us now verify using numerical sim-
ulations if they remain bound in a chain and if they propagate
along a confined channel in a lattice. For these calculations, we set
the defect mass o = 13.68 that supports the BIC shown in Fig. 2(a)
at frequency Q = 0.662. A fourth order Runge-Kutta solver is used
to conduct transient simulations of the set of governing equations
with time step 7 = 0.07.

Let us first investigate the dynamic response of the coupled
spring-mass chains in Fig. 1(b). We subject the center masses e and
¢ in both chains to a half cycle of windowed tone burst force exci-
tation of the form f = sin(Qz/N)sin(Q7r). Here, Q = 0.662 and

FIG. 4. (a) Dispersion diagram of the
waveguide whose unit cell is the chain
in Fig. 1(b). The red branch has BIC
modes at all wavenumbers u, indicat-
ing the possibility of BIC wave trans-
port. (b) Zoomed in view of BIC
branch. Blue marker and arrow indicate
the excitation frequency and BIC mode
in numerical simulation (Sec. Ill).
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N = 50, ensuring that we excite a narrow band of frequencies cen-
tered at the BIC frequency. The four masses at the left and right
boundaries are fixed, while the mass adjacent to the fixed mass at
each boundary is subject to critical damping ¢ = 2. This damping,
applied to four masses in the structure, damps out other modes,
which are induced in the structure due to the excitation of a finite
bandwidth.

To quantify the sensitivity to the excitation frequency and the
defect mass @, the frequency response of the coupled spring-mass
chain is determined under a specific external forcing. Imposing a
displacement field of the form #(r) = u(Q)e* and an external
force f(r) =fe® on the governing equations leads to
u(Q) = (—’M +iQC + K)flf. Here, C is a damping coefficient
matrix. Recall that damping is applied only to the masses at the
ends of the chain. Since we are interested in the compact region
bound by the defects, we consider the displacement magnitude

lul = (3L, u;ui)l/z. Here, the summation runs over the L masses
in the compact region. The external force is applied in phase on
two masses only, namely, the mass at the center of each chain.

Figure 5 displays the frequency response around the BIC fre-
quency for various values of defect masses. The quality factor Q for
each resonant frequency Q, is determined as Q = Qy/AQ, with
AQ being the frequency bandwidth at 1/4/2 times the resonant
peak magnitude.”’ It is about 107 and 10* for the BIC mode and
when the defect mass is 5% higher (red and black curves in Fig. 5),
respectively. Note that the quality factor Q does not attain the theo-
retical value of infinity even at the BIC frequency, since we excite
only two masses in the compact region. As a result other bulk
modes are also excited in addition to the BIC mode. This excitation
is chosen since it is realistic to apply force to a finite region instead
of exciting a mode exactly.

Figure 6 displays the displacement of the top spring-mass
chain at various times 7. The half cycle excitation lasts until about
7 = 237. The BIC arises in the chain at short times, 7 = 100.
Notably, even after a long time 7= 5000, the masses in the
compact region (marked with red nodes in Fig. 6) vibrate with

10° '
—0.95a
—0.99a

104 E —a(BIC)
— 1.0l
—1.05c

|ul /[ ]

2 . .
100.65 0.655 0.66

Q

0.665 0.67

FIG. 5. Frequency response function of displacement in the localized region
around the BIC mode frequency. Sensitivity to defect mass value ¢ is shown by
the change in response for small deviations from the required value.
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significant amplitude and the energy is confined within the
compact region. This simulation verifies the existence of BICs and
illustrates how they can be excited by subjecting a single mass in
each chain to an external force.

Next, let us subject the lattice to a dynamic excitation and
analyze if a transversely bound mode corresponding to a BIC can
propagate along the channel bound by the defects. We consider a
finite structure having 100 unit cells along the z-direction, with
each unit cell being identical to the coupled chain in Fig. 1(b). We
set the spring stiffness k; between unit cells to 0.1k and defect
mass o = 13.68, which supports the BIC in Fig. 2(a). Again, the
masses at the left and the right boundaries are fixed and critical
damping is applied to the masses adjacent to the fixed masses.
A half cycle of windowed tone burst force excitation of the form
fi = u; sin (Q7/N)sin(Q7) is applied to three masses in each layer:
¢ e and ¢ in the top layer and the corresponding ones in the
bottom layer on the first unit cell from the lower end. The ampli-
tude of force u; applied to each mass is proportional to its displace-
ment in the BIC mode shape [in Fig. 2(a)]. Here, N = 50 and the
forcing frequency is set to Q =0.73 that corresponds to

T =100 T = 200

ceveer Triieen

e s
\/

T = 400 T = 800

. 2

ceceet teeees

T = 5000

FIG. 6. Snapshots of transient simulation showing the displacement field along
the top chain at various time instants z. After initial transients, the vibration is
fully confined in a compact region.
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FIG. 7. (a) Snapshots of transient simulation showing contours of the normalized displacement field of top layer at various times z. The BIC mode remains confined and
propagates along the waveguide. (b) Zoomed in view of displacement field at z = 400 that is indicated by red dashed line in (a).

wavenumber y = 7/3 in the BIC dispersion branch, as marked in
Fig. 4(b). Note from the dispersion diagram [Fig. 4(a)] that there
are multiple modes that exist at this frequency. We apply the exter-
nal force to multiple masses in order to predominantly excite the
BIC mode shape.

Figure 7 displays contours of the displacement field in the top
layer at various times 7. At small times, the waves propagate
outside the compact region. As discussed above, there are multiple
bulk modes in addition to the BIC at the excitation frequency Q
and these bulk modes lead to vibrations outside the compact
region. As time progresses, these vibrations are damped out by
damping at the ends of the chains and we see a wave propagating
in the channel bound by the defects. A zoomed in view of propa-
gating wave in Fig. 7(b) clearly shows the wavelength 1 = 6/ along
the propagation direction, consistent with the wavenumber
k =2m/A = 0.337/l, which proves this propagating wave corre-
sponds to mode at 4 = z/3 on the BIC branch in Fig. 4(a). Note
that the wave is confined even at long propagation distances, verify-
ing the proposed concept of a waveguide for waves that are BIC in
the transverse direction (along x). More importantly, it shows the
possibility of guiding waves along a channel at frequencies that lie
in the passband of the structure, thus eliminating the need for
bandgaps.

IV. CONCLUSIONS

The first part of this work analytically predicts the existence of
a family of BICs in a bi-layered spring-mass chains coupled with
two defects. Bound mode shapes and their frequencies are deter-
mined by exploiting the reflection symmetry in the compact region.
The number of bound modes is equal to the number of masses in a
chain between the defects, and each bound mode requires a distinct
defect mass. The analytical predictions are verified by numerical
simulations of transient response, which confirm that a BIC arises
in the spring-mass chain and the mode does not leak energy to the
surrounding for a long time after the force is removed.

The second part presents a waveguide made of an array of
BIC supporting coupled spring-mass chains. The waveguide sup-
ports the propagation of a transversely bound wave along a channel
between two defects. Dispersion analysis along the propagation
direction reveals the presence of a branch having transverse BICs.
This branch lies in the passband of the structure. Numerical simu-
lations of a finite lattice excited at a frequency lying in the BIC
branch show the propagation of a bound wave along a channel in
the waveguide without any energy leakage.

The framework we present here allows us to achieve BICs in a
compact region of arbitrary size and at an arbitrary location in a
long chain. Due to their zero energy leakage property, BIC-based
resonators can achieve extremely high quality factors, in principle
infinity, in contrast to conventional resonators. In addition,
BIC-based waveguides allow for wave propagation along a channel
in structures without requiring any bandgaps. Bandgaps are typi-
cally hard to achieve and impose stringent geometric constraints.
The BIC-based waveguides presented here may be a strategy to
avoid the requirement of bandgaps. Finally, the presented design is
simple and independent of material properties or length scales.
These concepts can be extended to achieve BICs in a variety of
architected structures or meta-structures.

SUPPLEMENTARY MATERIAL

See the supplementary material for BICs in a compact region
of different number of masses.
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