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Secular variability in zircon phosphorus concentrations prevents
simple petrogenetic classification

C.E. Bucholz1*, J. Liebmann2, C.J. Spencer3

Abstract https://doi.org/10.7185/geochemlet.2240

Phosphorus (P) concentrations in zircon have been used to discriminate their deri-
vation from metaluminous versus strongly peraluminous granites (SPGs) based on
the empirical observation of lower P concentrations in zircon from Phanerozoic met-
aluminous versus peraluminous granites. Higher P concentrations in zircon from
Phanerozoic SPGs reflect enhanced apatite solubility in peraluminous melts and
overall higher P concentrations in peraluminous granites. However, SPGs derived
from partial melting of Precambrian sedimentary rocks have lower P concentrations
compared to Phanerozoic metaluminous granites, reflecting lower P concentrations
in Precambrian versus Phanerozoic sedimentary sources. We demonstrate that zir-
cons from Precambrian SPGs also have lower P concentrations compared to

Phanerozoic counterparts, likely reflecting lower P concentrations in their parental melts. Applying the P-in-zircon proxy to
the detrital zircon record does not effectively discriminate betweenmetaluminous and peraluminous sources and underestimates
contributions from peraluminous granites. Although detrital zircons are an important early Earth archive, a uniformitarian per-
spective cannot always be applied when using trace element proxies developed on Phanerozoic samples.
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Introduction

Trace element concentrations in zircon are used to “fingerprint”
the magma from which they crystallised (e.g., Grimes et al.,
2015). Of particular interest is identification of zircon from
“I-type” or metaluminous granites versus those from “S-type”
or strongly peraluminous granites (SPGs1; Burnham and Berry,
2017; Trail et al., 2017). Understanding the relative contribution
of zircon from metaluminous versus peraluminous granites
throughout Earth’s history yields information on lithologic diver-
sity and tectonic environments through time. SPGs dominantly
form in collisional orogenic environments through the partial
melting of sedimentary rocks (Nabelek, 2020). Thus, their
inferred presence (or absence) through time yields information
on both tectonic regimes and the availability of sedimentary
rocks to be recycled into magmas during orogenic cycles.

One proposed proxy to discriminate zircon from metalu-
minous and peraluminous granites is phosphorus (P) concentra-
tions in zircon (Burnham and Berry, 2017). As the solubility
of apatite increases with melt aluminium saturation index
(Pichavant et al., 1992; Wolf and London, 1994), P concentrates
in peraluminous melts during differentiation due to the lack of
apatite precipitation (Bea et al., 1994), a trend contrary to that
observed in metaluminous melts (Lee and Bachmann, 2014).

Indeed, Phanerozoic SPGs have significantly higher P2O5 (on
average ∼0.25 wt. % and up to ∼1.5 wt. % P2O5; Bea et al.,
1992; Bucholz, 2022; Fig. 1a,b) than metaluminous granites
(which generally have<0.20 wt. % at bulk rock SiO2> 65 wt. %).
Further, upon apatite saturation, P concentrations are buffered at
higher levels in peraluminous than metaluminous melts.

Consequently, assuming equivalent zircon-melt P parti-
tion coefficients for metaluminous and peraluminous granitic
systems, zircons from SPGs should have higher P contents than
those from metaluminous granitic melts (Burnham and Berry,
2017). Indeed, P in zircons from Phanerozoic peraluminous ver-
susmetaluminous granites have higher P concentrations (means
of 1017 ± 53 versus 312 ± 48 ppm (2 s.e.); Burnham and Berry,
2017; Zhu et al., 2020; Fig. 1c,d). Further, P and REEþ Y concen-
trations are strongly correlated in zircon from Palaeozoic SPGs,
suggesting the incorporation of P, REE, and Y into the zircon
lattice via the coupled xenotime-type mechanism [(Y, REE)3þ þ
P5þ= Zr4þ þ Si4þ]. Based on these observations it has been
proposed that P> 750 ppm and (REEþ Y)< 1.15*P are robust
criteria for identifying zircon from peraluminous granites
(Burnham and Berry, 2017).

However, P2O5 concentrations in SPGs are not elevated
above those of metaluminous granites throughout Earth history
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(Bucholz, 2022). Maximum and average P2O5 concentrations in
SPGs derived from sedimentary rocks deposited after 720Ma are
elevated above those derived from older source rocks (Fig. 1a,b).
This temporal variationmirrors a similar increase in P concentra-
tions in marine siliciclastic sediments deposited after 720 Ma,
related to increased atmospheric and marine O2 levels
and enhanced authigenic P burial (Reinhard et al., 2017). After
considering the factors affecting P concentrations in SPGs,
Bucholz (2022) concluded that the temporal change in P concen-
trations is most likely explained as reflecting higher P concentra-
tions in younger sedimentary source rocks. Elevated P
concentrations in SPGs derived from sedimentary rocks depos-
ited after 720Ma could reflect both higher melt P concentrations

and/or inherited P-rich restitic minerals (e.g., apatite, monazite,
or P-bearing silicates).

If P concentrations in Archean andmost Proterozoic SPGs
are relatively low and if this, to some degree, represents lower
melt P concentrations, zircon crystallising from such melts
may record these low P concentrations. To test this hypothesis,
we analysed trace element concentrations (including P) in zircon
from Meso- to Paleoproterozoic and Archean SPGs.

Studied Samples and Methods

We analysed trace elements in zircon (n= 201 analyses) from 16
previously characterised SPGs (Liebmann et al., 2021a,b) from
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Figure 1 (a) Cumulate frequency distributions of SPG bulk rock P2O5. (b) Histograms of SPG bulk rock P2O5 with source rock and
crystallisation ages >720 Ma (top) and <720 Ma (bottom). Data in (a) and (b) from Bucholz (2022). (c) Cumulative frequency
distributions of P in zircon for Proterozoic and Archean SPGs, as well as Phanerozoic SPGs, “I-type” granites, and continental arc volcanic
rocks. (d) Histograms of zircon P concentrations for Proterozoic/Archean SPGs and Phanerozoic SPGs. Phanerozoic SPG and I-type
granite data in (c) and (d) are from Burnham and Berry (2017) and Zhu et al. (2020) and continental arc volcanic zircon from Grimes et al.
(2015).
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the southwestern USA (ca. 1.4 Ga), the North China Craton (ca.
1.9 and 2.5 Ga), Finland (ca. 1.8–1.9 Ga), and Ghana
(ca. 2.2 Ga) (see Tables S-1 and S-2 for locality, lithologic, and
bulk rock major elements). The average bulk rock P2O5 contents
of these SPGs are 0.088 ± 0.036 wt. % (2 s.e.). U-Pb isotopes and
trace elements (Ca, P, Y, Hf, and REEs) were collected simulta-
neously using split stream laser ablation inductively coupled
plasma mass spectrometry at UC Santa Barbara. Full analytical
details are given in the Supplementary Information (SI) and
sample and standard analyses are given in Tables S-4 and
S-5, respectively. Cathodoluminescence imaging and U-Pb ages
were used to ensure analysis of magmatic zircon (i.e. related to
the crystallisation of the SPG) and not inherited cores/grains
(Fig. S-1). Any analyses of inherited cores (with older U-Pb ages)
or with >5 % discordance of U-Pb ages were excluded. No apa-
tite inclusions were observed. We are aware of only one other
locality of >720 Ma SPGs where trace elements in magmatic zir-
con were analysed (Lu et al., 2021) and include these data in our
discussion.

Results

The P concentrations in Archean and Proterozoic SPGs are
positively skewed (average= 132 ± 10 (2 s.e.) ppm; median=
110 ppm; and including Lu et al. (2021) data, average=
196 ± 17 ppm; median= 138 ppm). In comparison, P concentra-
tions in zircon from Phanerozoic SPGs are normally distributed
with an average of 1017 ± 53 (2 s.e.) (Fig. 1c,d). Cumulative fre-
quency distributions of P concentrations highlight this difference
(Fig. 1c) and the mean P concentration in zircon from Pre-
cambrian and Phanerozoic SPGs are statistically distinguishable
(P< 0.00001, Wilcoxon rank sum test). Zircon REEþ Y concen-
trations from Precambrian SPGs, although weakly correlated
with P (R2= 0.63), are defined by a slope of >1.15, distinct from
the Phanerozoic SPG trend (Fig. 2). Neither P nor total REE
concentrations correlate with Ca concentrations, suggesting that
P concentrations are not reflecting the incorporation of apatite
inclusions in the ablation volume.

What Do Zircon P Concentrations
Represent?

The P concentration of zircon reflects equilibrium and/or dis-
equilibrium processes during crystallisation frommelt, including
(1) equilibrium partitioning dependent on temperature,
pressure, and melt composition, (2) partitioning reflecting melt-
crystal boundary layer concentrations controlled by diffusion of P
in the melt, or (3) surface controlled non-equilibrium growth
(e.g., Watson and Liang, 1995; Hofmann et al., 2009). In the first
scenario, assuming that P partitioning is both Henrian and that
equilibrium between zircon and melt occurred, then lower P
concentrations in zircon from Archean/Proterozoic versus
Phanerozoic SPGs could reflect either lower P concentrations
in their parental melts or different conditions of crystal-
lisation (e.g., melt composition, pressure, and temperature)
which resulted in variable zircon-melt P partition coefficients.
Phosphorus partitioning between melt and zircon as a function
of melt composition, temperature, and pressure is poorly under-
stood with limited experimental studies available (Rubatto and
Hermann, 2007; Taylor et al., 2015). However, Archean/
Proterozoic SPGs are thought to have formed under similar
conditions (e.g., pressure, temperature) to those in the
Phanerozoic (Bucholz and Spencer, 2019). Thus, in the first sce-
nario of equilibrium partitioning, the simplest explanation is that
lower P concentrations in zircon from Archean/Proterozoic
SPGs, as compared to Phanerozoic ones, reflect lower melt P
concentrations.

In the second scenario, the growth rate of zircon
approaches (or exceeds) the diffusivity of P (and/or REE) in
the adjacent melt. For hydrous rhyolites (∼6 wt. % H2O),
experimentally calibrated P and Zr diffusivities (D) are similar
with log(DP) and log(DZr) between −13.5 to −14.5 m2/s at
750–850 °C (see review of Zhang andGan, 2022). However, when
zircon growth is sufficiently fast, P due to its general incompati-
bility is excluded from the zircon and builds up in amelt boundary
layer. Thus, the growth of new zircon in equilibrium with this
boundary layer acquires higher P concentrations elevated above
that predicted by equilibrium partitioning with the bulk (i.e. far
field) melt. However, all else being equal (e.g., P diffusivity and
partition coefficients), melts with higher bulk P concentrations
would produce boundary layers with higher P concentrations
which would be reflected in higher zircon P concentrations.

Finally, in the third scenario, unequivocable evidence for
surface controlled, non-equilibrium growth manifests as sector
zoning (Watson and Liang, 1995), however (sub-)μm scale oscil-
latory variations P concentrations have also been attributed
to non-equilibrium growth (Hofmann et al., 2009). We generally
avoided analysing portions of zircon that exhibited sector
zoning (Fig. S-1). However, when analysed, sector zoned zircon
had similar P concentrations to other zircon from the sample
(c.f., 18IM15b; Fig. S-1). Further, the 25 μm laser spot used
homogenised any visible oscillatory zoning (Fig. S-1), providing
an integrated P concentration of the ablation volume. In zircon
where multiple (2–3) spots were analysed, P concentrations
agree within 25 ppm for 70 % and within 50 ppm for 80 % of
zircon (Fig. S-3), suggesting that potential local variability
induced by non-equilibrium growth was mostly homogenised.

No matter the P incorporation mechanism, our study
demonstrates unequivocally that zircons from Archean and
Proterozoic SPGs have lower P concentrations on average than
their Phanerozoic SPGs (Figs. 1, 2). A parsimonious explanation
for this observation is that lower P concentrations in zircons from
Precambrian SPGs reflect lower P concentrations of their granitic
parental melts. To explore this idea, we modelled melt P2O5 and
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zircon and apatite saturation during crystallisation of a SPGmelt
using alphaMELTS (Pichavant et al., 1992; Smith and Asimow,
2005; Boehnke et al., 2013). Full modelling details are given in
the SI. Calculations were performed for initial melt P2O5 con-
tents typical of SPGs across Earth history (0.05, 0.10, 0.20, and
0.30 wt. %; Fig. 1a,b).

Due to compositional proximity to the granitic eutectic, zir-
con saturation temperatures were primarily controlled by increas-
ing Zr concentrations in the melt with progressive differentiation.
For initial Zr concentrations in the melt of 50, 100, 150, and
200 ppm, calculated zircon saturation temperatures are ∼727,
772, 800, and 822 °C, respectively. [Average Zr concentrations
of pre-720 Ma SPGs from Bucholz (2022) are 120 ± 7 ppm
(2 s.e.).] The calculated saturation temperatures agree with
calculated Ti-in-zircon temperatures which on average are
810 ± 119 °C and 741 ± 105 °C (2 s.d.) assuming amelt TiO2 activ-
ity of 0.5 and 1, respectively (see SI for calculation details). For
100 ppmZr in the initial melt, modelledmelt P2O5 concentrations
at zircon saturation are 0.08, 0.15, 0.30, and 0.45 wt. % for initial
melt P2O5 contents of 0.05, 0.10, 0.20, and 0.30wt.%, respectively
(Fig. 3). Importantly, at zircon saturation, the melt P2O5 concen-
tration has not significantly increased from its initial value as the
melt fraction is still high (∼75%). For ameltwith initially lowP2O5
(0.05–0.10 wt. %) typical for Precambrian SPGs, melt P2O5
increases significantly only within 20–30 °C of the granitic eutectic
when the melt fraction decreases dramatically. Calculated melts
ultimately reach apatite saturation 70–110 °Cbelow that of the zir-
con saturation for ameltwith 100 ppm initial Zr (Fig. 3). Therefore,
although melt P2O5 increases due to delayed apatite saturation in
these peraluminous melts, it remains low at zircon saturation in
SPG melts with initially low P contents.

Implications and Conclusion

As SPGs predominantly form during collisional orogenesis, an
accurate understanding of their temporal distribution provides
information on the tectonic evolution and crustal recycling

through time (Bucholz and Spencer, 2019; Frost and Da Prat,
2021). Although detrital zircon can help characterise igneous
rocks throughout Earth history, a uniformitarian approach can-
not always be applied when using trace element proxies devel-
oped on Phanerozoic samples. Specifically, this study provides
an example of how temporal variations in sedimentary rocks
affect our interpretation of the igneous rock (andmineral) record.
For example, the use of zircon P concentrations to identifymetal-
uminous versus peraluminous source rocks has been applied to
Archean and Hadean detrital zircon (Burnham and Berry, 2017;
Zhu et al., 2020). In particular, P and the correlation between P
and REEþ Y in Jack Hills zircon are more similar to Phanerozoic
metaluminous granites and have been used to infer that the Jack
Hills zircon crystallised from “TTG-like”magmas (Burnham and
Berry, 2017). However, the nature of the source rocks for the Jack
Hills zircon is debatedwith elevated 18O/16O ratios (Cavosie et al.,
2005; Trail et al., 2007) and Al concentrations in Jack Hills zircon
(Ackerson et al., 2021), potentially indicating that some Jack Hills
zircons are from granites with a sedimentary source. Our results
demonstrate that low P contents and P/(Yþ REE) values <1 in
Precambrian zircons cannot rule out crystallisation from a pera-
luminous granitic melt. Therefore, low P contents in Jack Hills
zircon is consistent with crystallisation from both metaluminous
and peraluminous melts, supporting inferences that the Jack
Hills zircon could be sourced from a variety of granitic magmas
(Bell, 2017; Ackerson et al., 2021).

Similarly, both cumulative distributions of P contents and
P correlations with REEþ Y in detrital zircons have been used to
infer that SPG formation in the Archean was negligible and lim-
ited until the Neoproterozoic to Palaeozoic (Zhu et al., 2020).
However, we again urge caution about extrapolating these met-
rics to Precambrian zircon when sedimentary source regions of
SPGs had low P concentrations. Further, Phanerozoic SPGswith
sedimentary source rocks deposited before 720Ma also have low
P concentrations (Fig. 1a) and should also contain magmatic zir-
conwith low P. However, P concentrations of detrital zirconmay
be useful in local studies of young terranes to identify contribu-
tions fromPhanerozoic P-rich SPGs. Identification of detrital zir-
con from SPGs with Precambrian source rocks is perhaps best
done through a combination of O isotopes with new developing
zircon proxies such as Al concentrations (Ackerson et al., 2021) or
Si isotopes (Trail et al., 2018).
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Analytical Methods 

Sample details including name, location, mineralogy, age, and major element composition are given in Tables 

S-1 and S-2. Cathodoluminescence imaging was previously done by Liebmann et al. (2021a, b) and provided 

in Figure S-1. Analyses were focused on sites with no obvious inclusions or cracks. U-Pb isotopes and trace 

elements were collected simultaneously on the same zircon volume using split-stream (SS) laser ablation (LA) 

inductively coupled plasma mass spectrometry (ICPMS) at the University of California, Santa Barabara 

(Kylander-Clark et al., 2013). Samples were ablated with a Photon Machines 193 nm excimer laser with a 

HelEx ablation cell coupled to a Nu Instruments Plasma 3D multicollector ICPMS for U-Pb measurements 

and an Agilent 7700X quadrupole ICPMS for trace element measurements. One analytical session was 

undertaken in September 2021. A 25 µm spot size was used. The laser fluence at the sample surface was ~1.5 

J/cm2. Each analysis consisted of the laser firing twice followed by a 20 s wash out to remove surface 

contamination. Zircon were then continuously ablated for 60 shots at a 5 Hz repetition rate, yielding a total 

ablation time of 12 s.  



 
 
 

 

Geochem. Persp. Let. (2022) 24, 12–16 | https://doi.org/10.7185/geochemlet.2240                                       SI-2 

Every 10 unknown analyses were bracketed by standard zircon 91500 (1062.4 ± 0.4 ID-TIMS 206Pb/238U date;  

Wiedenbeck et al., 1995), which was used as the primary standard for U–Pb isotopic analyses. NIST612 

standard reference glass was measured every 30 analyses and used as a primary standard for trace element 

analyses. Secondary zircon reference materials analysed throughout the session included GJ-1 (601.7 ± 1.3 

ID-TIMS 206Pb/238U date; Jackson et al., 2004; Kylander-Clark et al., 2013), Plešovice (337.13 ± 0.37 ID-

TIMS 206Pb/238U date; Sláma et al., 2008), OG-1 (3467.1 ± 0.6 Ma 206Pb/238U date; Stern et al., 2009), FC1 

(1099.3 ± 0.7 Ma 206Pb/238U date; Paces and Miller, 1993), and R33 (419.26 ± 0.39 Ma 206Pb/238U date; Black 

et al., 2004). BHVO standard glasses were also analysed at the beginning, end, and throughout the analytical 

session. We obtained 207Pb/206Pb-corrected 206Pb/238U concordia dates of 599.5 ± 28.0 Ma (2 s.d., n = 13) for 

GJ-1, 331.6 ± 9.8 Ma (2 s.d., n = 7) for Plešovice, 3462.7 ± 52.9 Ma (2s.d., n = 7) for OG, 1081.4 ± 31.1 Ma 

(2 s.d., n = 6) for FC1, and 418.6 ± 19.4 Ma (2 s.d., n = 7) for R33, which are accurate to -0.36 %, -1.64 %, -

0.13 %, -1.62 %, and -0.16 % of their reference values, respectively. Standard analyses are given in Table S-

5. 

For trace-element analyses, 90Zr (assuming ~43.14 wt. % Zr) was used as an internal standard and peaks were 

measured at 27Al, 44Ca, 28Si, 31P, 49Ti, 89Y, 90Zr, 93Nb, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 159Tb, 
163Dy, 165Ho, 166Er, 169Tm, 172Yb, 175Lu, and 178Hf. The zircon standards with the most completely 

characterised trace element concentrations are 91500 (Wiedenbeck et al., 2004) and GJ-1 (Piazolo et al., 

2017). Reference P concentrations in these standards are 24 ± 1 ppm (Jochum et al., 2005) and 30.2 ± 12.8 

(Piazolo et al., 2017), which compare favourably with our average of 31.5 ± 4.5 ppm and 35.4 ± 4.5 ppm (2 

s.d.). For 91500, measured Y and REE concentrations are within ~10 % of reference values (Wiedenbeck et 

al., 2004) except for Pr (-52 %), Nd (-17 %), and Lu (-15 %) (Table S-3; Figure S-2).  

Data reduction follows that of  Garber et al., (2020). Briefly, Iolite plug-in version 2.21 (Paton et al., 2011) 

for the Wavemetrics Igor Pro software was used to correct measured isotopic ratios and elemental intensities 

for baselines, laser- and plasma-induced fractionation, and drift. Both errors associated with laser stability 

throughout each analysis and run, as well as detector counting statistics were considered in the reported 

uncertainties. Only zircon analyses with >95 % concordance were included in the final data set. U-Th-Pb and 

trace element data are given in Table S-4.  

Ti-in-zircon Thermometry 
Temperatures for each zircon analysis were calculated via Ti-in-zircon thermometry (Ferry and Watson, 

2007): 
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log (ppm Ti) = 5.711 ± 0.072 – 4800( ± 86)/T (K) – log(aSiO2) + log(aTiO2) 

 

aSiO2 was assumed to be 1 (although it may be below unity during early zircon crystallisation when a granitic 

melt is not quartz saturated near their liquidus). The Ti-in-zircon expression was evaluated for both aTiO2 

values of 1 and 0.5. A recent thermodynamic study by Schiller and Finger (2019) demonstrated that aTiO2 in 

strongly peraluminous granitic melts is often well below unity near 0.5. Calculated temperatures are given in 

Table S-4. 
 

Zircon and Apatite Saturation Modelling 

We modelled the equilibrium crystallisation of sample CO-17-8, a representative Proterozoic strongly 

peraluminous granite using alphaMELTS (Smith and Asimow, 2005). The sample modelled composition in 

wt. % was 71.74 SiO2, 0.39 TiO2, 14.61 Al2O3, 2.70 FeO(total), 0.50 MgO, 1.26 CaO, 2.60 Na2O, 5.88 K2O, 

3.00 H2O. Crystallisation modelling was conducted a 0.3 GPa from 930 to 650 ºC at an oxygen fugacity one 

log unit below the fayalite-magnetite-quartz buffer. P2O5 and Zr were not modelled using alphaMELTS, but 

rather assumed to behave incompatibly until apatite saturation was reached. Although other major silicate 

phases such as plagioclase and alkali feldspar can be important reservoirs for P in some strongly peraluminous 

granites (London, 1992), P incorporation is not considered in these phases for simplicity. We modelled 4 

different starting P2O5 contents of 0.05, 0.1, 0.2, and 0.3 wt. % and assumed a starting concentration of 100 

ppm for Zr, in the range of that typical for SPGs (Bucholz and Spencer, 2019). We used the apatite saturation 

model of Pichavant et al. (1992) and the zircon saturation model of Boehnke et al. (2013). Although other 

phosphates (e.g., monazite and xenotime) will influence the P budget of a crystallising peraluminous melt, we 

do not consider it in our models because its effect (as compared to apatite) is expected to be negligible. 

Monazite is indeed found in many strongly peraluminous granites and, like xenotime, its solubility is much 

lower than apatite (generally saturating at several hundredths of a wt. % P2O5). However, its solubility is also 

strongly controlled by the availability of REE (Stepanov et al., 2012) which limits the amount of monazite 

that can crystallise to trace amounts. Due in part to this fact and that it has a lower P2O5 concentration (~29 

wt. %) as compared to apatite (~42 wt. %) it does not contribute significantly influence the P budget of a 

crystallising melt (e.g., Wolf and London, 1995). Alkali feldspars can also incorporate several tenths up to ~1 

wt. % P2O5 (London, 1992) however the partitioning of P between granitic melts and alkali feldspar is not 

well enough understood to model quantitatively. alphaMELTS has been shown to model biotite Fe/Mg ratios 

and saturation temperatures well in strongly peraluminous granites (Bucholz et al., 2018), however it has more 

difficulty predicting saturation of other aluminous phases typically found in strongly peraluminous granites 
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(e.g., muscovite and garnet). However, for the purposes of zircon saturation, the “M" factor [or normalised 

molar (Na+K+2Ca)/(Al*Si)] used in calculating saturation temperatures (c.f. Boehnke et al., 2013) does not 

vary significantly (between 1.25 to 0.94 over the temperature interval of interest (broadly 700-900 ºC) (see 

Fig. S-4) and is primarily a function of increasing ASI during melt differentiation. ASI is expected to increase 

during differentiation of strongly peraluminous granites (e.g., Bea et al., 1994) and alphaMELTS predicts this 

well. Similarly, ASI is the primary control on apatite solubility (other than temperature) and our modelling 

results should reproduce apatite saturation behaviour well. 

The vertically zoned Pedrobernardo pluton (central Spain) is a natural example of closed system, in-situ 

differentiation of a strongly peraluminous granitic melt (Bea et al., 1994) and is a useful comparator dataset 

for our alphaMELTS modelling. Magmatic differentiation in the Pedrobernardo pluton results in increases in 

bulk-rock SiO2 from ~71 to 76 wt. % and P2O5 from 0.28 to 0.5-0.6 wt. % from biotite+muscovite granites in 

the lower zone of the pluton to muscovite-bearing aplites and pegmatites of the upper zone. Bulk-rock ASI 

increases from ~1.18-1.20 to 1.30 and M decreases from 1.16-1.36 to 0.88-0.99. Although the alphaMELTS 

calculations were undertaken for a different bulk-rock composition and we also recognise that bulk-rock 

granite chemistry is likely not representative of melt compositions, the broad variations in geochemistry for 

the Pedrobernardo pluton are similar the calculated melt compositions using alphaMELTS (see Fig. S-4). 

Thus, we suggest that alphaMELTS models apatite and zircon saturation satisfactorily for the purposes of this 

study, though a more detailed future study is warranted. Last, we do recognise that the temperatures of apatite 

and zircon saturation may not be accurate if the alphaMELTS is not predicting the correct temperatures of 

crystallisation for different mineral assemblages. However, the important point is that zircon saturation will 

precede that of apatite and for granitic melts with low initial P2O5 concentrations and P2O5 concentrations will 

still be low at the onset of zircon saturation. 
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Supplementary Tables 
 
Table S-1 List of strongly peraluminous granite samples form which zircon was separated and analysed with 

locality, mineralogy, and magmatic crystallisation ages. References are given for geochronology of samples, 

bulk-rock geochemistry, and detailed petrologic descriptions. 

 
Sample ID Locality Mineralogy Age ± 2σ (Ma) Reference 
17FIN04A Turku Area, Finland Grt+Bt+Afs+Pl+Bt 1850 Liebmann et al., 2021b 

17FIN06A Turku Area, Finland Grt+Bt+Afs+Pl+Bt 1815±16 Liebmann et al., 2021b 
17FIN06B Turku Area, Finland Grt+Bt+Afs+Pl+Bt 1815±16 Liebmann et al., 2021b 

18IM-3 Huaian Complex, North China 
Craton 

Grt+Ms+Qz+Afs+Pl±Bt 1917±70 Liebmann et al., 2021a 

18IM-12B Jining Complex, North China 
Craton 

Grt+Qz+Afs+Pl 1929±29 Liebmann et al., 2021a 

18IM-13C Xiwulanbulang Area, North 
China Craton Grt+Bt+Qz+Afs+Pl±Ms 2536±13 Liebmann et al., 2021a 

18IM-15B Xiwulanbulang Area, North 
China Craton Grt+Qz+Afs+Pl 2530±60 Liebmann et al., 2021a 

18IM-19A Daqingshan-Wulashan 
Complex, North China Craton 

Grt+Bt+Qz+Afs+Pl 2478±18 Liebmann et al., 2021a 

18IM-19C Daqingshan-Wulashan 
Complex, North China Craton Grt+Bt+Qz+Afs+Pl 2478±18 Liebmann et al., 2021a 

18IM-20 Daqingshan-Wulashan 
Complex, North China Craton Grt+Bt+Qz+Afs+Pl 2374±48 Liebmann et al., 2021a 

18IM-21C Daqingshan-Wulashan 
Complex, North China Craton Grt+Qz+Afs+Pl 1855±16 Liebmann et al., 2021a 

18IM-23D Daqingshan-Wulashan 
Complex, North China Craton Grt+Qz+Afs+Pl 2453±11 Liebmann et al., 2021a 

18IM-25C Daqingshan-Wulashan 
Complex, North China Craton Ms+Qz+Afs+Pl±Bt 2493±28 Liebmann et al., 2021a 

CO-17-8 Silver Plume granite, 
Colorado, USA Ms+Bt+Qz+Afs+Pl 1447±50 

(Bucholz and Spencer, 

2019; Liebmann et al., 

2021b) 

19GH-9 Baoulé-Mossi domain, 
West African Craton Ms+Bt+Qz+Afs+Pl 2183±12 Liebmann et al., 2021c 

19GH-11B Baoulé-Mossi domain, 
West African Craton Ms+Bt+Qz+Afs+Pl 2188±20 Liebmann et al., 2021c 

Mineral abbreviations: Qz, quartz; Afs, alkali feldspar; Pl, plagioclase; Grt, garnet; Ms, muscovite, Bt, biotite  
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Table S-2 Sample bulk-rock major element geochemistry (normalised to 100 %) (originally reported in 

Liebmann et al., 2021a, b). 

 
Sample SiO2 TiO2 Al2O3 FeOT MnO MgO CaO Na2O K2O P2O5 Total 
18IM3 78.77 0.38 11.05 2.75 0.05 0.88 1.05 2.26 2.76 0.05 100 

18IM21C 83.28 0.04 8.91 2.60 0.18 0.66 1.13 2.23 0.78 0.19 100 
17FIN06B 71.40 0.06 15.16 3.53 0.04 0.73 1.49 3.17 4.32 0.10 100 
17FIN04A 71.61 0.23 14.70 3.23 0.07 0.96 1.63 3.05 4.44 0.08 100 
17FIN06A 66.14 0.67 16.31 6.35 0.05 2.25 1.65 2.98 3.52 0.07 100 
19GH11B 74.12 0.08 14.81 0.50 0.01 0.15 1.26 3.41 5.66 0.01 100 

19GH9 73.70 0.11 15.77 0.96 0.02 0.28 2.93 5.05 1.15 0.03 100 
CO-17-8 71.74 0.39 14.61 2.70 0.03 0.50 1.26 2.60 5.88 0.28 100 

18IM-13C 72.39 0.34 15.19 2.82 0.01 0.89 3.11 3.37 1.77 0.10 100 
18IM-19 73.14 0.32 14.25 3.20 0.05 1.43 1.29 2.52 3.73 0.06 100 

18IM-15B 67.10 0.60 15.92 6.49 0.09 2.18 3.62 2.92 0.99 0.09 100 
18IM-25C 75.81 0.06 13.41 0.87 0.00 0.17 0.97 2.76 5.91 0.03 100 
18IM-23D 72.83 0.11 14.26 2.58 0.04 0.80 0.61 2.04 6.61 0.12 100 

18IM20 64.68 0.27 18.10 5.61 0.07 1.84 2.68 3.57 3.11 0.07 100 
18IM12B 70.78 0.14 15.10 5.50 0.13 1.95 2.92 2.38 1.06 0.04 100 

 
Table S-3 Phosphorus values of zircon standards compared to reference values. 
 

zircon 
standard 

P (ppm) 
reference value 2 s.d. P (ppm) 

measured 2 s.d.* # of analyses 

91500 243 1 31.5 4.5 42 
GJ-1 30.24 12.8 35.4 4.4 13 

*propagated error including internal precision and standard deviation of analyses  

 
Table S-4 Zircon LA-ICPMS U-Th-Pb isotopes and trace element data. Table S-4 (.xlsx) can be downloaded 
from the online version of this article at https://doi.org/10.7185/geochemlet.2240 
 
Table S-5 Standard LA-ICPMS U-Th-Pb isotopes and trace element data. Table S-5 (.xlsx) can be 
downloaded from the online version of this article at https://doi.org/10.7185/geochemlet.2240 
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Supplementary Figures 
 
Figure S-1 Cathodoluminescence images of analysed zircon with sample number in the heading and grain 

number labelled on each image, showing LA-ICPMS spots (red circles) and P concentrations (ppm) listed. 
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Figure S-2 Measured Y and REE concentrations in reference zircons normalised to reference values. Reference values 

are from GeoREM (Jochum et al., 2005) for 91500 (a) and Piazolo et al. (2017) for GJ-1 (b). 
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Figure S-3 Comparison of measured intra-zircon phosphorus concentrations for zircon where more than one 

spot was analysed. Numbers in symbols indicates the analysed grain number. Dashed diagonal lines indicate 

constant ppm offset (± 25, 50, and 100 ppm) for reference.  
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Figure S-4 (a) alphaMELTS modelling results showing variations in melt ASI (molar Al/(Ca+Na+K) and M 

[molar (Na+K+2Ca)/(Al*Si)] with temperature. ASI and M are strongly correlated due to the similarities in 

the molar components involved in their calculation. At low temperatures M continues to decrease due to an 

increase in molar Si, which is not reflected in the ASI. (b) Calculated zircon saturation temperatures versus 

M for both (Harrison and Watson, 1983; Boehnke et al., 2013) for zircon saturation at 150 ppm  Zr in the melt 

(figure modified after Boehnke et al., 2013). Blue shaded region indicates range of M values in alphaMELTS 

modelling (0.9-1.27) 

.  
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