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Abstract - The growing ubiquity of Blockchain has led to
the experimental transplantation of classical web applications
into the Blockchain space. Notoriously, running computationally-
expensive processes on-chain is less than ideal. Therefore, it is
crucial to find ways to utilize the security and decentralization
provided by Blockchain technology while reducing on-chain
computational load. To that end, recent work has shown the
benefit of Multi-stage Transaction architectures. The benefit of
such systems is that they provide requested data quickly to the
client while still ensuring that accurate results are eventually
returned. In this paper, we describe a prototype of a multi-stage
transaction system, which we call Friend in Mobile Edge (FiME),
that intelligently coordinates client requests between a Blockchain
and a central cloud node. We select the use case of stock price
prediction and evaluate based on response time to the client
as well as computational load on the various components. Our
results involve an analysis of the performance of such a system in
delivering timely results to the end user, as well as a discussion
of the drawbacks of handling large data requests on-chain. We
also include recommendations for how future systems can build
on these findings.

I. INTRODUCTION

Many modern computing applications require both intensive
computation and rapid response time [1], [2], [3]; however
providing both requires expensive, state-of-the-art hardware
which in many cases may not be feasible. While modern cloud
computing has been able to make high-powered computers
more accessible to end users, cloud-based resources are usually
centralized and thus can suffer from high latency, outages,
and variability in performance depending on the geographic
location of the client [4], [S], [6], [7]. Furthermore, computing
on a single, centralized cloud node does not provide the
capacity for distributed computing across a network, which
can improve efficiency by optimizing resource allocation [8§],
[91.

One way to mitigate issues of cloud server latency and
availability is to deploy multi-stage transactions with edge and
cloud components [10]. The basis for this technique is rooted
in the realization that not all client requests will require intense
computation; some may be handled easily by an edge node
without high-powered computing resources at its disposal,
while others may require the high-powered computing that a
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cloud-based data center can provide. Such multi-stage transac-
tion systems may operate with a network of edge nodes as the
client-facing component; this architecture provides increased
reliability due to decentralization of resources [11] as well as
reduced latency compared to the centralized cloud computing
model [12].

Previous work has focused on prototyping multi-stage trans-
action edge-cloud systems that can handle complex tasks such
as image recognition [10], [13], [14]. However, we believe
that such architectures can provide support for a wide variety
of computational tasks in various domains. In this paper we
describe a multi-stage transaction system called FIME, and
explore an application of this system implemented to rapidly
predict market price for a given stock some arbitrary number
of days in the future. As an example, consider a day trader who
wants to get a quick intuition about how the price of a stock
will behave over the next few days. They submit a request
to the system and receive a prediction nigh instantaneously,
allowing them to act quickly. At the same time, their request is
processed asynchronously by a cloud data center, which uses
a more advanced model to make more accurate predictions.
When it is available, an updated prediction from the cloud will
be issued to the trader, allowing them to refine their behavior
if necessary.

Current multi-stage transaction systems have generally not
taken advantage of Blockchain technology [10]. FIME works
to build off of previous work in multi-stage transactions by
applying them to Blockchain Smart Contracts that wish to use
off-chain resources. Our results indicate that this is plausi-
ble from a performance perspective and provides theoretical
advantages such as immutable transaction records inherent in
Blockchain technology [15].

Our prototype system is called Friend in ME (Mobile
Edge), inspired by our Blockchain-based solution to multi-
stage transactions. In our results, we simulate the average
response time of FIME compared to systems that use only
an edge network or only a cloud-based server to answer client
requests. We also examine the average time for the cloud node
to verify responses to clients based on the rate of requests
received, as well as the performance improvement achieved
by adding a cache mechanism to the Blockchain component
further improve the response time to the client.
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The rest of this paper is structured as follows: Section II
discusses related work, Section III provides relevant back-
ground, Section IV gives an overview of FIME, Section V
considers FIME’s design applied to stock prediction, Section
VI defines our evaluative framework and displays the results
of our empirical evaluation, Section VII discusses our findings
in more detail and provides recommendations for future work,
and Section VIII concludes and prefaces following work.

II. RELATED WORK

Our implementation of a multi-stage transaction system
is primarily motivated by CROESUS [10]. The CROESUS
system introduces multi-stage processing for image recogni-
tion in video streams. The paper demonstrates the efficacy
of coordinating requests between an edge and cloud node to
provide rapid responses to client requests. In the first stage,
the edge node responds to the client request the best that it can
given limited computational resources. In the second stage, the
edge response is asynchronously validated by the cloud node,
which may then issue an apology and correction to the client
if the new result is significantly different than the original
response.

CROESUS was not the first to tackle the multi-stage
computation setting. multi-stage transactions can really be
viewed as special cases of Long-lived Transactions, such as
the Sagas system [16]. The goal of Sagas is to facilitate
the interleaving of sequences of long-lived transactions. Both
our prototype system and CROESUS process transactions like
these on different hosts, allowing for faster processing of
initial transaction sections and the possibility of dedicating
the entirety of an individual host’s computational resources to
the transaction assigned to it.

Additionally, there is a large body of prior research that
relates to the coordination of edge and cloud nodes. For
instance, Chen et al. [13] seek to provide accurate real-
time image recognition using the cameras on mobile devices,
by supplementing the computational power of the mobile
device with dedicated server machines. Similarly, both Grulich
and Nawab [14] and Kang et al. [17] work to improve the
accuracy of Internet of Things (IoT) devices’ abilities to
perform complex machine learning computations by adding
a computational aid in the form of dedicated cloud hosts.

There have also been numerous efforts to use Blockchain
technology in conjunction with a network of edge devices. For
example, Stanciu [18] proposes a Blockchain-based control
system for distributing and coordinating work amongst a net-
work of edge nodes. Abadi et al. [19] discuss a decentralized
platform for unifying IoT devices that uses the Blockchain to
maintain a global state and arbitrate disputes. Yang et al. [20]
use the Blockchain to coordinate an edge-cloud network of
Industrial IoT devices and servers, using a novel consensus
algorithm to improve the efficiency of resource allocation.
Kathirevelu et al. [21] note the growing prevalence of small-
scale data centers at the edge, which can provide low-latency
response times to clients, and propose a Blockchain-based
framework to improve network service discovery and inter-
operability of network components. A more current system
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that uses multi-stage transactions in Blockchain is LiftChain
[22], which builds a scalable NFT transaction protocol that first
performs NFT transactions off-chain and eventually propagates
them on-chain.

Building on related work, the research presented in this
paper makes the following unique contributions. First, we ex-
plore the practicality of the CROESUS idea in the Blockchain
space. Where CROESUS computes its first stage result on an
edge node, we instead compute the result on the Blockchain,
specifically within an Ethereum Smart Contract™. Second, we
provide recommendations to further improve the practicality
of this architecture in a real-world setting, which could be
used to help create a framework for handling such transactions
generally.

III. BACKGROUND

This paper seeks to serve use cases that require complex
computational analysis and also rapid response. In order to do
so, we run a rapid, simple model on the Blockchain, and a
more complex, more accurate model on a cloud-based node.
These components coordinate in order to deliver rapid results
to the client, as well as potential corrections to those results
based on an asynchronous verification process. The resulting
architecture, demonstrated by our prototype software, provides
a computationally efficient mechanism for handling client
requests that require intensive use of computational resources.
It also takes advantage of the decentralization and security
benefits inherent in Blockchain technology.

In this section, we will briefly review some of the fun-
damental concepts on which our paper is based, with the
acknowledgement that space permits the inclusion of only a
fraction of available discourse on these topics.

A. Multi-stage Transactions

Multi-stage transactions divide transactions into an initial
stage and secondary stage commit. They may be implemented
in order to allow for greater flexibility, maximum capacity,
and/or efficiency in the flow of transactions. For instance,
Wang et al. [23] show that their multi-stage Blockchain
provides increased maximum capacity for the flow of transac-
tions, as well as reduces storage requirements. In the case of
CROESUS, multi-stage transactions consist of two stages: a
fast and less accurate response, and a slower and more accurate
response. [10]. The advantage of this transaction archetype is
that it does not overextend computational resources in an effort
to quickly perform intensive computations. Instead, the initial
stage is executed by a lightweight device (perhaps an IoT
device or a Blockchain node), and its result is asynchronously
validated by a higher-power device once the device becomes
available.

“Without loss of generality we use the Ethereum Blockchain in this paper
due to its popularity and community support. We emphasize that the system
itself is the focus of this report and the Blockchain used can be considered as a
black box with the necessary infrastructure, liveness, and security guarantees.
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B. Ethereum Smart Contract

An Ethereum Smart Contract is represented as an address on
the Ethereum Blockchain, the programmatic implementation
of which can be called when an auxiliary account executes
a transaction with the contract address as the recipient. It
provides an interface for a client to communicate with the
Blockchain and execute transactions [24]. In our use case,
the client queries the contract to ask for stock predictions
and receives a prediction in return. The contract contains
the methods needed to execute a simple Exponential Moving
Average (EMA) calculation to get a prediction to give to the
client. The cloud node also uses the Smart Contract interface
to validate the results of the contract’s EMA calculations, and
then to asynchronously provide it updated stock prediction
results.”

IV. SYSTEM OVERVIEW

The FIME prototype system architecture consists of three
primary components: 1) an (on-chain) Ethereum Smart Con-
tract that executes a simple model to predict stock prices, 2) an
(off-chain) cloud node that executes a more complex machine
learning model to verify the results, and 3) a client program
to initiate a series of requests. This prototype performs a
simulation of a series of client requests and monitors the
interactions between the various components of the system.

A. Model Assumptions

The client is assumed to be an edge-system with limited
computational resources; for example, a laptop or desktop
computer that makes requests and receives responses from the
Blockchain. To the client, our system is a black box which
they treat as an oracle that can predict future stock prices. The
Ethereum Smart Contract is located at an address, or account,
attributed to the Ethereum Blockchain hosted locally via the
Ganache test network application [25].

Upon the receipt of client requests, the Smart Contract
executes its code using the limited computational power of the
Ethereum Virtual Machine (EVM). The cloud node is assumed
to have computational power greater than or equal to that of
the client. Though it would be to our system’s benefit for the
cloud node to have a large degree of computational power in
comparison to the client, we make this assumption so as to
give a lower bound to this system’s capabilities as well as to
more accurately represent the setting under which it will be
tested and implemented.

B. Security Model

Our system’s security model has a quite interesting property
intrinsic to it by virtue of its reliance on Blockchain. Assuming
a safe and correct implementation of the Smart Contract (that
is, one that does not permit abuse due to programmer error)
the entirety of the Blockchain “virtual node” may be safely
assumed to be insulated from a malicious attacker. The fact

“The cloud node is performing the data validation step in our system. To
do so, it is querying the smart contract for previous results which the cloud
node subsequently uses as validation input.
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that the Smart Contract’s code would exist immutably on the
Ethereum Blockchain inhibits any attacker’s ability to modify
its capabilities, and the assumption that it was implemented
correctly allows us to conclude that it is not liable to some
kind of query language injection. In essence, the Blockchain
node is analogous to a Trusted Platform Module [26] or
Trusted Execution Environment [27] in hardware/software,
respectively.

V. SYSTEM DESIGN

The goal for our system is to provide a quick response
to the client and then verify the validity of the response
asynchronously. The Smart Contract receives stock prediction
requests made by a client, and uses a subset of the data to
simply take an average of the previous days’ prices, which
is returned to the client as the initial prediction. As a proxy
for confidence of this prediction, we simply check the number
of days in the future for which the prediction was requested.
If the confidence value of the request processed by the Smart
Contract exceeds a fixed confidence threshold, the request will
be labeled as “pending” until it can be verified by the cloud
node, which asynchronously polls the Smart Contract’s cache
to find results that require verification. The cloud node uses a
pre-trained Long Short-Term Memory (LSTM) model to make
more robust predictions, and its results are sent back to the
Smart Contract. If the returned results differ significantly from
the initial prediction, the Smart Contract issues an apology to
the client and sends the revised results.

Figure 1 shows the workflow to which our prototype con-
forms. This section details each of the 8 steps of the workflow
in detail. In step 1, a user sends Request A to the Blockchain.
In step 2, the on-chain node receives Request A and prepares
a response. In step 3, the on-chain node checks its cache
to see if the requested [“stock”, “day”] pair has recently
been requested, and if so, it returns the result of the prior
computation without having to re-process. If the data already
exists in the cache, it is simply returned, and if not, the system
proceeds to step 4. In step 4, the Smart Contract processes
the request. The model accepts the two parameters [“stock”,
“day”] as input and uses them to predict the price of that stock
on that day, using the EMA formula that employs a subset of
the available training data. An initial response is returned by
the model. The Smart Contract sends the predicted price to the
client, thus fulfilling the promise of rapid response to Request
A. In step 5, the edge node asynchronously polls the Smart
Contract cache, checking for unverified results. It also checks
against the “confidence” reported by the Smart Contract. Client
requests that fall below the hard-coded confidence threshold
are passed to the off-chain node for further processing. In step
6, the ML model running on the off chain node predicts the
result for Request A. The prediction of the off-chain ML model
is then sent back to the Etheureum Smart Contract and stored
in the Smart Contract cache. In step 7, the off-chain ML model
returns the result to the Smart Contract, which stores the result
in its cache. The result is labeled as “verified”. In step 8, the
user is updated with the most accurate results, along with an
apology if necessary.
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Figure 1. Workflow showing all high-level stages of the multi-stage trans-
action setup for Blockchain system with an off-chain node component. The
process shows the handling of a user request which is then forwarded through
the appropriate on-chain and off-chain components, after which a response is
returned to the client.

VI. EVALUATION
A. Experimental Setup

In order to determine the efficacy and performance of our
system, we ran several experiments using a simulated client
launching random requests.

In our experimental setup, the client, cloud node, and
Blockchain all run on the same computer. It should be noted
that due to this limitation, all performance results do not
include network latency, which is an important caveat. In
reality, such artifacts would exist when sending and receiving
requests between separate computers.

B. Experimental results

1) Experiment 1: Response Time Comparison

In this experiment, the results of which are shown in Figure
2, we evaluate the response time of three variations of our
system: 1) the Smart Contract’s EMA executes without cloud
node intervention/correction (red bar), 2) FIME executes with
a confidence threshold such that 50% of requests are sent to
the cloud node for correction (green bar), and 3) all requests
are sent to the cloud node without use of the Smart Contract’s
EMA model (blue bar). Although exclusively using the Smart
Contract’s EMA model provides the fastest response time,
this approach leads to very low accuracy results due to the
simplicity of the model. FIME provides a better response
time than the cloud node to return a verified result, assuming
that we have selected an appropriate confidence threshold.
Furthermore, we see that the FIME system’s response time
can be flexible based on the confidence threshold.

2) Experiment 2: Off-Chain Validation Lag

In this experiment, we varied the time between requests
from our client to verify how the cloud node was able to
keep up with demand. The cloud node takes about 15 seconds
per prediction using its LSTM model. Figure 3 shows that
when the time between client requests is small, the cloud node
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Figure 2. This bar graph shows the average response time of three variations
of our system for stock prediction
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Figure 3. This graphic shows the average cloud node validation time as a
function of the rate of requests from the client. When the client makes a new
request every second, the average delay until the the results are verified by
the cloud node is relatively high; however when the delay is 15 seconds, the
cloud node can keep up with demand easily.

becomes overwhelmed and the average time until verification
is very high. As expected, as the time between client requests
increases, the average time for verification drops significantly.
This finding indicates that creating a request limit based on
the resources available to the cloud node could be helpful for
a production system implementing this architecture.

3) Experiment 3: Off-Chain Validation Cache Hits

One of the primary obstacles in performing computation
on the cloud node is speed. To that end, the Friend in
ME system implements a caching mechanism in the Smart
Contract to limit the number of calls to the cloud node. This
modification also means that fewer client requests change the
state on the Blockchain, which helps to reduce the average
gas cost of a client request. As we can see from Figure 4, the
client invariably requests the same data over time and having
previously cached that data results in more stateless exchanges
between the client and the Blockchain node.
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Figure 5. This graphic illustrates the differences between the on-chain EMA
prediction and off-chain LSTM prediction for Hewlett-Packard Stock (HPQ).

4) Experiment 4: EMA vs LSTM Predictions

The goal of this experiment was to demonstrate the ne-
cessity of the off-chain corrective requests/apologies, by
highlighting the difference in computational capacity of the
Blockchain node and a cloud node. The on-chain EMA model
is simple, and, as we can see from Figure 5, does not change
its prediction after the first day in the future. The LSTM
model was able to act on significantly more data than the
EMA model, as well as incorporate more complex machine
learning techniques, allowing it to predict stock prices with a
much higher level of nuance than the EMA model.

VII. DISCUSSION/RECOMMENDATIONS

The goal of this research is to evaluate the plausibility of a
multi-stage transaction system using a Blockchain component
in place of an edge node network. Our proof-of-concept
demonstrates that such a system is viable; however, future
systems should consider the drawbacks that we encountered
with our approach. Based on this initial work, we make the
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following recommendations for ways that future systems using
similar architectures could be improved.

One of the primary issues we encountered while imple-
menting the FIME system was the high gas cost of storing
and processing data in the Smart Contract. The Solidity
programming language, in which the Smart Contract was
written, has only rudimentary support for data processing,
making it a somewhat unwieldy tool even for the simple
data averaging technique that we deployed. Because the EMA
technique was only a stand-in for a more useful model, any
production-level system using FIME would need to deploy a
significantly more complex predictive model within a Smart
Contract implying higher gas usage. Because of this, our
primary recommendation for future work is to limit the amount
of data that will be pushed through the Smart Contract. This
could potentially be accomplished by combining Blockchain
with a network of edge nodes to which the Smart Contract
could connect to and request tasks.

Another potentially useful paradigm for utilizing a
Blockchain node as part of a multi-stage transaction is to
compute results off-chain but store results in an on-chain
cache. This would take advantage of the Blockchain’s ability
to immutably store transaction results while offloading the
actual computation. These cached results could be stored via
a more intelligent system than the in-contract storage used
by our prototype. One idea in this direction is the incentives-
based mechanism for data storage on the Blockchain described
by Ren et al. [28]. Future work should examine the trade-
offs between Blockchain-based cache storage, cost, and overall
system performance.

There are a few limitations to our experimental approach
that should be addressed in future iterations of this work.
Since all of our evaluation occurred with just one client node,
we are not sure how FIME would scale to multiple client
nodes executing simultaneously. This would be important
behavior to characterize as part of future work, since it is
a more realistic scenario for how FiME could be used in
production. Furthermore, future work interested in replicating
or extending our approach should focus on incorporating
latency into the performance evaluation, as operating nodes
on different machines spread out across the globe is a more
realistic scenario than all of the nodes operating on a single
computer, as in our evaluation. The effects of network latency
could even be tested by using servers that are close to each
other and then progressively farther away. This would help
give a better idea about the overall usability of the system.

VIII. CONCLUSION

The Friend in ME system illustrates a first step in using
Blockchain technology to assist multi-stage transactions. FIME
uses computation within an Ethereum Smart Contract to return
rapid results to the user, while offloading the verification of
results to a cloud node with more computing power. However,
due to the difficulties inherent in ingesting, storing, and com-
puting on data within a Smart Contract, we recommend that
future iterations of this research offload work from the Smart
Contract to an edge network, and use the on-chain component
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as a client interface, task delegator, and immutable cache
of results. The immediate next step would be to implement
FiME using geographically disparate end systems for each
of the parties involved. This will better allow us to validate
the practicality of the system at a more meaningful scale.
Following that, or included as a part of it, we will next need to
demonstrate a use case that more specifically takes advantage
of the Blockchain’s unique characteristics.
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