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Abstract—Blockchain has gained considerable traction over the
last few years and plays a critical role in realizing decentralized
and cryptocurrency applications. A challenge that has been over-
looked in prior blockchain algorithms is that they do not consider
large-scale network outages and relied on the assumption of a
reliable global network connectivity. In the event of a large scale
network partition, forks may occur between partitioned regions.
After the partition ends they will be discarded, leading to the
loss of many blocks and a considerable amount of wasted work.
This paper presents PeloPartition, which provides a sharding
mechanism to improve blockchain’s resilience to the possibility
of a global internet outage. In PeloPartition we form consensus
groups dynamically and consider the partitioning of the group
as a hint to split the blockchain into branches and guarantee
that all of them will be merged after the network is recovered.
We indicate different methodologies to ensure blockchain secu-
rity while partitioning occurs. Our experiments use simulations
to show how this approach can improve the performance of
blockchain algorithms and prevent wasted computational power
during partitioning.

Index Terms—resilience, partitioning, blockchain, collective
signing, PeloPartition

I. INTRODUCTION

Blockchain, initially invented for the Bitcoin [1] cryptocur-
rency, is a decentralized ledger. This permissionless infras-
tructure is used for recording different transactions without
needing a central authority. Particular nodes called miners can
create a block consisting of multiple transactions and, using
proof-of-work, nodes reach consensus to append new data to
the existing ledger. All transactions are maintained and can be
retrieved by any node with a copy of the ledger. Many appli-
cations have been implemented on blockchain infrastructure,
and their adoption is growing rapidly. For example, blockchain
can be used for fault-tolerant communication middleware [2],
or as a global trusted log [3]. IBM researchers forecast that
the market based on blockchain is expected to reach $60.7
billion by 2024 [4]. This wide adoption makes it important
to consider the challenges associated with making blockchain
resilient to different types of failures. Recent work [5] has
shown the possibility of massive disruptions to the Internet
caused by solar superstorms in the near future. Such events
can disconnect different geographical regions from each other,
potentially for a period of months.

Blockchain systems create blocks approximately in pre-
specified time intervals (for instance, Bitcoin generates one

block every 10 minutes). During a network partition the main
chain may fork, resulting in miners being segregated into
disconnected regions. Such a partition would result in the
creation of parallel blocks in affected regions by the miners.
Since blockchain algorithms use the longest chain rule to
accept only one of the branches when the network partition
is resolved all the blocks in other branches will be discarded.
This wastes significant hash power and affects the reliability
of the ledger. We aim to reduce such impacts by enabling
different forks to be merged in our work.

Blockchain sharding has been explored by many previous
works [6]. Sharding technologies partition the blockchain
network into various groups, while these groups maintain their
decentralized ledger and use a secure cross-shard communica-
tion protocol. For instance, RapidChain [7] partitions the set of
nodes into multiple smaller groups of nodes called committees
that operate in parallel on disjoint blocks of transactions and
maintain disjoint ledgers. Although these sharding algorithms
provide a partitioning mechanism for blockchain systems, they
do not consider network disruption because sharding is pre-
determined and nodes in one shard can still be partitioned.
Their primary focus is improving the scalability and perfor-
mance of blockchain by increasing parallelism and the number
of transactions per second.

This paper presents a partitioning algorithm to tolerate
global-scale network partitioning. At a high level we design
PeloPartition, a blockchain system that splits block creation
into different branches when a network partition happens
and merges existing branches into one when the network
partition is resolved. We also present the security mechanisms
to prevent conflicts between branches and tolerate malicious
behaviors by both miners and clients. This paper aims to
ensure that each fork works independently when the network is
partitioned. After a network recovery, the previous progress in
each partition is preserved and conflicts between the partitions
are resolved.

II. BACKGROUND

Motivation Traditional blockchain protocol relies on a
globally connected network. It is not designed to handle a
network partition that will cause all blocks in shorter forks
to be dropped after the network recovers. In this scenario,
part of the ledger will be lost, which greatly impacts the



reliability of blockchain system. PeloPartition is designed to
tolerate large-scale network partitions which can be caused
by both natural phenomena and network attacks performed by
malicious entities.

We haven’t encountered severe natural events that can com-
pletely partition the network infrastructure since the advent
of modern Internet technology. However, the author in [5]
presents the possibility of a large solar storm in the near
future. Such event can destroy the submarine fiber-optic cables
connecting different continents, cutting down intra-continental
network communication. The global-scale network partition
caused by such a solar storm could last for several months.

Partitioning attacks are notable concerns that should be con-
sidered in regards to blockchain resilience. Different attackers
can partition the blockchain’s network by intercepting a small
number of key messages. Authors in [8] demonstrate the feasi-
bility of routing attacks on blockchain. The goal of partitioning
attacks is to cut connections between a set of nodes and the
rest of the network. The authors present a practical way of
using BGP hijacking to perform such an attack on the Bitcoin
network. Authors in [9] present a stealthier partitioning attack
on the blockchain called EREBUS. The EREBUS attack par-
titions the Bitcoin network without any routing manipulations,
making the attack undetectable to the control plane and data
plane. This attack makes the autonomous adversary system a
natural man-in-the-middle network of all the peer connections
of one or more targeted Bitcoin nodes by influencing the
targeted nodes’ peering decisions. In both works the authors
suggest different ways to mitigate routing attacks by making
the attacks more challenging. However, they do not entirely
prevent attackers from performing partitioning attacks on the
network.

Bitcoin Blockchain systems were introduced by Bitcoin
[1]. Bitcoin is a decentralized ledger that maintains proposed
transactions as a chain of blocks mined by different miners.
Miners collect transactions from the transaction pool and
include them in a new block. Each block consists of a
cryptographic hash of the previous block, a Merkle tree [10]
of new transactions to be committed, and a solution for a
cryptographic puzzle as proof of work (PoW). PoW validates
blocks in this system. A block is considered valid if it has
the correct solution for the cryptographic puzzle, which varies
based on the network’s current difficulty parameter. In Bitcoin
the difficulty is tuned periodically (every 2016 blocks). The
adjustment of the difficulty is performed to maintain the
frequency of blocks to be close to one block every 10 minutes.

Any miner could add a new block to the blockchain by
simply publishing it into the overlay network. When mul-
tiple miners create a new block with the same position,
the blockchain will be divided into two branches. This phe-
nomenon is called a fork in the blockchain systems. The
Bitcoin protocol proposes mining on the heaviest chain and
discarding the other chain’s transactions to resolve the fork.
Therefore, branches and blocks outside the main chain will be
discarded.

A fork can happen when different network parts are discon-

nected, or messages are delayed. In an ideal network, block
dissemination takes seconds. Forks occur on average about
every 60 blocks [11], which can be ignored as a insignificant
problem. However, the cases we discussed for network par-
titioning can take a long time to be resolved [5], which has
the potential of increasing the frequency and severity of forks.
This leads to wasting a lot of computational power.

In this work, we replace the longest chain rule by proposing
a solution to consider all chains as part of the blockchain. Our
solution helps merge the different forks into the main fork.

Byzantine Fault Tolerance The Byzantine Generals prob-
lem [12], [13] refers to to the problem of reaching agreement
among a group of nodes that might act in arbitrary (e.g.,
malicious) ways. Authors in [13] show that at least 3f + 1
participants are required to tolerate f malicious participants.
The Practical Byzantine Fault Tolerance (PBFT) [14] is one of
the most influential solutions to the Byzantine Generals prob-
lem. The normal-case PBFT protocol consists of 3 separate
rounds:

(1) Pre-prepare: The leader proposes the next record be
committed by broadcasting a message consisting of the
record.

(2) Prepare: When participants receive a PrePrepare, they
enter this phase and send Prepare(m), where m is the
PrePrepare message they have received. The nodes will
wait for (2f + 1) to prepare messages and then publish
this observation with a Commit(m) message.

(3) Commit: Participants wait for (2f + 1) messages to
confirm that enough nodes have reached an agreement
and consider it the final decision.

The normal-case protocol works correctly when the leader
is non-faulty. To tolerate faulty leaders, view-change protocol
is introduced to transit leadership and ensure the correctness
of the PBFT protocol. We refer the interested reader to the
full paper [14] for the details about the view-change protocol.

The PBFT protocol can reach consensus much faster than
the traditional blockchain protocol. With PBFT commitment is
irreversible, while with blockchain there is only probabilistic
guarantee for a block to be committed. However, the PBFT
protocol is limited to a static group of participants and it
cannot scale to a large cluster. In our work we construct
consensus group dynamically to leverage the benefit of the
PBFT protocol.

Collective Signing CoSi [15] is a protocol for scalable
collective signing, which ensures that a leader statement is
validated and publicly signed by a diverse group of witnesses.
CoSi uses Schnorr multi-signatures [16] with a communi-
cation tree for scalability. For each message that the leader
wants to be collectively signed, he runs a four-phase protocol
requiring two round-trips over the leader and its witnesses
tree (Announcement, Commitment, Challenge, and Response).
The result of this protocol is a signature that can be verified
efficiently by anyone. We refer interested reader to their work
[15] for more technical details.

ByzCoin [17] is a blockchain system that provides a
stronger guarantee on the commitment of blocks. It uses CoSi



to implement a scalable Practical Byzantine Fault Tolerance
(PBFT) [14] algorithm to reach consensus between a dynam-
ically formed consensus group. CoSi does not directly imple-
ment the PBFT protocol, but it can be used as a primitive that
leaders can utilize to collect and aggregate the PBFT protocol’s
messages. Authors in ByzCoin combine two sequential rounds
of CoSi to implement a single round of PBFT protocol. The
first run of CoSi implements the pre-prepare and prepare phase
of PBFT, in which the leader obtains proof from a two-
thirds super-majority quorum of consensus group members
that the leader’s proposal can enter the commit phase. Then,
the leader initiates the second round of CoSi to implement the
commit step of PBFT. In ByzCoin, the miners of previous m
blocks of a new block will become the consensus group to
verify and co-sign this block. Once a block is signed, every
node can safely confirm that this block will be preserved
in the main chain without waiting for multiple blocks to
be published. By using this algorithm as a building block,
authors implement ByzCoin, a blockchain system to optimize
transaction commitment and verification as their primary goal.
We extend ByzCoin’s proposed scalable PBFT algorithm to
collectively sign new blocks by a window of previous miners
as a consensus group. The partition of the consensus group is
used as a hint to determine if a network partition happened.

III. SYSTEM DESIGN
A. System and Security Model

PeloPartition is a blockchain protocol that aims to tolerate
network partitioning. It consists of N miners working on
appending new blocks to the existing chain, and an arbitrary
number of clients that send transactions to miners to include
in the chain. Each miner ¢ has a finite amount of hash power
resembling the number of hash operations a node can perform
in a fixed amount of time.

A subset of miners could be malicious and act arbitrarily at
any time. Therefore, Byzantine faults can happen during the
execution of the algorithm. As the PBFT protocol can tolerate
up to 1/3 of faulty nodes, we assume that the total hash power
of all malicious nodes is less than 33% of the total hash power
in the system.

During network partitions, the set of nodes is divided
into different regions. We assume that each node, including
both miners and clients, can only communicate with other
nodes that are in the same region. There is no intra-region
communication allowed. We call this type of network partition
as Network Hard Partition. We also assume that the malicious
nodes are distributed uniformly among regions so that the
assumption of no more than 33% faulty nodes still holds in
each region.

B. Overview

In PeloPartition, a window of w previous miners will form
a consensus group and sign the new block using the PBFT
protocol introduced in ByzCoin [17]. For instance, Figure 1
shows when the window size is set to 3, each block will be
collectively signed by the miner of the block and the miners

that created three previous blocks. When a network partition
happens, the consensus group will be divided and the new
block in each partition is signed by only part of the group. In
Figure 1, two branches are created after the network partition
happens and the first blocks of them are signed by disjoint
sets of miners.

After the network recovers, miners will receive all branches.
The miner of the new block forms a consensus group by
selecting a set of miners from each branch. For instance,
in Figure 1, a merge between two branches happens, and
nodes from both partitions sign the new block. However, there
can be conflicts between branches so merging them into one
chain will affect the integrity of the ledger. We introduce two
mechanisms to prevent conflicts, ensuring that merging can
be performed safely. We will also discuss the defense against
possible issues of using consensus group.

In the following subsections we will delve into the details
of the design and discuss each part in more detail.

C. Signing Blocks With CoSi

We adopt the design of ByzCoin [17] to verify and sign
blocks with a dynamic group of consensus miners using CoSi.
The dynamic consensus group for a new block is formed by the
miners of the previous w blocks and the miner of the new block
itself. Since it is a sliding window on the chain, the window
will be moved right by one every time a block is mined. The
window size w can be defined by the number of blocks in
a specific time window. For example, bitcoin produces 144
blocks per day, so with w=143, the miners of blocks in one day
will be responsible for signing new blocks. It ensures that the
consensus group members are recently active. Also, the mining
rewards and transaction fees of a new block will be split across
all members who participate in the signing procedure, which
encourages miners to be active. So consensus group members
will rarely be unavailable with the above two mechanisms.

The miner of the new block will be the leader of the
consensus protocol. As in ByzCoin, the BFT consensus pro-
tocol is implemented using two consecutive rounds of CoSi
initiated by the leader. The first round implements the pre-
prepare and prepare phase of the BFT protocol, ensuring that
the super-majority of the nodes agree on the validity of the
transactions in new blocks. The second round implements the
commit phase so the super-majority knows that the proposal
is accepted and the new block is committed. The collective
signature from the second phase will be the commitment
signature of the new block as proof to the network that the
new block is valid. Once a block is signed, we can safely
treat it as committed without waiting for multiple blocks to
be mined after this block.

The advantage of using CoSi for ByzCoin is that it can
improve the scalability of consensus protocols like PBFT
and provide an easily verifiable signature to other nodes.
For PeloPartition, we are more interested in the metadata
of the signature, which contains the information of which
node has signed and which has not, because the number of
signed nodes will be a crucial hint to reflect the status of
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Fig. 1: PeloPartition Design Overview—Nodes inside a partition can reach each other. Each block will be signed by a window
of size w of previous miners. When partitioning happens, blockchain will be split into different branches. After recovery,

branches will be merged into a single chain.

the network. If a new block is signed by only half of the
consensus group, a network partition likely happened, and this
partition has around half of the hashing power of the whole
network, assuming that the hashing power of each partition
is proportional to the number of consensus miners in that
partition. Because a region with more hash power has is more
likely to produce more blocks, within a long enough time
frame the number of blocks produced by one region can be
used to estimate its relative hash power.

D. Splitting And Merging

Our goal is to design a blockchain system that can be
split into branches when a network partition happens and
preserve the progress in each branch after network recovery.
In this section, we will discuss how the blockchain is split and
merged, while taking the network condition into account. We
will also discuss how to resolve several threats introduced by
the network partition and our new blockchain design.

Splitting into branches When a network partition happens,
the consensus group may not be able to reach agreement due
to not having enough participating members. We modify the
above signing approach with one more phase, discovering
phase, before the two-round CoSi to adjust the size of the
consensus group according to the network condition.

The purpose of discovering phaseis to verify the availability
of each consensus miner. The miner of the new block will
broadcast a validation message to all consensus miners and
wait for their response until timeout. The set of responding
miners will form the actual consensus group. Finally, the miner
of the new block initiates the two-round CoSi by sending the
new block together with the set of actual consensus members.

The miner of the new block can be malicious, and the
consensus group it proposed may be wrong. To ensure the
correctness of the set of participants, the consensus protocol
will agree on not only the validity of the transactions in the
new block but also the set of participants in the first CoSi
round. That means each member will broadcast a validation

message to all consensus miners like in discovering phase, and
check if the set of responding nodes matches the proposed con-
sensus group by the leader. This approach will introduce extra
message overhead, and a simple but effective optimization
is to only perform this extra verification of participants only
when the number of inactive consensus miners is higher than
a certain threshold, which means a network partition is likely.
Consequently, the modified two-round CoSi only happens at
the first block of each branch.

When a block is signed by a consensus group with size
smaller than the window size w all nodes receiving this block
know that the network has been partitioned. The size of the
consensus group wy, indicates the size of the branch, and
reflects the portion of hashing power owned by that branch.
Nodes can also easily identify the branch by the signature of
the first block in that branch. Both the branch size and branch
identity will be useful to handle some threats introduced by
partition, and we will discuss them in the ledger integrity
section.

See Figure 1 as an example. When a network partition
happens, miner e of new block E sends out validation request
to miners of previous w=3 blocks which are bcd, and can only
receive the response from b. As a result, the consensus group
of block E will be only be. They then run the two-round CoSi
to verify and sign on block E. On the other hand, another block
F is mined, and the corresponding miners in that partition will
be signing on F. Now, the network is split into two branches,
one with one-thirds of hashing power and another with two-
thirds.

Merging branches Merging branches happens after the
network recovers. When a miner can see multiple branches
simultaneously, it will start mining on a block that is pointing
to the last block of each branch, which means the new block
has multiple parent blocks instead of one.

For this merging block, the consensus group is formed in a
different way. For each branch, the miner of the last w;, (branch
size) blocks will be selected, and there will be precisely w



previous miners being selected among all branches. If the
miner successfully mined the merging block, it would lead the
signing process with the consensus group in the normal way.
When any node receives a signed merging block, it knows that
the network is recovered. Moreover, with the merging block
pointing to all branches, we keep track of all previous blocks
and transactions.

See Figure 1 as example. Before the network recovers, two
branches exist. After recovery, every node in the network can
see both branches. Miner a successfully mined a block that is
pointing to the last block of two branches, B and D. Since the
branch size of the upper branch is 1, miner b is selected, and
miner cd is selected from the lower branch with size 2. Then
miner a initiated the signing process with consensus group
abcd on block A. Once block A is signed, the chain recovers
and the progress of the two branches is preserved.

E. Ledger Integrity

This section discusses the possible threats introduced by
network partitions and PeloPartition design. We also propose
a solution to handle those threats to ensure the ledger’s
integrity.

Conflicting transactions In the blockchain, clients send
their transactions to miners, and miners will add the trans-
action into the transaction pool. Miners select a large number
of transactions from the pool and pack them into one block.
When a partition happens, two miners in different partitions
may have the same transaction in their pool. In this way one
transaction may be committed to two different branches.

The most efficient way is to force all miners to clear their
pool after the partition, but there is no way to guarantee that
they will do so. To handle this problem, we require clients to
attach the branch identifier (the signature of the first block in
the branch) when they send out the transaction. A transaction
is considered invalid if the branch identifier is wrong. In this
way we enforce the property that all transactions included in
a branch are sent out after the partition, which means they can
not be committed to multiple branches. Since the first block
of the branch is clueless about the identifier, we treat it as
an empty block where all the included transactions will be
ignored and do not need to be verified.

One account in different regions Although each node can
only access one partition, it is possible that one account is
used by people in different partitions, allowing them double-
spend some or all of the balance of an account in multiple
branches. We limit the maximum balance an account can spend
in one branch according to the branch size. For example,
if a branch owns one-third of the hashing power, then the
maximum balance of an account in the branch will be one-third
of the balance before the partition plus the earnings within
that branch. As a result, the wallet is also partitioned so that
an account cannot spend more than its total contents across
multiple branches.

Inactive consensus miner If a miner in the consensus group
of a new block is not responding in the signing procedure,
the number of participants will be w — 1. Nodes seeing the

new block will consider that the network is partitioned and
there is another branch with a consensus group of size I.
However, the other branch does not exist and we can never
merge that non-exist branch. In that case, part of the wallet
will be permanently burned.

As discussed in III-C, the probability of a consensus miner
being inactive is very small. An effective way to tolerate
this rare case is to set a minimum threshold 7 of consensus
miners to form a branch. For example, if + = 3 and there are
two miners not responding, we don’t consider the network
to be partitioned. Note that an actual branch with less than
t consensus miners will also be ignored. It helps filter out
small regions with too little hash power since they are more
vulnerable to be take over by malicious entities.

Maliciously creating a branch without partition If the
malicious miner controls more than ¢ of the miners in the
sliding window, it is possible to create a branch that is fully
controlled by not responding to the validation request of others
and mine its block with the signature from controlled miners.
We will demonstrate that there is no incentive for the malicious
nodes to do that. The malicious node will not do it because no
client will be sending the transaction to the malicious branch,
so the malicious node earns no transaction fee. If it does
not publish the branch to the network, no one will send the
transaction to this branch. If the branch is published, since
there is no network partition, every client can see another
branch with a larger branch size. They still only send the
transaction to the other branch since that branch is safer with
higher hashing power, and they can spend more balance in
that branch. So we conclude that the malicious node has no
incentive to create a branch without partition deliberately.

IV. EVALUATION

The goal of PeloPartition is to tolerate network partitions
and preserve the progress of different branches. In this sec-
tion we conduct experiments to evaluate how PeloPartition
performs with different network events and then compare it to
a bitcoin-like blockchain system, with the goal of measuring
their respective robustness against network partitions.

A. Simulation Parameters

In this subsection we define and explain default parameters
that will be used throughout the evaluation. All experiments
are configured with the default parameters unless specified
otherwise.

Window Size We simulate PeloPartition running for 120
blocks which is equivalent to running a bitcoin-like blockchain
for one day. We consider the window size to be 6, roughly
equal to the number of mined blocks after one hour.

Network For our simulation we use 1000 nodes distributed
across six regions, in which each of them has a specific mining
power derived from [18]. Table I shows the exact percentage
of each region’s distribution.

Prototype Implementation We implemented our prototype
on top of a blockchain simulator called Simblock [19] which
allows setting the network connections as well as hash power



Region | Distribution
North America 33.16%
South America 0.9%
Europe 49.98%
Asia 11.77%
Japan 22.4%
Australia 19.5%

TABLE I: Distribution of Nodes in Each Region
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distribution among different regions. We add a new type of
block to allow multiple parents and also add our protocol
of signing new blocks. The collective signing procedure is
emulated with a fixed latency due to the communication cost.
In order to simulate a real world setup we consider this latency
to be 15 seconds for each block, equal to the worst-case
implementation of the CoSi protocol’s performance according
to [17]. All algorithms are implemented in Java. Computations
are carried out on a computer with an Intel Core 5 — 95007
processor at 2.2 — 3.7 GHz and 8 GB of RAM.

B. Total Number of Produced Blocks

We first show how PeloPartition reacts to the network par-
tition and recovery. In this experiment, we simulate a network
partition by isolating North and South America from the other
continents by setting the corresponding links’ bandwidth to
0. The mining power distribution is set according to section
IV-A where America has one-third of the hash power and the
remaining world has two-thirds.

Figure 2 reveals that the experiment starts with a regular
network until after 8 hours, the network partition occurs and
creates two different branches in the blockchain. After 8 hours
from partitioning, the network recovers, and only one branch
remains. Both of the previous branches will be considered
in the final chain and their blocks won’t be discarded. This
experiment shows that, after partitioning, one branch grows
with roughly one-third of the original rate while the other
increases with two-thirds of the initial rate. When the network
recovers the number of blocks is the accumulated number
of blocks generated in both branches plus the blocks mined
before partitioning.

PeloPartition
201 = Proof of Work

Cumulative number of wasted blocks

0.0 215 STD 7?5 1(;.0 12'.5 15;40 17I45 2(;,0
Time (hrs)
Fig. 3: Number of wasted blocks, comparing Proof of Work
with our method in the case of paritiioning

C. Wasted Blocks

In this experiment, we compare PeloPartition with a tra-
ditional bitcoin-like blockchain systems on the number of
wasted blocks, which means the blocks that are mined but
not included in the main chain eventually. We calculate the
number of wasted blocks by reducing the number of accepted
blocks in the blockchain from all generated blocks during the
simulation.

Figure 3 shows that, before the network recovers, both
our system and bitcoin incurred a small number of wasted
blocks. They include the blocks discarded because of minor
forks in Bitcoin and the blocks mined with the same position
as a previously accepted block in PeloPartition. This figure
denotes that after recovery, one of the partition branches will
be discarded entirely in the regular Bitcoin and considered
the wasted blocks since. This rapid increase is because the
normal Bitcoin only takes the longest chain into account.
However, PeloPartition merges two partition branches, and
in the end, has fewer wasted blocks than a traditional bitcoin-
like blockchain.

D. Network with Three Partitions

In this experiment, we change the network configuration
to reflect the event of three partitions consisting of America,
Australia, and the rest of the world.

Figure 4a indicates that the experiment starts with a regular
network until the network partition occurs and creates three
different branches in the blockchain. After recovery, all the
branches are eventually merged and are considered in the final
chain. This figure shows that the growth rate of the number
of blocks in each partition is the same as its corresponding
mining power.

In figure 4b we compare the number of wasted blocks for
PeloPartition with traditional bitcoin-like blockchain systems
when there are three partitions.

This experiment shows that before partitions recover a
few blocks are discarded in both PeloPartition and bitcoin.
However, after partition recovery the number of wasted blocks
for Bitcoin proliferates. This rapid increase is because the
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Fig. 4: The effect of having three isolated partitions in the
network

normal Bitcoin only considers the longest branch as the main
chain. PeloPartition merges the three branches in partitions,
and the final chain includes all the partitions mined blocks.
Therefore, there is no jump in the number of wasted blocks.
This concludes that PeloPartition has a higher throughput in
the case of partitioning and will mine more blocks in the same
amount of time.

E. Hash Power and Signing Latency

In this experiment, we analyze the impact of different hash
power distributions on the ledger integrity. We also evaluate
PeloPartition with different emulated signing latency, which
is the average time for new blocks to be signed. We set up a
network with two regions and run the simulation with the same
partition starting/ending time as in previous experiments. The
reported number is the total number of wasted blocks after the
network recovers.

Figure 5 shows that Bitcoin loses more blocks when the
hash power is equally distributed because the shorter branch
will be dropped and it mines more blocks with the higher
hash power. For PeloPartition, the number of wasted blocks
is independent of the distribution as both branches will be
merged into the main chain. With longer signing latency, there
is more time to mine blocks at the same position as a block
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Fig. 5: Number of wasted blocks under different distribution
of hash power

under the signing procedure, so there will be more blocks
being rejected. Signing latency is determined by the size of the
consensus group in real-world implementation, which means
that more blocks can be wasted for higher safety guarantee.

V. RELATED WORKS

A global-scale network partition can cause severe damage
on blockchain [20]. To the best of our knowledge, there
is currently no practical solution to overcome the problems
of network partitioning. However, blockchain systems that
support multiple branches would be a feasible approach since
they allow blocks on different branches to be persevered rather
than dropping those not on the main chain. There are two types
of such systems, sharding-based blockchain, and DAG-based
blockchain.

Sharding-based blockchain Sharding blockchain [7], [13],
[21] divides all miner nodes into multiple committees, with
each committee responsible for verifying transactions and pub-
lishing blocks in a single shard. Theoretically, this approach
leads to linear scaling of performance with the number of
shards. Also, a miner only needs to store part of the ledger that
correspond to its shard. Luu et al. [21] propose Elastico, where
the time is divided into epochs. In each epoch every miner
needs to perform a POW to establish its identity and figure
out the shard it can work on. After forming committees, each
shard will run a Byzantine fault tolerant (BFT) [13] protocol
to reach consensus among the committee and sign each new
block. Rapidchain [7] proposes an efficient gossip and intra-
shard protocol for faster committee consensus, with a more
secure shard assignment generation to prevent the adversary
from taking control of one shard. Among all the available
implementations of sharding-based blockchain, their primary
goal is to achieve better scalability, which depends critically on
a reliable network connection for both intra-shard consensus
and inter-shard transaction verification.

DAG-based blockchain Directed Acyclic Graph (DAG) is
a directed graph that contains no cycles. Applying DAG to
the blockchain means that blocks are organized as a DAG



where a block can have more than one parent block, rather
than a linear chain of blocks where each block has only one
parent block. GHOST protocol [22] is the first to introduce
DAG into the blockchain, but the system still recognizes only
one main chain, where the number of blocks referencing a
given older block will be used for computing the weight of a
chain to determine which is the main chain. Later DAGCoin
[23] proposed a blockless solution, where transactions are
not grouped into blocks but each become the vertex of DAG
directly. The “confidence” of a transaction is determined by
the number of transactions referencing it and no POW mining
is required. DAG-based blockchains increase the throughput
by allowing parallel transaction appending and reducing the
computing power required. However, DAG-based blockchain
is known to be more vulnerable to double-spending attacks
than traditional blockchain. It requires all nodes to maintain
the global state of the system for correct transaction validation,
which is impossible during a hard network partition.

VI. LIMITATIONS AND FUTURE WORK

This section briefly describes several limitations of our work
and possible future work areas.

Soft Network Partition In this paper, we are only consider-
ing hard network partitions that limits communication between
partitioned nodes completely. If the network is in a soft parti-
tion, which means the connections between different regions
are limited to a low bandwidth but not fully disconnected,
more complex malicious behaviors can happen. For example,
a consensus miner may receive blocks from different partitions
and reply to all of them, which increases the total number of
consensus miners thus affecting the wallet partitioning. We
leave the analysis of all possible attacks under a soft partition
and the corresponding defense mechanisms for future works.

Single-Shard Takeover Attack We use POW and BFT con-
sensus in each shard, which requires no additional safegaurds
beyond the assumption that malicious miners have less than
33% of the total hashing power, so how nodes are distributed
into shards will be very important. However, as discussed in
the system model section, network partitions may be natural
events where the system has no control over which nodes will
be in which region of the partition. More importantly, many
miners are aggregated into mining pools, and it is possible that
in one region there is a powerful mining pool that controls
more than 33% of hashing power.

One possible solution is finding alternative consensus pro-
tocols that can tolerate more faulty nodes to improve the
system’s robustness. We only create shards when partitioning
happens and quickly merge them after the network recovers,
so the impact of the takeover attack in a single shard is limited.

VII. CONCLUSION

We present PeloPartition, a blockchain system that toler-
ates network partition by sharding using collective signature as
the hint of partition and preserving works in each shard after
recovery with merging. Four possible attacks under the hard
partition and the solutions are discussed to ensure the ledger’s

integrity. We developed a prototype on Simblock and validated
its workflow under network partition and network recovery
events. Experiments show that our system retains the work
in different shards after recovery, while standard blockchain
systems like bitcoin lose most of the blocks produced during
a partition.
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