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Abstract—The Non-fungible token (NFT) market has been
booming with some reports estimating the surge in the market
value to over 80 Billion USD in 2025. With this surge, comes the
challenge of scaling NFT transactions and providing low latency
responses to end-users. Exclusive layer-1 blockchains like Bitcoin
and Ethereum which focus more on security and traceability
are not suitable for high throughput NFT transactions of low
value due to high gas fees. Layer-2 solutions can scale but have
a trade-off of losing some strong decentralization and security
guarantees offered by the Mainnet. In this paper, we propose
LiftChain, a multi-stage NFT transaction protocol that can scale
for high volume NFT transactions and at the same time inherit
the security guarantees from Mainnet. LiftChain differs from
existing NFT transaction protocols in that it allows multiple NFT
transactions in the off-chain before becoming consistent with
the on-chain. LiftChain also uses batching for gas fee savings
and better bandwidth utilization. Our evaluations show that
LiftChain provides comparable performance to baseline off-chain
and with batching we see more than a 5-fold improvement in gas
fee savings.

Index Terms—Blockchain, NFT, off-chain, Multi-Stage trans-
actions

I. INTRODUCTION

NFTs have been gaining immense popularity. The NFT
market cap is now more than $7 billion [22], the sales have
grown over 100 times from 2020 to 2021, and some popular
collections have traded a volume worth over $2 billion [21].
With organizations like Meta [19], Microsoft [20], and other
video game industries investing in Metaverse in which Web3
can play a major role, this trend could further increase. This
popularity surge begs the question of whether we can scale
NFT transactions to a point where NFTs can be seamlessly
integrated with high user volume applications like video
games, medical records, and voting, among others.

Popular NFT marketplaces like OpenSea using Wyvern
protocol [23] are able to transfer the NFT ownership state
quickly off-chain but cannot support similar performance for
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multiple consecutive NFT transactions. Lazy minting [24] can
reduce gas fee payments from original creators but is still an
issue for resellers. In addition, sellers have to go through the
process of listing and selling their tokens and incur the gas fee
upon accepting offers [25] [26]. This approach is not scalable
in applications like online gaming where assets can change
hands quickly. Moreover, it is inefficient in terms of gas fee
management. At the time of writing this paper, the Ethereum
gas fee is around $20 [27] [28] and during some peak times,
it can be more than $200. Currently, it’s up to the users to
choose when to perform the NFT transactions. But there can
be a smarter way to run on-chain transactions to save gas
fees. Moreover, transaction failures on the on-chain also incur
gas fees [26]. There should be a mechanism that performs
sanity checks to avoid failing transactions to prevent gas fee
wastage. OpenSea has an integration with Polygon [33] which
is a Layer 2 scalability solution. With this, the scalability issue
can be largely addressed but at the cost of strong security and
decentralization guarantees of the Mainnet.

In this paper, we propose LiftChain, a multi-stage transac-
tion protocol for scaling NFT transactions. To ensure that the
transactions occur with low latency in an NFT marketplace for
a better end-user experience, our model proposes an off-chain
marketplace where transactions initially occur with low latency
and the final stage of our multi-stage model interacts with on-
chain to make the off-chain marketplace eventually consistent
with the correct state. Although our model is specific to the
NFT marketplace, it can be adapted to any kind of high-
volume transactions on blockchain that requires fast responses,
given that the applications relying on the transactions can
tolerate temporary inconsistencies.

With LiftChain, applications using NFT transactions enjoy
the off-chain level performance and it also opens doors for
industries that have been so far set back due to scalability
issues in adopting NFTs. LiftChain can be used to design
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application-specific marketplaces, thus reducing reliance on
external marketplaces which typically take some commission
on every transaction. In addition, LiftChain comes with final
section batching that can help reduce gas fee costs and improve
bandwidth utilization as shown in Section IV-D. LiftChain also
has a greedy mechanism, described in Section IV-B, to prevent
unnecessary gas fee wastage by proactive ownership checks.
LiftChain protocol is adequately lightweight as it is designed
to be pluggable with several existing Blockchain scalability
solutions [7]. This is an inherent property of its Multi-stage
transaction model which we will see in Section IV of the paper.
With the model of eventual consistency between off-chain and
on-chain, security can be seen as an issue. We show in Section
III-C that a malicious actor does not have any incentive in
taking advantage of this protocol. In LiftChain, we perform
the initial transaction section on off-chain nodes and provide
an instantaneous response to the user. Asynchronously, we
trigger these transactions on the on-chain and share the results
with the off-chain. If there is any discrepancy in the results,
we provide updated information to the user with an apology
concluding the final section of the transaction.
This paper makes the following contributions:

o Analysis of scalability issues with current NFT trans-
action protocols for applications with high throughput
microtransactions.

o Design of LiftChain protocol (Section III) using Multi-
Stage Invariant Confluence with Apologies (MS-IA) [2]
that supports any number of transaction inconsistencies
at any given time between on-chain and off-chain. This
is in contrast with current NFT marketplaces that require
a transaction to be synchronized with the on-chain before
performing another transaction on a given NFT.

« We provide proof of correctness and security model of
our protocol (Sections III-C & IV).

« We prototype and evaluate LiftChain (Section V) and
show that LiftChain offers comparable performance to
baseline off-chain and more than 5-fold improvement in
gas fee savings.

II. RELATED WORK

Current on-chain solutions like sharding [7] can help with
scaling to some extent but for real-time high throughput NFT
transactions, it still falls behind and comes at the cost of
making changes to the Mainnet. Off-Chain solutions don’t
require changes to the main blockchain protocol and commu-
nicate with Mainnet for eventual consistency. Layer-2 based
off-chain solutions typically involve transactions initially pro-
cessed off-chain and then later submitted to the Mainnet.
Some implementations are Lightning Network [32], Rollups,
State channels, and Sidechains [7]. While these solutions
significantly increase the transaction speed and throughput,
they come with challenges including transaction ordering, wait
times, performing intensive validity proofs, open participation,
and trade-off of some decentralization and strong security
guarantees provided by Mainnet [9]. Another scaling platform
popularly used for NFTs is Polygon [33]. It is based on a
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Plasma chain, a separate child blockchain that is anchored
to the Mainnet and has its own block validation mechanism.
It also offers high throughput transactions and reportedly
reached over 7200 tps in its testnet. However, this is also
susceptible to Block holding attacks, mass exit issues, and less
decentralization [9]. OpeanSea using Wyvern protocol [23] can
ensure atomic transactions between a seller and buyer, thus
giving instant NFT access to the buyer off-chain. But this is
limited to a single transaction on an NFT at a given time and
there is also a gas fee wastage when reselling an NFT. This
closely mimics Multi-Stage Serializability (MS-SR) property
[2]. LiftChain on the other hand uses a variation of MS-IA
[2] which offers a safety guarantee even with a chain of NFT
transactions that are completed off-chain and are still pending
on-chain. This is especially helpful for applications like in-
game purchases or microtransactions.

LiftChain uses a high availability and eventual consistency
model where we aim to address the availability problem by
responding to clients quickly using the initial section of the
transaction and a correction is sent to clients in the final
section. This is suited for an asymmetric environment such
as off-chain and on-chain communication. One of the recent
works which uses multi-stage transactions in a similar setting
is You’ve got a Friend in ME [36] where the authors apply
multi-stage transactions for stock price prediction. Also, using
batching and greedy pre-final section verifications, we improve
gas fee savings and bandwidth utilization. Hence, our approach
offers reasonable accuracy and performance guarantees. Addi-
tionally, LiftChain can be integrated with the aforementioned
scalability solutions.

III. LIFTCHAIN OVERVIEW

In this section, we present the overview of LiftChain and
design considerations. We also discuss some optimizations for
better performance and gas fee savings.

A. System Model

We define clients or users as agents who send and receive
NFTs. For the design, we consider a single edge node inter-
acting with multiple clients and a Blockchain. However, this
can be extended to multiple edge nodes having different data
partitions with a distributed consensus. Also, we define an
NFT transaction as the transfer of NFT ownership to another
client or receiver. Minting can be modeled as transferring
ownership from a null address to a client and the same protocol
can be used with slight modifications.

LiftChain is best suited for NFTs that don’t mutate the
state of the external application relying on them. Suppose a
gaming application uses some blocks of land as NFTs which
can be used for construction. A momentary inconsistency in
the NFT ownership could lead to irreversible state changes in
the external application. However, we argue that the majority
of such inconsistencies happen due to malicious sellers and in
Section III-C, we show that a seller has no incentive to perform
such attacks compromising the application state inconsistency.
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Fig. 1: LiftChain high level architecture

The off-chain node consists of a data store holding the NFT
ownership information and transnational data. The processing
unit is for performing LiftChain transactions and responding to
the clients with the updated state. The high-level architecture
of the model is shown in Figure 1 and the workflow is
discussed in the next subsection.

B. Workflow

Every transaction in LiftChain is divided into initial and
final sections or stages. When a user triggers an NFT transac-
tion on the off-chain node, it checks whether the triggered user
is the owner of the NFT. This initial verification is discussed
in Section IV-C. Upon successful verification, we execute the
initial section and update ownership in the data store. The
response is immediately sent to the client once the initial
section of the transaction is complete. Next, the final section is
initiated by running the transaction on-chain. If the transaction
in the on-chain fails, we send an apology to the client and
update the ownership in the data store. This concludes the
final section of the transaction.

C. Security

We can relate our off-chain nodes to an NFT marketplace.
In LiftChain, an NFT seller can be malicious and may try to
transfer an NFT without actually being the owner, due to the
temporary inconsistency between the on-chain and off-chain
state. In fact, initiating a transfer outside the marketplace can
lead to the original buyer temporarily losing in-application
access to the NFT. This can be prevented by providing
guidelines to application users to perform all transactions
within the marketplace. In addition, some cryptocurrency
can be withheld from the sellers during the transactions to
prevent such double selling attacks. Due to failing on-chain
transactions also costing gas fees, the attacker has no incentive
in trying to double sell. In addition, the exchange protocol
should be either atomic or prevent the seller from pulling the
funds before the NFT transfer. Similarly, a malicious buyer
can be thwarted by locking price funds in the exchange smart
contract before initiating the NFT transfer. The application
implementing LiftChain can also ensure that the transaction
happens in an atomic way using existing solutions [23].
Moreover, the application can revert the ownership state in the
off-chain in case the on-chain transaction is taking too long.
Once the transaction is successful, the off-chain state can be
updated again.

NFT transactions typically involve the buyer paying cryp-
tocurrency in exchange for an NFT. It is recommended to
not initiate the NFT transfer before receiving the payment
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to protect against malicious buyers. Some marketplaces like
OpenSea which uses Wyvern protocol, support an atomic
transfer of both assets in the transaction. Here a purchase
involves sending the NFT bid price and NFT to a trusted smart
contract. Then upon authorization using proxy wallets from
both parties, the swap happens to change the ownership state
atomically. This atomic transaction or swap can be used in
LiftChain. This implementation is orthogonal to our protocol
and to keep LiftChain lightweight and flexible to support
other exchange protocols, we mainly focus our work on the
performance aspects and gas fee savings. We show that it is
feasible to obtain off-chain level performance and at the same
time utilize the inherent security properties of the blockchain.
LiftChain tries to give the best possible initial transaction
section commit time at the cost of future corrections. So this
protocol is well-suited for applications that are tolerant to
temporary state inconsistency with Mainnet.

D. Safety

It is important to ensure that our off-chain is eventually
consistent with the on-chain data. With just one transaction,
safety can be ensured by locking data items involved in
the transaction. However, by splitting the transaction into
two parts, we are introducing more complexity. We have to
account for concurrent transactions within each section and
also transactions happening between any transaction’s initial
and final sections. Also, we can’t assume any traditional
concurrency control mechanisms to ensure the serializability
of transactions with each section as used in [2]. This is because
the transactions in on-chain are not guaranteed to be ordered.
Hence, we need to come up with a mechanism to ensure the
serializability of transactions performed on-chain. This can be
either done at the off-chain level or in the smart contract. For
simplicity of implementation, we proposed an MS-IA based
algorithm in off-chain that ensures safety.

E. Model

1) Client interface: Our model starts with clients initially
requesting the off-chain node to transfer an NFT. Let this be
denoted by (client_id, NFT_id,receiver_id). The response
is of two types, (1) the initial section commit response
(transaction_in formation, status, optional{newstate}).
It also mentions that the response is not final
and the state may change, and (2) an apology
(transaction_in formation, apology, failurereason,
optional{newstate}). The client should only be able to
transact an NFT if she is the owner according to the off-chain
data store. The client is also provided an option to refresh the
ownership data.

2) Definitions:

¢ We define a transaction with identifier « on NFT id x as

to(z) 4
o The initial section of a transaction is denoted by ¢* and
the final section by t/.

o Two transactions t, and t;, are said to be conflicting if

they operate on the same NFT. In such a case, we need
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to serialize them in each section in the same order they
are received.

¢ Retracting a transaction should involve sending a noti-
fication to the users that the transaction had failed and
freeing any withheld cryptocurrency or assets as part of
the exchange.

3) On-chain processing: Our Smart contract residing on
the blockchain is responsible for executing the batch of
transactions. The off-chain can periodically query the status or
use oracles [34] for this purpose. We use the ER-721 standard
[12] with modifications to support batch processing and update
correct NFT ownership information in the smart contract in
case of failed transactions.

IV. LIFTCHAIN PROTOCOL DESIGN

In this section, we discuss the LiftChain implementation
details. At the heart of the protocol is our concurrency control
algorithm based on MS-IA. First, we explore MS-SR which
closely mimics existing Decentralized NFT exchanges.

A. Multi-Stage Serializability (MS-SR)

MS-SR gives us the safety principles of serializability.
Using MS-SR, we can achieve (1) the final section of a
transaction t{; commits after the initial section tfl 2) two
conflicting transactions maintain the same order in both initial
and final sections (3) and the final section of a transaction
must complete before the initial section of a later transaction.

In MS-SR, we first acquire the lock on the NFT state in
the off-chain data store and perform the initial commit. Next,
we start the final section which runs the transaction on-chain.
To ensure that no other conflicting transaction starts, we hold
the lock till the end of the current transaction. This approach
is clearly not suitable for applications with high number of
conflicting transactions.

B. Multi-Stage Invariant Confluence with Apologies (MS-1A)

Here we discuss a modified MS-IA [2] approach based
on invariant confluence [14] and apologies [15]. In MS-IA,
the initial section is a guess sent to the client and when the
final section executes, an apology will be sent to the client if
there was an inconsistency. The execution of the final section
is responsible for reconciling the inconsistencies caused by
initial sections across conflicting transactions. With invariant
confluence, we try to reconcile in the final section by making
sure that application-level invariants are preserved. We follow
a similar approach of apply-then-check where we first apply
the initial section commits and then later merge or reconcile
them in the final section execution. The final section should
(1) make minimum possible retractions ensuring safety (2)
prioritize preserving valid transactions. Figure 2 shows the
workflow for MS-IA-based LiftChain.

NFT transactions have the below invariants:

« Two clients cannot hold the same NFT at any given time

o Each NFT is uniquely determined by an identifier

In addition to conflicting transactions being serialized in the
same order in each section, we also need the property where
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the final section of the transaction executes after its initial
section. Algorithm 1 ensures both these properties.

Algorithm 1 MS-IA for NFT transactions in LiftChain

nft_id + get_nft_id(¢)
if acquirelock(nft_id) then
execute(t?)
else
abort
end if
Initial Commit
releaselocks(nft_id)
BEGIN execute(t/)
t£ <« fetch_transaction() // fetches the latest transaction
from the priority queue.
nft_id < get_nft_id(t})
acquire_final_section_lock(nft_id)
response <— run_transaction_on_blockchain(t{lc )
if response is SUCCESS then
commit(tf)
else
owner < get_nft_owner(response)
nft_id = get_nft_id(¢/)
retract(t?)
Update ownership of nft_id in the off-chain datastore
for MS-TIA
end if
release_final_section_lock(nft_id)
END execute(t))
Final Commit

The final section of our MS-IA follows the pattern of a
producer-consumer model with a thread-safe queue. Once the
initial commit is done, we push the transaction to the queue.
As the initial section is synchronized using a lock, the order
of the conflicting transactions is also preserved in the final
sections. This measure is taken because Blockchain doesn’t
guarantee the order of transactions. It is also noteworthy
that we keep a separate NFT data store for MS-IA’s final
section. With this isolation, we only update the original data
store during the transaction when the off-chain should become
consistent with the on-chain. Also note that in the final section,
if a transaction fails, using the new owner information we
skip the subsequent final sections and retract their initial
sections until an owner matches. This saves gas fees as the
transactions are anyways going to fail. It is also possible that
the NFT ownership changes on-chain while processing the
final transactions making any of the aborted transactions valid.
We see this as a rare case and still retract greedily prioritizing
gas fee savings.

In the next two theorems, we show that the above MS-IA
algorithm preserves the NFT transaction invariants and ensures
a minimum number of retractions.

Theorem 1. A transaction t; retracting its initial section is
sufficient to ensure consistency and preserve invariants in NFT
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Fig. 2: Lift Chain transaction flow with data update control in Figure 2a and MS-IA initial and final sections in 2b and 2c

respectively

transactions.

Proof. Due to locking in both initial and final sections,
there can be only one owner for a given NFT at any time.
With ownership update at each failed on-chain transaction
and serialization of the final sections using queuing, any
subsequent conflicting transactions either fail or succeed if the
client is the actual owner. Other conflicting transactions’ final
sections will correct their corresponding initial sections, hence
requiring no other coordination during apologies to maintain
consistency. O

Theorem 2. The execution function of MS-IA minimizes the
number of retractable transactions in off-chain.

Proof. Case 1: Let tq,t9,t3,...,t, be non conflicting trans-
actions. As they operate on different NFTs, any failure in the
on-chain will only retract its corresponding transaction and
does not affect other transactions.

Case 2: Let ty,t9,...,1, be all conflicting transactions. As
per our MS-IA algorithm, the final sections are all executed
sequentially in the same order as the initial sections. Say if
transaction ¢; fails, we retract its initial section and update the
ownership (updated owner = O) in the MS-IA datastore for the
final section. Using this updated owner information, we skip
the subsequent final sections and retract their initial sections
until the sender of t;, # O. We then execute the final section
of ¢;, and proceed with the same steps. This ensures that we
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only retract the transactions based on the updated ownership
instead of failing all transactions from ;41 to ¢,.

Also, if we assume that a transaction ¢, where i < x < k,
does not need to be retracted, it implies that the sender of ¢, is
O for it to be successful. But as per our above statement, the
first transaction where the sender is O is t;. However, t;, # t,.
So this is a contradiction and we have all transactions t,, where
i < x < k retracted. O

C. Initial Verification

The initial section first checks if the NFT transaction is
initiated by the owner. This can be done either by (1) checking
the off-chain data store (2) querying the smart contract (3) a
hybrid approach by restricting the queries to the smart contract
only when the client has been idle for some time. Reads from
the smart contract can take a long time up to several ms as
shown in our evaluations. However, if the transaction fails on-
chain, the client incurs a gas fee. With the hybrid approach,
LiftChain can provide a balance between latency and gas fee
savings.

D. Batching

Instead of making requests to the on-chain smart contract
for every transaction, we batch requests ensuring that a
batch does not contain any conflicting transactions. This is
because blockchain does not guarantee transaction ordering.
Batching helps with efficient bandwidth utilization and scaling
the system as there can only be a limited number of open
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connections due to resource constraints. Using batching, we
run transactions during non-peak hours and spread them in
order to reduce the overall gas fee. This strategy can be
prioritized for low-value NFTs.

Our batching strategy is based on a producer-consumer
model as shown in Figure 3. The initial section of MS-IA acts
as a producer and adds transactions to a thread-safe queue. The
final section polls from the queue and adds to the current batch
to the In-Process set I P. If the transaction is already in the I P,
we place it in a Pending set P. We trigger batch processing
whenever the queue size crosses a threshold or within some
predefined time period to ensure progress. Once the batch is
ready, we send it to the on-chain and terminate the connection
to save network resources. LiftChain maintains a data structure
in the smart contract with transaction statuses which the oft-
chain node periodically queries and updates its I P to complete
final sections. In addition, we also periodically query for gas
fee estimates in blockchain for batching NFT transactions.

V. EVALUATION

In this section, we evaluate LiftChain performance when
compared to on-chain and off-chain baselines. We also eval-
uate MS-IA used in LiftChain and MS-SR which mimics the
serialization done in most existing decentralized exchanges.
We perform the following three experiments to evaluate our
claims.

o Compare LiftChain response times with off-chain and on-
chain response times.

o Compare the performance of MS-SR and MS-IA.

« Evaluate the gas fees and communication time with on-
chain and show how batching can improve bandwidth
utilization and gas fee savings.

A. Experiment Setup

We are using Ropsten Testnet Network [35] for evaluation.
Ropsten is a test network for Ethereum Mainnet that allows
blockchain development testing before deployment on the
main Ethereum network. At the time of experimentation, the
average gas burn for the Ropsten network is around 25 Gwei
per Block. Block-time is around 30 seconds and the network
has an average of 250k transactions per day. The off-chain
node has an 8-core processor and 8§ GB RAM. The client
interacts with LiftChain using a command-line interface.
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Following cases are used to test the inconsistencies between
on-chain and off-chain.

o The client performs a transaction directly on-chain.

« The client places several concurrent requests in off-chain.

e We only test for cases where a transaction is successful
off-chain but fails on-chain. If a transaction fails in the
off-chain but is supposed to be successful, we ask clients
to update the NFT balance sheet off-chain by using an
API call (See Figure 2a).

B. Experimental Results

1) Comparison with off-chain and on-chain: In this experi-
ment, we evaluate transactions on LiftChain and compare them
with direct on-chain and off-chain transactions. We will see
that LiftChain transactions have similar performance as the
off-chain baseline.

Figure 4 shows baseline off-chain execution times for
conflicting transactions with a 5% transaction failure rate.
From Figure 5, we have the success and failure transaction
time in the on-chain ranging from 7 seconds to 150 seconds
with an average of 25 seconds. This is again dependent on
the gas price and how busy the network can be. Table I
shows LiftChain initial section transaction times for different
settings in MS-IA. In the last row, we find that with failure
transactions in conflicting and non-conflicting cases the time
taken is similar (~6 ms). This indicates that failure responses
are fast as there is no data store update and queuing for final
sections. From Figure 4 and Table I, it is clear the MS-IA
initial client response times are comparable to baseline off-
chain performance.

2) Comparing MS-SR and MS-IA: This evaluation com-
pares LiftChain with MS-SR based transaction protocol as
MS-SR mimics most existing decentralized exchanges with
one level of inconsistency with on-chain.
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Number of N
. Time in seconds
transactions
10 2.20
Conflicting with 5% 1000 9.53
failures 10000 75.41
40000 279.23
Number of 95th Percentile
Conflicting with 5% tranlsggtions response time in ms
failures v 37.59
10000 43.63
40000 37.83
Number of 95th Percentile
Non-conflicting transactions response time in ms
with 5% failures 1000 43.94
10000 37.41
Transaction type 95th Pe'rcenfile
1000 failure response time in ms
transactions Conflicting 6.01
Non-conflicting 6.00

TABLE I: LiftChain initial section response time to client

== Initial MS-IA == Total MS-IA Initial WS-SR = Total MS-IA
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Fig. 6: MS-SR vs LiftChain MS-IA (Initial section time and
Total time)

Figure 6 shows a breakup of initial and final section execu-
tion times in LiftChain with 10 conflicting transactions. The
initial section of the MS-IA takes around 70 ms on average.
The total time of MS-IA per transaction keeps increasing from
~30 seconds to 300 seconds. On-chain execution time is on
average 30 seconds. This contributes to the majority of the
latency but the user gets responses within 70 ms after the
initial section. The increase in the total time can be attributed
to the synchronous behavior of the final sections. In MS-SR,
we see that although the first initial section happens within a
few ms, subsequent initial section times follow the total time
curve with ~28 seconds difference. The main performance
bottleneck in MS-SR is that the locks are held till the final
section commits. MS-IA has a small overhead of an additional
queuing logic for the final sections but it is relatively small
compared to the lock contention of the MS-SR.

3) Gas fee and bandwidth utilization using batching in
LiftChain: As part of this experiment, we evaluate the gas fee
savings with LiftChain. Figure 7 shows the communication
time between the off-chain and on-chain which is around 50
ms. This is part of the final section and should not negatively
impact the user experience. On the other hand, the network and
CPU resources used by off-chain can be efficiently managed
by batching the final sections. This will help in reducing
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Communication time taken(RTT in ms)

Fig. 7: Communication time taken (Off-chain to On-chain)

On-chain transaction Transaction fee | Average time taken
settings (in Ether) on On-chain(in sec)
Max priority: 50 Gwei 0.0024631 58.40
Max priority: 500 Gwei 0.024631 22.21
Max priority: 5000 Gwei 0.24631 20.89
No constraints(Success) 0.0004967 46.45
No constraints(Failures) 0.000255972 27.57

TABLE II: Transaction fee and transaction time

bandwidth utilization and network connections overhead. Also,
since the number of concurrent links that can be open at a time
is limited, this significantly helps with scaling. Table II shows
the gas fee and transaction times with different settings. It
is clear that the transaction time decreases as we are willing
to spend more fees but saturates after a certain point. These
differences might be more granular when we work on Mainnet.
As per [18] and [30], the gas fee varies significantly throughout
the day. So batching NFT transactions and spreading them to
run on the Mainnet when the fee estimate is low can improve
the gas fees savings by more than 5 fold.

VI. CONCLUSION

In this paper, we highlighted current issues with the scalabil-
ity of NFT transactions, especially for real-time applications
like online gaming which require low latency microtransac-
tions. We proposed LiftChain, a multi-stage transaction model
that guarantees quick responses comparable to a baseline
off-chain. In our model, all transactions eventually run in
the on-chain, thus inhering its decentralization and safety
features. LiftChain also comes with security measures that
ensure that malicious users have no incentive in misusing the
protocol. LiftChain uses MS-IA for transactional safety and
we proposed an MS-IA algorithm that retracts the minimum
possible transactions upon failures. We compared LiftChain
with MS-SR based concurrency control that imitates several
existing exchange protocols and showed that our MS-IA based
mechanism gives significant performance improvement and is
well suited for real-time applications integrating with NFT
marketplaces.

Our future works include integrating LiftChain with other
blockchain scalability solutions [7]. We also plan to build
a decentralized exchange leveraging the eventual consistency
model of LiftChain to minimize the number of on-chain trans-
actions required for asset exchanges. In addition, LifChain
batching can use machine learning techniques for improvising
gas fee savings and dynamic batch sizes.
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