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In radiation therapy treatment plan optimization, selecting a set of clinical objectives that are tractable and

parsimonious yet effective is a challenging task. In clinical practice, this is typically done by trial and error

based on the treatment planner’s subjective assessment, which often makes the planning process inefficient

and inconsistent. We develop the objective selection problem that infers a sparse set of objectives for prostate

cancer treatment planning based on historical treatment data. We formulate the problem as a non-convex

bilevel mixed-integer program using inverse optimization and highlight its connection with feature selection

to propose multiple solution approaches, including greedy heuristics and regularized problems as well as

application-specific methods that utilize anatomical information of the patients. Our results show that the

proposed heuristics find objectives that are near optimal. Via curve analysis on dose-volume histograms, we

show that the learned objectives closely represent latent clinical preferences.

Key words : Inverse optimization; objective selection; feature selection; greedy algorithm; multi-objective

optimization; cancer therapy

1. Introduction

Cancer is the second-leading cause of death in the United States, with more than 1.7 million new

cases and 600,000 deaths estimated in 2018 (American Cancer Society 2018). Approximately 40
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percent of Americans will develop cancer in their lifetimes (American Cancer Society 2018). In this

decade, cancer-associated expenditure will be between $124.4 and $157.7 billion (Mariotto et al.

2011).

Intensity-modulated radiation therapy (IMRT) is one of the primary methods to treat cancer.

Because many clinical parameters are involved in creating a clinically desirable treatment, such

as the number, angles, and intensities of the beams, radiation therapy is typically designed using

mathematical optimization (Shepard et al. 1999, Bortfeld 1999). One substantial challenge in radi-

ation therapy is the conflict between multiple clinical goals, such as delivering a sufficient amount

of radiation dose to the tumor while sparing nearby healthy organs. Moreover, each healthy organ

responds to radiation differently; thus, various clinical objectives are required to address issues

with different organs. Treatment planners typically employ multi-objective optimization techniques

to find optimal treatment parameter settings that generate desirable trade-offs among the set of

objectives (e.g., Romeijn et al. (2004), Craft et al. (2007), Shao and Ehrgott (2008)).

Though many commercial treatment planning systems offer dedicated tools to deal with the

forward optimization of the planning process, planning objectives are typically chosen subjectively

based on the planner’s experience (Craft 2011). Treatment planners adjust the selection of the

objectives and associated parameters by trial and error as they repeatedly solve the optimization

problem and evaluate the resulting treatment plan (Zhang et al. 2011). Consequently, the entire

planning process often becomes slow and leads to inconsistent, suboptimal treatment quality (Lee

et al. 2013, Boutilier et al. 2015).

The quality of the treatment plan and the efficiency of the planning process are heavily affected

by the choice of objective functions. The chosen objectives affect computational complexity as well

as the realism of the optimization problem; for example, linear objective functions can make the

problem computationally more efficient, but the resulting formulation may not adequately reflect

clinical reality. In addition, it is beneficial if the objectives are widely applicable so the constructed

model with the chosen objectives can be used repeatedly for many similar patients. Thus, it is
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crucial to find a sparse set of objectives that adequately reflect reality and efficiently generate

high-quality treatment plans.

In this paper, we propose a novel, data-driven approach to select a sparse set of effective clinical

objectives for radiation therapy treatment planning. Finding a good set of objectives that best

represents previously exhibited clinical preferences can be viewed as a feature selection problem.

Given an input set of historical treatment plans, we aim to learn objectives that can render the

given treatments near optimal for the underlying multi-objective optimization problem. By doing

so, we reproduce preferences that were implicit in the treatments, which can guide the generation

of clinically desirable treatments for new patients efficiently. The task of inferring optimization

parameters from data has been widely studied in the inverse optimization literature. Hence, we

employ an inverse optimization approach integrated with feature selection to develop the objective

selection problem. Our framework not only selects a subset of objectives with a specified sparsity,

but also simultaneously weights the selected subset of objectives. Specifically, our contributions in

this work are as follows:

1. We propose a novel, data-driven approach to select the best subset of objectives in multi-

objective optimization problems. We formulate the objective selection problem using inverse

optimization and show that an extensive formulation can be formulated as a bilevel, non-

convex mixed-integer program.

2. We establish a connection between objective selection and feature selection and adopt the solu-

tion techniques for feature selection to approximately solve the objective selection problem,

including greedy algorithm and regularization approaches. We also propose the application-

specific, anatomy-based greedy algorithm that exploits the problem structure of cancer treat-

ment planning.

2. Literature Review

Many different objectives have been proposed in IMRT planning, such as dose-volume objectives

(Halabi et al. 2006, Wu et al. 2011), equivalent uniform dose (EUD) objectives (Wu et al. 2002,
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Choi and Deasy 2002), quadratic penalty objectives (Breedveld et al. 2006, Romeijn et al. 2006),

and minimum, maximum, and mean dose objectives and combinations of them (Thieke et al.

2002, Craft et al. 2012). Currently, there is no consensus on which objectives should be used for

different cancers and patients; final specification is often a task for treatment planners within the

trial-and-error process (Xing et al. 1999, Cotrutz et al. 2001).

There are many studies in the literature that relate to the computation of weights for a given set of

objectives in radiation therapy. Xing et al. (1999) propose an algorithm that automates the iterative

weight adjustment process guided by a scoring function that measures clinical acceptability. Zhang

et al. (2006) use a “sensitivity-guided” approach to balance the importance of multiple objectives

in the treatment planning process. Similarly, Zhang et al. (2011) include an automated parameter

adjustment to iteratively alter the objective function within the treatment planning framework.

Wilkens et al. (2007) prioritize objectives to construct a treatment plan progressively, where the

order of the objectives indicates the relative importance instead of the weights. Lee et al. (2013)

and Boutilier et al. (2015) employ inverse optimization and machine learning techniques to predict

weights from the anatomical features of patients. However, these studies weight the entire pool

of objectives; they do not focus on creating the optimization model by selecting objectives. The

number of objectives and the complexity of the model are an important issue, especially with

recent studies on automated- and knowledge-based treatment planning (Chanyavanich et al. 2011,

McIntosh and Purdie 2016, Babier et al. 2018, Kearney et al. 2018, Mahmood et al. 2018).

Inverse optimization has received growing attention as a tool for using data to determine model-

ing parameters that lead to an efficient and effective optimization formulation. Inverse optimization

generally seeks parameters of an objective function that best explain the system behavior or a

decision-maker’s preferences for various types of optimization problems such as linear programs

and network optimization problems (e.g., Burton and Toint (1992), Zhang and Liu (1996) and

Ahuja and Orlin (2001)), convex optimization (Iyengar and Kang 2005, Keshavarz et al. 2011),

and integer (Schaefer 2009) and mixed-integer programs (Wang (2009), Duan and Wang (2011)
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and Lamperski and Schaefer (2015)). Over the last decade, the scope of inverse optimization has

expanded to accommodate noise, measurement errors, and uncertainty in data; the goal in such

settings is to find the objective function parameters that make the input data as optimal as possible

(Bertsimas et al. 2015, Aswani et al. 2018, Chan et al. 2019). In the presence of such imperfect

data, the inverse problem is typically non-convex—Chan et al. (2014) and Chan et al. (2019) pro-

pose efficient exact algorithms when the underlying problem is linear; for general inverse convex

programming, various approximations and heuristics have been proposed (Bertsimas et al. 2015,

Aswani et al. 2018, Esfahani et al. 2018).

Inverse optimization has also been recently studied in the multi-objective optimization setting

(Keshavarz et al. 2011, Chan and Lee 2018, Naghavi et al. 2019, Gebken and Peitz 2021). How-

ever, the existing inverse multi-objective optimization approaches focus only on finding optimal

weighting factors for a pre-specified set of objectives. For example, Chan and Lee (2018) apply

inverse optimization to radiation therapy treatment planning, yet their focus is to find weighting

factors for a given set of objectives. Gebken and Peitz (2021) use a singular-value decomposition

approach, but they focus only on finding objective weights for optimal solutions of unconstrained

problems.

We observe that objective selection is a special case of feature selection in the sense that its goal

is to find objectives that best fit the preferences exhibited in the given treatment data. Feature

selection is a well-known problem in which one selects “a subset of variables from the input which

can efficiently describe the input data while reducing effects from noise or irrelevant variables

and still provide good prediction results” (Chandrashekar and Sahin 2014). Feature selection is

NP-hard and computationally intractable in general (Amaldi and Kann 1998, Guyon and Elisseeff

2003), and numerous solution methods have been proposed including filter, regularization, and

wrapper methods. Filter methods rely on ranking techniques and select features that have a rank

above a pre-determined threshold (Chandrashekar and Sahin 2014). In a regularized method, the

extensive form of the feature selection problem is convexified and a penalty term is added to
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the objective function of the problem to encourage the selection of a sparse subset of features.

Sparsity regularization requires an appropriate regularization parameter, which can be a difficult

problem itself (Galatsanos and Katsaggelos 1992, Bazán and Francisco 2009). Wrapper methods

use some black-box solver (see Mart́ı (2015) for details) to evaluate the performance of a subset of

features and employ a heuristic to select a good subset of features (Chandrashekar and Sahin 2014).

Although some of the methods are known to produce an optimal subset of features theoretically

(e.g., branch-and-bound), they often need to examine an exponential number of subsets. Thus, it

is typically desirable to develop more computationally efficient methods with potentially some loss

of optimality (Pudil et al. 1994).

As an alternative, sequential wrapper methods allow for the subset to dynamically change size,

and the feature subset is evaluated at various iterations to determine when the subset is good

enough. The greedy algorithm, known as forward selection in some data science contexts, is a

sequential wrapper method prevalent in combinatorial optimization. In a greedy algorithm, features

are selected iteratively based on which feature improves a given selection criterion. Although greedy

algorithms can be sensitive to local optima, they are simple and the selection process interacts

directly with the model produced by the selected features (Saeys et al. 2007).

Certain structural properties of the problem can impact the effectiveness of the greedy algorithm

(Nemhauser et al. 1978). In particular, submodularity plays an important role in deriving perfor-

mance guarantees (i.e., bounds) for the greedy algorithm in various machine learning problems

(Krause et al. 2008, Shamaiah et al. 2010). In addition, the greedy algorithm has also been used

for feature selection with non-submodular functions (e.g., Das and Kempe (2011)) as well as other

optimization problems without an examination of submodularity (Gottlieb et al. 2003). Indeed,

the greedy algorithm can efficiently obtain a good solution if the subproblems solved within the

iterations have good structure, such as convexity. We show in Section 3 that the objective selection

problem contains a convex subproblem, which strengthens the case to use the greedy algorithm.
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3. Methodology

In this section, we develop a mathematical framework to select objectives for radiation therapy

treatment planning. Although our focus is on cancer treatment planning, we present the ensuing

formulations in a general mathematical setting.

3.1. Forward Multi-objective Optimization

Let K= {1, . . . ,K} be the index set for objectives f1(x), . . . , fK(x), where x ∈Rn. Given a subset

S ⊆K, we define the forward multi-objective optimization (MO) problem as follows:

MO(S) = min
x

f(x) = [fk(x)]k∈S

subject to Ax = b,

g(x)≤ 0,

(MO)

where we use [fk(x)]k∈S to denote a vector-valued function. The inequality constraints are defined

by the vector-valued function g : Rn→ RL, with L = {1, ...,L}, and the equality constraints are

defined by A ∈ Rm×n and b ∈ Rm. In the context of radiation therapy, the objectives fk may

correspond to penalties for excessive radiation exposure to different organs at risk, g,A, and b

represent dose-delivery constraints for various voxels in patient anatomy, and the decision variable

x represents a treatment plan expressed as the amount of radiation to be delivered from each

“beamlet.” More details for radiation therapy-specific formulations are given in Section 4. We

emphasize, however, that the methodology presented in this work applies to general multi-objective

optimization problems and thus, we focus on the general MO framework above.

In general, there is no solution that can simultaneously minimize fk for all k ∈ K. Instead, the

goal of MO is to find a set of solutions that are not dominated by other feasible solutions in any

of the objectives. Formally, a solution to an MO problem is called weakly Pareto optimal if there

does not exist y that is feasible for MO(S) such that fk(x)> fk(y) for all k ∈ S. We let Ω(S) be

the set of weakly Pareto optimal solutions for MO(S), also referred to as the Pareto surface.

Assumption 1. The functions fk and g` are convex and differentiable for all k ∈ K and ` ∈ L,

f(x)> 0 for all x feasible for MO(S) for all S ⊆K, and Slater’s interior feasibility condition holds.
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Assumption 1 provides some basic structure to our objective selection framework and also permits

the inclusion of nonlinear objectives and constraints.

3.2. Objective Selection Using Inverse Multi-objective Optimization

Given an input solution as data (e.g., a solution chosen by a decision maker), objective selection

focuses on selecting a set of no more than θ objectives (with weights) from a pool of candidate

objectives that capture the preferences implicitly exhibited in the input. In other words, the objec-

tive selection problem can be seen as a form of inverse optimization to find objectives that render

the given solution as close as possible to the Pareto surface associated with the objectives, in

terms of some specified (optimality) distance function. Given a feasible input solution x̂, a set of

objectives S, and x∈Ω(S), consider the following distance functions:

• d[r](x, x̂,S) = max
k∈S

fk(x)

fk(x̂)
,

• d[q](x, x̂,S) = ‖f(x)− f(x̂)‖q, q ∈ {1,2, . . . ,∞}.

Although there are many other distance functions we can consider, the above functions are

considered particularly relevant in the multi-objective optimization context in that a (weakly)

Pareto optimal solution x that minimizes such distances from x̂ is considered to preserve the

original trade-offs in the objective values (Eskelinen and Miettinen 2012, van Haveren et al. 2017).

Though one might consider a more straightforward distance such as ‖x̂−x‖q, recent studies show

that this can cause the resulting objective values to be inconsistent with the input values f(x̂)

and is more appropriate for single-objective optimization (Keshavarz et al. 2011, Chan and Lee

2018). Minimizing d[r] above results in minimizing the (relative) duality gap of a modified version

of MO where the objective function is a weighted sum of the components of f . Moreover, using

d[r] in inverse multi-objective optimization leads to weight vectors that preserve relative tradeoff

preferences (Chan and Lee 2018). We remark that d[r] is not a metric strictly speaking; for instance,

it does not obey the triangle inequality. However, it does lead to valuable insight about multi-

objective trade-offs and provides structure to the objective selection problem that we exploit. Lin
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(2005) discusses uses of d[q] for a specific case in which the input data correspond to a set of ideal

solutions (optimal for a single-objective problem) for the same multi-objective problem.

Our objective selection framework accepts multiple inputs. Given P inputs, the goal is to find

a set of objectives such that the resulting Pareto surfaces are as close to the input solutions as

possible. Let P = {1, ..., P} be the index set for the inputs and χ̂= {x̂(p)}p∈P . Note that each input

x̂(p) may originate from a different forward optimization problem, in which case objectives and

constraint parameters from each optimization problem are also indexed by (p). In the treatment

planning context, each input is a previous clinical treatment plan for each patient.

We remark that the objectives across different input solutions share the same functional format

so they can be considered the same “type.” For example, f(1),1 : Rn(1) → R, the first objective for

input 1, and f(2),1 : Rn(2) → R, the first objective for input 2, can both represent the L2 norm of

the solution for the respective problems even though the dimensions of the domains differ in size.

Thus, each objective index k ∈ K represents the common type of the objectives consistent across

the inputs. Each forward problem also leads to a different Pareto surface Ω(p)(S).

We consider two distances between a set of input solutions and the respective Pareto surfaces:

• δ(χ, χ̂,S) =
∑
p∈P

d(p)(x(p), x̂(p),S)

• γ(χ, χ̂,S) = min
α∈A(S)

{
α>

∑
p∈P

f(p)(x̂(p))
/
α>

∑
p∈P

f(p)(x(p))

}
,

where A(S) = {α∈RK+\{0} | αk = 0 for all k 6∈ S} is the set of admissible weight vectors for a set

of objectives S. Different single input distance metrics may be used for δ, for instance, d[r]. Notice

that δ is a separable measure, unlike γ. We refer to γ as the batch duality gap. For most of this

section, we focus on the separable case, but we also present results with the batch duality gap.

We write the objective selection problem (OS) with input set P as follows:

OS(χ̂) = min
χ,S

δ(χ, χ̂,S)

subject to x(p) ∈Ω(p)(S), ∀ p∈P ,

1≤ |S| ≤ θ,

S ⊆K.

(OS)
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For all input data points, the above problem finds a common set of objectives S, i.e., the same

types of objectives, although the underlying forward problem formulation is different across the

inputs. If the input data points are all collected from the same forward optimization problem,

we can rewrite the above formulation simply by replacing the first constraint with X ⊂Ω(S). We

remark that the objective selection problem reduces to the normal multi-objective inverse problem

of Chan et al. (2014) and Chan and Lee (2018) if θ= |K| and P is a singleton.

3.2.1. Extensive Formulation We first present a general extensive formulation for OS(X̂ ).

Given that f and g are convex in the forward problem MO (Assumption 1), all weakly Pareto

optimal solutions for MO(S) can be obtained by the following formulation with the weighted

combination of the objectives:

WMO(α) = min
x
{α>f(x) | Ax = b,g(x)≤ 0}. (WMO)

Let O(α) denote the set of optimal solutions to WMO(α), and given input index p, let O(p)(α)

denote the optimal solutions of WMO(α) with data f(p),A(p),b(p), and g(p).

Lemma 1. For any S ⊆K, a solution x is weakly Pareto optimal for MO(S) if and only if there

exists a non-zero weight vector α∈RK+ with αk = 0 for all k 6∈ S such that x is an optimal solution

to WMO(α). That is, x∈Ω(S) ⇐⇒ x∈
⋃
α

{O(α) |α∈RK+\{0}, αk = 0 for all k 6∈ S}.

Proof of Lemma 1 is omitted as it follows directly from Theorem 3.15 of Ehrgott (2005).

Let S(ξ) = {k ∈ K | ξk = 1} where ξ ∈ BK is a binary variable. From Lemma 1, an extensive

formulation of OS for the set of P input data points, χ̂, can be written as follows:

min
α,ξ,χ

δ(χ, χ̂,S(ξ)) (1a)

subject to
∑
k∈K

ξk ≤ θ, (1b)

α(p) ≤ ξ, ∀ p∈P , (1c)

α(p) ∈A(S(ξ)), ∀ p∈P , (1d)

ξ ∈BK , (1e)



Ajayi, Lee, and Schaefer: Objective Selection for Cancer Treatment
Article submitted to Operations Research; manuscript no. 3 11

x(p) ∈O(p)(α(p)), ∀ p∈P . (1f)

The binary variable ξ represents whether or not each candidate objective is chosen—if ξk = 0,

objective k is not chosen as the corresponding weight αk is forced to be 0. We assume αk ≤ 1 for

each objective k; this is without loss of generality, as any weight vector for the forward problem

MO can be scaled by a positive constant without affecting the set of optimal solutions. Note that

the above formulation assumes each data point x̂(p) is associated with a different weight vector,

i.e., collected from a decision maker with different preferences. If we assume that all data points

represent the same preferences and thus should be assigned the same weight values, we modify the

formulation by fixing α(p) = α, for all p∈P . Assuming each of the objectives f(p),k for all k ∈K and

constraint vectors g(p) are differentiable for all data points p ∈ P , formulation (1) can be further

rewritten as the following non-convex mixed-integer program:

min
α,ξ,χ,σ,π

δ(χ, χ̂,S(ξ)) (2a)

subject to
∑
k∈K

ξk ≤ θ, (2b)

α(p) ≤ ξ, (2c)

α>(p)e = 1, ∀ p∈P , (2d)

A(p)x(p) = b(p), ∀ p∈P , (2e)

g(p)(x(p))≤ 0, ∀ p∈P , (2f)∑
k∈K

α(p),k∇f(p),k(x(p)) +
∑
`∈L

σ(p),`∇g(p),`(x(p)) + A>(p)π(p) = 0, ∀ p∈P , (2g)

σ(p) ◦g(p)(x(p)) = 0, ∀ p∈P , (2h)

σ(p) ≥ 0, ∀ p∈P , (2i)

α(p) ≥ 0, ∀ p∈P , (2j)

ξ ∈BK , (2k)

where constraints (2f)–(2j) represent the KKT conditions for data point p, replacing (1f), (◦) is

the Hadamard product, and e is a vector of ones of the appropriate dimension.
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Proposition 1. F1, the feasible region of (1), and F2, the feasible region of (2) are related as

follows:

{(α,ξ, χ) | (α,ξ, χ,σ,π)∈F2 for some (σ,π)}= {(α,ξ, χ)∈F1 | α>(p)e = 1, for all p∈P}.

Thus, the optimal objective values of (1) and (2) are equal.

Note that (2) is a mixed-integer non-convex problem, which is intractable in general. We show

that formulation (2) is tractable if the underlying forward problem is linear, i.e., all of the candidate

objectives and the constraints are linear. Suppose f(p) and g(p) are both affine functions for each

p∈P so that the weighted forward MO for input p can be written as follows:

min
x
{α>(p)C(p)x | A(p)x = b,G(p)x≤ h(p)}. (3)

Then the corresponding OS problem with input set P can be written as a mixed-integer program:

min
x,α,π,σ,s,ξ

∑
p∈P

d(p)(x(p), x̂(p),S) (4a)

subject to
∑
k∈K

ξk ≤ θ, (4b)

α(p) ≤ ξ, ∀ p∈P , (4c)

α>(p)e = 1, ∀ p∈P , (4d)

A(p)x(p) = b(p), ∀ p∈P , (4e)

G(p)x(p) ≤ h(p), ∀ p∈P , (4f)

α>(p)C(p) +σ>(p)G(p) +π>(p)A(p) = 0, ∀ p∈P , (4g)

h(p)−G(p)x(p) ≤Ms(p), ∀ p∈P , (4h)

σ(p) ≤M(1− s(p)), ∀ p∈P , (4i)

σ(p) ≥ 0, ∀ p∈P , (4j)

α(p) ≥ 0, ∀ p∈P , (4k)

ξ ∈BK , (4l)
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s(p) ∈BL, ∀ p∈P , (4m)

where M is a suitably large constant. Observe that (4e)–(4k) again represent the KKT conditions

in a slightly different way than in (2); we introduce auxiliary variables s and big-M constraints to

handle the complementary slackness. Again, if all P input solutions are assumed to represent the

same preferences over the common set of objectives (i.e., common weights), we let α(p) = α, ∀ p∈

P.

When f(p) and g(p) are nonlinear functions, the OS formulation is generally non-convex. Further-

more, we observe that the general OS problem can be seen as a bilevel optimization problem, where

the upper-level problem chooses the set of objectives first, followed by the lower-level problem that

chooses the corresponding weight values. The challenge is that even the lower-level problem itself is

not tractable due to the non-convexity in the KKT constraints (multiplication of α and f(x) both

of which are variables). In the sequel, we analyze the structure of the lower-level problem and show

that it becomes tractable under some distance function d, enabling efficient solution approaches

for the OS problem.

3.2.2. Restricted Inverse Problem Consider OS(χ̂) as the following bilevel framework: the

upper-level problem first picks a set of objectives; the lower-level problem follows and finds an opti-

mal weight vector for each data point x̂(p) such that the associated distance function is minimized.

We call the lower-level problem the restricted inverse problem (RP). Using reformulations, this

bilevel problem can be expressed as a zero-sum problem. Given a pre-specified choice of objectives,

S, we present the following formulation to find a weight vector that minimizes d(p)(x(p), x̂(p),S) =

max
k∈S
{f(p),k(x(p))/f(p),k(x̂(p))} for each data point p:

RP(χ̂,S) = min
X

∑
p∈P

max
k∈K

{
f(p),k(x(p))/f(p),k(x̂(p))

}
(5a)

subject to A(p)x(p) = b(p), ∀ p∈P , (5b)

g(p)(x(p))≤ 0, ∀ p∈P . (5c)
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When S = K, we call the restricted inverse problem the normal inverse problem. The objective

function of the above problem can be rewritten as a convex function after including auxiliary

variables and convex constraints.

Proposition 2. Let χ∗ = {x∗(p)}p∈P be an optimal solution for RP(χ̂,S). Then, for all p∈P:

(i) x∗(p) ∈Ω(p)(S).

(ii) 1/max
k∈K
{f(p),k(x∗(p))/f(p),k(x̂(p))} is the minimum relative duality gap with respect to x̂(p).

In addition, a convex reformulation of RP(χ̂,S) exists where optimal weight vectors α∗(p), such that

x∗(p) ∈O(p)(α
∗
(p)), can be computed as Lagrange multipliers, for all p∈P.

Proposition 2 states that given a fixed subset of candidate objectives, one can solve the restricted

inverse problem with multiple inputs. Moreover, the weight vectors can be recovered using KKT

conditions to compute the Lagrange multipliers. Thus, RP(χ̂,S) can serve as a black-box solver in

sequential wrapper algorithms common in feature selection (Theorem 1). Returning to the bilevel

view of the objective selection problem, the lower-level problem can be reformulated as formulation

(EC.12), where the objective of the follower is to minimize
∑
p∈P

ε(p), the sum of the reciprocals

of the relative duality gaps; in other words, the follower maximizes the sum of the duality gaps.

The goal of the leader, however, is to choose the subset that minimizes the sum of the duality

gap. This illustrates that the objective selection problem in this case is a zero-sum bilevel problem

(Theorem 1).

Theorem 1. Given the distance functions d(p)(x, x̂,S) = max
k∈S

{
f(p),k(x)/f(p),k(x̂)

}
, for all p ∈ P,

we have OS(χ̂) = min
S⊆K,1≤|S|≤θ

RP(χ̂,S).

Given an appropriate restricted inverse problem for other distance functions, one can produce an

analog of Theorem 1. However, in general, the corresponding restricted problem is non-convex (due

to the KKT conditions that ensure Pareto optimality), which may be difficult to solve. Thus, the

existence of a convex formulation for d[r] is a special case.
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An additional special case for which the restricted problem is tractable is when all of the

objectives and constraints are affine, which leads to the mixed-integer linear program (4). How-

ever, many objectives in radiation therapy treatment planning are nonlinear. When P is a sin-

gleton, another tractable restricted problem results from the distance function d[q,I](x, χ̂K,S) =(∑
k∈S
|fk(x)− fk(x̂k)|q

)1/q

, a variant of d[q]. The distance function d[q,I] relies on multiple “ideal”

solutions that are optimized for a single objective: χ̂K = {x̂k}k∈K, where x̂k ∈ arg min
x
{fk(x) | Ax =

b,g(x) ≤ 0}, for all k ∈ K (Lin 2005); see the e-companion for details. In the radiation therapy

context, however, this implies that the input data consists of |K| treatment plans for the patient

each arising from a distinct single-objective optimization problem, which is more restrictive. Hence,

for increased clinical relevance and flexibility in the inputs, we focus on using d[r] in the subsequent

analysis and numerical results.

If the data points are assumed to come from forward problems with the same preferences, we

consider the batch duality gap distance. This objective selection problem, which we call OS-W to

indicate that the problem selects the same objectives and weights for all patients in the batch, is

as follows:

OS-W(χ̂) = min
χ,S

γ(χ, χ̂,S)

subject to χ∈ Ω̃(S),

1≤ |S| ≤ θ,

S ⊆K,

(OS-W)

where Ω̃(S) =
⋃

α∈A(S)
arg min

χ
{α>

∑
p∈P

f(p)(x(p))
∣∣A(p)x(p) = b(p),g(p)(x(p)) ≤ 0, ∀ p ∈ P}. We modify

the RP formulation to find the the same weights for the chosen objectives for all data points

(RP-W).

RP-W(χ̂,S) = min
x,α

(
α>
∑
p∈P

f(p)(x(p))

)/(
α>
∑
p∈P

f(p)(x̂(p))

)
(6a)

subject to A(p)x(p) = b(p), ∀ p∈P , (6b)

g(p)(x(p))≤ 0, ∀ p∈P , (6c)

α∈A(S). (6d)
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Theorem 2. There exists a convex reformulation of RP-W(χ̂,S) whose Lagrange multipliers are

optimal weights that minimize the batch duality gap. Also, OS-W(χ̂) = min
S⊆K,1≤|S|≤θ

RP-W(χ̂,S).

Next we establish a relationship between the distance metrics d[r] and d[q]. For the single-input

case, RP-S and RP-W are equivalent; thus, we simply denote this restricted problem by RP and

refrain from labeling data with the subscript (p). Given a subset T ⊆K, let || · ||q,T : R|T |→R be

the q-norm in R|T |. Also, let fT = [fk]k∈T .

Proposition 3. Consider a single-input restricted inverse problem RP(x̂,S) and an optimal solu-

tion (x∗,α∗). Let S∗ be the support of α∗, e.g., S∗ = {k ∈ S | α∗k > 0}. Then the relative gap of

WMO(α∗) at x̂ is

||fS∗(x̂)||q,S∗
||fS∗(x̂)||q,S∗ − ||fS∗(x̂)− fS∗(x∗)||q,S∗

.

Proposition 3 highlights a relationship between the proposed distance metrics as follows. Let S

and T (with |S| = |T |) be the support of two weight vectors obtained from optimal solutions of

restricted problems, and assume that all of the candidate objectives fk have been normalized such

that fk(x̂) = 1, for all k ∈ S ∪ T , thus ||fS(x̂)||q,S = ||fT (x̂)||q,T . Then if the minimum relative gap

over S at x̂ is rS (similarly for T ) and rS > rT , we have ||fS(x̂)− fS(x∗S)||q,S > ||fT (x̂)− fT (x∗T )||q,T ;

that is, in this case, a larger relative gap corresponds to a larger norm of the difference of function

values. From a computational perspective, in this specific setting, optimizing with respect to the

relative gap results in the same optimal objective sets as when using the q-norm. Despite this

particular relationship between the relative gap and q-norm in Proposition 3, we opt to focus

primarily on our formulations for optimizing the relative gap and leave q-norm-based objective

selection for future research.

Recall from Section 2 that one can view the objective selection problem as a feature selection

problem because the goal is to find a sparse set of objectives (no more than θ of them) of an

optimization problem that fits the given input x̂ or set of inputs χ̂. Theorems 1 and 2 reinforce

this connection and demonstrate that the difficult objective selection problem exhibits structure
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that makes certain feature selection algorithms suitable. In particular, greedy approaches, widely

used in feature selection problems, require solving a limited number of convex programs to find

good sets of objectives and weights and thus may be a reasonable choice for the objective selection

problems in treatment planning and other applications.

3.2.3. Regularization Because the objective selection problem is closely related to feature

selection, another natural solution approach is to use regularization. Let λ∈R|K|+ , then a regularized

objective selection problem is

RE(x̂) = max
x,α

−α>λ+
(
α>f(x)

)/(
α>f(x̂)

)
(7a)

subject to x∈O(α), (7b)

α>f(x̂) = 1, (7c)

α∈R|K|+ . (7d)

This regularized model maximizes the reciprocal of the relative gap minus the regularization term.

If the regularization parameter is λ = 0, then (7) solves the normal inverse problem (not the

objective selection problem) over all candidate objectives because minimizing the relative gap is

equivalent to maximizing its reciprocal, assuming both are well defined.

Consider the following model (8) for a single input:

REGP(x̂) = min
x,ε

ε (8a)

subject to fk(x)≤ εfk(x̂) +λk, ∀ k ∈K, (8b)

Ax = b, (8c)

g(x)≤ 0. (8d)

Theorem 3 reveals that λ also serves as a regularization parameter in REGP(x̂) for the objective

weights α.

Theorem 3. If an optimal primal-dual pair for REGP(x̂) exists with zero absolute duality gap,

then the dual multipliers of (8b) yield optimal weights to the regularized objective selection problem

RE(x̂).
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A common issue in regularization methods is determining regularization parameters such that the

regularized problem mimics the original non-convex problem. In the context of objective selection,

the regularization parameter λ must be tuned to select an objective set of the appropriate sparsity.

Finally, we remark that this regularization approach can extend to accept multiple inputs if one

adapts the problem RP-W(x̂(p),K) in a similar way by adding λ to constraints (EC.13a).

In our application of the objective selection approach to radiation therapy treatment planning, we

adapt the feature selection perspectives and employ greedy algorithms to solve the computationally

challenging problem. The specific algorithms that we propose further capitalize on application-

specific knowledge as well as unique problem structure that enables anatomy-based heuristics.

Thus, we first discuss structural details of the radiation therapy treatment planning problems in

the next section, and provide detailed illustrations of our solution approaches in Section 5.

4. Objective Selection in Radiation Therapy Treatment Planning

4.1. Radiation Therapy Context

We apply objective selection to IMRT treatment planning and focus on prostate cancer. Prostate

cancer is one of the most common cancer types in American men, accounting for nearly 20% of new

cancer diagnoses in men in 2018 (American Cancer Society 2018). Furthermore, prostate cancer

will be among the highest in cost increase of medical care from 2010 to 2020 (Mariotto et al. 2011).

Although prostate cancer has a relatively high survival rate, complications due to radiation (e.g,

radiation exposure to healthy organs) are still one of the biggest concerns about prostate cancer

treatment (American Cancer Society 2018). The reasons above suggest it is critical to design high-

quality treatment plans efficiently and consistently. Because there exist multiple clinical criteria

which are generally not achievable simultaneously, clinical trade-offs and associated preferences,

reflected in the treatment planning objectives (and their weights), are critical features that describe

the administered treatment.

4.2. Model Formulation

We specify the models presented in Section 3 with details specific to IMRT treatment planning

for prostate cancer. General goals in treatment planning are to spare organs at risk (OARs) while
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delivering sufficient radiation dose to the tumor. In prostate cancer, generally four OARs are

considered: the bladder, rectum, left femoral head, and right femoral head (Chanyavanich et al.

2011).

Let B be the set of beamlets, where each beamlet b ∈B is associated with a decision variable

wb that determines the beamlet’s radiation intensity. The patient’s body is discretized into a set

V of volume elements called voxels. The amount of dose delivered to voxel v ∈ V by beamlet

b∈B is denoted by Dv,b and the entire matrix by D∈R|V |×|B|. The anatomical regions of interest

(ROIs) for prostate cancer treatment include the four OARs, the clinical target volume (CTV), the

planning target volume (PTV), and the set of remaining voxels near the tumor, often referred to

as normal tissue (Normal). The subsets of voxels that comprise each of the structures are denoted

by VCTV,VPTV,VBlad,VRect,VLFem,VRFem, and VNormal, respectively.

The objective selection problem considers multiple forms of candidate objectives. To permit a

wide range of objectives to be considered, we use both maximum dose and threshold penalty objec-

tives (both linear and quadratic) for these four organs at risk. In addition, we propose objectives

for the target volumes as well. For both the CTV and PTV, we include a quadratic target dose

error objective and a heterogeneity objective that measures the variance in dose to the structure.

We summarize the candidate objectives below and note that all of them map from R|B| to R.

1. Piecewise linear dose threshold functions (L1): Consider an OAR ρ ∈

{Blad, Rect, LFem, RFem} with threshold value τ Gy. We define this objective function as

fL1τ,ρ(w) = 1
|Vρ|

∑
v∈Vρ

max{
∑
b∈B

Dv,bwb − τ,0}. We consider threshold values τ ∈ {0,20,40,60} Gy

for the bladder and rectum and τ ∈ {0,20} Gy for the femoral heads.

2. Piecewise quadratic dose threshold functions (L2): For each ρ ∈ {Blad, Rect, LFem, RFem}

with threshold value τ Gy, we define the L2 objective function as fL2τ,ρ(w) =

1
|Vρ|

∑
v∈Vρ

max{
∑
b∈B

Dv,bwb − τ,0}2. We consider threshold values τ ∈ {0,20,40,60} Gy for the

bladder and rectum and τ ∈ {0,20} Gy for the femoral heads.

3. Maximum dose functions (Max): For each ρ∈ {Blad, Rect, LFem, RFem}, the maximum dose

objective function is fMax
ρ (w) = max

v∈Vρ

∑
b∈B

Dv,bwb.
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Structure

Function Type
L1 Max L2 DE HD

Bladder 1-4 5 6-9

CTV 10 11

Left Femoral Head 12-13 14 15-16

PTV 17 18

Right Femoral Head 19-20 21 22-23

Rectum 24-27 28 29-32

Table 1 A summary of the 32 functions used in objective selection. L1 and L2 function labels increase with the

threshold magnitude.

4. Dose error functions (DE): Consider a target volume ρ ∈ {CTV, PTV} with target dose φρ.

Define the target dose function as fDE
ρ (w) = 1

|Vρ|

∑
v∈Vρ

(
φρ−

∑
b∈B

Dv,bwb

)2

. We consider a target

dose of 80Gy for the CTV and 77 Gy for the PTV.

5. Heterogeneous dose functions (HD): For each target volume ρ ∈ {CTV, PTV}, define the

function as fHDρ (w) = 1
|Vρ|

∑
v∈Vρ

(∑
b∈B

Dv,bwb−
∑
v′∈Vρ

∑
b∈B

Dv,bwb

)2

.

The L1 and L2 functions penalize radiation doses to OARs that exceed thresholds (i.e., L1-norm

and squared L2-norm, respectively). We note that we do not include equivalent uniform dose func-

tions (Niemierko 1997) or other dose-volume objectives; they do not result in a convex optimization

problem in general. However, such functions have been estimated by weighted combinations of

mean and maximum dose functions in the literature (Nimerierko 1999, Thieke et al. 2002), which

can be represented through the 0-threshold versions of L1 and L2 objectives and the maximum dose

objectives. The DE objectives can be appropriate if a specific dose is thought to be preferable for a

target volume, and HD objectives can promote homogeneity in the radiation delivered to a target

volume (without a specific target dose). We note that all of the objectives are nonnegative; to make

them strictly positive, we add a small constant term (.01) to each of them. Table 1 summarizes

the labels for the functions in the candidate objective pool.

The radiation dose required for the CTV and PTV for prostate cancer treatment is generally

hard-constrained within upper and lower bounds, denoted by uρ and lρ, where ρ ∈ {CTV,PTV}.

As the bladder, rectum, and normal tissue are close to the CTV and PTV yet radiation dose to
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these structures is supposed to not exceed dose delivered to the CTV and PTV, dose upper bounds

are also introduced to them, also denoted by uρ, ρ∈ {Blad, Rect, Normal}. Additional constraints

are generally introduced to discourage heterogeneous intensity maps; we require the intensity of

each beamlet to be within some fixed ratio (lower and higher) of the average beamlet intensity.

Denote these ratios by ηL and ηU . Based on the above notation, the forward optimization model

for IMRT treatment planning is included in the e-companion (see Section EC.1).

5. Solution Approaches

As mentioned, there is a close connection between feature selection and objective selection prob-

lems. This motivates the use of sequential forward selection approaches to approximately solve

the objective selection problem. We consider the problem of selecting θ= 6 objectives, due to the

six specific structures (bladder, rectum, left femoral head, right femoral head, CTV, and PTV).

We propose three forward selection approaches to select objectives: one approach is a classical

greedy algorithm that optimizes the distance function of the objective selection problem; the sec-

ond approach iteratively searches through each ROI for the best objective in a greedy fashion; the

third approach is a variant of the greedy algorithm that finds a solution even more efficiently by

exploiting the unique structure of the problem that reflects patients’ anatomical characteristics.

In addition to the forward selection approaches, we implement the regularization method. We also

propose extensions of these approaches to select objectives for a group of patients.

5.1. Greedy Algorithms and Regularization

In the generic greedy algorithm, given a single data input (e.g., one patient), for each currently

unselected objective, we solve the restricted problem RP(x̂,S) by setting S to the union of the

unselected objective and the current selected objective set. The objective that decreases the relative

duality gap the most is added to the selected set, and the process repeats in the next iteration.

We refer the reader to Nemhauser et al. (1978) for more details about the greedy algorithm. We

denote this method G-Solo when it is applied to a single patient.
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In the ROI-restricted greedy algorithm, given a prespecified ordering of the structures, at iter-

ation k, we greedily select an objective from the k-th ROI. For instance, if the k-th ROI is the

left femoral head, we solve the restricted problem considering a left femoral head objective (see

Table 1) along with the currently selected objectives of the previous k− 1 ROIs. The left femoral

head objective that decreases the relative duality gap the most is added to the selected set, and

we repeat the procedure for the next ROI. This method ensures that exactly one objective per

structure is selected. We denote the ROI-restricted greedy algorithm by GR-Solo.

For the regularization approach, we solve (8) for the specified patient. We set λ equal to six

times the vector of ones in R|K| so that the regularization term is 6||α||1, where α is the weight

vector. We note that further optimization and parameter tuning may find a regularization penalty

that works robustly. For a single patient, we refer to this approach as R-Solo.

5.2. Anatomy-Based Approach

Our specific application in radiation therapy offers some structure that can allow us to search

for objectives in a different way beyond the relative duality gap. Each objective function fk is

characterized by its ROI’s matrix, Dρk , the type of objective (L1, L2, Max, DE, HD), and the

threshold τk (we interpret τk = 0 for objectives without thresholds). In particular, the Dρ matrices

quantify the influence of each beamlet on each voxel and thus provide geometric information on

the structures. Hence, we can define a metric that indicates the similarity of two objectives from

the same patient in order to select dissimilar objectives, thus reducing redundancy, that describe

past planning decisions. We let γ̂(i, j) be the distance between the Gramian matrices Dρi and Dρj

defined by Lim et al. (2019); additional details can be found in Section EC.2. Then, we define the

dissimilarity between fi and fj by γ(i, j) = 5γ̂(i, j) + 51type(i) 6=type(j) + |τi− τj|, where 1type(i) 6=type(j)

captures if objectives i and j are not of the same type (e.g., both L1). Thus, γ indicates the

anatomical and function type similarity between two objectives from the same patient. Define the

function T : K2 → R by T (S) =
∑
i,j∈S

γ(i, j); we call T the total edge function because it is the

sum of edge weights of a weighted complete graph where each node corresponds to each objective
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i∈ S and γ(i, j) represents the edge weight. We refer to the set of edge weights {γ(i, j)}i,j∈K as an

E-vector.

In the anatomy-based greedy algorithm for a single patient, which we call A-Solo, the first

objective function is selected by minimizing the duality gap (i.e., solving problem (5) repeatedly

with each candidate objective and choosing the objective that gives the minimum duality gap).

Each subsequent objective is then selected by maximizing the increase in the total edge function T

(see Algorithm 1 in Section EC.2). As there is no optimization problem involved to add subsequent

objectives and evaluating the total edge function is relatively easy and can be done a priori, this

anatomy-based approach is faster than the generic greedy algorithm, G-Solo.

5.3. Batch-Input Objective Selection

Given a group of patients, we consider two different variants of the objective selection problem: (i)

finding common objective sets for all patients in the same cluster and (ii) common objectives and

weights for all patients in the same cluster.

(i) Finding common objectives: Objectives are greedily selected based on the sum of individual

duality gaps, which is obtained by solving patients’ individual restricted inverse problems (5).

(ii) Finding common objectives and weights: The regularization approach is generalized to apply

to multiple patients. Objectives for the batch are computed as f̃(χ) =
∑
p∈P

f(xp), where P is

the batch of patients. We solve the regularization problem (8) using f̃ and input solution χ,

again using the regularization penalty of 6||α||1.

We refer to the first approach (i) as G-Batch-S because it uses the greedy algorithm on the group

of patients to select common objectives (not weights). In the same way, we label (ii) as R-Batch-W

because it uses the regularization approach to find common objectives and weights for the group

of patients. A summary of solution approaches developed for objective selection is displayed in

Table 2. Overall, the presented solution approaches can be used to develop a treatment planning

procedure that reduces the time-intensive burden of manual objective selection.
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Method Single Patient Multiple Patients: Set (S), Weight (W)

Anatomy-based A-Solo

Greedy Alg. G-Solo G-Batch-S

Greedy Alg. by ROI GR-Solo

Regularization R-Solo R-Batch-W

Table 2 A summary of solution approaches for objective selection

6. Computational Results

In this section, we compare the performance of our proposed solution methods for the objective

selection problem for prostate cancer therapy. We consider a total of 32 candidate objectives (see

Table 1); because no efficient method is known to produce an optimal set objectives (outside of a

prohibitively expensive exhaustive search), we do not provide results for optimal sets of objectives.

Instead we focus on the performance of our solution approaches and use the normal inverse problem

(without regularization or objective selection) as a benchmark, where appropriate. The stopping

criterion for iterative approaches was six or seven iterations. We use 24 synthetic treatment planning

data sets generated in Chan et al. (2014) and Chan and Lee (2018). Chan et al. (2014) used

CERR (Computational Environment for Radiotherapy Research; (Deasy et al. 2003, 2006)) and

an auxiliary optimization problem to generate the dose delivery constraint parameters (i.e., the D

matrix in the forward optimization problem in Section EC.1) as well as input treatment plans for

the objective selection problem to mimic what would have been used in the clinical setting. In this

process, the authors used dose distribution data obtained from the Princess Margaret Cancer Centre

as a reference by matching CTV, PTV, and OAR information and radiation beam environment

parameters to the clinical data, which are available from Chan et al. (2014). All planning-related

parameter data (e.g., upper and lower dose limits for the CTV, PTV, and OARs) were obtained

from Chan et al. (2014) and are available in Section EC.1.

Figure 1 displays the distribution of problem sizes for instances of the restricted problem for

each patient while running G-Solo. Problem sizes for instances of the restricted problem in other
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Figure 1 The problem sizes for each patient’s restricted problem. The problem size data was taken from one of

the G-Solo instances, although the problem size is roughly the same for each instance in each iteration

of a solution method as well as the regularization problem.

iterative methods and regularization problem are roughly the same as that of G-Solo. The number

or variables ranges from 1,000 to 14,000 and the number of constraints from 2,000 to 21,000.

Table 3 shows the diversity and trends of the objective sets selected by G-Solo, GR-Solo, A-Solo,

and R-Solo for four patients. Results for other patients are included in the e-companion (Tables

EC.1–EC.5). Where applicable, the last number in the objective indicates the dose threshold; for

instance, RFem.L2.20 refers to the 20 Gy piecewise-quadratic dose threshold objective for the right

femoral head. For the iterative approaches, the “Obj k” column in Table 3 indicates the k-th

objective selected; for regularization, this column shows the objective with the k-th largest weight

(there may be additional objectives that have positive weight).

For all of the solution approaches, no ROI dominates the objective selection; an assortment of

ROIs are represented in each case, including the target volumes (CTV and PTV). For example,

consider Patient 1. For all solution approaches, the first objective is either the maximum dose

objective for the bladder or the analogous objective for the rectum. The maximum dose objective for
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Px Method M.Time (s) I.Gap M.Gap Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Obj 6
1 G-Solo 1065.61 1.102 1.108 Rect.Max PTV.HD Rect.L1.0 LFem.Max Blad.Max RFem.Max
1 GR-Solo 368.89 1.102 1.11 Blad.Max Rect.Max LFem.Max RFem.Max CTV.HD PTV.DE
1 A-Solo 229.09 1.102 1.121 Rect.Max Blad.L1.60 RFem.L2.0 LFem.L1.20 CTV.DE RFem.L2.20
1 R-Solo 296.9 1.102 1.111 Rect.Max Blad.Max Rect.L1.0 Blad.L1.0 LFem.L1.0 RFem.L1.0
2 G-Solo 1013.8 1.084 1.086 Blad.Max Blad.L1.0 RFem.Max PTV.DE Rect.Max Rect.L1.0
2 GR-Solo 388.58 1.084 1.101 Blad.Max Rect.L1.0 LFem.Max RFem.Max CTV.HD PTV.HD
2 A-Solo 242.12 1.084 1.107 Blad.Max RFem.L1.20 PTV.DE LFem.L2.20 PTV.HD RFem.L2.20
2 R-Solo 516.31 1.084 1.091 Blad.Max Rect.Max RFem.Max Blad.L1.0 Blad.L1.20 Blad.L1.40
3 G-Solo 1406.8 1.078 1.08 Blad.Max Blad.L1.0 Rect.L1.0 Rect.Max PTV.DE RFem.Max
3 GR-Solo 502.34 1.078 1.088 Blad.Max Rect.L1.0 LFem.L1.0 RFem.L1.0 CTV.HD PTV.DE
3 A-Solo 325.36 1.078 1.095 Blad.Max LFem.L1.20 RFem.L2.0 CTV.DE LFem.L2.20 RFem.L1.20
3 R-Solo 528.2 1.078 1.088 Blad.L1.0 Rect.L1.0 Blad.Max Rect.Max LFem.L1.0 RFem.L1.0
4 G-Solo 831.73 1.086 1.088 Rect.Max PTV.HD Blad.L1.0 Blad.Max CTV.HD PTV.DE
4 GR-Solo 314.04 1.086 1.09 Blad.Max Rect.Max LFem.Max RFem.Max CTV.HD PTV.DE
4 A-Solo 191.12 1.086 1.093 Rect.Max Blad.L1.60 RFem.L2.0 LFem.L1.20 PTV.DE LFem.L2.20
4 R-Solo 480.41 1.086 1.094 Rect.Max Blad.Max Blad.L1.0 Rect.L1.0 RFem.L1.0 LFem.Max

Table 3 Objectives chosen by various objective selection methods and corresponding solution times and relative

gaps (labeled M.Time and M.Gap, respectively) and relative gaps from the normal inverse problems (labeled I.Gap)

for Patients 1–4. Where applicable, the last number in the objective indicates the threshold.

the rectum is selected by all methods for Patient 1 and the maximum dose objective for the bladder

is selected by all but one method (A-Solo). Beyond these two objectives, there is an assortment of

other objectives, including target volume and femoral head objectives. Similar observations can be

made for other patients.

Table 3 and Tables EC.1–EC.5 show that maximum dose objectives are commonly selected

amongst all methods across all patients, and this is especially true for the bladder and rectum (see

highlighted entries). In all cases (patients and solution methods), either the maximum bladder dose

objective or the maximum rectum dose objective is selected, and for all but two cases, one of these

objectives is the first objective. These are, in fact, the most commonly selected objectives. Different

threshold values are also selected for threshold penalty objectives. In addition, the dose error and

heterogeneous dose objectives for the target volumes are selected at roughly the same frequency.

From Tables 3 and EC.1–EC.5, we observe that typically, either G-Solo or R-Solo performs the

best among our methods, in terms of the relative duality gap. We show in other results (including

Figure 4) that these are also frequently the most computationally expensive methods.

While Table 3 and Tables EC.1–EC.5 show the different sets of objectives selected, Figures 2–3

and Figures EC.1–EC.2 display the progressive decrease in relative gap during the iterations of the

solution approaches. For example, Figures 2–3 compare the performance of the objectives found

by the solution approaches and 20 randomly selected objective sets (with optimized weights) for
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Figure 2 Relative duality gaps of objective selection solution approaches. The iterative methods continue to

(weakly) improve at each iteration, and the relative duality gaps are bounded below by 1.

Patients 1 and 2. Figure 2 displays the relative gaps for the solution methods. For R-Solo we

display the same relative gap for each iteration, as it is not an iterative method, and we show six

iterations of GR-Solo because there are six ROIs with candidate objectives. We include a seventh

iteration for A-Solo and G-Solo, and note that there is little improvement for the last iteration.

Because some of the randomly selected objective sets produced very large duality gaps, the y-axis

of Figure 3 represents the reciprocal of the duality gap. Iterations for the random objectives are

determined by the order in which the objectives are randomly selected. All of the proposed solution

methods perform substantially better than arbitrary objective selection in terms of relative gap

minimization.

Figure 4 shows the run-times of solution approaches for four patients. Although the cumulative

time of the first two or three iterations of G-Solo is cheaper than R-Solo (solved only once), the

total cost of G-Solo after six greedy iterations is more expensive than any other single solution

method. Hence, depending on the number of necessary iterations, either G-Solo or R-Solo could

be more efficient. Recall that for A-Solo, the first objective is chosen greedily, hence the overlap

with G-Solo. Each subsequent iteration (up to the penultimate) is determined from the E-vector,

which leads to little subsequent cost. For R-Solo, the time to compute the weight vectors from the

KKT conditions is included starting from the first iteration, while it is only included in the last
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Figure 3 Relative duality gaps of objective selection solution approaches and random objective sets. Due to how

large some random objective relative duality gaps are, we display the gap’s reciprocal.
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Figure 4 Run-times for various solution approaches. For the anatomy-based heuristic, the time to compute the

weights is added to the last iteration.

iteration for iterative methods. Figure 5 summarizes the distribution of run-times for the solution

approaches for all patients. R-Solo is typically more expensive than the other two methods, A-Solo
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Figure 5 Solution method run-time distributions for objective selection. The time includes computation of the

weight vectors after the final iteration (or regularized inverse problem). Note that the x-axes have

different ranges for each solution method. The mean solve times in minutes across all patients are: 28.9

(G-Solo), 8.0 (GR-Solo), 12.2 (R-Solo), and 8.2 (A-Solo).

and GR-Solo. Most of the patients complete within a small range of time, but there are consistent

outliers which take longer lengths of time, which matches the presence of a few patients who have

large problem sizes (see Figure 1).

Among the proposed solution approaches, R-Solo is the only one for which the number of selected

objectives cannot be directly set, and this can lead to more than θ chosen objectives. Figure 6

displays the objective weights for Patients 1-4 from R-Solo. R-Solo clearly selects a small subset

of objectives for Patients 2-4, but more objectives are selected for Patient 1. In fact, for several

cases R-Solo selects more than θ objectives; examples include Patients 8, 14, 18, and 22 in Figure

7. Moreover, it is not clear how to set the regularization parameter for each patient for different

cardinality parameters θ; for instance, too few objectives may have been selected for Patient 2

if the regularization penalty was too high in this case. Thus, in general, using R-Solo to select a

sparse set of objectives may involve an additional parameter tuning phase.
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Figure 6 Objective weights for R-Solo (Patients 1–4). The number of selected objectives in the regularization

method is not explicitly controlled.
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Figure 7 Objective weights for R-Solo (Patients 8,14,18,22). The number of selected objectives in the regulariza-

tion method is not explicitly controlled.
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Next we consider the problem of finding objectives and weights from a set of patients, as opposed

to the single-patient setting. This problem is particularly relevant when there are multiple patients

available in the data that can be used for objective selection for a new patient. We selected 18

out of 24 patients as the training cohort, and the rest formed the testing cohort. Recall that we

consider two different batch methods: G-Batch-S and R-Batch-W. G-Batch-S was used to select an

objective set Sbatch for the entire group of patients. Then, the relative gap was computed for each

patient (both in the training cohort and testing cohort) by solving the restricted inverse problem

RP(Sbatch). The objectives selected by G-Batch-S were: Blad.Max, Rect.Max, PTV.DE, CTV.HD,

Blad.L1.0, and LFem.Max. The size of the solved optimization problems is single-patient based, as

the restricted inverse problems are solved for each patient independently. The time per iteration was

approximately 28 minutes with a total run-time of 2.8 hours. The second batch approach, R-Batch-

W, selected weights for the entire patient set based on the eighteen patients in the training cohort.

After computing weights, the forward problem for each patient was solved using these weights to

compute the relative gap. The total run-time was approximately 3.6 hours (approximately 45,000

variables and 700,000 constraints).

Table 4 shows the relative duality gaps when using the single-patient and batch methods. The

“Inverse” column of Table 4 displays the gaps using the normal inverse problem (neither objective

selection nor regularization, see Section 3.2.2), which provides a lower bound on the relative duality

gaps achievable by the other solution approaches. We observe that our approaches are often close

to this lower bound. There is no apparent difference in the batch methods’ performance between

the training and test cohorts.

Next, we give clinical interpretations of our objective selection approaches. We use the dose-

volume histogram (DVH) to compare treatment plans generated by objectives from the solution

approaches and the original treatment plans. DVHs are a clinical standard for visualizing and eval-

uating radiation therapy treatment quality; they display the percentage volume of each structure

receiving a certain level of dose or higher. Figures 8 and 9 show that, for Patients 1 and 2, respec-

tively, the DVHs produced by the solutions approaches are similar to the clinical DVHs compared

to the randomly selected objectives for the various ROIs.
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Patient In Training Cohort G-Solo G-Batch-S R-Solo R-Batch-W A-Solo GR-Solo Inverse
5 No 1.06 1.06 1.08 1.15 1.08 1.06 1.06
7 No 1.1 1.1 1.11 1.1 1.12 1.11 1.1
9 No 1.06 1.06 1.06 1.09 1.07 1.06 1.05
10 No 1.08 1.08 1.08 1.08 1.09 1.08 1.07
11 No 1.08 1.08 1.08 1.1 1.09 1.09 1.07
12 No 1.06 1.06 1.07 1.13 1.08 1.07 1.06
1 Yes 1.11 1.11 1.11 1.18 1.12 1.11 1.1
2 Yes 1.09 1.09 1.09 1.1 1.11 1.1 1.08
3 Yes 1.08 1.09 1.09 1.12 1.09 1.09 1.08
4 Yes 1.09 1.09 1.09 1.13 1.09 1.09 1.09
6 Yes 1.05 1.06 1.06 1.12 1.07 1.06 1.05
8 Yes 1.1 1.11 1.11 1.16 1.17 1.11 1.1
13 Yes 1.23 1.24 1.26 1.61 1.28 1.24 1.23
14 Yes 1.29 1.32 1.35 1.64 1.4 1.3 1.28
15 Yes 1.16 1.17 1.19 1.33 1.21 1.17 1.16
16 Yes 1.21 1.21 1.25 1.36 1.28 1.21 1.2
17 Yes 1.14 1.14 1.18 1.26 1.23 1.14 1.13
18 Yes 1.31 1.31 1.33 1.41 1.43 1.31 1.3
19 Yes 1.26 1.28 1.28 1.46 1.32 1.28 1.26
20 Yes 1.26 1.26 1.28 1.37 1.34 1.26 1.25
21 Yes 1.12 1.13 1.13 1.24 1.13 1.12 1.11
22 Yes 1.24 1.24 1.26 1.46 1.35 1.25 1.22
23 Yes 1.19 1.19 1.21 1.31 1.26 1.19 1.18
24 Yes 1.25 1.25 1.27 1.77 1.3 1.25 1.24

Table 4 Relative duality gaps of patients using single patient and batch methods. The training set included 18

patients, based on which the objectives and weights were determined, which were then applied to all patients

individually to compute the duality gaps.

We further compare the DVHs using shape and curve analysis via three different distance metrics:

Euclidean norm, discrete Fréchet distance, and Procrustes distance. We refer the reader to Jekel

et al. (2018) and references in Table 5 for additional details on these metrics. Using each metric,

patient, and OAR, we compute the distance between the G-Solo DVHs and clinical DVHs as well

as the distance between the DVHs generated by random, arbitrarily selected objectives and clinical

DVHs for all patients. For a given patient, OAR, and metric, we use the average of the metric values

over all random trials. We use the average of the random objectives trials in order to compare our

results to naive, arbitrary objective selection and demonstrate that such an arbitrary approach

leads to high variability in the treatment quality. The “G-Solo” columns of Table 6 show each

of the metric values (for the bladder) for each patient using the solution from forward problem

parametrized by the G-Solo objectives and weights; that is, it displays the distance between the

G-Solo DVH and the clinical DVH. The “Random” column shows the average metric value over

the twenty random trials for each patient, i.e., the average over trials of distances between the

Random (trial t) DVH and the clinical DVH. For each metric and each OAR, the “G-Solo” column
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Figure 8 DVHs for various solution approaches (Patient 1).

was compared to the “Random” column using a two-sided Wilcoxon signed-rank test with a null

hypothesis that there is no difference in the distribution producing each column and a significance

level of .05. Table 7 shows that the p-values from the tests are less than 0.05 for all of the metrics

and OARs, which indicates that the differences between the G-Solo DVHs and those generated by

random objectives are statistically significant.
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Figure 9 DVHs for various solution approaches (Patient 2).

Comparison Metric G-Solo Random Objectives Referenecs

Duality Gap
α>f(xClin)

α>f(xG)

1

T

T∑
t=1

α>f(xClin)

α>f(xR,t)
Chan et al. (2014)

Euclidean Norm ||DVHClin−DVHG||2 1

T

T∑
t=1

||DVHClin−DVHR,t||2

Fréchet Distance FD(DVHClin−DVHG) 1

T

T∑
t=1

FD(DVHClin−DVHR,t) Fréchet (1906)

Procrustes Distance PD(DVHClin−DVHG) 1

T

T∑
t=1

PD(DVHClin−DVHR,t) Goodall (1991)

Table 5 Metrics for comparing treatment plan DVHs.
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Px. G-Solo (Euc) Rand. (Euc) G-Solo (Fréc) Rand. (Fréc) G-Solo (Proc) Rand. (Proc)
1 2.13 2.9 0.185 0.269 7.18e-06 6.18e-06
2 1.2 1.47 0.233 0.153 2.91e-06 3.04e-06
3 0.924 1.22 0.127 0.117 1.23e-06 1.73e-06
4 1.52 2.68 0.138 0.251 3.47e-06 7.59e-06
5 1.0 1.99 0.185 0.178 2.74e-06 3.6e-06
6 1.13 1.68 0.219 0.193 3.33e-06 4.01e-06
7 1.63 2.46 0.254 0.217 5.72e-06 5.52e-06
8 1.16 2.92 0.26 0.253 4.9e-06 7.42e-06
9 1.52 2.47 0.157 0.193 3.66e-06 7e-06
10 1.09 2.01 0.154 0.166 1.71e-06 3.83e-06
11 1.13 2.18 0.21 0.205 3.94e-06 5.18e-06
12 0.772 2.0 0.106 0.181 6.96e-07 4.42e-06
13 3.62 4.8 0.462 0.435 3.51e-05 1.74e-05
14 1.18 2.84 0.176 0.315 5.28e-06 1.19e-05
15 3.2 3.26 0.28 0.336 2.35e-05 1.72e-05
16 3.5 5.35 0.3 0.46 1.41e-05 1.54e-05
17 2.15 3.62 0.3 0.333 1.06e-05 9.39e-06
18 2.96 4.75 0.24 0.394 1.12e-05 1.64e-05
19 2.09 4.12 0.182 0.364 6.04e-06 1.15e-05
20 3.21 4.84 0.357 0.407 7.06e-06 1.91e-05
21 1.0 3.06 0.217 0.285 5.15e-06 9.45e-06
22 2.38 3.61 0.238 0.371 8.38e-06 1.57e-05
23 2.52 2.45 0.238 0.233 9.33e-06 8.3e-06
24 2.76 3.48 0.4 0.434 1.7e-05 1.89e-05

Table 6 DVH comparison metrics for the bladder. The “G-Solo” columns have one entry per patient. The

“Random” objective columns are the average values over 20 trials for each patient.

Figure 10 shows that there appears to be a linear relationship between the duality gap and the

three distance metrics used for the bladder and rectum DVH comparisons, associated with the

objectives selected by the greedy algorithm (filled circles). Similarly, for the average of the arbi-

trarily chosen objectives, there also appears to be a (possibly weaker) linear relationship between

the corresponding duality gap and the DVH distance metrics. Similar results for the femoral heads’

DVHs can be found in Figure EC.7 in the e-companion. These results provide an important clinical

implication that the duality gap as a result of the restricted inverse problem associated with a cer-

tain set of objectives can be used as a metric for how similar the resulting dose distributions are to

the benchmark (clincial) DVHs. The results for the DVH comparison are further supported by an

individual voxel dose analysis, in which we compare the dose delivered by the clinical and G-Solo-

and random-objective-based treatment plans; details are in Tables EC.9 and EC.10. These tables

show that the doses from the G-Solo treatment plans are more similar to the clinical treatment

plan doses than those of the random objective treatment plans.

ROI Euclidean Fréchet Procrustes
Bladder 2.4e-05 0.0093 0.018
Rectum 1.8e-05 0.0021 0.00036

L. Femur 0.028 0.0086 0.003
R. Femur 0.0018 0.00044 0.00044

Table 7 The p-values from a comparison of DVH curves (G-Solo vs. Random) using Wilcoxon signed-rank tests.
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Figure 10 Relationship between distance metrics for DVH similarity and the duality gap (Bladder and Rectum).

In summary, we observe that individualized treatment plans produced by recovering clinical

preferences in the form of planning objectives and weights closely replicate the original clinical

plans. Moreover, empirically, the relative gaps produced by G-Solo and R-Solo are similar. We

observe some trade-offs between the proposed approaches. The iterative solution approaches can

be beneficial when an appropriate θ is unknown because they allow the user to continue to run the

greedy algorithm until the relative gap decreases below a tolerance and thus dynamically select
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a small, but representative set of objectives. On the other hand, the regularization approach (R-

Solo) has no direct control over the size of the set of selected objectives, and the regularization

penalty parameter may require tuning. However, the iterative approaches (e.g., G-Solo) typically

become computationally more expensive than R-Solo when the number of objectives to be selected

increases.

We also observe that the objectives selected from the training cohort also resulted in small

relative gaps for the testing cohort. Hence, determining a set of objectives and weights based on an

existing batch of patients may lead to useful IMRT planning parameters for future similar patients,

which can minimize the manual, time-consuming objective selection process in current practice.

Thus, our proposed methodology can lead to more efficient and consistent treatment planning.

Overall, our results support the following potential treatment planning procedure:

1. Given an initial database of patients, cluster patients according to appropriate anatomical

and clinical characteristics. For each cluster, find objectives (using G-Batch-S) or objectives

and weights (using R-Batch-W).

2. For each new patient p:

2.a Match patient p to some cluster c.

2.b If using G-Batch-S: find a similar patient p′ within cluster c. Solve the restricted inverse

problem for patient p′ using the objectives from G-Batch-S, and obtain the weights. Use

these weights for the forward planning problem of patient p.

2.c If using R-Batch-W: use the objectives and weights from R-Batch-W applied to cluster c

for the forward planning problem of patient p.

Clustering patients is beyond the scope of this paper; however, finding patients with similar char-

acteristics can be done by analyzing the patients’ anatomical geometry or CT images (Wu et al.

2009, Chanyavanich et al. 2011, Moore et al. 2011). Our results, as a proof of concept, demonstrate

the ability of our solution approaches to select objectives for a single patient and groups of patients,

which potentially can improve future planning procedures as described above.
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7. Conclusion

In this paper, we introduce the objective selection problem that finds a set of convex objectives that

capture the preferences in input data and produces weakly Pareto optimal solutions with respect to

these preferences. We formulate the problem as a non-convex bilevel mixed-integer program using

inverse optimization and propose iterative and regularized approaches to approximately solve it by

connecting objective selection with feature selection. Moreover, we demonstrate that we can extend

our objective selection framework to multiple patients. The proposed solution approaches for the

objective selection problem can lead to efficient and streamlined treatment planning that avoids

time-consuming and often unguided trial and error. Future work includes exploration into other

distance metrics for the restricted inverse problem as well as further analysis of the anatomy-based

greedy algorithm.
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Fréchet MM (1906) Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo

(1884-1940) 22(1):1–72.

Galatsanos NP, Katsaggelos AK (1992) Methods for choosing the regularization parameter and estimating

the noise variance in image restoration and their relation. IEEE Transactions on Image Processing

1(3):322–336.

Gebken B, Peitz S (2021) Inverse multiobjective optimization: Inferring decision criteria from data. Journal

of Global Optimization 80:3–29.



Ajayi, Lee, and Schaefer: Objective Selection for Cancer Treatment
Article submitted to Operations Research; manuscript no. 3 41

Goodall C (1991) Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical

Society: Series B (Methodological) 53(2):285–321.

Gottlieb J, Puchta M, Solnon C (2003) A study of greedy, local search, and ant colony optimization

approaches for car sequencing problems. Cagnoni S, et al., eds., Applications of Evolutionary Comput-

ing, 246–257 (Berlin, Heidelberg: Springer Berlin Heidelberg).

Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. Journal of Machine Learning

Research 3:1157–1182.

Halabi T, Craft D, Bortfeld T (2006) Dose-volume objectives in multi-criteria optimization. Physics in

Medicine & Biology 51:3809–3818.

Iyengar G, Kang W (2005) Inverse conic programming with applications. Operations Research Letters 33:319–

330.

Jekel CF, Venter G, Venter MP, Stander N, Haftka RT (2018) Similarity measures for identifying material

parameters from hysteresis loops using inverse analysis. International Journal of Material Forming

12(3):355–378.

Kearney V, Chan JW, Haaf S, Descovich M, Solberg TD (2018) DoseNet: A volumetric dose prediction

algorithm using 3d fully-convolutional neural networks. Physics in Medicine & Biology 63(23):235022.

Keshavarz A, Wang Y, Boyd S (2011) Imputing a convex objective function. 2011 IEEE International

Symposium on Intelligent Control, 613–619.

Krause A, Singh A, Guestrin C (2008) Near-optimal sensor placement in Gaussian processes: Theory, efficient

algorithms and empirical studies. Journal of Machine Learning 9:235–284.

Lamperski JB, Schaefer AJ (2015) A polyhedral characterization of the inverse-feasible region of a mixed-

integer program. Operations Research Letters 43(6):575–578.

Lee T, Hammad M, Chan TCY, Craig T, Sharpe MB (2013) Predicting objective function weights from

patient anatomy in prostate IMRT treatment planning. Medical Physics 40(12):121706.

Lim L, Sepulchre R, Ye K (2019) Geometric distance between positive definite matrices of different dimen-

sions. IEEE Transactions on Information Theory 65(9):5401–5405.



Ajayi, Lee, and Schaefer: Objective Selection for Cancer Treatment
42 Article submitted to Operations Research; manuscript no. 3

Lin JG (2005) On min-norm and min-max methods of multi-objective optimization. Mathematical Program-

ming 103:1–33.

Mahmood R, Babier A, McNiven A, Diamant A, Chan TCY (2018) Automated treatment planning in

radiation therapy using generative adversarial networks. Doshi-Velez F, Fackler J, Jung K, Kale D,

Ranganath R, Wallace B, Wiens J, eds., Proceedings of the 3rd Machine Learning for Healthcare Con-

ference, volume 85 of Proceedings of Machine Learning Research, 484–499 (PMLR).

Mariotto AB, Yabroff KR, Shao Y, Feuer EJ, Brown ML (2011) Projections of the cost of cancer care in the

United States: 2010-2010. Journal of the National Cancer Institute 103(2):117–128.

Mart́ı R (2015) Black-box solvers in combinatorial optimization. 2015 International Conference on Industrial

Engineering and Systems Management (IESM), 2–2.

McIntosh C, Purdie TG (2016) Voxel-based dose prediction with multi-patient atlas selection for automated

radiotherapy treatment planning. Physics in Medicine & Biology 62:415.

Moore KL, Brame RS, Low DA, Mutic S (2011) Experience-based quality control of clinical intensity-

modulated radiotherapy planning. International Journal of Radiation Oncology, Biology, Physics

81(2):545–551.

Naghavi M, Foroughi AA, Zarepisheh M (2019) Inverse optimization for multi-objective linear programming.

Optimization Letters 13(2):281–294.

Nemhauser G, Wolsey L, Fisher M (1978) An analysis of approximations for maximizing submodular set

functions - I. Mathematical Programming 14(1):265–294.

Niemierko A (1997) Reporting and analyzing dose distributions: A concept of equivalent uniform dose.

Medical Physics 24(1):103–110.

Nimerierko A (1999) A generalized concept of equivalent uniform dose. Medical Physics 26:1100.
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