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Functional observers with linear error dynamics for discrete-time
nonlinear systems+

Sunjeev Venkateswaran, Benjamin A. Wilhite, Costas Kravaris

Abstract— This work deals with the problem of designing
observers for the estimation of a single function of the states for
discrete-time nonlinear systems. Necessary and sufficient
conditions for the existence of lower order functional observers
with linear dynamics and linear output map are derived. The
results provide a direct generalization to Luenberger’s linear
theory of functional observers. The design methodology is tested
on a non-isothermal CSTR case study.

I. INTRODUCTION

In control theory, a functional observer is an auxiliary
system that is driven by the available system outputs and
mirrors the dynamics of a physical process in order to estimate
one or more functions of the system states [1, 2]. Besides
being of theoretical importance, the use of functional
observers arises in many applications. For example,
functional estimates are useful in feedback control system
design because the control signal is often a linear combination
of the states, and it is possible to utilize a functional observer
to directly estimate the feedback control signal[1-3].

Over the past fifty years, considerable research has been
carried out on estimating functions of the state vector for
linear systems ever since Luenberger introduced the concept
of functional observers in 1966[2] and proved that it is
feasible to construct a functional observer with number of
states equal to observability index minus one. Subsequent
research has focused on lower order functional observers
where necessary and sufficient conditions for their existence
and stability have been derived[4-6], and parametric
approaches to the design of lower order functional
observers[7] and algorithms for solving the functional
observer design conditions have also been developed[4, 5, 8]

For nonlinear systems, functional observers for Lipschitz
systems [9, 10] and a class of nonlinear systems that can be
decomposed as sum of Lipschitz and non-Lipschitz parts [7]
(with the non-Lipschitz part considered as an unknown
input/disturbance) have been developed. More recently, the
problem of designing functional observers for estimating a
single nonlinear functional has been tackled for general
nonlinear systems from the point of view of observer error
linearization[3] and the approach has been extended to a
disturbance decoupled fault detection and isolation[11]. For
discrete-time nonlinear systems, however, results have been
limited. The goal of the present work is to develop a direct
generalization of Luenberger’s functional observers to
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discrete time nonlinear systems. The concept of functional
observers for discrete-time nonlinear systems is defined and
the observer design problem is considered from the point of
view of observer error linearization and is analogous to the
methods in [3, 11, 12]. It will be shown that, with the proposed
formulation, easy-to-check necessary and sufficient
conditions for the existence of such a functional observer can
be derived, leading to simple formulas for observer design
with eigenvalue assignment. Furthermore, the formulation
also lends itself to fault detection and estimation in discrete-
time nonlinear systems and this will also be investigated.

The outline of this present study is as follows. In the next
couple of sections, the notion of functional observer for
discrete time nonlinear systems will be defined in a manner
completely analogous to Luenberger’s definition[1l, 2] for
linear systems and different approaches to solve the
functional observer design problem will be outlined.
Following this, notions of observer error linearization will be
defined, and then necessary and sufficient conditions will be
derived for the solution of the linearization problem, as well
as a simple formula for the resulting functional observer.

II. FUNCTIONAL OBSERVERS FOR DISCRETE-TIME
NONLINEAR SYSTEMS

Consider a discrete- time nonlinear system described by:
x(k+1) = F(X(k))

y(K) = H(x(k))

z(k) = q(x(k))

(L1)

where:
x € R" is the system state
y € RP is the vector of measured outputs
Z € R is the (scalar) output to be estimated

and F:R" > R",H:R" - RP,q:R" > R are smooth
nonlinear functions. The objective is to construct a functional
observer of order v < n, which generates an estimate of the
output z, driven by the output measurement y.

In complete analogy to Luenberger’s construction for the
linear case, we seek a mapping
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T, (%)
cero=[¥)
T,(x)

from R" to RY, to immerse system (2.1) to a v -th order system
(v <n), with input y and output z:

gk +1) = k), y(k)
z(k+1) = 0(§K),y(K)

But in order for system (2.1) to be mapped to system (2.2)
under the mapping T(x), the following relations have to hold

@(T(x), HX) = T(F() (2.3)
o(T(), HX) = q(x) 24

The foregoing considerations lead to the following definition
of a functional observer:

2.2)

Definition 1: Given a dynamic system

x(k + 1) = F(x(k)) (2.1)
y(}®) = H(x(k))
z(k) = q(x(k))
where F:R"™ - RM, H:R" - RP,q:R" - R are smooth

nonlinear functions, y is the vector of measured outputs and z
is the scalar output to be estimated, the system

§k+ 1) = @K, y(K))
2(k+1) = w(8(k),y(K)

if in the series connection

(2.5)

X y

g,

the overall dynamics

x(k + 1) = F(x(K))
Ek+ 1) = @(EX), Hx(K)))

possesses an invariant manifold £ = T(x) with the property
that q(x) = w(T(x), H(x)).

If the functional observer (2.5) is initialized consistently with
the system (2.1) i.e. if

£(0) = T(x(0)), then £(k) = T(x(k)), V k € N and therefore

2(0) = o (500, y(0) = o (T(x(K), H(xK))) =
q(x(k)) Vk € N , the functional observer will be able to
exactly reproduce z(k).

In the presence of initialization errors, additional stability
requirements will need to be imposed on the &-dynamics, for
the estimate Z(k) to asymptotically converge to z(k).

At this point, it is important to examine the special case of a
linear system, where F(x) = Fx, H(x) = Hx, q(x) = qx with
F, H, g being n X n,p X n, 1 X n matrices respectively, and a

linear mapping T(x) = Tx is considered. Definition 1 tells us
that for a linear time-invariant system

x(k+1) = Fx(k) (2.6)
y(k) = Hx(k)
z(k) = qx(k)
the system
§(k+ 1) = A§(K) + By (k) (2.7)

2(k) = C&(k) + Dy(k)

will be a functional observer if the following conditions are
met:

TF = AT + BH
q=CT+DH

for some v X n matrix T. These are exactly the discrete-time
version of Luenberger’s conditions for a functional observer
for linear continuous time-invariant systems [1, 2]

III. DESIGNING LOWER ORDER FUNCTIONAL
OBSERVERS

For the design of a functional observer, one must be able to
Ty (%)

find a continuous map T(x) = |:

T, (%)

(2.3) and (2.4) i.e. such that T]-(F(x)),j =1,--,v isafunction

of T;(x),, Ty(x),H(X) and q(x)is a

T (%), -+, Ty(x), H(x)

However, such scalar functions Ty (x),-:-,T,(x) may not

exist, if v is too small. Moreover, even when they do exist,
there is an additional very important requirement: Since

l to satisfy conditions

function of

T(F(x)) = ©(T(x), H(x)) will define the right-hand side of
the functional observer’s dynamics, it must be such that the
functional observer’s dynamics is stable and the decay of the
error is sufficiently rapid.

All the above requirements can be satisfied if

{x(k +1) = Fx(k))
y(k) = H(x(k))

Available design methods for reduced-order state
observers[13] generate a functional observer of orderv = n —
p, by only modifying the output map of the observer (so that
the estimate of z is the observer output instead of the entire
state vector).

is linearly observable and v =n — p:

The question is whether a lower order v < n — p would be
feasible and how to go about designing the functional
observer. This is not an easy question because we will be
trying to impose too many requirements at the same time.

For constructing the functional observer, one possible way
involves identifying functions T;(X),-:-,T,(x) such that
T,(F(x)),j = 1,-,v and q(x) can be expressed as functions

6162



of T; (%), -+, T, (x) and the measured output. The second step
is then to check stability of the error dynamics. This approach
might be successful if the selection of T, (x), -+, T, (x) could
be directed by physical intuition.

Alternatively, one could try to follow the opposite path. As a
first step, try to enforce stability: given some desirable
dynamics for the observer £(k + 1) = @ (&,y), with ¢ so as to
guarantee stability and rapid decay of the error, find T(x) =

[T1 (x)

T, (%)
will then be to check if q(x) can be expressed as a function of
T(x) and H(x).

lso that T(F(x)) = @(T(x), H(x)). The second step

IV. EXACT LINEARIZATION OF A FUNCTIONAL
OBSERVER

Along the second line of attack of the functional observer
design problem, the most natural ¢ - function to work with is
the linear one:

¢(&y) = A5+ By

It will then be the eigenvalues of the matrix A that will
determine stability of the functional observer and the rate of
decay of the error.

If we can find a continuously differentiable map T(x) to
satisfy the corresponding condition (2.3), i.e. to be a solution
of the functional equation

T(F(x)) = AT(x) + BH(x)

for some Hurwitz matrix A, and if in addition T(x) satisfies
condition (2.4), i.e. that g(x) can be expressed as a function of
T(x) and H(x), then we have a stable functional observer
with linear dynamics. This leads to the Functional Observer
Linearization Problem.

Functional Observer Linearization Problem

Given a system of the form (2.1), find a functional observer
of the form

8k + 1) = AE(K) + By(k)
2(k) = C&(K) + Dy(k)

4.1)

where A, B, C, D are vXv,vXp,1Xv,1Xp matrices
respectively, with A having stable eigenvalues. Equivalently,
find a continuously differentiable mapping T: R™ — RY such

that
T(F(x)) = AT(x) + BH(x) (4.2)

and

q(x) = CT(x) + DH(x) (4.3)

Assuming that the above problem can be solved, the resulting
error dynamics will be linear:

Ek+1) - TxKk+1)=A (E(k) - T(x(k)))

2(k) - z(K) = € (§0) — T(x(K))) (4.4)

from which 2(k) — z(k) = CAX(£(0) — T(x(0))).

With the matrix A having eigenvalues in the interior of the
unit disc, the effect of the initialization error £(0) — T(x(0))
will die out, and Z(k) will approach z(k) asymptotically.

Remark 4.1: It is possible to formulate a linearization problem
in a slightly more general manner by including additive
nonlinear output injection terms in the functional observer
and a possibly nonlinear output map

§k+1) = AZ(K) + B(y(K)
2(k) = k), y ()

where B (.) RP — RVis the nonlinear output injection term.

(4.5)

In order to solve the Functional Observer Linearization
Problem, it is natural to first try to solve the system of
functional equations (4.2) (see [14] and[15] for solvability
conditions) given some small-size matrix A with fast enough
eigenvalues, and then check to see if q(x) can be expressed as
a function of T(x) and H(x) according to (4.3). If it can, we
have a functional observer with linear error dynamics; if not,
we can try a different matrix A with different eigenvalues
and/or larger size, up until we can satisfy both conditions.

V. NECESSARY AND SUFFICIENT CONDITIONS FOR
SOLVABILITY OF THE FUNCTIONAL OBSERVER
LINEARIZATION PROBLEM

The trial-and-error approach outlined in the previous section
is in principle feasible, but it is far from being practical due to
the computational effort involved in solving (4.2), which will
be multiplied by the number of trials until (4.3) is satisfied.

To be able to develop a practical approach for designing
functional observers, it would be helpful to develop criteria to
check if for a given set of v eigenvalues, there exists a
functional observer whose error dynamics is governed by
these eigenvalues. This will be done in the present Section for
the Functional Observer Linearization Problem.

The main result is as follows:

Proposition 1: Under the assumptions of Proposition 1, for a
real analytic nonlinear system of the form (2.1), there exists a
functional observer of the form

§(k + 1) = A{(k) + By (k)
2(k) = Cg(k) + Dy(k)

4.1)

with the eigenvalues of A being the roots of a given
polynomial ¥ + a, A1+ -+ a, 1A+ a,,

if and only if qFV(x) + a;qF’"1(x) + -+ + o, qF () +
a,q(x) is R-linear combination of
Hj(x), HiF (%), ..., HjFY(x),j = 1,--,p, where in the above
we have used the notation
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Fi(x) = Fo F..F o F(x) and H;F(x) = (H; ° F)(x)

j times
T (%)
Proof: Necessity: Suppose that there exists T(x) = T2 :(X)
T, (x)
such that (4.2) is satisfied, i.e
T, F(x) T,(x)1 [B;H(®X)
TZF_(X) -A Tz‘(x) + BzH(X)
T F(x) T,x)] [BH(x)

where By, ..., B, denote the rows of the matrix B. Now, we
find that for k=1,2,3...

T, FX(x)
T,F¥(x)

T, Fi‘ x)
T, (%)
— Ak TZ .(X)

T,(x)
(A*"'B),;H(x) + (A*2B),HF(x) + ---

+|(A'B)H(X) + (A*?B),HF(x) + -

+ (B HF* (%))
+ (B, HF* (%))

(Ak‘lB)VH(X) + (Ak_zB)vI:lF(X) + 4 (BVHFk_l(x))

and we can calculate

TF'(x) + a; TiFV"1(x) + - + a, T;(x)
= ((A"'B); + a; (AY"?B); + - + &, B))H(X)

+((A7?B); + - +
ay—2BYHF(X)) + -+ + (B{HF'™(x))

where a4, a5, ..., a, are the coefficients of the characteristic
polynomial of the matrix A.

At the same time the mapping T(x) must satisfy (4.3) and we
can calculate

qQF'(¥) + @ qF¥7 () + - + a,q(X)
= (CAY"B + a;CAY™?B + - + a,_;CB + a,D)H(x)

+(CAY*B + -+ a,_,CB + a,_y D)HF(x) + -+ + (CB +
a,D)HFY"1(x) + DHFY(x)

That is,

qFY(x) + o, qF¥ 71 (%) + - + 2, q(%)
= BoHFY(x) + B HFY "1 (x) + - + By_HF(X) + B H(x)(5.1)
where

Bo=D
B, =CB+ayD
Bz = CAB + O(1CB + azD

By_1 = CAY" 2B+ -+ a,_,CB + a,_;D
B, = CAY" B+ ,CAY™?B + -+ a,_;CB + a,D

(5.2)

Which  proves  that qFV"*(x) + a;qF’7'(x) + -+
ay,_19F(x) + a,q(x) is  R-linear combination  of
Hj(X), H]F(X), ey H]FV(X),] = 1, 5P,

Sufficiency: Suppose that there exist constant row vectors 3

, B1s ---» By—1, By that satisfy (5.1). Consider the following
choices of (A, B, C, D) matrices:

00 - 0 % Bv — ayBo

10 = 0 ~%-1 Bv-1 — ay-1Bo
A=t & : , B=|By_2 —ay_2B0],

0 1 0 -—a, :

0 0 1 -a B —a1Bo

C=[00--01]
D =B, (5.3)

For the above A and C matrices (in observer canonical form),
the design conditions (4.2) and (4.3) can be written
component-wise as follows:

T,F(x) + o, T, (x) — B;H(x) =0 (5.4)
TF)-Ty (%) + ay—1 T, (x) — BH(x) =0 (5.5)
TFE-T-1(x) + ¢, T,(x) - B,Hx) =0 (5.6)

T,(x) + DH(x) = q(x) (5.7)

We observe that the above equations are easily solvable
sequentially for T,(x), T,_;(x), ..., T; (x), starting from the
last equation and going up. In particular, for the chosen B and
D matrices, we find from (5.7), (5.6), ..., (5.5):

T,(x) = =BoHX) + q(x)
Ty-1(x) = =BoHF(x) — B H(x) + qF (x) + a1q(x)

T, (%)
= —BoHFY™'(x) — - = By HF () — By-1H() + qF* ™' ()
+ o qFY 2 (%) + - + -1 q ()

whereas (5.4) gives:

BoHFY(X) + B HFY (%) + - + By HF(x) + By H(x)
= qF’'(®) + a,gF" 71 (%) + -+ + a,q(x)

which is exactly (5.1). Thus, we have proved that

[(_ﬁoHFv_l(X) — = By_2HF(x) — By—1HX) + )
+qFV" (%) + ay qFY72(%) + -+ + 0y_1q(x)
T(x) = l :

—BoHF() — BLH(X) + qF() + 2,q(%)
—BoH(®) +q(®)

satisfies the design conditions (4.2) and (4.3) when 3, B4, ...,
By—1, By satisfy (5.1) and the A, B, C, D matrices are chosen
according to (5.3).

| (5.8)
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It is important to observe that the sufficiency part of the proof
is constructive: it gives an explicit solution of the design
equations (4.2) and (4.3) in terms of the vectors B¢, By, ---»
Bv—_1, By that satisfy (5.1).

VI. LOWER ORDER FUNCTIONAL OBSERVERS FOR
LINEAR SYSTEMS

The results of the previous section can now be specialized to
linear time-invariant systems. The following is a Corollary to
Proposition 1.

Proposition 2: For a linear time-invariant system of the form

x(k + 1) = Fx(k) (2.6)
y(k) = Hx(k)
z(k) = qx(k)
there exists a functional observer of the form
€k + 1) = A§(k) + By (k) 2.7)

2(k) = Cg(k) + Dy(k)
with the eigenvalues of A being the roots of a given
polynomial AV + o, AV"1 + -+ + a1 A + y,
if and only if
(qFY + o, qFV"t + -+ + a,_1qF + @, q)

€ span{H;, HjF, ..., H;F",j = 1,---,p} (6.1)
The above Proposition provides a simple and easy-to-check
feasibility criterion for a lower-order functional observer with
a pre-specified set of eigenvalues governing the error
dynamics. Moreover, an immediate consequence of the
Proposition 2 is the following:
Corollary: Consider a linear time-invariant system of the form
(2.6) with observability index v,. Then, there exists a
functional observer of the form (2.7) of order v =v,— 1 and
arbitrarily assigned eigenvalues.
The result of the Corollary, derived through a different
approach, is exactly the discrete-time version of Luenberger’s
result for functional observers for continuous linear time-
invariant systems [1, 2].

VII. CASE STUDY

Consider a Continuous Stirred Tank Reactor (CSTR) where
N-pyridine is oxidized through Hydrogen Peroxide under
non-isothermal conditions[12].

The discretized model equations are as follows
Catk+1)
F
= Ca(k) + 6 V(CA,in — Ca(K)) — R(CA(K), Cp(K), B(K))

Cek+ 1)
F
= Cg(k) + & (V (Cp,in — Ca(K)) — R(Ca(K), Cp(K), e(k)))

ok + 1)=9(k)+8t< 5

%

H
RR(CA(K), C5(K), e(k))>

F US,
+5, (V (81— 009) = = (800 -8, (k)))
(7.1)

6,k + 1)

_ FJ’ USy

=0;(k) + &, V,- (8jm — 6;(K)) + oV (8(k) — 8;(k))
y1(K) = 6(k)
y2(K) = 6;(k)

where the state vector X = [C A Cg 6, Gj] consists of N-methyl
pyridine concentration, hydrogen peroxide concentration,
reactor temperature and coolant temperature of the outlet.
0 and 6; are the outputs and are assumed to be measurable.

6;is the sampling period. In the above equations,
E1 Ey
Aje” B Ajze B CaCRZ _Es .
R(Cp, Cp,0) = "2 2282t A,e70 C,Cp  is  the
1+Aze 0 Cp

reaction rate and

Ca,in Cgjins Oin, 0jin represent the inlet values of the state
values. Fand F; are the inlet feeds and coolant flowrates
respectively. V and V; are the reactor volume and cooling
jacket volume respectively. Parameters A4, A,, Asare the pre-
exponential factors in the reaction rate. AHy is the enthalpy of
the reaction. p, Cp and pj, Cp; are the densities and heat
capacities of the reactor contents and cooling fluid
respectively.

The parameter values are as follows, Cp i, = ZmT()l, Cgin =

mol

1.5™) 9 =373K,0,,, = 300K 5, =05s,F =
L ) t
01—, Fj=1—,V=05LV =3x1072LA, =
min’ ") min )
e®08L mol™1s71, A, = €282, mol~1s71, A; =
25.12 -1 — 1602 5 = g 5=
e L mol™".AHg = —160 P = 1200L, p;

10008 ¢, =321 ¢=34L U=0942 2
L ) gK gK

m2K’
mol

7=0.0021 - E1 =3952 K, E> =7927 K, E3 =12989 K.

SA = 1m2,

Our goal is to design a functional observer that tracks the total
concentration of the reactants z(k) = C5(k) + Cg(k) in the
reactor.

The initial condition of the reactor is C,(0) = 0,Cg(0) =
0,06(0) = 300,6;(0) =300 and the model is can be
converted to deviation form Cj = Cp — Cprer, Cg = Cp —
Cg,ref 0" =0 — Brep 9]{ = 6j - 6j,ref and y; =0, y; = 9]{
where the subscript ref denotes reference steady state value,
with Carer = 0668422, Cprer = 016847, 0, =

410.2332, 8; .or = 302.03384
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A scalar functional observer is built (v =1) and the necessary
and sufficient condition (5.1) is satisfied for the following
choice of By, B; € R*and a; € R

2pc
Bo = [_ —szR' 1]
8, = [chp (1_&_%> _ USy8:
1 —AHg Vo ope,V /) picyVy
Fi8; USAS; 2USaS;
Vi eV —AHRV
o = St—F -1

\Y

Remark 7.1: A sampling period &, that satisfies §; < 2 (%)

ensures —1 < oy < 1.

The resulting functional observer is

£+ 1) = - (- 1) 80

v
2US,  US, ]
5 + 0
EaHV T pieyvi]
is [F]- F, US, ZUSA] (2
tlg ~ T T y2 .
Vi Vo opicyV;  —AHRV

2pc,
(—=AHR)

2(k) = §(k) — y1(K) +y2(K)

The estimate generated by the functional observer (in non-
deviation form) and the estimation error plotted in figure 1.

@A ——observer
o 2 ——system
+
<1
O
0 |
0 500 1000 1500 2000
time (hr)
g 1
L
c
205
@
E
@ 0
W o 500 1000 1500 2000
time (hr)

Figure 1: Top-Estimates and true profiles in non-deviation
form in the presence of initialization error (£(0) —
T(x(0))=1) where T(x) is given by (5.8). Bottom-
Estimation error (Z(kK) — z(k))

VIII. CONCLUSIONS

A generalization of Luenberger’s functional observer to the
discrete-time nonlinear systems is presented in this work. The
problem of exact linearization of the functional observer

dynamics has been studied and conditions for the linearization
to be feasible have been derived including a simple formula
for the design of the resulting functional observer.
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