
PeloPartition: Improving Blockchain Resilience to

Network Partitioning

Juncheng Fang, Farzad Habibi, Kevin Bruhwiler, Fayzah Alshammari,

Abhishek Singh, Yinan Zhou and Faisal Nawab

Department of Computer Science

University of California, Irvine

{junchf1, habibif, kbruhwil, fayzaha, abhishas, yinanz17, nawabf}@uci.edu

Abstract—Blockchain has gained considerable traction over the
last few years and plays a critical role in realizing decentralized
and cryptocurrency applications. A challenge that has been over-
looked in prior blockchain algorithms is that they do not consider
large-scale network outages and relied on the assumption of a
reliable global network connectivity. In the event of a large scale
network partition, forks may occur between partitioned regions.
After the partition ends they will be discarded, leading to the
loss of many blocks and a considerable amount of wasted work.
This paper presents PeloPartition, which provides a sharding
mechanism to improve blockchain’s resilience to the possibility
of a global internet outage. In PeloPartition we form consensus
groups dynamically and consider the partitioning of the group
as a hint to split the blockchain into branches and guarantee
that all of them will be merged after the network is recovered.
We indicate different methodologies to ensure blockchain secu-
rity while partitioning occurs. Our experiments use simulations
to show how this approach can improve the performance of
blockchain algorithms and prevent wasted computational power
during partitioning.

Index Terms—resilience, partitioning, blockchain, collective
signing, PeloPartition

I. INTRODUCTION

Blockchain, initially invented for the Bitcoin [1] cryptocur-

rency, is a decentralized ledger. This permissionless infras-

tructure is used for recording different transactions without

needing a central authority. Particular nodes called miners can

create a block consisting of multiple transactions and, using

proof-of-work, nodes reach consensus to append new data to

the existing ledger. All transactions are maintained and can be

retrieved by any node with a copy of the ledger. Many appli-

cations have been implemented on blockchain infrastructure,

and their adoption is growing rapidly. For example, blockchain

can be used for fault-tolerant communication middleware [2],

or as a global trusted log [3]. IBM researchers forecast that

the market based on blockchain is expected to reach $60.7
billion by 2024 [4]. This wide adoption makes it important

to consider the challenges associated with making blockchain

resilient to different types of failures. Recent work [5] has

shown the possibility of massive disruptions to the Internet

caused by solar superstorms in the near future. Such events

can disconnect different geographical regions from each other,

potentially for a period of months.

Blockchain systems create blocks approximately in pre-

specified time intervals (for instance, Bitcoin generates one

block every 10 minutes). During a network partition the main

chain may fork, resulting in miners being segregated into

disconnected regions. Such a partition would result in the

creation of parallel blocks in affected regions by the miners.

Since blockchain algorithms use the longest chain rule to

accept only one of the branches when the network partition

is resolved all the blocks in other branches will be discarded.

This wastes significant hash power and affects the reliability

of the ledger. We aim to reduce such impacts by enabling

different forks to be merged in our work.

Blockchain sharding has been explored by many previous

works [6]. Sharding technologies partition the blockchain

network into various groups, while these groups maintain their

decentralized ledger and use a secure cross-shard communica-

tion protocol. For instance, RapidChain [7] partitions the set of

nodes into multiple smaller groups of nodes called committees

that operate in parallel on disjoint blocks of transactions and

maintain disjoint ledgers. Although these sharding algorithms

provide a partitioning mechanism for blockchain systems, they

do not consider network disruption because sharding is pre-

determined and nodes in one shard can still be partitioned.

Their primary focus is improving the scalability and perfor-

mance of blockchain by increasing parallelism and the number

of transactions per second.

This paper presents a partitioning algorithm to tolerate

global-scale network partitioning. At a high level we design

PeloPartition, a blockchain system that splits block creation

into different branches when a network partition happens

and merges existing branches into one when the network

partition is resolved. We also present the security mechanisms

to prevent conflicts between branches and tolerate malicious

behaviors by both miners and clients. This paper aims to

ensure that each fork works independently when the network is

partitioned. After a network recovery, the previous progress in

each partition is preserved and conflicts between the partitions

are resolved.

II. BACKGROUND

Motivation Traditional blockchain protocol relies on a

globally connected network. It is not designed to handle a

network partition that will cause all blocks in shorter forks

to be dropped after the network recovers. In this scenario,

part of the ledger will be lost, which greatly impacts the

reliability of blockchain system. PeloPartition is designed to

tolerate large-scale network partitions which can be caused

by both natural phenomena and network attacks performed by

malicious entities.

We haven’t encountered severe natural events that can com-

pletely partition the network infrastructure since the advent

of modern Internet technology. However, the author in [5]

presents the possibility of a large solar storm in the near

future. Such event can destroy the submarine fiber-optic cables

connecting different continents, cutting down intra-continental

network communication. The global-scale network partition

caused by such a solar storm could last for several months.

Partitioning attacks are notable concerns that should be con-

sidered in regards to blockchain resilience. Different attackers

can partition the blockchain’s network by intercepting a small

number of key messages. Authors in [8] demonstrate the feasi-

bility of routing attacks on blockchain. The goal of partitioning

attacks is to cut connections between a set of nodes and the

rest of the network. The authors present a practical way of

using BGP hijacking to perform such an attack on the Bitcoin

network. Authors in [9] present a stealthier partitioning attack

on the blockchain called EREBUS. The EREBUS attack par-

titions the Bitcoin network without any routing manipulations,

making the attack undetectable to the control plane and data

plane. This attack makes the autonomous adversary system a

natural man-in-the-middle network of all the peer connections

of one or more targeted Bitcoin nodes by influencing the

targeted nodes’ peering decisions. In both works the authors

suggest different ways to mitigate routing attacks by making

the attacks more challenging. However, they do not entirely

prevent attackers from performing partitioning attacks on the

network.

Bitcoin Blockchain systems were introduced by Bitcoin

[1]. Bitcoin is a decentralized ledger that maintains proposed

transactions as a chain of blocks mined by different miners.

Miners collect transactions from the transaction pool and

include them in a new block. Each block consists of a

cryptographic hash of the previous block, a Merkle tree [10]

of new transactions to be committed, and a solution for a

cryptographic puzzle as proof of work (PoW). PoW validates

blocks in this system. A block is considered valid if it has

the correct solution for the cryptographic puzzle, which varies

based on the network’s current difficulty parameter. In Bitcoin

the difficulty is tuned periodically (every 2016 blocks). The

adjustment of the difficulty is performed to maintain the

frequency of blocks to be close to one block every 10 minutes.

Any miner could add a new block to the blockchain by

simply publishing it into the overlay network. When mul-

tiple miners create a new block with the same position,

the blockchain will be divided into two branches. This phe-

nomenon is called a fork in the blockchain systems. The

Bitcoin protocol proposes mining on the heaviest chain and

discarding the other chain’s transactions to resolve the fork.

Therefore, branches and blocks outside the main chain will be

discarded.

A fork can happen when different network parts are discon-

nected, or messages are delayed. In an ideal network, block

dissemination takes seconds. Forks occur on average about

every 60 blocks [11], which can be ignored as a insignificant

problem. However, the cases we discussed for network par-

titioning can take a long time to be resolved [5], which has

the potential of increasing the frequency and severity of forks.

This leads to wasting a lot of computational power.

In this work, we replace the longest chain rule by proposing

a solution to consider all chains as part of the blockchain. Our

solution helps merge the different forks into the main fork.

Byzantine Fault Tolerance The Byzantine Generals prob-

lem [12], [13] refers to to the problem of reaching agreement

among a group of nodes that might act in arbitrary (e.g.,

malicious) ways. Authors in [13] show that at least 3f + 1
participants are required to tolerate f malicious participants.

The Practical Byzantine Fault Tolerance (PBFT) [14] is one of

the most influential solutions to the Byzantine Generals prob-

lem. The normal-case PBFT protocol consists of 3 separate

rounds:

(1) Pre-prepare: The leader proposes the next record be

committed by broadcasting a message consisting of the

record.

(2) Prepare: When participants receive a PrePrepare, they

enter this phase and send Prepare(m), where m is the

PrePrepare message they have received. The nodes will

wait for (2f + 1) to prepare messages and then publish

this observation with a Commit(m) message.

(3) Commit: Participants wait for (2f + 1) messages to

confirm that enough nodes have reached an agreement

and consider it the final decision.

The normal-case protocol works correctly when the leader

is non-faulty. To tolerate faulty leaders, view-change protocol

is introduced to transit leadership and ensure the correctness

of the PBFT protocol. We refer the interested reader to the

full paper [14] for the details about the view-change protocol.

The PBFT protocol can reach consensus much faster than

the traditional blockchain protocol. With PBFT commitment is

irreversible, while with blockchain there is only probabilistic

guarantee for a block to be committed. However, the PBFT

protocol is limited to a static group of participants and it

cannot scale to a large cluster. In our work we construct

consensus group dynamically to leverage the benefit of the

PBFT protocol.

Collective Signing CoSi [15] is a protocol for scalable

collective signing, which ensures that a leader statement is

validated and publicly signed by a diverse group of witnesses.

CoSi uses Schnorr multi-signatures [16] with a communi-

cation tree for scalability. For each message that the leader

wants to be collectively signed, he runs a four-phase protocol

requiring two round-trips over the leader and its witnesses

tree (Announcement, Commitment, Challenge, and Response).

The result of this protocol is a signature that can be verified

efficiently by anyone. We refer interested reader to their work

[15] for more technical details.

ByzCoin [17] is a blockchain system that provides a

stronger guarantee on the commitment of blocks. It uses CoSi

to implement a scalable Practical Byzantine Fault Tolerance

(PBFT) [14] algorithm to reach consensus between a dynam-

ically formed consensus group. CoSi does not directly imple-

ment the PBFT protocol, but it can be used as a primitive that

leaders can utilize to collect and aggregate the PBFT protocol’s

messages. Authors in ByzCoin combine two sequential rounds

of CoSi to implement a single round of PBFT protocol. The

first run of CoSi implements the pre-prepare and prepare phase

of PBFT, in which the leader obtains proof from a two-

thirds super-majority quorum of consensus group members

that the leader’s proposal can enter the commit phase. Then,

the leader initiates the second round of CoSi to implement the

commit step of PBFT. In ByzCoin, the miners of previous m

blocks of a new block will become the consensus group to

verify and co-sign this block. Once a block is signed, every

node can safely confirm that this block will be preserved

in the main chain without waiting for multiple blocks to

be published. By using this algorithm as a building block,

authors implement ByzCoin, a blockchain system to optimize

transaction commitment and verification as their primary goal.

We extend ByzCoin’s proposed scalable PBFT algorithm to

collectively sign new blocks by a window of previous miners

as a consensus group. The partition of the consensus group is

used as a hint to determine if a network partition happened.

III. SYSTEM DESIGN

A. System and Security Model

PeloPartition is a blockchain protocol that aims to tolerate

network partitioning. It consists of N miners working on

appending new blocks to the existing chain, and an arbitrary

number of clients that send transactions to miners to include

in the chain. Each miner i has a finite amount of hash power

resembling the number of hash operations a node can perform

in a fixed amount of time.

A subset of miners could be malicious and act arbitrarily at

any time. Therefore, Byzantine faults can happen during the

execution of the algorithm. As the PBFT protocol can tolerate

up to 1/3 of faulty nodes, we assume that the total hash power

of all malicious nodes is less than 33% of the total hash power

in the system.

During network partitions, the set of nodes is divided

into different regions. We assume that each node, including

both miners and clients, can only communicate with other

nodes that are in the same region. There is no intra-region

communication allowed. We call this type of network partition

as Network Hard Partition. We also assume that the malicious

nodes are distributed uniformly among regions so that the

assumption of no more than 33% faulty nodes still holds in

each region.

B. Overview

In PeloPartition, a window of w previous miners will form

a consensus group and sign the new block using the PBFT

protocol introduced in ByzCoin [17]. For instance, Figure 1

shows when the window size is set to 3, each block will be

collectively signed by the miner of the block and the miners

that created three previous blocks. When a network partition

happens, the consensus group will be divided and the new

block in each partition is signed by only part of the group. In

Figure 1, two branches are created after the network partition

happens and the first blocks of them are signed by disjoint

sets of miners.

After the network recovers, miners will receive all branches.

The miner of the new block forms a consensus group by

selecting a set of miners from each branch. For instance,

in Figure 1, a merge between two branches happens, and

nodes from both partitions sign the new block. However, there

can be conflicts between branches so merging them into one

chain will affect the integrity of the ledger. We introduce two

mechanisms to prevent conflicts, ensuring that merging can

be performed safely. We will also discuss the defense against

possible issues of using consensus group.

In the following subsections we will delve into the details

of the design and discuss each part in more detail.

C. Signing Blocks With CoSi

We adopt the design of ByzCoin [17] to verify and sign

blocks with a dynamic group of consensus miners using CoSi.

The dynamic consensus group for a new block is formed by the

miners of the previous w blocks and the miner of the new block

itself. Since it is a sliding window on the chain, the window

will be moved right by one every time a block is mined. The

window size w can be defined by the number of blocks in

a specific time window. For example, bitcoin produces 144

blocks per day, so with w=143, the miners of blocks in one day

will be responsible for signing new blocks. It ensures that the

consensus group members are recently active. Also, the mining

rewards and transaction fees of a new block will be split across

all members who participate in the signing procedure, which

encourages miners to be active. So consensus group members

will rarely be unavailable with the above two mechanisms.

The miner of the new block will be the leader of the

consensus protocol. As in ByzCoin, the BFT consensus pro-

tocol is implemented using two consecutive rounds of CoSi

initiated by the leader. The first round implements the pre-

prepare and prepare phase of the BFT protocol, ensuring that

the super-majority of the nodes agree on the validity of the

transactions in new blocks. The second round implements the

commit phase so the super-majority knows that the proposal

is accepted and the new block is committed. The collective

signature from the second phase will be the commitment

signature of the new block as proof to the network that the

new block is valid. Once a block is signed, we can safely

treat it as committed without waiting for multiple blocks to

be mined after this block.

The advantage of using CoSi for ByzCoin is that it can

improve the scalability of consensus protocols like PBFT

and provide an easily verifiable signature to other nodes.

For PeloPartition, we are more interested in the metadata

of the signature, which contains the information of which

node has signed and which has not, because the number of

signed nodes will be a crucial hint to reflect the status of

co-signed by
(abc) & d

E

F

co-signed by
(b) & e

co-signed by
(cd) & f

B

D

window of size w = 3
...

...

A

E

C

B

co-signed by
(bcd) & a

Time Before Partition Partition Happened After Recovery

n

N

Miner n

Block mined by n

Reachability

D

a e b

d f c

A B C

a e b

d f c

ea b

d f c

Fig. 1: PeloPartition Design Overview–Nodes inside a partition can reach each other. Each block will be signed by a window

of size w of previous miners. When partitioning happens, blockchain will be split into different branches. After recovery,

branches will be merged into a single chain.

the network. If a new block is signed by only half of the

consensus group, a network partition likely happened, and this

partition has around half of the hashing power of the whole

network, assuming that the hashing power of each partition

is proportional to the number of consensus miners in that

partition. Because a region with more hash power has is more

likely to produce more blocks, within a long enough time

frame the number of blocks produced by one region can be

used to estimate its relative hash power.

D. Splitting And Merging

Our goal is to design a blockchain system that can be

split into branches when a network partition happens and

preserve the progress in each branch after network recovery.

In this section, we will discuss how the blockchain is split and

merged, while taking the network condition into account. We

will also discuss how to resolve several threats introduced by

the network partition and our new blockchain design.

Splitting into branches When a network partition happens,

the consensus group may not be able to reach agreement due

to not having enough participating members. We modify the

above signing approach with one more phase, discovering

phase, before the two-round CoSi to adjust the size of the

consensus group according to the network condition.

The purpose of discovering phaseis to verify the availability

of each consensus miner. The miner of the new block will

broadcast a validation message to all consensus miners and

wait for their response until timeout. The set of responding

miners will form the actual consensus group. Finally, the miner

of the new block initiates the two-round CoSi by sending the

new block together with the set of actual consensus members.

The miner of the new block can be malicious, and the

consensus group it proposed may be wrong. To ensure the

correctness of the set of participants, the consensus protocol

will agree on not only the validity of the transactions in the

new block but also the set of participants in the first CoSi

round. That means each member will broadcast a validation

message to all consensus miners like in discovering phase, and

check if the set of responding nodes matches the proposed con-

sensus group by the leader. This approach will introduce extra

message overhead, and a simple but effective optimization

is to only perform this extra verification of participants only

when the number of inactive consensus miners is higher than

a certain threshold, which means a network partition is likely.

Consequently, the modified two-round CoSi only happens at

the first block of each branch.

When a block is signed by a consensus group with size

smaller than the window size w all nodes receiving this block

know that the network has been partitioned. The size of the

consensus group wb indicates the size of the branch, and wb

w

reflects the portion of hashing power owned by that branch.

Nodes can also easily identify the branch by the signature of

the first block in that branch. Both the branch size and branch

identity will be useful to handle some threats introduced by

partition, and we will discuss them in the ledger integrity

section.

See Figure 1 as an example. When a network partition

happens, miner e of new block E sends out validation request

to miners of previous w=3 blocks which are bcd, and can only

receive the response from b. As a result, the consensus group

of block E will be only be. They then run the two-round CoSi

to verify and sign on block E. On the other hand, another block

F is mined, and the corresponding miners in that partition will

be signing on F. Now, the network is split into two branches,

one with one-thirds of hashing power and another with two-

thirds.

Merging branches Merging branches happens after the

network recovers. When a miner can see multiple branches

simultaneously, it will start mining on a block that is pointing

to the last block of each branch, which means the new block

has multiple parent blocks instead of one.

For this merging block, the consensus group is formed in a

different way. For each branch, the miner of the last wb (branch

size) blocks will be selected, and there will be precisely w

previous miners being selected among all branches. If the

miner successfully mined the merging block, it would lead the

signing process with the consensus group in the normal way.

When any node receives a signed merging block, it knows that

the network is recovered. Moreover, with the merging block

pointing to all branches, we keep track of all previous blocks

and transactions.

See Figure 1 as example. Before the network recovers, two

branches exist. After recovery, every node in the network can

see both branches. Miner a successfully mined a block that is

pointing to the last block of two branches, B and D. Since the

branch size of the upper branch is 1, miner b is selected, and

miner cd is selected from the lower branch with size 2. Then

miner a initiated the signing process with consensus group

abcd on block A. Once block A is signed, the chain recovers

and the progress of the two branches is preserved.

E. Ledger Integrity

This section discusses the possible threats introduced by

network partitions and PeloPartition design. We also propose

a solution to handle those threats to ensure the ledger’s

integrity.

Conflicting transactions In the blockchain, clients send

their transactions to miners, and miners will add the trans-

action into the transaction pool. Miners select a large number

of transactions from the pool and pack them into one block.

When a partition happens, two miners in different partitions

may have the same transaction in their pool. In this way one

transaction may be committed to two different branches.

The most efficient way is to force all miners to clear their

pool after the partition, but there is no way to guarantee that

they will do so. To handle this problem, we require clients to

attach the branch identifier (the signature of the first block in

the branch) when they send out the transaction. A transaction

is considered invalid if the branch identifier is wrong. In this

way we enforce the property that all transactions included in

a branch are sent out after the partition, which means they can

not be committed to multiple branches. Since the first block

of the branch is clueless about the identifier, we treat it as

an empty block where all the included transactions will be

ignored and do not need to be verified.

One account in different regions Although each node can

only access one partition, it is possible that one account is

used by people in different partitions, allowing them double-

spend some or all of the balance of an account in multiple

branches. We limit the maximum balance an account can spend

in one branch according to the branch size. For example,

if a branch owns one-third of the hashing power, then the

maximum balance of an account in the branch will be one-third

of the balance before the partition plus the earnings within

that branch. As a result, the wallet is also partitioned so that

an account cannot spend more than its total contents across

multiple branches.

Inactive consensus miner If a miner in the consensus group

of a new block is not responding in the signing procedure,

the number of participants will be w − 1. Nodes seeing the

new block will consider that the network is partitioned and

there is another branch with a consensus group of size 1.

However, the other branch does not exist and we can never

merge that non-exist branch. In that case, part of the wallet

will be permanently burned.

As discussed in III-C, the probability of a consensus miner

being inactive is very small. An effective way to tolerate

this rare case is to set a minimum threshold t of consensus

miners to form a branch. For example, if t = 3 and there are

two miners not responding, we don’t consider the network

to be partitioned. Note that an actual branch with less than

t consensus miners will also be ignored. It helps filter out

small regions with too little hash power since they are more

vulnerable to be take over by malicious entities.

Maliciously creating a branch without partition If the

malicious miner controls more than t of the miners in the

sliding window, it is possible to create a branch that is fully

controlled by not responding to the validation request of others

and mine its block with the signature from controlled miners.

We will demonstrate that there is no incentive for the malicious

nodes to do that. The malicious node will not do it because no

client will be sending the transaction to the malicious branch,

so the malicious node earns no transaction fee. If it does

not publish the branch to the network, no one will send the

transaction to this branch. If the branch is published, since

there is no network partition, every client can see another

branch with a larger branch size. They still only send the

transaction to the other branch since that branch is safer with

higher hashing power, and they can spend more balance in

that branch. So we conclude that the malicious node has no

incentive to create a branch without partition deliberately.

IV. EVALUATION

The goal of PeloPartition is to tolerate network partitions

and preserve the progress of different branches. In this sec-

tion we conduct experiments to evaluate how PeloPartition
performs with different network events and then compare it to

a bitcoin-like blockchain system, with the goal of measuring

their respective robustness against network partitions.

A. Simulation Parameters

In this subsection we define and explain default parameters

that will be used throughout the evaluation. All experiments

are configured with the default parameters unless specified

otherwise.

Window Size We simulate PeloPartition running for 120

blocks which is equivalent to running a bitcoin-like blockchain

for one day. We consider the window size to be 6, roughly

equal to the number of mined blocks after one hour.

Network For our simulation we use 1000 nodes distributed

across six regions, in which each of them has a specific mining

power derived from [18]. Table I shows the exact percentage

of each region’s distribution.

Prototype Implementation We implemented our prototype

on top of a blockchain simulator called Simblock [19] which

allows setting the network connections as well as hash power

where a block can have more than one parent block, rather

than a linear chain of blocks where each block has only one

parent block. GHOST protocol [22] is the first to introduce

DAG into the blockchain, but the system still recognizes only

one main chain, where the number of blocks referencing a

given older block will be used for computing the weight of a

chain to determine which is the main chain. Later DAGCoin

[23] proposed a blockless solution, where transactions are

not grouped into blocks but each become the vertex of DAG

directly. The ”confidence” of a transaction is determined by

the number of transactions referencing it and no POW mining

is required. DAG-based blockchains increase the throughput

by allowing parallel transaction appending and reducing the

computing power required. However, DAG-based blockchain

is known to be more vulnerable to double-spending attacks

than traditional blockchain. It requires all nodes to maintain

the global state of the system for correct transaction validation,

which is impossible during a hard network partition.

VI. LIMITATIONS AND FUTURE WORK

This section briefly describes several limitations of our work

and possible future work areas.

Soft Network Partition In this paper, we are only consider-

ing hard network partitions that limits communication between

partitioned nodes completely. If the network is in a soft parti-

tion, which means the connections between different regions

are limited to a low bandwidth but not fully disconnected,

more complex malicious behaviors can happen. For example,

a consensus miner may receive blocks from different partitions

and reply to all of them, which increases the total number of

consensus miners thus affecting the wallet partitioning. We

leave the analysis of all possible attacks under a soft partition

and the corresponding defense mechanisms for future works.

Single-Shard Takeover Attack We use POW and BFT con-

sensus in each shard, which requires no additional safegaurds

beyond the assumption that malicious miners have less than

33% of the total hashing power, so how nodes are distributed

into shards will be very important. However, as discussed in

the system model section, network partitions may be natural

events where the system has no control over which nodes will

be in which region of the partition. More importantly, many

miners are aggregated into mining pools, and it is possible that

in one region there is a powerful mining pool that controls

more than 33% of hashing power.

One possible solution is finding alternative consensus pro-

tocols that can tolerate more faulty nodes to improve the

system’s robustness. We only create shards when partitioning

happens and quickly merge them after the network recovers,

so the impact of the takeover attack in a single shard is limited.

VII. CONCLUSION

We present PeloPartition, a blockchain system that toler-

ates network partition by sharding using collective signature as

the hint of partition and preserving works in each shard after

recovery with merging. Four possible attacks under the hard

partition and the solutions are discussed to ensure the ledger’s

integrity. We developed a prototype on Simblock and validated

its workflow under network partition and network recovery

events. Experiments show that our system retains the work

in different shards after recovery, while standard blockchain

systems like bitcoin lose most of the blocks produced during

a partition.

VIII. ACKNOWLEDGEMENT

This research is supported in part by the NSF under grant

CNS-1815212.
REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-

tralized Business Review, p. 21260, 2008.
[2] F. Nawab and M. Sadoghi, “Blockplane: A global-scale byzantizing

middleware,” in 2019 IEEE 35th International Conference on Data

Engineering (ICDE). IEEE, 2019, pp. 124–135.
[3] D. Abadi, O. Arden, F. Nawab, and M. Shadmon, “Anylog: a grand

unification of the internet of things,” in Conference on Innovative Data

Systems Research (CIDR ‘20), 2020.
[4] W. R. Team et al., “Blockchain market shares, market strategies, and

market forecasts, 2018 to 2024. wintergreen research, inc,” 2017.
[5] S. A. Jyothi, “Solar superstorms: planning for an internet apocalypse,”

in Proceedings of the 2021 ACM SIGCOMM 2021 Conference, 2021,
pp. 692–704.

[6] G. Yu, X. Wang, K. Yu, W. Ni, J. A. Zhang, and R. P. Liu, “Survey:
Sharding in blockchains,” IEEE Access, vol. 8, pp. 14 155–14 181, 2020.

[7] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, 2018, pp. 931–
948.

[8] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking bitcoin: Routing
attacks on cryptocurrencies,” in 2017 IEEE Symposium on Security and

Privacy (SP), 2017, pp. 375–392.
[9] M. Tran, I. Choi, G. J. Moon, A. V. Vu, and M. S. Kang, “A stealthier

partitioning attack against bitcoin peer-to-peer network,” in 2020 IEEE

Symposium on Security and Privacy (SP), 2020, pp. 894–909.
[10] R. C. Merkle, Secrecy, authentication, and public key systems. Stanford

university, 1979.
[11] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin

network,” in IEEE P2P 2013 Proceedings. IEEE, 2013, pp. 1–10.
[12] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-

lem,” in Concurrency: the Works of Leslie Lamport, 2019, pp. 203–226.
[13] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the

presence of faults,” Journal of the ACM (JACM), vol. 27, no. 2, pp.
228–234, 1980.

[14] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, no. 1999, 1999, pp. 173–186.

[15] E. Syta et al., “Keeping authorities” honest or bust” with decentralized
witness cosigning,” in 2016 IEEE Symposium on Security and Privacy

(SP). Ieee, 2016, pp. 526–545.
[16] C.-P. Schnorr, “Efficient signature generation by smart cards,” Journal

of cryptology, vol. 4, no. 3, pp. 161–174, 1991.
[17] E. K. Kogias et al., “Enhancing bitcoin security and performance

with strong consistency via collective signing,” in 25th usenix security

symposium (usenix security 16), 2016, pp. 279–296.
[18] A. Miller, J. Litton, A. Pachulski, N. Gupta, D. Levin, N. Spring, and

B. Bhattacharjee, “Discovering bitcoin’s public topology and influential
nodes,” et al, 2015.

[19] Y. Aoki et al., “Simblock: A blockchain network simulator,” in IEEE

INFOCOM 2019-IEEE Conference on Computer Communications Work-

shops (INFOCOM WKSHPS). IEEE, 2019, pp. 325–329.
[20] K. Bruhwiler et al., “Analyzing soft and hard partitions of global-scale

blockchain systems,” in International Symposium on Recent Advances

of Blockchain Evolution (BlockchainEvo 2022). IEEE, 2022.
[21] L. Luu et al., “A secure sharding protocol for open blockchains,” in

Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, 2016, pp. 17–30.
[22] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing

in bitcoin,” in International Conference on Financial Cryptography and

Data Security. Springer, 2015, pp. 507–527.
[23] S. D. Lerner, “Dagcoin: a cryptocurrency without blocks,” 2015.

