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Abstract—The Non-fungible token (NFT) market has been
booming with some reports estimating the surge in the market
value to over 80 Billion USD in 2025. With this surge, comes the
challenge of scaling NFT transactions and providing low latency
responses to end-users. Exclusive layer-1 blockchains like Bitcoin
and Ethereum which focus more on security and traceability
are not suitable for high throughput NFT transactions of low
value due to high gas fees. Layer-2 solutions can scale but have
a trade-off of losing some strong decentralization and security
guarantees offered by the Mainnet. In this paper, we propose
LiftChain, a multi-stage NFT transaction protocol that can scale
for high volume NFT transactions and at the same time inherit
the security guarantees from Mainnet. LiftChain differs from
existing NFT transaction protocols in that it allows multiple NFT
transactions in the off-chain before becoming consistent with
the on-chain. LiftChain also uses batching for gas fee savings
and better bandwidth utilization. Our evaluations show that
LiftChain provides comparable performance to baseline off-chain
and with batching we see more than a 5-fold improvement in gas
fee savings.

Index Terms—Blockchain, NFT, off-chain, Multi-Stage trans-
actions

I. INTRODUCTION

NFTs have been gaining immense popularity. The NFT

market cap is now more than $7 billion [22], the sales have

grown over 100 times from 2020 to 2021, and some popular

collections have traded a volume worth over $2 billion [21].

With organizations like Meta [19], Microsoft [20], and other

video game industries investing in Metaverse in which Web3

can play a major role, this trend could further increase. This

popularity surge begs the question of whether we can scale

NFT transactions to a point where NFTs can be seamlessly

integrated with high user volume applications like video

games, medical records, and voting, among others.

Popular NFT marketplaces like OpenSea using Wyvern

protocol [23] are able to transfer the NFT ownership state

quickly off-chain but cannot support similar performance for

multiple consecutive NFT transactions. Lazy minting [24] can

reduce gas fee payments from original creators but is still an

issue for resellers. In addition, sellers have to go through the

process of listing and selling their tokens and incur the gas fee

upon accepting offers [25] [26]. This approach is not scalable

in applications like online gaming where assets can change

hands quickly. Moreover, it is inefficient in terms of gas fee

management. At the time of writing this paper, the Ethereum

gas fee is around $20 [27] [28] and during some peak times,

it can be more than $200. Currently, it’s up to the users to

choose when to perform the NFT transactions. But there can

be a smarter way to run on-chain transactions to save gas

fees. Moreover, transaction failures on the on-chain also incur

gas fees [26]. There should be a mechanism that performs

sanity checks to avoid failing transactions to prevent gas fee

wastage. OpenSea has an integration with Polygon [33] which

is a Layer 2 scalability solution. With this, the scalability issue

can be largely addressed but at the cost of strong security and

decentralization guarantees of the Mainnet.

In this paper, we propose LiftChain, a multi-stage transac-

tion protocol for scaling NFT transactions. To ensure that the

transactions occur with low latency in an NFT marketplace for

a better end-user experience, our model proposes an off-chain

marketplace where transactions initially occur with low latency

and the final stage of our multi-stage model interacts with on-

chain to make the off-chain marketplace eventually consistent

with the correct state. Although our model is specific to the

NFT marketplace, it can be adapted to any kind of high-

volume transactions on blockchain that requires fast responses,

given that the applications relying on the transactions can

tolerate temporary inconsistencies.

With LiftChain, applications using NFT transactions enjoy

the off-chain level performance and it also opens doors for

industries that have been so far set back due to scalability

issues in adopting NFTs. LiftChain can be used to design

362

2022 IEEE International Conference on Blockchain (Blockchain)

978-1-6654-6104-7/22/$31.00 ©2022 IEEE
DOI 10.1109/Blockchain55522.2022.00057

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 B

lo
ck

ch
ai

n 
(B

lo
ck

ch
ai

n)
 |

 9
78

-1
-6

65
4-

61
04

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
BL

O
CK

CH
AI

N
55

52
2.

20
22

.0
00

57

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 15,2022 at 19:34:03 UTC from IEEE Xplore.  Restrictions apply. 



application-specific marketplaces, thus reducing reliance on

external marketplaces which typically take some commission

on every transaction. In addition, LiftChain comes with final

section batching that can help reduce gas fee costs and improve

bandwidth utilization as shown in Section IV-D. LiftChain also

has a greedy mechanism, described in Section IV-B, to prevent

unnecessary gas fee wastage by proactive ownership checks.

LiftChain protocol is adequately lightweight as it is designed

to be pluggable with several existing Blockchain scalability

solutions [7]. This is an inherent property of its Multi-stage

transaction model which we will see in Section IV of the paper.

With the model of eventual consistency between off-chain and

on-chain, security can be seen as an issue. We show in Section

III-C that a malicious actor does not have any incentive in

taking advantage of this protocol. In LiftChain, we perform

the initial transaction section on off-chain nodes and provide

an instantaneous response to the user. Asynchronously, we

trigger these transactions on the on-chain and share the results

with the off-chain. If there is any discrepancy in the results,

we provide updated information to the user with an apology

concluding the final section of the transaction.

This paper makes the following contributions:

• Analysis of scalability issues with current NFT trans-

action protocols for applications with high throughput

microtransactions.

• Design of LiftChain protocol (Section III) using Multi-

Stage Invariant Confluence with Apologies (MS-IA) [2]

that supports any number of transaction inconsistencies

at any given time between on-chain and off-chain. This

is in contrast with current NFT marketplaces that require

a transaction to be synchronized with the on-chain before

performing another transaction on a given NFT.

• We provide proof of correctness and security model of

our protocol (Sections III-C & IV).

• We prototype and evaluate LiftChain (Section V) and

show that LiftChain offers comparable performance to

baseline off-chain and more than 5-fold improvement in

gas fee savings.

II. RELATED WORK

Current on-chain solutions like sharding [7] can help with

scaling to some extent but for real-time high throughput NFT

transactions, it still falls behind and comes at the cost of

making changes to the Mainnet. Off-Chain solutions don’t

require changes to the main blockchain protocol and commu-

nicate with Mainnet for eventual consistency. Layer-2 based

off-chain solutions typically involve transactions initially pro-

cessed off-chain and then later submitted to the Mainnet.

Some implementations are Lightning Network [32], Rollups,

State channels, and Sidechains [7]. While these solutions

significantly increase the transaction speed and throughput,

they come with challenges including transaction ordering, wait

times, performing intensive validity proofs, open participation,

and trade-off of some decentralization and strong security

guarantees provided by Mainnet [9]. Another scaling platform

popularly used for NFTs is Polygon [33]. It is based on a

Plasma chain, a separate child blockchain that is anchored

to the Mainnet and has its own block validation mechanism.

It also offers high throughput transactions and reportedly

reached over 7200 tps in its testnet. However, this is also

susceptible to Block holding attacks, mass exit issues, and less

decentralization [9]. OpeanSea using Wyvern protocol [23] can

ensure atomic transactions between a seller and buyer, thus

giving instant NFT access to the buyer off-chain. But this is

limited to a single transaction on an NFT at a given time and

there is also a gas fee wastage when reselling an NFT. This

closely mimics Multi-Stage Serializability (MS-SR) property

[2]. LiftChain on the other hand uses a variation of MS-IA

[2] which offers a safety guarantee even with a chain of NFT

transactions that are completed off-chain and are still pending

on-chain. This is especially helpful for applications like in-

game purchases or microtransactions.

LiftChain uses a high availability and eventual consistency

model where we aim to address the availability problem by

responding to clients quickly using the initial section of the

transaction and a correction is sent to clients in the final

section. This is suited for an asymmetric environment such

as off-chain and on-chain communication. One of the recent

works which uses multi-stage transactions in a similar setting

is You’ve got a Friend in ME [36] where the authors apply

multi-stage transactions for stock price prediction. Also, using

batching and greedy pre-final section verifications, we improve

gas fee savings and bandwidth utilization. Hence, our approach

offers reasonable accuracy and performance guarantees. Addi-

tionally, LiftChain can be integrated with the aforementioned

scalability solutions.

III. LIFTCHAIN OVERVIEW

In this section, we present the overview of LiftChain and

design considerations. We also discuss some optimizations for

better performance and gas fee savings.

A. System Model

We define clients or users as agents who send and receive

NFTs. For the design, we consider a single edge node inter-

acting with multiple clients and a Blockchain. However, this

can be extended to multiple edge nodes having different data

partitions with a distributed consensus. Also, we define an

NFT transaction as the transfer of NFT ownership to another

client or receiver. Minting can be modeled as transferring

ownership from a null address to a client and the same protocol

can be used with slight modifications.

LiftChain is best suited for NFTs that don’t mutate the

state of the external application relying on them. Suppose a

gaming application uses some blocks of land as NFTs which

can be used for construction. A momentary inconsistency in

the NFT ownership could lead to irreversible state changes in

the external application. However, we argue that the majority

of such inconsistencies happen due to malicious sellers and in

Section III-C, we show that a seller has no incentive to perform

such attacks compromising the application state inconsistency.
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Fig. 1: LiftChain high level architecture

The off-chain node consists of a data store holding the NFT

ownership information and transnational data. The processing

unit is for performing LiftChain transactions and responding to

the clients with the updated state. The high-level architecture

of the model is shown in Figure 1 and the workflow is

discussed in the next subsection.

B. Workflow

Every transaction in LiftChain is divided into initial and

final sections or stages. When a user triggers an NFT transac-

tion on the off-chain node, it checks whether the triggered user

is the owner of the NFT. This initial verification is discussed

in Section IV-C. Upon successful verification, we execute the

initial section and update ownership in the data store. The

response is immediately sent to the client once the initial

section of the transaction is complete. Next, the final section is

initiated by running the transaction on-chain. If the transaction

in the on-chain fails, we send an apology to the client and

update the ownership in the data store. This concludes the

final section of the transaction.

C. Security

We can relate our off-chain nodes to an NFT marketplace.

In LiftChain, an NFT seller can be malicious and may try to

transfer an NFT without actually being the owner, due to the

temporary inconsistency between the on-chain and off-chain

state. In fact, initiating a transfer outside the marketplace can

lead to the original buyer temporarily losing in-application

access to the NFT. This can be prevented by providing

guidelines to application users to perform all transactions

within the marketplace. In addition, some cryptocurrency

can be withheld from the sellers during the transactions to

prevent such double selling attacks. Due to failing on-chain

transactions also costing gas fees, the attacker has no incentive

in trying to double sell. In addition, the exchange protocol

should be either atomic or prevent the seller from pulling the

funds before the NFT transfer. Similarly, a malicious buyer

can be thwarted by locking price funds in the exchange smart

contract before initiating the NFT transfer. The application

implementing LiftChain can also ensure that the transaction

happens in an atomic way using existing solutions [23].

Moreover, the application can revert the ownership state in the

off-chain in case the on-chain transaction is taking too long.

Once the transaction is successful, the off-chain state can be

updated again.

NFT transactions typically involve the buyer paying cryp-

tocurrency in exchange for an NFT. It is recommended to

not initiate the NFT transfer before receiving the payment

to protect against malicious buyers. Some marketplaces like

OpenSea which uses Wyvern protocol, support an atomic

transfer of both assets in the transaction. Here a purchase

involves sending the NFT bid price and NFT to a trusted smart

contract. Then upon authorization using proxy wallets from

both parties, the swap happens to change the ownership state

atomically. This atomic transaction or swap can be used in

LiftChain. This implementation is orthogonal to our protocol

and to keep LiftChain lightweight and flexible to support

other exchange protocols, we mainly focus our work on the

performance aspects and gas fee savings. We show that it is

feasible to obtain off-chain level performance and at the same

time utilize the inherent security properties of the blockchain.

LiftChain tries to give the best possible initial transaction

section commit time at the cost of future corrections. So this

protocol is well-suited for applications that are tolerant to

temporary state inconsistency with Mainnet.

D. Safety

It is important to ensure that our off-chain is eventually

consistent with the on-chain data. With just one transaction,

safety can be ensured by locking data items involved in

the transaction. However, by splitting the transaction into

two parts, we are introducing more complexity. We have to

account for concurrent transactions within each section and

also transactions happening between any transaction’s initial

and final sections. Also, we can’t assume any traditional

concurrency control mechanisms to ensure the serializability

of transactions with each section as used in [2]. This is because

the transactions in on-chain are not guaranteed to be ordered.

Hence, we need to come up with a mechanism to ensure the

serializability of transactions performed on-chain. This can be

either done at the off-chain level or in the smart contract. For

simplicity of implementation, we proposed an MS-IA based

algorithm in off-chain that ensures safety.

E. Model

1) Client interface: Our model starts with clients initially

requesting the off-chain node to transfer an NFT. Let this be

denoted by 〈client id,NFT id, receiver id〉. The response

is of two types, (1) the initial section commit response

〈transaction information, status, optional{newstate}〉.
It also mentions that the response is not final

and the state may change, and (2) an apology

〈transaction information, apology, failurereason,
optional{newstate}〉. The client should only be able to

transact an NFT if she is the owner according to the off-chain

data store. The client is also provided an option to refresh the

ownership data.

2) Definitions:
• We define a transaction with identifier a on NFT id x as

ta(x)
• The initial section of a transaction is denoted by ti and

the final section by tf .

• Two transactions ta and tb are said to be conflicting if

they operate on the same NFT. In such a case, we need
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to serialize them in each section in the same order they

are received.

• Retracting a transaction should involve sending a noti-

fication to the users that the transaction had failed and

freeing any withheld cryptocurrency or assets as part of

the exchange.

3) On-chain processing: Our Smart contract residing on

the blockchain is responsible for executing the batch of

transactions. The off-chain can periodically query the status or

use oracles [34] for this purpose. We use the ER-721 standard

[12] with modifications to support batch processing and update

correct NFT ownership information in the smart contract in

case of failed transactions.

IV. LIFTCHAIN PROTOCOL DESIGN

In this section, we discuss the LiftChain implementation

details. At the heart of the protocol is our concurrency control

algorithm based on MS-IA. First, we explore MS-SR which

closely mimics existing Decentralized NFT exchanges.

A. Multi-Stage Serializability (MS-SR)

MS-SR gives us the safety principles of serializability.

Using MS-SR, we can achieve (1) the final section of a

transaction tfa commits after the initial section tia (2) two

conflicting transactions maintain the same order in both initial

and final sections (3) and the final section of a transaction

must complete before the initial section of a later transaction.

In MS-SR, we first acquire the lock on the NFT state in

the off-chain data store and perform the initial commit. Next,

we start the final section which runs the transaction on-chain.

To ensure that no other conflicting transaction starts, we hold

the lock till the end of the current transaction. This approach

is clearly not suitable for applications with high number of

conflicting transactions.

B. Multi-Stage Invariant Confluence with Apologies (MS-IA)

Here we discuss a modified MS-IA [2] approach based

on invariant confluence [14] and apologies [15]. In MS-IA,

the initial section is a guess sent to the client and when the

final section executes, an apology will be sent to the client if

there was an inconsistency. The execution of the final section

is responsible for reconciling the inconsistencies caused by

initial sections across conflicting transactions. With invariant

confluence, we try to reconcile in the final section by making

sure that application-level invariants are preserved. We follow

a similar approach of apply-then-check where we first apply

the initial section commits and then later merge or reconcile

them in the final section execution. The final section should

(1) make minimum possible retractions ensuring safety (2)

prioritize preserving valid transactions. Figure 2 shows the

workflow for MS-IA-based LiftChain.

NFT transactions have the below invariants:

• Two clients cannot hold the same NFT at any given time

• Each NFT is uniquely determined by an identifier

In addition to conflicting transactions being serialized in the

same order in each section, we also need the property where

the final section of the transaction executes after its initial

section. Algorithm 1 ensures both these properties.

Algorithm 1 MS-IA for NFT transactions in LiftChain

nft id ← get nft id(tia)
if acquirelock(nft id) then

execute(tia)
else

abort

end if
Initial Commit

releaselocks(nft id)

BEGIN execute(tfa)
tfa ← fetch transaction() // fetches the latest transaction

from the priority queue.

nft id ← get nft id(tfa)
acquire final section lock(nft id)

response ← run transaction on blockchain(tfa)
if response is SUCCESS then

commit(tfa)
else

owner ← get nft owner(response)

nft id = get nft id(tfa)
retract(tia)
Update ownership of nft id in the off-chain datastore

for MS-IA

end if
release final section lock(nft id)

END execute(tfa)
Final Commit

The final section of our MS-IA follows the pattern of a

producer-consumer model with a thread-safe queue. Once the

initial commit is done, we push the transaction to the queue.

As the initial section is synchronized using a lock, the order

of the conflicting transactions is also preserved in the final

sections. This measure is taken because Blockchain doesn’t

guarantee the order of transactions. It is also noteworthy

that we keep a separate NFT data store for MS-IA’s final

section. With this isolation, we only update the original data

store during the transaction when the off-chain should become

consistent with the on-chain. Also note that in the final section,

if a transaction fails, using the new owner information we

skip the subsequent final sections and retract their initial

sections until an owner matches. This saves gas fees as the

transactions are anyways going to fail. It is also possible that

the NFT ownership changes on-chain while processing the

final transactions making any of the aborted transactions valid.

We see this as a rare case and still retract greedily prioritizing

gas fee savings.

In the next two theorems, we show that the above MS-IA

algorithm preserves the NFT transaction invariants and ensures

a minimum number of retractions.

Theorem 1. A transaction ti retracting its initial section is
sufficient to ensure consistency and preserve invariants in NFT
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Fig. 2: Lift Chain transaction flow with data update control in Figure 2a and MS-IA initial and final sections in 2b and 2c

respectively

transactions.

Proof. Due to locking in both initial and final sections,

there can be only one owner for a given NFT at any time.

With ownership update at each failed on-chain transaction

and serialization of the final sections using queuing, any

subsequent conflicting transactions either fail or succeed if the

client is the actual owner. Other conflicting transactions’ final

sections will correct their corresponding initial sections, hence

requiring no other coordination during apologies to maintain

consistency.

Theorem 2. The execution function of MS-IA minimizes the
number of retractable transactions in off-chain.

Proof. Case 1: Let t1, t2, t3, ..., tn be non conflicting trans-

actions. As they operate on different NFTs, any failure in the

on-chain will only retract its corresponding transaction and

does not affect other transactions.

Case 2: Let t1, t2, ..., tn be all conflicting transactions. As

per our MS-IA algorithm, the final sections are all executed

sequentially in the same order as the initial sections. Say if

transaction ti fails, we retract its initial section and update the

ownership (updated owner = O) in the MS-IA datastore for the

final section. Using this updated owner information, we skip

the subsequent final sections and retract their initial sections

until the sender of tk �= O. We then execute the final section

of tk and proceed with the same steps. This ensures that we

only retract the transactions based on the updated ownership

instead of failing all transactions from ti+1 to tn.

Also, if we assume that a transaction tx where i < x < k,

does not need to be retracted, it implies that the sender of tx is

O for it to be successful. But as per our above statement, the

first transaction where the sender is O is tk. However, tk �= tx.

So this is a contradiction and we have all transactions tx where

i < x < k retracted.

C. Initial Verification

The initial section first checks if the NFT transaction is

initiated by the owner. This can be done either by (1) checking

the off-chain data store (2) querying the smart contract (3) a

hybrid approach by restricting the queries to the smart contract

only when the client has been idle for some time. Reads from

the smart contract can take a long time up to several ms as

shown in our evaluations. However, if the transaction fails on-

chain, the client incurs a gas fee. With the hybrid approach,

LiftChain can provide a balance between latency and gas fee

savings.

D. Batching

Instead of making requests to the on-chain smart contract

for every transaction, we batch requests ensuring that a

batch does not contain any conflicting transactions. This is

because blockchain does not guarantee transaction ordering.

Batching helps with efficient bandwidth utilization and scaling

the system as there can only be a limited number of open
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Fig. 3: Batching in LiftChain

connections due to resource constraints. Using batching, we

run transactions during non-peak hours and spread them in

order to reduce the overall gas fee. This strategy can be

prioritized for low-value NFTs.

Our batching strategy is based on a producer-consumer

model as shown in Figure 3. The initial section of MS-IA acts

as a producer and adds transactions to a thread-safe queue. The

final section polls from the queue and adds to the current batch

to the In-Process set IP . If the transaction is already in the IP ,

we place it in a Pending set P . We trigger batch processing

whenever the queue size crosses a threshold or within some

predefined time period to ensure progress. Once the batch is

ready, we send it to the on-chain and terminate the connection

to save network resources. LiftChain maintains a data structure

in the smart contract with transaction statuses which the off-

chain node periodically queries and updates its IP to complete

final sections. In addition, we also periodically query for gas

fee estimates in blockchain for batching NFT transactions.

V. EVALUATION

In this section, we evaluate LiftChain performance when

compared to on-chain and off-chain baselines. We also eval-

uate MS-IA used in LiftChain and MS-SR which mimics the

serialization done in most existing decentralized exchanges.

We perform the following three experiments to evaluate our

claims.

• Compare LiftChain response times with off-chain and on-

chain response times.

• Compare the performance of MS-SR and MS-IA.

• Evaluate the gas fees and communication time with on-

chain and show how batching can improve bandwidth

utilization and gas fee savings.

A. Experiment Setup

We are using Ropsten Testnet Network [35] for evaluation.

Ropsten is a test network for Ethereum Mainnet that allows

blockchain development testing before deployment on the

main Ethereum network. At the time of experimentation, the

average gas burn for the Ropsten network is around 25 Gwei

per Block. Block-time is around 30 seconds and the network

has an average of 250k transactions per day. The off-chain

node has an 8-core processor and 8 GB RAM. The client

interacts with LiftChain using a command-line interface.

Fig. 4: 10000 conflicting transactions with 5% failures

Fig. 5: On-chain transaction time for success and failure cases

Following cases are used to test the inconsistencies between

on-chain and off-chain.

• The client performs a transaction directly on-chain.

• The client places several concurrent requests in off-chain.

• We only test for cases where a transaction is successful

off-chain but fails on-chain. If a transaction fails in the

off-chain but is supposed to be successful, we ask clients

to update the NFT balance sheet off-chain by using an

API call (See Figure 2a).

B. Experimental Results

1) Comparison with off-chain and on-chain: In this experi-

ment, we evaluate transactions on LiftChain and compare them

with direct on-chain and off-chain transactions. We will see

that LiftChain transactions have similar performance as the

off-chain baseline.

Figure 4 shows baseline off-chain execution times for

conflicting transactions with a 5% transaction failure rate.

From Figure 5, we have the success and failure transaction

time in the on-chain ranging from 7 seconds to 150 seconds

with an average of 25 seconds. This is again dependent on

the gas price and how busy the network can be. Table I

shows LiftChain initial section transaction times for different

settings in MS-IA. In the last row, we find that with failure

transactions in conflicting and non-conflicting cases the time

taken is similar (∼6 ms). This indicates that failure responses

are fast as there is no data store update and queuing for final

sections. From Figure 4 and Table I, it is clear the MS-IA

initial client response times are comparable to baseline off-

chain performance.

2) Comparing MS-SR and MS-IA: This evaluation com-

pares LiftChain with MS-SR based transaction protocol as

MS-SR mimics most existing decentralized exchanges with

one level of inconsistency with on-chain.
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Number of
transactions Time in seconds

Conflicting with 5%
failures

10 2.20
1000 9.53

10000 75.41
40000 279.23

Conflicting with 5%
failures

Number of
transactions

95th Percentile
response time in ms

1000 37.59
10000 43.63
40000 37.83

Non-conflicting
with 5% failures

Number of
transactions

95th Percentile
response time in ms

1000 43.94
10000 37.41

1000 failure
transactions

Transaction type 95th Percentile
response time in ms

Conflicting 6.01
Non-conflicting 6.00

TABLE I: LiftChain initial section response time to client

Fig. 6: MS-SR vs LiftChain MS-IA (Initial section time and

Total time)

Figure 6 shows a breakup of initial and final section execu-

tion times in LiftChain with 10 conflicting transactions. The

initial section of the MS-IA takes around 70 ms on average.

The total time of MS-IA per transaction keeps increasing from

∼30 seconds to 300 seconds. On-chain execution time is on

average 30 seconds. This contributes to the majority of the

latency but the user gets responses within 70 ms after the

initial section. The increase in the total time can be attributed

to the synchronous behavior of the final sections. In MS-SR,

we see that although the first initial section happens within a

few ms, subsequent initial section times follow the total time

curve with ∼28 seconds difference. The main performance

bottleneck in MS-SR is that the locks are held till the final

section commits. MS-IA has a small overhead of an additional

queuing logic for the final sections but it is relatively small

compared to the lock contention of the MS-SR.

3) Gas fee and bandwidth utilization using batching in
LiftChain: As part of this experiment, we evaluate the gas fee

savings with LiftChain. Figure 7 shows the communication

time between the off-chain and on-chain which is around 50

ms. This is part of the final section and should not negatively

impact the user experience. On the other hand, the network and

CPU resources used by off-chain can be efficiently managed

by batching the final sections. This will help in reducing

Fig. 7: Communication time taken (Off-chain to On-chain)

On-chain transaction
settings

Transaction fee
(in Ether)

Average time taken
on On-chain(in sec)

Max priority: 50 Gwei 0.0024631 58.40
Max priority: 500 Gwei 0.024631 22.21
Max priority: 5000 Gwei 0.24631 20.89
No constraints(Success) 0.0004967 46.45
No constraints(Failures) 0.000255972 27.57

TABLE II: Transaction fee and transaction time

bandwidth utilization and network connections overhead. Also,

since the number of concurrent links that can be open at a time

is limited, this significantly helps with scaling. Table II shows

the gas fee and transaction times with different settings. It

is clear that the transaction time decreases as we are willing

to spend more fees but saturates after a certain point. These

differences might be more granular when we work on Mainnet.

As per [18] and [30], the gas fee varies significantly throughout

the day. So batching NFT transactions and spreading them to

run on the Mainnet when the fee estimate is low can improve

the gas fees savings by more than 5 fold.

VI. CONCLUSION

In this paper, we highlighted current issues with the scalabil-

ity of NFT transactions, especially for real-time applications

like online gaming which require low latency microtransac-

tions. We proposed LiftChain, a multi-stage transaction model

that guarantees quick responses comparable to a baseline

off-chain. In our model, all transactions eventually run in

the on-chain, thus inhering its decentralization and safety

features. LiftChain also comes with security measures that

ensure that malicious users have no incentive in misusing the

protocol. LiftChain uses MS-IA for transactional safety and

we proposed an MS-IA algorithm that retracts the minimum

possible transactions upon failures. We compared LiftChain

with MS-SR based concurrency control that imitates several

existing exchange protocols and showed that our MS-IA based

mechanism gives significant performance improvement and is

well suited for real-time applications integrating with NFT

marketplaces.

Our future works include integrating LiftChain with other

blockchain scalability solutions [7]. We also plan to build

a decentralized exchange leveraging the eventual consistency

model of LiftChain to minimize the number of on-chain trans-

actions required for asset exchanges. In addition, LifChain

batching can use machine learning techniques for improvising

gas fee savings and dynamic batch sizes.
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