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Despite being one of the largest microbial ecosystems on Earth, many basic 

open questions remain about how life exists and thrives in the deep subsurface 

biosphere. Much of this ambiguity is due to the fact that it is exceedingly difficult 

and often prohibitively expensive to directly sample the deep subsurface, requiring 

elaborate drilling programs or access to deep mines. We propose a sampling 

approach which involves collection of a large suite of geological, geochemical, 

and biological data from numerous deeply-sourced seeps—including lower 

temperature sites—over large spatial scales. This enables research into interactions 

between the geosphere and the biosphere, expanding the classical local approach 

to regional or even planetary scales. Understanding the interplay between geology, 

geochemistry and biology on such scales is essential for building subsurface 

ecosystem models and extrapolating the ecological and biogeochemical roles of 

subsurface microbes beyond single site interpretations. This approach has been 

used successfully across the Central and South American Convergent Margins, 

and can be applied more broadly to other types of geological regions (i.e., rifting, 

intraplate volcanic, and hydrothermal settings). Working across geological spatial 

scales inherently encompasses broad temporal scales (e.g., millions of years of 

volatile cycling across a convergent margin), providing access to a framework for 

interpreting evolution and ecosystem functions through deep time and space. 

We propose that tectonic interactions are fundamental to maintaining planetary 

habitability through feedbacks that stabilize the ecosphere, and deep biosphere 

studies are fundamental to understanding geo-bio feedbacks on these processes 

on a global scale.
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Introduction

Earth’s continental and oceanic crust contain one of the largest 
microbial ecosystems on the planet (Kallmeyer et  al., 2012; 
Magnabosco et al., 2018). This subsurface microbial biosphere is 
essential to global biogeochemical cycles because it alters the 
redox state of the crust and affects the distribution of minerals, 
gases, and organic matter through deep time (D’Hondt et  al., 
2019). While subsurface microbiology is often studied over small 
spatial scales (sampling sites meters to a few kilometers apart), or 
over short time scales during laboratory experiments, crustal 
ecosystems likely operate on tectonic scales of hundreds of 
kilometers and millions of years. Despite their importance to 
planetary processes and volatile cycling through deep time, much 
less is known about subsurface microbial ecosystems than surface 
microbes. This is largely due to the difficulty in accessing deep 
subsurface environments.

Direct sampling of the subsurface is fundamental, not only for 
obtaining samples that can be used to grow and study organisms 
in a laboratory, but also for conducting studies on diverse 
populations as they occur naturally. Such in situ studies are 
important because many microbes in the subsurface belong to 
microbial groups that are resistant to many or all culturing 
efforts—meaning that they are not amenable to pure culture 
experimentation (e.g., Rappé and Giovannoni, 2003; Lloyd et al., 
2018; Steen et al., 2019). Even if laboratory cultures are available, 
the physiology and ecological roles of microbes may differ in the 
natural, taxonomically-diverse, often energy-limited environment 
relative to laboratory conditions, as originally proposed by 
Winogradsky (1923). Direct access to the subsurface is normally 
obtained through scientific drilling. Major drilling operations 
occur through the International Ocean Discovery Program 
(IODP-US), which was formerly the Integrated Ocean Drilling 
Program (IODP), the Ocean Drilling Program (ODP), and the 
Deep Sea Drilling Program (DSDP), as well as the European 
Consortium for Ocean Research Drilling (ECORD), Japan’s 
Integrated Ocean Drilling program (IODP-J), and the 
International Continental Scientific Drilling Program (ICDP). 
These programs have provided unprecedented access to subsurface 
ecosystems. However, deep drilling projects are expensive and 
infrequent (Orcutt and Edwards, 2014), and require complex 
logistical operations and a long lead time (sometimes many years) 
before the actual sampling. Thus drilling makes it difficult to 
sample more than a handful of subsurface sites in a single study, 
or to collect new samples quickly to react to new scientific 
advances and opportunities created by geologically dynamic 
events (e.g., earthquakes or eruptions). The large costs, duration 
of fieldwork, and organizational requirements can also be a barrier 
to entry for early career researchers, or researchers working in 
countries with limited research and development funding. Access 
to commercial or scientific mines and mining sites are another 
fruitful approach to studying the deep subsurface biosphere (e.g., 
Chivian et  al., 2008), but site selection is limited to existing 
infrastructure, i.e., samples are determined by where the mines 

happen to be. Besides drilling and access to existing subsurface 
facilities there is a need for a more nimble approach to obtaining 
subsurface samples.

Subseafloor hydrothermal vent fluids have been used to 
sample deep subsurface life as it is flushed out of the subsurface, 
rather than by drilling down to it (Deming and Baross, 1993). 
Here, we expand this approach to large scales and by assessing the 
degree of mixing with the surface, accelerate exploration of the 
subsurface biosphere and enable large-scale studies of biosphere-
geosphere coupling of subsurface microbial ecosystems across 
regional or global geological features. Typically, microbiological 
studies of terrestrial hot springs or oceanic hydrothermal vents 
study either variations across a transect at a single site or compare 
a handful of sites to one another or to a background reference site 
(Giovannelli et al., 2013; Reveillaud et al., 2016; Brazelton et al., 
2017). We propose instead to sample many natural seeps across a 
geological gradient to map out broad-scale ecological features in 
a large area of the subsurface. The purpose of this sampling 
approach is not to replace direct sampling strategies or careful 
transect studies across a single site, but to add to the arsenal of 
sampling approaches that can greatly expand our ability to sample 
microbial populations across large spatial regions. We  have 
successfully employed this approach to study biosphere-geosphere 
feedbacks across the convergent margin in Northern and Central 
Costa Rica (Barry et al., 2019; Fullerton et al., 2021; Basili et al., 
2022; Rogers et al., 2022) and Argentina (Cascone et al., 2021). 
This approach is flexible, interdisciplinary, can be widely applied 
to diverse settings, and is orders of magnitude cheaper and faster 
than drilling. Here we describe the advantages and drawbacks of 
this approach, as well as provide suggestions based on experience 
for how other researchers can employ a similar approach in their 
own work. When integrated with targeted drilling projects, our 
approach can provide unprecedented insights into the interactions 
between subsurface ecosystems and geological processes at large 
spatial scales.

Deeply-sourced seeps as windows into 
the subsurface

Natural seep fluids have previously been proposed as windows 
into the subsurface biosphere both at deep-sea hydrothermal vents 
(e.g., Deming and Baross, 1993; Summit and Baross, 2001; 
Anderson et  al., 2011) and in terrestrial settings (e.g., Meyer-
Dombard et al., 2005; Hall et al., 2008; Hou et al., 2013; Colman 
et al., 2016; Crossey et al., 2016; Uribe-Lorío et al., 2019). Typically, 
high temperature fluids have been interpreted as ascending quickly 
from depth (i.e., minimal surface mixing) and thus representative 
of the subsurface. Fluids and volatiles released at lower temperature 
sites, such as those found in the forearc of convergent margins or in 
low temperature pools at the margin of large calderas are typically 
ignored, as the degree of mixing of the fluids with surface derived 
waters might be difficult to assess. By focusing on high temperature 
sites, the information relevant to the subsurface microbial 
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communities is limited by the geothermal gradient, as higher 
temperature sites (> 122°C) are not amenable to life (Merino et al., 
2019). By combining interdisciplinary co-located measurements it 
is possible instead to assess the source of volatiles and deconvolve 
the degree of mixing with the surface providing new insight into 
deeply-sourced seeps and thus the deep biosphere. Additionally, 
focusing on the gradients in features of the seeping fluids across the 
deeply-sourced seeps has the additional effect of changing the scale 
at which geochemical gradients can be investigated. In this context, 
the focus of the sampling moves from hot springs sensu stricto to 
features that channel surface deep fluids, regardless of their 
temperature, conductivity or pH.

We therefore define a broad category of features resulting from 
deep fluids ascending to the surface called deeply-sourced seeps 
(Box 1). Deeply-sourced seeps are the surface expression of deep 
fluids, either as water or gases, that transport volatiles from depth 
(Figure 1). They are not necessarily associated with high temperature 
fluids, and thus include lower temperature manifestations and 
diffuse degassing areas (Crossey et al., 2016). In order to identify 
and use deeply-sourced seeps as windows into the subsurface, it is 
essential to adopt an experimental approach that distinguishes 
between samples that represent the biology and geochemistry of the 
subsurface and those that show strong mixing with surface derived 
volatiles and microbial communities. Our approach combines 
assessments of proxies of subsurface vs. surface material (e.g., 
He and C isotopes; Crossey et al., 2016; Barry et al., 2019), as well as 
comparing communities across large spatial gradients to assess 
which parts of the microbial community correlate with deep 
subsurface features vs. surface features (Crossey et al., 2016; Cascone 
et al., 2021; Fullerton et al., 2021; Basili et al., 2022; Rogers et al., 
2022). These proxies include dissolved and gaseous inorganic 
compounds, isotopic composition (e.g., Δ14C and δ13C of dissolved 
organic and inorganic carbon; Lang et al., 2018; Fullerton et al., 
2021) or biomolecules that can indicate the degree of exposure the 
fluids had with the surface or surface derived shallow fluids (e.g., 
photosynthetic pigments and genetic signatures of phototrophy or 
obligate aerobic metabolisms; Table 1).

For example, mantle and crustal contributions to the volatile 
inventory can be tracked using a combination of helium isotope 
systematics (Hilton et al., 1993; Bekaert et al., 2021), while mixing 
with air saturated waters (i.e., surface waters) and water-rock 
interactions at depth can be tracked using a combination of N2–
He–Ar systematics and aqueous geochemistry (e.g., Giggenbach, 
1992). The exact nature of the proxy to be used depends on the 
tectonic setting under investigation and the type of samples 
collected (Table  1), and a multi-phase approach should 
be designed to accurately determine the degree of surface (i.e., 
atmospheric or shallow aquifers) contamination of the collected 
samples. Thus, suitable geochemical and biological tracers can 
be  combined to the community structure and function of 
microbial populations across all the sites where there are 
sequencing data, to see which subpopulations correlate with 
subsurface geochemical and geological features (Crossey et al., 
2016; Fullerton et al., 2021; Rogers et al., 2022).

In addition to using specific proxies to track subsurface–surface 
mixing, the type of sample collected (i.e., thermal feature or matrix), 
the sampling approach, and the mode of collection employed can 
significantly affect the quality of the data and environment (surface 
vs subsurface) that is ultimately represented. Typical work in hot 
springs, shallow-water hydrothermal vents, and sepentinizing 
settings looks at the interplay between subsurface and surface 
processes, often sampling the interface where deep fluids mix with 
surface oxidants (mainly atmospherically derived; Inskeep et al., 
2005; Meyer-Dombard et al., 2005; Giovannelli et al., 2013; Sánchez-
Murillo et  al., 2014; Colman et  al., 2016; Patwardhan et  al., 
2018;Colman et  al., 2019b). In our approach, we  attempt to 
minimize surface inputs by sampling deeply-sourced fluids as 
directly as possible. This is accomplished using the following multi-
pronged field approach: (i) the seep is first identified using a 
combination of visual inspection and in situ temperature, 
conductivity and pH measurements, i.e., in the presence of several 
thermal features, the seeping fluids with the highest temperature, 
the highest or lowest pH, or highest salinity and flux are prioritized; 
(ii) with a minimum perturbation of the thermal feature and 
surroundings; a sterile non-reactive (glass or titanium) pipe/tube is 
inserted (> 30 cm deep) in the seep to catch the fluids before they 
mix with surface water or air; and (iii) the rate at which fluids are 
collected needs to be similar to the rate of natural seepage to avoid 
air/surface entrainment.

The quality of the sample collected can be assessed using a 
combination of geochemical tracers directly in the field or back in 
laboratory (e.g., dissolved O2, O2/Ar systematic, 4He/20Ne, see 
Table 1), while the degree of surface mixing can be assessed using 
a combination of diverse proxies. This approach has shown to 
minimize the possibility of mixing subsurface and surface fluids 
during sampling, both for geochemical (e.g., Barry et al., 2019) 
and microbiological studies (Cascone et al., 2021; Fullerton et al., 
2021; Rogers et al., 2022). Additionally, sampling seep derived 
sediments and surrounding soils is also commonly done, to track 
surface interactions of the fluids with topsoils (Cascone et al., 
2021; Fullerton et al., 2021).

Collect samples across large spatial 
scales traversing geological features

Studying microbial communities across large spatial scales 
(spanning many kilometers or even the entire globe) has provided 
great insights into terrestrial and shallow hot springs microbial 
communities (Hou et al., 2013; Inskeep et al., 2013; Crossey et al., 
2016; Power et al., 2018) as well as global or large-scale regional soil 
and oceanic water microbiome (Williamson et al., 2012; Sunagawa 
et al., 2015; Delgado-Baquerizo et al., 2018; Acinas et al., 2021). 
These studies have foregone the small-scale, local gradient approach 
in favor of large-scale patterns across gradients spanning entire 
ecosystems or regions of the globe. In contrast, a large number of 
subsurface studies have either focused on a handful of samples 
collected in close proximity (i.e., springs and hot springs close to 
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each other; e.g., Emerson et  al., 2016; Colman et  al., 2019b; 
Trembath-Reichert et  al., 2019), contrasting conditions (i.e., 
sampling pools characterized by contrasting geochemistry or 
characteristics; e.g., Meyer-Dombard et al., 2005; Lindsay et al., 
2019) or transect across the subsurface to surface transition along 
temperature or redox gradients (i.e., surface mixing gradients; e.g., 
Giovannelli et al., 2013; Sánchez-Murillo et al., 2014; Brazelton 
et al., 2017; Fones et al., 2019). These approaches involve sample 
collection at the centimeter to tens of meter scale, often using 
control sites to investigate the role of microbial communities in the 
setting under investigation. While this approach has deep roots in 
ecology and microbial ecology, it often limits our ability to 
comprehend the response of the community to the underlying 
geological processes, for example concluding that temperature and 
sulfide gradients drive microbial community assembly (Giovannelli 
et  al., 2013). On the contrary, studies focusing on large-scale 
systematic investigations of the response of deep subsurface 
communities to geological gradients allow for conclusions to 
extend to direct links with geological processes (Crossey et al., 
2016; Power et al., 2018; Colman et al., 2019a; Cascone et al., 2021; 
Fullerton et al., 2021; Rogers et al., 2022).

One of the barriers in approaching the study of microbial 
processes at geologically relevant scales is the lack of understanding 
of temporal and spatial scales at which these processes overlap 
(Figure 2). Recent studies have shown that individual microbes in 
the subsurface undergo total carbon turnover times spanning 

months to hundreds of years, meaning that an individual can 
survive for even longer, possibly operating on timescales beyond 
thousands of years (Hoehler and Jørgensen, 2013; Lever et al., 2013; 
Braun et al., 2017; Lloyd, 2021). Any interaction these microbes 
have with the surrounding fluids and solid mineral phases at depth 
should then be considered to occur over these long timescales over 
which the microbes operate. Processes like microbial metabolic 
transformations of volatiles, the diagenesis of organic matter and 
the microbially-mediated dissolution and precipitation of minerals 
might act at temporal and spatial scales that overlap with geological 
processes in the same area (Figure 2). For example, at convergent 
margins, subsurface microbial metabolism can significantly impact 
the quantity of carbon recycled in the outer forearc and forearc 
regions, while responding cohesively to subduction parameters 
(Barry et al., 2019; Fullerton et al., 2021).

Identifying the theoretical overlap between geological and 
biological processes in geological settings is a key step in identifying 
the relevant geo-bio-processes to track and the type of synoptic, 
co-located samples to collect. Once identified, large-scale geological 
gradients can be sampled in a similar fashion to small-scale local 
gradients. Thus, samples can be collected from deeply-sourced seeps 
at intervals of tens or hundreds of kilometers along ideal transects 
crossing the geological region under investigation (Figure 1). This 
effectively moves the scale of investigation from local to meso- and 
large-spatial scales, tracking subsurface biosphere properties as they 
covary with geological processes. As a consequence, the resulting 

FIGURE 1

Sampling deeply sourced seeps as windows into the subsurface across geological provinces can help to identify biological interactions with large-
scale geological processes. Each deeply-sourced seep (represented by a straight upward arrow for fluids, teal for springs, sand for volcanic crater 
waters, or by a jagged red arrow for gases) gives access to an integrated view of the source and processes occurring at depth (light blue 
rectangles). Transects across large-scale geological gradients can be obtained using this approach. Modified after Giovannelli et al. (2020).
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inferences have broad planetary implications, both at the ecosystem 
level and in deep time. Comparing samples across broad spatial 
scales may also give insights into how the paleomicrobiological 
environments (Rivera-Perez et al., 2018; Arning and Wilson, 2020) 
have changed through time.

Synoptic and colocated samples from 
diverse scientific disciplines

One of the keys to identifying biological and geological 
feedbacks is collecting samples that are synoptic (i.e., collected 

TABLE 1  Parameters that can be used to track the relative contribution of surface and subsurface processes to the samples deeply-sourced seeps.

Variable measured Sampled phase Sources tracked Typical deep signature
3He/4He Free and dissolved gases Crustal vs. mantle contribution to 

volatiles

3He/4He value above 0.5 RA (relative to air) contain 

possible mantle contributions, with value around 5–6 

RAfor arc volcanoes, 8 RAfor pure upper mantle and > 9 

RA for deeper mantle contributions
4He/20Ne and 40Ar/36Ar Free and dissolved gases Mixing with air or air saturated fluids Values > 10 for 4He/20Ne and > 350 for 40Ar/36Ar signal 

minimal interaction with air or air saturated fluids

N2–He–Ar systematics Free and dissolved gases Crustal vs. mantle contribution to 

volatiles and interaction with atmospheric 

sources

High He/Ar indicates deep source (mantle or crust), 

high N2/He reflects input of subduction fluids, 

atmospheric contribution identified by N2/Ar of 40–80.

Aqueous major ion species Fluids Gas–water–rock interactions and mixing 

of different reservoirs

Ternary plots of major ions can be used to identify gas–

water–rock interactions and distinguish deep waters 

from meteoric derived waters. Compositions depend on 

the type of tectonic setting or geological process 

investigated

Dissolved O2 and O2/Ar Fluids Recent interaction with air or air saturated 

waters

Anoxic waters are indicative of low to absent mixing 

with surface derived fluids and air intrusion
14C in fluids Fluids Interaction with surface derived fluids Radiocarbon dead waters indicate an age of 

> 50,000 years and no interaction with recent surface 

waters

δD2, δ18O of H2O Fluids Evaporation, water–rock interactions, 

mixing with magmatic waters or rock-

equilibrated waters

Deviation form the local meteoric water line can 

be used to identify processes acting on the sample fluids 

and their potential interaction with deep fluids

δ13C of different carbon reservoirs Fluids, sediments and 

surrounding soils

Deep origin of the different carbon 

reservoirs

Atmospheric CO2 has a signature around-8 ‰, while 

pure mantle derived CO2 has a signature of-5 ‰. 

Photosynthetic derived organic carbon has a value 

around-25 ‰. Differences between the dissolved 

inorganic carbon and dissolved organic carbon of fluids 

vs the total organic carbon in sediment and surrounding 

soils can be used to infer a deep source of the inorganic 

and/or organic carbon in the fluids

Photosynthetic pigments (e.g., 

Chlorophyll-a)

Fluids Recent exposure to surface environments Chlorophyll-a is a labile compound with a short half life. 

Its absence in the particulate fraction of fluids suggest 

no recent interaction or mixing with surface waters

Chloroplastic, Cyanobacterial or 

anoxygenic phototrophs sequences 

in 16S rRNA survey

Fluids and sediments Absence of related sequences in fluids 

suggests no recent exposure to light

The absence of 16S rRNA sequences related to 

chloroplasts or known phototrophs suggest minimal 

mixing with surface derived waters and plant-derived 

detrital material

Oxygenic or anoxygenic 

photosynthesis genes in 

metagenomes

Fluids and sediments Absence of related sequences in fluids 

suggests no recent exposure to light

The absence of sequences related to photosynthetic 

genes suggest minimal mixing with surface derived 

waters and plant-derived detrital material

Terminal oxidases utilizing oxygen 

as substrate in metagenomes

Fluids and sediments Absence or limited presence of oxygen 

utilizing enzymes suggest the absence of 

recent mixing with surface derived 

oxygenated waters

The absence of sequences related to oxygen utilizing 

enzymes suggest minimal air contamination and mixing 

with surface derived waters

https://doi.org/10.3389/fmicb.2022.998133
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Giovannelli et al.� 10.3389/fmicb.2022.998133

Frontiers in Microbiology 06 frontiersin.org

FIGURE 2

Conceptual diagram showing the relative spatial and temporal scales of biological (in blue) and geological (in orange) processes at convergent 
margins and their overlap in space–time. Similar conceptual diagram showing the overlap between geological and biological processes in 
different tectonic settings can help to identify the relevant processes to track and the type of synoptic, co-located samples to collect.

at the same time) and colocated (i.e., collected on the same 
location or in the immediate proximity), for as wide a range as 
possible of biological, chemical and geological parameters. 
Since individual laboratories are usually not capable of 
conducting high resolution measurements of disparate 
geochemical and biomolecular data, this can be  only 
accomplished by bringing together a team of scientists in 
different fields of research, with the added benefit of enabling 
cross-cutting connections based on discussions between 
scientists from different fields. For instance, geologists often 
collect samples to characterize abiotic processes that are 
analyzed for concentrations and isotopic composition of gases, 
aqueous molecules, petrological inclusions, and mineralogy, 
which are interpreted without explicitly addressing potential 
biological interactions. On the other hand, microbiologists 
often assess biotic processes, collecting samples to produce 
cultures and biomolecular datasets for DNA, RNA, proteins, 
lipids and metabolites, and interpret them against a limited 
number of geochemical variables that describe the local 
environment, without reference to the larger geological 
context and longer time scale processes.

To bring the problem into focus, it is pertinent to analyze a 
few examples from well-studied locations such as the deep-sea 
hydrothermal vents of the East Pacific Rise and the hot springs 
of Yellowstone National Park. Hydrothermal vents located on 

the 9°50′N segment of the East Pacific Rise are among the best 
studied vents in the world, with biological and geochemical 
observations going back four decades (Jannasch and Wirsen, 
1979; Jannasch and Mottl, 1985; Sylvan et al., 2012; Vetriani 
et al., 2014; Gulmann et al., 2015; McNichol et al., 2018). While 
the pioneering studies at these locations have tremendously 
contributed to our understanding of how the microbiology of 
the hot oceanic subsurface might operate, the number of studies 
that simultaneously discuss the detailed gas and aqueous 
geochemistry and microbiology of the same sample are scarce, 
and typically limited to a handful of vent locations. While 
sampling large spatial coverage of deep-sea hydrothermal vents 
is much harder to achieve given the large amount of exploration 
effort required to discover them, studies carried out at the more 
accessible Yellowstone National Park hydrothermal system 
show a similar trend with comparisons of the microbial 
diversity found in a large number of geochemically-diverse 
springs (Inskeep et al., 2013; Colman et al., 2019a). Even in 
these studies, data pertaining to the geochemistry of the gases 
and isotopic composition is often missing, fragmented, 
non-standardized, or measured on other samples during 
different field seasons. Altogether, we argue that the absence of 
co-located, synoptic samples impairs the ability to make 
connections among the different geobiological processes on 
larger spatial and temporal scales.
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Collecting a large number of variables on co-located synoptic 
samples provides unique opportunities. Despite this, it also 
brings to the table a large number of challenges associated with 
working with a large number of potentially covarying variables 
(Fan et  al., 2014). Classical correlational approaches can 
be subjected to large number artifacts (e.g., spurious correlations) 
when dealing with large datasets. In this case abductive 
approaches need to be  used for hypothesis generation and 
followed by inductive studies confirming (or rejecting) the 
generated hypothesis. In doing this, a number of big data 
approaches can be  used, such as large-scale multivariate 
techniques (Ranjard et al., 2013; Danko et al., 2021; Cordone 
et al., 2022), network analysis (Delgado-Baquerizo et al., 2018; 
Fullerton et  al., 2021) and machine learning approaches 
(Ghannam et  al., 2020; Fullerton et  al., 2021). Although the 
number of studies employing such techniques is still limited, 
these approaches provide access to underlying trends in the data 
structure, and, if carefully interpreted in the light of the existing 
body of knowledge, can provide fruitful insights.

Conclusion and future perspectives

We presented here a new rationale to approach the study of 
subsurface ecosystems through the use of deeply-sourced seeps as 
windows into the subsurface. Our approach calls for the collection 
of a large number of colocated synoptic samples across large 
spatial scales, purposefully ignoring more local and likely surface 
derived variability.

Specifically our approach can be summarized as follows:

	 1.	 Use a combination of pre-existing and newly sampled field 
data to identify deeply-sourced seeps and samples to 
minimize surface contamination;

	 2.	 Sample across large geologic gradients (hundreds of kms), 
following changes in geological processes of interest;

	 3.	 Use a multi-pronged approach to identify the relative 
contribution of deep vs surface processes for each sampling 
site (Table 1). No single perfect proxy exists and the strategy 
will need to be adapted to the unique features of the system 
under investigation;

	 4.	 Collect geological, geochemical and biological data 
synoptically, with samples taken as close together as possible 
(i.e., from the same seep and at the same time) in order to 
minimize confounding factors (small-scale spatial and 
temporal variability). Although an inductive, hypothesis 
driven approach is productive, employing an abductive, data-
driven approach can also lead to unanticipated discoveries. 
Make sure to account for statistical problems that might arise 
from this, like accounting for multiple hypothesis testing, 
collinearity of variables and large number of false positives;

	 5.	 Analysis should focus on features that covary across the 
dataset, possibly using large-scale correlational approaches, 

big data analytics and machine learning. Relationships that 
are identified between biological and geological processes 
should be  backed up with mechanistic connections 
between variables (possibly through the presence of known 
ecosystem role and function, physiologies, metabolic 
pathways, or bulk activity measurements on natural  
samples).

Earth’s subsurface is vast, with at least 1029 living microbial 
cells (Kallmeyer et al., 2012; Magnabosco et al., 2018). These 
microbial communities are some of the most diverse, yet least-
described microbial communities in the world (Huber et al., 
2006; Santelli et  al., 2008; Lloyd et  al., 2018), and might 
be relevant to understand not only the coevolution of life with 
our planet (Chopra and Lineweaver, 2016; Giovannelli et al., 
2020), but also in the search for life in the universe (Parnell and 
McMahon, 2016; Giovannelli et  al., 2021). Many of these 
populations may be  growing very slowly (Hoehler and 
Jørgensen, 2013), meaning that biological processes may 
overlap in timescale with slower geological processes. 
Investigating these overlaps requires a large-scale approach to 
sampling deep subsurface life, where a large suite of biological 
and geochemical data are collected simultaneously, often by 
different laboratories. Given the infeasibility of drilling 
hundreds of boreholes for a single study, here we describe an 
approach where sampling of surface-expressed fluids from 
natural springs across a geological gradient is used to 
investigate biological and geological feedbacks in Earth’s 
subsurface. This approach has been used in only a handful of 
studies thus far, but a broader adoption of these methods may 
accelerate discoveries about life in the subsurface and how it 
interacts with geological processes even at planetary level.
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