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Abstract - The growing ubiquity of Blockchain has led to
the experimental transplantation of classical web applications
into the Blockchain space. Notoriously, running computationally-
expensive processes on-chain is less than ideal. Therefore, it is
crucial to find ways to utilize the security and decentralization
provided by Blockchain technology while reducing on-chain
computational load. To that end, recent work has shown the
benefit of Multi-stage Transaction architectures. The benefit of
such systems is that they provide requested data quickly to the
client while still ensuring that accurate results are eventually
returned. In this paper, we describe a prototype of a multi-stage
transaction system, which we call Friend in Mobile Edge (FiME),
that intelligently coordinates client requests between a Blockchain
and a central cloud node. We select the use case of stock price
prediction and evaluate based on response time to the client
as well as computational load on the various components. Our
results involve an analysis of the performance of such a system in
delivering timely results to the end user, as well as a discussion
of the drawbacks of handling large data requests on-chain. We
also include recommendations for how future systems can build
on these findings.

I. INTRODUCTION

Many modern computing applications require both intensive

computation and rapid response time [1], [2], [3]; however

providing both requires expensive, state-of-the-art hardware

which in many cases may not be feasible. While modern cloud

computing has been able to make high-powered computers

more accessible to end users, cloud-based resources are usually

centralized and thus can suffer from high latency, outages,

and variability in performance depending on the geographic

location of the client [4], [5], [6], [7]. Furthermore, computing

on a single, centralized cloud node does not provide the

capacity for distributed computing across a network, which

can improve efficiency by optimizing resource allocation [8],

[9].

One way to mitigate issues of cloud server latency and

availability is to deploy multi-stage transactions with edge and

cloud components [10]. The basis for this technique is rooted

in the realization that not all client requests will require intense

computation; some may be handled easily by an edge node

without high-powered computing resources at its disposal,

while others may require the high-powered computing that a

*These authors contributed equally to this work

cloud-based data center can provide. Such multi-stage transac-

tion systems may operate with a network of edge nodes as the

client-facing component; this architecture provides increased

reliability due to decentralization of resources [11] as well as

reduced latency compared to the centralized cloud computing

model [12].

Previous work has focused on prototyping multi-stage trans-

action edge-cloud systems that can handle complex tasks such

as image recognition [10], [13], [14]. However, we believe

that such architectures can provide support for a wide variety

of computational tasks in various domains. In this paper we

describe a multi-stage transaction system called FiME, and

explore an application of this system implemented to rapidly

predict market price for a given stock some arbitrary number

of days in the future. As an example, consider a day trader who

wants to get a quick intuition about how the price of a stock

will behave over the next few days. They submit a request

to the system and receive a prediction nigh instantaneously,

allowing them to act quickly. At the same time, their request is

processed asynchronously by a cloud data center, which uses

a more advanced model to make more accurate predictions.

When it is available, an updated prediction from the cloud will

be issued to the trader, allowing them to refine their behavior

if necessary.

Current multi-stage transaction systems have generally not

taken advantage of Blockchain technology [10]. FiME works

to build off of previous work in multi-stage transactions by

applying them to Blockchain Smart Contracts that wish to use

off-chain resources. Our results indicate that this is plausi-

ble from a performance perspective and provides theoretical

advantages such as immutable transaction records inherent in

Blockchain technology [15].

Our prototype system is called Friend in ME (Mobile

Edge), inspired by our Blockchain-based solution to multi-

stage transactions. In our results, we simulate the average

response time of FiME compared to systems that use only

an edge network or only a cloud-based server to answer client

requests. We also examine the average time for the cloud node

to verify responses to clients based on the rate of requests

received, as well as the performance improvement achieved

by adding a cache mechanism to the Blockchain component

further improve the response time to the client.
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The rest of this paper is structured as follows: Section II

discusses related work, Section III provides relevant back-

ground, Section IV gives an overview of FiME, Section V

considers FiME’s design applied to stock prediction, Section

VI defines our evaluative framework and displays the results

of our empirical evaluation, Section VII discusses our findings

in more detail and provides recommendations for future work,

and Section VIII concludes and prefaces following work.

II. RELATED WORK

Our implementation of a multi-stage transaction system

is primarily motivated by CROESUS [10]. The CROESUS

system introduces multi-stage processing for image recogni-

tion in video streams. The paper demonstrates the efficacy

of coordinating requests between an edge and cloud node to

provide rapid responses to client requests. In the first stage,

the edge node responds to the client request the best that it can

given limited computational resources. In the second stage, the

edge response is asynchronously validated by the cloud node,

which may then issue an apology and correction to the client

if the new result is significantly different than the original

response.

CROESUS was not the first to tackle the multi-stage

computation setting. multi-stage transactions can really be

viewed as special cases of Long-lived Transactions, such as

the Sagas system [16]. The goal of Sagas is to facilitate

the interleaving of sequences of long-lived transactions. Both

our prototype system and CROESUS process transactions like

these on different hosts, allowing for faster processing of

initial transaction sections and the possibility of dedicating

the entirety of an individual host’s computational resources to

the transaction assigned to it.

Additionally, there is a large body of prior research that

relates to the coordination of edge and cloud nodes. For

instance, Chen et al. [13] seek to provide accurate real-

time image recognition using the cameras on mobile devices,

by supplementing the computational power of the mobile

device with dedicated server machines. Similarly, both Grulich

and Nawab [14] and Kang et al. [17] work to improve the

accuracy of Internet of Things (IoT) devices’ abilities to

perform complex machine learning computations by adding

a computational aid in the form of dedicated cloud hosts.

There have also been numerous efforts to use Blockchain

technology in conjunction with a network of edge devices. For

example, Stanciu [18] proposes a Blockchain-based control

system for distributing and coordinating work amongst a net-

work of edge nodes. Abadi et al. [19] discuss a decentralized

platform for unifying IoT devices that uses the Blockchain to

maintain a global state and arbitrate disputes. Yang et al. [20]

use the Blockchain to coordinate an edge-cloud network of

Industrial IoT devices and servers, using a novel consensus

algorithm to improve the efficiency of resource allocation.

Kathirevelu et al. [21] note the growing prevalence of small-

scale data centers at the edge, which can provide low-latency

response times to clients, and propose a Blockchain-based

framework to improve network service discovery and inter-

operability of network components. A more current system

that uses multi-stage transactions in Blockchain is LiftChain

[22], which builds a scalable NFT transaction protocol that first

performs NFT transactions off-chain and eventually propagates

them on-chain.

Building on related work, the research presented in this

paper makes the following unique contributions. First, we ex-

plore the practicality of the CROESUS idea in the Blockchain

space. Where CROESUS computes its first stage result on an

edge node, we instead compute the result on the Blockchain,

specifically within an Ethereum Smart Contract*. Second, we

provide recommendations to further improve the practicality

of this architecture in a real-world setting, which could be

used to help create a framework for handling such transactions

generally.

III. BACKGROUND

This paper seeks to serve use cases that require complex

computational analysis and also rapid response. In order to do

so, we run a rapid, simple model on the Blockchain, and a

more complex, more accurate model on a cloud-based node.

These components coordinate in order to deliver rapid results

to the client, as well as potential corrections to those results

based on an asynchronous verification process. The resulting

architecture, demonstrated by our prototype software, provides

a computationally efficient mechanism for handling client

requests that require intensive use of computational resources.

It also takes advantage of the decentralization and security

benefits inherent in Blockchain technology.

In this section, we will briefly review some of the fun-

damental concepts on which our paper is based, with the

acknowledgement that space permits the inclusion of only a

fraction of available discourse on these topics.

A. Multi-stage Transactions

Multi-stage transactions divide transactions into an initial

stage and secondary stage commit. They may be implemented

in order to allow for greater flexibility, maximum capacity,

and/or efficiency in the flow of transactions. For instance,

Wang et al. [23] show that their multi-stage Blockchain

provides increased maximum capacity for the flow of transac-

tions, as well as reduces storage requirements. In the case of

CROESUS, multi-stage transactions consist of two stages: a

fast and less accurate response, and a slower and more accurate

response. [10]. The advantage of this transaction archetype is

that it does not overextend computational resources in an effort

to quickly perform intensive computations. Instead, the initial

stage is executed by a lightweight device (perhaps an IoT

device or a Blockchain node), and its result is asynchronously

validated by a higher-power device once the device becomes

available.

*Without loss of generality we use the Ethereum Blockchain in this paper
due to its popularity and community support. We emphasize that the system
itself is the focus of this report and the Blockchain used can be considered as a
black box with the necessary infrastructure, liveness, and security guarantees.
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B. Ethereum Smart Contract

An Ethereum Smart Contract is represented as an address on

the Ethereum Blockchain, the programmatic implementation

of which can be called when an auxiliary account executes

a transaction with the contract address as the recipient. It

provides an interface for a client to communicate with the

Blockchain and execute transactions [24]. In our use case,

the client queries the contract to ask for stock predictions

and receives a prediction in return. The contract contains

the methods needed to execute a simple Exponential Moving

Average (EMA) calculation to get a prediction to give to the

client. The cloud node also uses the Smart Contract interface

to validate the results of the contract’s EMA calculations, and

then to asynchronously provide it updated stock prediction

results.*

IV. SYSTEM OVERVIEW

The FiME prototype system architecture consists of three

primary components: 1) an (on-chain) Ethereum Smart Con-

tract that executes a simple model to predict stock prices, 2) an

(off-chain) cloud node that executes a more complex machine

learning model to verify the results, and 3) a client program

to initiate a series of requests. This prototype performs a

simulation of a series of client requests and monitors the

interactions between the various components of the system.

A. Model Assumptions

The client is assumed to be an edge-system with limited

computational resources; for example, a laptop or desktop

computer that makes requests and receives responses from the

Blockchain. To the client, our system is a black box which

they treat as an oracle that can predict future stock prices. The

Ethereum Smart Contract is located at an address, or account,

attributed to the Ethereum Blockchain hosted locally via the

Ganache test network application [25].

Upon the receipt of client requests, the Smart Contract

executes its code using the limited computational power of the

Ethereum Virtual Machine (EVM). The cloud node is assumed

to have computational power greater than or equal to that of

the client. Though it would be to our system’s benefit for the

cloud node to have a large degree of computational power in

comparison to the client, we make this assumption so as to

give a lower bound to this system’s capabilities as well as to

more accurately represent the setting under which it will be

tested and implemented.

B. Security Model

Our system’s security model has a quite interesting property

intrinsic to it by virtue of its reliance on Blockchain. Assuming

a safe and correct implementation of the Smart Contract (that

is, one that does not permit abuse due to programmer error)

the entirety of the Blockchain “virtual node” may be safely

assumed to be insulated from a malicious attacker. The fact

*The cloud node is performing the data validation step in our system. To
do so, it is querying the smart contract for previous results which the cloud
node subsequently uses as validation input.

that the Smart Contract’s code would exist immutably on the

Ethereum Blockchain inhibits any attacker’s ability to modify

its capabilities, and the assumption that it was implemented

correctly allows us to conclude that it is not liable to some

kind of query language injection. In essence, the Blockchain

node is analogous to a Trusted Platform Module [26] or

Trusted Execution Environment [27] in hardware/software,

respectively.

V. SYSTEM DESIGN

The goal for our system is to provide a quick response

to the client and then verify the validity of the response

asynchronously. The Smart Contract receives stock prediction

requests made by a client, and uses a subset of the data to

simply take an average of the previous days’ prices, which

is returned to the client as the initial prediction. As a proxy

for confidence of this prediction, we simply check the number

of days in the future for which the prediction was requested.

If the confidence value of the request processed by the Smart

Contract exceeds a fixed confidence threshold, the request will

be labeled as “pending” until it can be verified by the cloud

node, which asynchronously polls the Smart Contract’s cache

to find results that require verification. The cloud node uses a

pre-trained Long Short-Term Memory (LSTM) model to make

more robust predictions, and its results are sent back to the

Smart Contract. If the returned results differ significantly from

the initial prediction, the Smart Contract issues an apology to

the client and sends the revised results.

Figure 1 shows the workflow to which our prototype con-

forms. This section details each of the 8 steps of the workflow

in detail. In step 1, a user sends Request A to the Blockchain.

In step 2, the on-chain node receives Request A and prepares

a response. In step 3, the on-chain node checks its cache

to see if the requested [“stock”, “day”] pair has recently

been requested, and if so, it returns the result of the prior

computation without having to re-process. If the data already

exists in the cache, it is simply returned, and if not, the system

proceeds to step 4. In step 4, the Smart Contract processes

the request. The model accepts the two parameters [“stock”,

“day”] as input and uses them to predict the price of that stock

on that day, using the EMA formula that employs a subset of

the available training data. An initial response is returned by

the model. The Smart Contract sends the predicted price to the

client, thus fulfilling the promise of rapid response to Request

A. In step 5, the edge node asynchronously polls the Smart

Contract cache, checking for unverified results. It also checks

against the “confidence” reported by the Smart Contract. Client

requests that fall below the hard-coded confidence threshold

are passed to the off-chain node for further processing. In step

6, the ML model running on the off chain node predicts the

result for Request A. The prediction of the off-chain ML model

is then sent back to the Etheureum Smart Contract and stored

in the Smart Contract cache. In step 7, the off-chain ML model

returns the result to the Smart Contract, which stores the result

in its cache. The result is labeled as “verified”. In step 8, the

user is updated with the most accurate results, along with an

apology if necessary.
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Figure 1. Workflow showing all high-level stages of the multi-stage trans-
action setup for Blockchain system with an off-chain node component. The
process shows the handling of a user request which is then forwarded through
the appropriate on-chain and off-chain components, after which a response is
returned to the client.

VI. EVALUATION

A. Experimental Setup

In order to determine the efficacy and performance of our

system, we ran several experiments using a simulated client

launching random requests.

In our experimental setup, the client, cloud node, and

Blockchain all run on the same computer. It should be noted

that due to this limitation, all performance results do not

include network latency, which is an important caveat. In

reality, such artifacts would exist when sending and receiving

requests between separate computers.

B. Experimental results

1) Experiment 1: Response Time Comparison
In this experiment, the results of which are shown in Figure

2, we evaluate the response time of three variations of our

system: 1) the Smart Contract’s EMA executes without cloud

node intervention/correction (red bar), 2) FiME executes with

a confidence threshold such that 50% of requests are sent to

the cloud node for correction (green bar), and 3) all requests

are sent to the cloud node without use of the Smart Contract’s

EMA model (blue bar). Although exclusively using the Smart

Contract’s EMA model provides the fastest response time,

this approach leads to very low accuracy results due to the

simplicity of the model. FiME provides a better response

time than the cloud node to return a verified result, assuming

that we have selected an appropriate confidence threshold.

Furthermore, we see that the FiME system’s response time

can be flexible based on the confidence threshold.

2) Experiment 2: Off-Chain Validation Lag
In this experiment, we varied the time between requests

from our client to verify how the cloud node was able to

keep up with demand. The cloud node takes about 15 seconds

per prediction using its LSTM model. Figure 3 shows that

when the time between client requests is small, the cloud node

Figure 2. This bar graph shows the average response time of three variations
of our system for stock prediction

Figure 3. This graphic shows the average cloud node validation time as a
function of the rate of requests from the client. When the client makes a new
request every second, the average delay until the the results are verified by
the cloud node is relatively high; however when the delay is 15 seconds, the
cloud node can keep up with demand easily.

becomes overwhelmed and the average time until verification

is very high. As expected, as the time between client requests

increases, the average time for verification drops significantly.

This finding indicates that creating a request limit based on

the resources available to the cloud node could be helpful for

a production system implementing this architecture.

3) Experiment 3: Off-Chain Validation Cache Hits
One of the primary obstacles in performing computation

on the cloud node is speed. To that end, the Friend in

ME system implements a caching mechanism in the Smart

Contract to limit the number of calls to the cloud node. This

modification also means that fewer client requests change the

state on the Blockchain, which helps to reduce the average

gas cost of a client request. As we can see from Figure 4, the

client invariably requests the same data over time and having

previously cached that data results in more stateless exchanges

between the client and the Blockchain node.
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Figure 4. This graphic shows the utility of implementing a results cache in
the Smart Contract. As time increases the number of client requests for a
previously corrected value residing in the cache increases as well, reducing
the load on the cloud node.

Figure 5. This graphic illustrates the differences between the on-chain EMA
prediction and off-chain LSTM prediction for Hewlett-Packard Stock (HPQ).

4) Experiment 4: EMA vs LSTM Predictions
The goal of this experiment was to demonstrate the ne-

cessity of the off-chain corrective requests/apologies, by

highlighting the difference in computational capacity of the

Blockchain node and a cloud node. The on-chain EMA model

is simple, and, as we can see from Figure 5, does not change

its prediction after the first day in the future. The LSTM

model was able to act on significantly more data than the

EMA model, as well as incorporate more complex machine

learning techniques, allowing it to predict stock prices with a

much higher level of nuance than the EMA model.

VII. DISCUSSION/RECOMMENDATIONS

The goal of this research is to evaluate the plausibility of a

multi-stage transaction system using a Blockchain component

in place of an edge node network. Our proof-of-concept

demonstrates that such a system is viable; however, future

systems should consider the drawbacks that we encountered

with our approach. Based on this initial work, we make the

following recommendations for ways that future systems using

similar architectures could be improved.

One of the primary issues we encountered while imple-

menting the FiME system was the high gas cost of storing

and processing data in the Smart Contract. The Solidity

programming language, in which the Smart Contract was

written, has only rudimentary support for data processing,

making it a somewhat unwieldy tool even for the simple

data averaging technique that we deployed. Because the EMA

technique was only a stand-in for a more useful model, any

production-level system using FiME would need to deploy a

significantly more complex predictive model within a Smart

Contract implying higher gas usage. Because of this, our

primary recommendation for future work is to limit the amount

of data that will be pushed through the Smart Contract. This

could potentially be accomplished by combining Blockchain

with a network of edge nodes to which the Smart Contract

could connect to and request tasks.

Another potentially useful paradigm for utilizing a

Blockchain node as part of a multi-stage transaction is to

compute results off-chain but store results in an on-chain

cache. This would take advantage of the Blockchain’s ability

to immutably store transaction results while offloading the

actual computation. These cached results could be stored via

a more intelligent system than the in-contract storage used

by our prototype. One idea in this direction is the incentives-

based mechanism for data storage on the Blockchain described

by Ren et al. [28]. Future work should examine the trade-

offs between Blockchain-based cache storage, cost, and overall

system performance.

There are a few limitations to our experimental approach

that should be addressed in future iterations of this work.

Since all of our evaluation occurred with just one client node,

we are not sure how FiME would scale to multiple client

nodes executing simultaneously. This would be important

behavior to characterize as part of future work, since it is

a more realistic scenario for how FiME could be used in

production. Furthermore, future work interested in replicating

or extending our approach should focus on incorporating

latency into the performance evaluation, as operating nodes

on different machines spread out across the globe is a more

realistic scenario than all of the nodes operating on a single

computer, as in our evaluation. The effects of network latency

could even be tested by using servers that are close to each

other and then progressively farther away. This would help

give a better idea about the overall usability of the system.

VIII. CONCLUSION

The Friend in ME system illustrates a first step in using

Blockchain technology to assist multi-stage transactions. FiME

uses computation within an Ethereum Smart Contract to return

rapid results to the user, while offloading the verification of

results to a cloud node with more computing power. However,

due to the difficulties inherent in ingesting, storing, and com-

puting on data within a Smart Contract, we recommend that

future iterations of this research offload work from the Smart

Contract to an edge network, and use the on-chain component
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as a client interface, task delegator, and immutable cache

of results. The immediate next step would be to implement

FiME using geographically disparate end systems for each

of the parties involved. This will better allow us to validate

the practicality of the system at a more meaningful scale.

Following that, or included as a part of it, we will next need to

demonstrate a use case that more specifically takes advantage

of the Blockchain’s unique characteristics.
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