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Abstract—In recent years, edge computing has attracted significant attention because it can effectively support many delay-sensitive

applications. Despite such a salient feature, edge computing also faces many challenges, especially for efficiency and security,
because edge devices are usually heterogeneous and may be untrustworthy. To address these challenges, we propose a unified
framework to provide efficiency and confidentiality by coded distributed computing. Within the proposed framework, we use matrix
multiplication, a fundamental building block of many distributed machine learning algorithms, as the representative computation task.
To minimize resource consumption while achieving information-theoretic security, we investigate two highly-coupled problems, (1) task
allocation that assigns data blocks in a computing task to edge devices and (2) linear code design that generates data blocks by
encoding the original data with random information. Specifically, we first theoretically analyze the necessary conditions for the optimal
solution. Based on the theoretical analysis, we develop an efficient task allocation algorithm to obtain a set of selected edge devices
and the number of coded vectors allocated to them. Using the task allocation results, we then design secure coded computing
schemes, for two cases, (1) with redundant computation and (2) without redundant computation, all of which satisfy the availability and
security conditions. Moreover, we also theoretically analyze the optimization of the proposed scheme. Finally, we conduct extensive
simulation experiments to demonstrate the effectiveness of the proposed schemes.

Index Terms—Edge computing, efficiency, confidentiality, coded computing, task allocation, linear coding, optimization

1 INTRODUCTION

DURING the past few years, edge computing has become a
viable solution to support many delay-sensitive applica-
tions, such as Internet-of-Things (IoT), virtual/augmented/
mixed reality (VR/AR/MR), crowdsourcing, machine learn-
ing, and big data analytics [2] (Fig. 1a). Instead of executing on
a remote data center, in edge computing, a computing task of
a user device can be distributed and then executed in multiple
nearby edge devices. Therefore, the completion time of the
computing task can be significantly reduced [3], [4], [5], [6], [7],
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[8] (Fig. 1b). Moreover, a large computation task can be parti-
tioned into smaller sub-tasks with certain redundancy and
then executed on multiple edge devices to further reduce the
total task completion time [9], [10], [11].

Although such traditional distributed computing schemes
can be utilized in edge computing, there are still many chal-
lenges to be addressed in practical scenarios. First, many edge
devices are heterogeneous and resource-limited, i.e., limited
storage space, computing capability, and bandwidth. There-
fore, it is important to design optimal task allocation schemes
to identify a set of suitable edge devices for computing. Sec-
ond, edge devices may be untrustworthy, so it is necessary to
design security mechanisms to provide data confidentiality in
edge computing.

To address both challenges, coded distributed computing
(CDC) has been proposed in recent years and applied to per-
form different distributed computing tasks, in which the dom-
inating use case is matrix multiplication [1], [4], [5], [6], [10],
(111, [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25] because it is a critical and indispensable build-
ing block of many distributed machine learning algorithms,
e.g., linear regression [4], k-nearest neighbors estimation [17],
deep neural network [18], convolution neural network [19],
federated learning [20], etc.

For matrix multiplication, most existing studies on CDC
focus on the tradeoff between the latency and computing
resources [4], [5], [6], [7], but very few efforts have been
devoted to the security aspects by fully utilizing linear coding
with resource consumption consideration. For instance, in [10],
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(a) Edge Computing Networks.

Fig. 1. An example of coded edge computing.

[11], [12], the authors utilized the random information and
the redundant computation resource to provide information-
theoretic security (ITS) without considering the communication,
computation, and storage costs. In this paper, we address the
design of secure CDC for edge computing with heterogeneous
edge devices to minimize the total resource usage, which has not
yet been investigated in the literature.

In the literature, homomorphic encryption can be exploited
to compute directly on the encrypted data, but it requires high
computation overhead and implementation complexity [25],
[26], [27]. Specifically, using the latest HEIib library developed
in 2018, the authors in [27] demonstrated that the running
time of multiplying a matrix by a vector in homomorphic
encryption mode is more than 10° times slower than the
amount of time to directly multiply two unencrypted matri-
ces. Therefore, homomorphic encryption may not be efficient
for edge computing, especially for matrix multiplication. In
this paper, we consider the secure coded edge computing by
fully exploiting the properties of the linear coding itself, which
has lower computation complexity.

Specifically, we consider a matrix multiplication model Ax
in which the data matrix A is pre-defined in the cloud and
coded blocks of A are disseminated to edge devices in
advance [10], [11], [12], [13], [28], as shown in Fig. 1. Moreover,
we aim to achieve the confidentiality of A such that the coded
blocks assigned to each computing device cannot be used to
compute any linear combination of rows in A, which is the
ITS requirement. To achieve the ITS of A, the cloud can gener-
ate some random blocks and linearly combine them with the
blocks in A, as shown in Fig. 1c. Although adding random
blocks will lead to more resource usage, the confidentiality of
the data matrix A is provided without sharing any secret
keys. Since edge devices are resource-limited, the number of
coded blocks processed in each edge device must also be lim-
ited. Therefore, we will investigate two highly-coupled

(b) Traditional Edge Computing.
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(c) Secure Coded Edge Computing.

problems, task allocation and coding design. Next, we will
use an example to show that the task allocation and coding
design have significant impacts on the performance of secu-
rity and the total usage of storage, computation, and commu-
nication resources.

In the following example, we consider that a user device
sp wants to multiply data matrix A by its input vector x (or y
or z), and four edge devices can be selected to participate in
edge computing. Specifically, suppose that the data matrix
A contains 4 row-vectors, represented as {A1, Ay, A, Ay}
The cloud generates r random row-vectors, represented as
{R1,Ry,...,R,}, encodes them with row-vectors of A into
4 + r coded row-vectors, and distributes them to the selected
edge devices. After the selected edge devices compute and
send intermediate results back to sg, sy can decode Ax.

To simplify the discussions about heterogeneous edge
devices, we consider that (1) a unit resource is required to
store and process one coded row-vector on each edge device,
and (2) each computing device has a different resource limit,
which is the maximum number of coded row-vectors that it
can store and process. Moreover, the number of intermediate
results transmitted to s, from each edge device is equal to the
number of coded row-vectors stored on it. To use one unit
resource on different edge devices may involve different
costs. Thus, we model the total cost involved on an edge
device as the product of unit cost and the number of coded
row-vectors stored and computed on that device. Conse-
quently, the total cost of the entire matrix multiplication is the
summation of the total cost of all selected edge devices. Table 1
shows the total cost under different task allocations and cod-
ing schemes.

e InCasel, r =1 and three devices are selected to pro-
cess the task. Case 1 is valid because the number of
coded row-vectors allocated to each edge device does

TABLE 1

Examples for Task Allocation and Coding Scheme in Secure Coded Edge Computing
Edge device s, Sy $3 S4 Total cost
Unit cost 2 3 4 10
Resource limit 4 1 3 2
Casel:r=1 A1+R;, A1+ A+ Ry A; + R, A, +R, Ry 15, valid, unsecure
Case2:r=2 R, Ry AL +Ri, Ay + Ry A; +Ri, AL+ Ry 18, invalid, secure
Case3:r =2 R, Ry A+ Ry As + Ry, A+ R A+ Ry 25, valid, secure
Cased:r=3 R, Ry, R3 A+ R, As +Ri;, A3+ Ry, Ay + R3 21, valid, secure
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not exceed its resource limit and the user device sy
can decode Ax after receiving all the intermediate
results. The total cost is 2 x2+1x3+2 x4 =15.
However, it is unsecure because s; can obtain A, by
(A1 + Ay + Ry) — (A1 + Ry) and s3 can obtain A4 by
(As+Ry) — (Ry).

o Case 2 was first investigated in our previous work [1]
for homogeneous devices, in which each edge device
has no resource limit and is allocated the same num-
ber of coded row-vectors. Case 2 is secure with a
higher total cost 2x2+4+2x 342 x4=18. How-
ever, it is invalid for this example, because the num-
ber of coded row-vectors allocated to s, exceeds its
resource limit, which is 1.

e In Case 3, the cloud generates the same coded row-
vectors as those in Case 2 but it distributes the vec-
tors to four edge devices as shown in Fig. 1c. It is
valid and secure. The total costis 2 x 24+ 1 x 342 x
441 x10 =25.

e In Case 4, the first three edge devices are selected
and three random vectors are used. Case 4 is also
valid and secure. The total costis 3 x 24+ 1 x 3+ 3 x
4 = 21. Compared to the cost in Case 3, the total cost
in this case decreases by 16 percent.

The examples above clearly demonstrate that the task allo-
cation and coding design should be jointly considered to mini-
mize the total cost for Secure Coded Edge Computing (SCEC)
with heterogeneous edge devices. In this paper, we formulate
an optimization problem to minimize the total resource usage in
SCEC with ITS guarantee by jointly studying the task allocation
and coding design. Our objectives include: 1) completing the
computation task, 2) satisfying the resource and security
requirements, and 3) minimizing the total cost of storage,
computation, and communication. To the best of the authors’
knowledge, no previous work has been conducted to address
such a Minimum Cost SCEC (MCSCEC) problem. The main
contributions of the paper are summarized as follows:

e We adopt linear coding to achieve secure edge comput-
ing by exploiting the available resources of massive
edge devices in edge networks. To this end, we for-
mally define the Minimum Cost Secure Coded Edge
Computing (MCSCEC) problem for the heteroge-
neous edge computing system.

e We conduct a solid theoretical analysis to first show
the conditions for the existence of the feasible solution.
We further prove the necessary conditions for the opti-
mal solution, which enables us to further design the
optimal task allocation scheme.

e To achieve the first two objectives of the MCSCEC
problem, we develop an efficient optimal algorithm to
first obtain a set of selected edge devices, i.e., task allo-
cation, and then design coded computing scheme, i.e.,
coding design. Moreover, we also prove that the cost
achieved by the proposed scheme is the minimum.

e We conduct extensive simulation experiments to
demonstrate the effectiveness of the proposed task
allocation and code design.

A preliminary version of this paper appears as [1]. Com-

pared with our previous work, the main differences are
shown as follows:
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First, in this paper, we consider the MCSCEC problem for a
heterogeneous edge computing network where the number of
vectors stored on each edge device is limited and the limits of
various devices may be different, which is more general than
the case of a homogeneous edge network considered in [1].

Second, redundant coding can greatly reduce the impact of
stragglers on computational latency because the user device
does not need to receive all the intermediate results, but only
need to receive enough intermediate results to decode [4],
[10], [11], [12], [14], [19], [21]. In this paper, we consider a
redundant coding scheme, which is more general than the
case of the unredundant coding scheme considered in [1].

Third, we substantially enhance the performance evalua-
tion in that we not only consider the heterogeneous resource
consumption costs, but also the heterogeneous resource lim-
its of different edge devices. In particular, we consider two
probability distributions, i.e., the uniform distribution and
the normal distribution, for the resource consumption costs
and resource limits. On the other hand, we only evaluate
the proposed algorithm when the resource consumption
costs follow the uniform distribution in [1].

Finally, we add a new section to discuss related work
from different aspects.

The rest of the paper is organized as follows. In Section 2,
we first introduce the system model for the MCSCEC prob-
lem. We then provide a theoretical analysis of the MCSCEC
problem in Section 3. Next, in Section 4, we design an effi-
cient optimal scheme that includes task allocation algorithm
and secure code designs for both the non-redundancy case
and the redundancy case. We further conduct comprehen-
sive simulations in Section 5. Finally, we investigate related
work from multiple aspects in Section 6 and conclude the
paper in Section 7.

2 PROBLEM MODELING

In this section, we first introduce the SCEC model and then
present the attack model considered in this paper. At last,
we give the formal definition of the MCSCEC problem and
provide an overview of the framework solving the problem.

2.1 System Model

In this paper, we study an edge computing system S =
{s0,81,.-.,8k}, k > 2, in which sy denotes a user device and
s;,Vj € {1,...,k}, represents the jth edge device. Let w;
denotes the resource limit of the number of vectors stored
on s;, and let W = (wy, ..., wy) be the sequence of limits. s
needs to perform computations on a confidential data set
represented by an m x! dimensional matrix A. Let
A, A, ... A, be m row-vectors of A, each of which is
with dimension 1 x . In our study, without loss of general-
ity, we focus on the multiplication of data matrix A with
one input vector x. We assume that vector x is also a coded
version of the original data, which cannot be used by any
edge device to reveal the original data. In this paper, since
the security of all data is rather comprehensive, we will
only focus on how to achieve the confidentiality of A. The
scheme proposed in this paper can also be applied to more
general cases that require multiplication of two matrices
and multiplication of a data matrix with different input
vectors.
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To compute Ax and achieve the ITS requirement, A needs
to be divided into blocks, coded, and stored at edge devices.
This pre-processing can be done by a cloud, e.g., a parameter
server that has trained a deep-learning model. Specifically, in
the encoding process, we first generate a set of » random
vectors R = {R1,Ro,...,R,}, in which each vector has a
dimension 1 x{. Then, we generate a total of a(m +r)
coded vectors, each of which is a linear combination of
A A ... A R, Ry, ... R, Here wenote that, a(a > 1) is
the computing redundant rate and a(m + r) is an integer.' We
also note that r is an important variable to be determined,
which not only has great impacts on the total resource usage
but also the existence of the secure linear coding scheme for
the edge computing. Let T = [A],...,A] R/ ...,R/] "and
the a(m+7r) x (m+7r) dimensional encodmg coefficient
matrix B = [BIT, ey B;] T, in which B; is the encoding coeffi-
cient matrix of the coded vectors to be stored on s; and "
denotes matrix transposition. To guarantee the decodability
of the redundant computation, the encoding coefficient matrix
B should be full rank and every m + r row-vectors of B are
linearly independent [4]. Finally, coded vectors, i.e., the row-
vectors of BT, are distributed and stored on edge device s;,
Vje{l,...,k}. Let V(B;) denote the number of rows in B;.
In other words, the number of coded vectors stored on s; is
V(B;). We note that the encoding coefficient matrix is an
empty matrix for the edge device which will not participate in
the Computatlon i.e., no coded vector is stored on it. There-
fore, Z] L V(Bj) =a(m +r).

To compute Ax, s first sends the input vector x to the
selected edge devices. Each edge device s; then multiplies
the coded vectors, i.e., the row-vectors of B;T, by x and
sends the intermediate results B;Tx with length V(B;)
back to sg. Then, sy can decode Ax after receiving any m +r
intermediate results. Specifically, since the user device s
receives any m + r intermediate results, the aggregated
results will be in the form of By,,,,)Tx, where B,,,) is the
(m+r) x (m+ r) dimensional aggregated encoding matrix.
The aggregated encoding matrix B, is a full rank matrix,
the user device can obtain Tx by Gaussian elimination,
in which Ax is composed by the first m values of Tx. In
Section 4.2.2, for a =1, we give a secure linear coding
design with much lower decoding complexity, in which the
user device only needs to perform m subtractions on the
received m + r intermediate results, i.e., values, to obtain
the final result y = Ax.

In this paper, we consider minimizing the storage,
computation and communication costs in SCEC. For each
edge device s;, let the unit cost of storage be c;. We note
that [ is the number of columns in data matrix A and the
number of rows of input vector x. Let the unit costs of
addition and multiplication be ¢ and o, respectively,
where cj < cfj". Let the unit cost of communication from s;
to sg be cj First, for storage, s; needs to store (1) an [ x 1
dimensional input vector x, (2) V(B;) coded vectors of
the data matrix, each of which is a 1 x [ dimensional row-
vector in B,;T, and (3) V(B;) intermediate results (values)
in B;Tx. Therefore, the storage cost is up to (I 4+ V(B;)l +
V(B ])) Second, to compute the multiplication between

1. The redundant coded vectors can be used to not only assure secu-
rity but also provide processing delay guarantee [4], [10], [11], [12], [21].
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a V(B;j) x I coded data matrix B;T and the ! x 1 input
vector x, the total computation cost is V(B;)(lc]' + (I —
1)c§). Third, after completion of the computing task, s;
shall send V(B;) intermediate results (values) in B,Tx to
sp, which will lead to up to V(B )c commumcatlon cost.
Therefore, the total cost on s; is

I+ {4+ 1)V (By))c; + V(B))(Ic] + (1 —1)cf) + V(BJ-)clji

<.
I
—

M» 7

)es 1 + (1= 1)c + ¢V (By) + 1c).

(1)

To simplify the notations, we define ¢; = (I + 1)c} + lc]' +
(I—1)¢} + ¢} as the unit cost of each edge device s, which
reflects the involved storage, computation, and communica-
tion cost for s; to handle one row-vector. Since [ and ¢} are
given values, Zrl lc; is fixed. Therefore, the problem of
minimizing the total cost shown in Eq (1) is equivalent to
the problem of minimizing cost ¢ = 3" i1 V(Bj)c;. Let C =
{c1,...,cr}. Without loss of generality, we assume 0 <
C“SCjZiflgjlgjzgk.

Given an edge computing system S, the resource limits of
edge devices W, the costs of edge devices C, the m x [
dimensional data matrix A and the computing redundant
rate a, we define the task allocation and the corresponding
linear code as an a(m + r) dimensional Linear Code for Edge
Computing (LCEC) ¢(S, W, C, A, a,r). To guarantee that the
task allocation is available for the edge computing system
S, and the user can decode the final result y, we give the fol-
lowing two conditions.

Definition 1 (Availability Condition). A task allocation of
an a(m + r) dimensional LCEC ¢(S,W,C, A, a,r) satisfies
the availability condition iff Zle V(Bj) =a(m+r) and
V(B)) <w;, Vi€ {l,...,k}.

Definition 2 (Decodability Condition). An a(m + 1)
dimensional LCEC ¢(S, W, C, A, a,r) satisfies the decodabil-
ity condition iff the encoding coefficient matrix B is full rank
and every m + r row-vectors of B are linearly independent.

To facilitate the discussions, we summarize notations in
Table 2.

2.2 Attack Model and Secure Requirements
In this paper, we consider the case that each edge device can
be an attacker or compromised by an attacker, who wants to
know the information of data matrix A. For example, in
gradient-descent based algorithms, data matrix A is usually
the personal data and input vector x in each iteration is
only a temporary vector for obtaining the final weight vec-
tor [1], [4], [10], [11]. We assume that these edge devices do
not collude with each other. Similar passive attack models
have been investigated in [1], [10], [11], [12], [13], [28]. We
note that the ideas proposed in this paper can also be
extended to protect both data matrix A and input vector x
simultaneously.

Let H(-) be entropy and H(-|-) be conditional entropy.
We define the information-theoretic security (ITS) requirement
[11, [10], [11], [29] as follows:
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TABLE 2
Notations

Notations Meaning

b

the m x [ dimensional data matrix, in which the ith
row vector is A,;.
the computing redundant rate.
the encoding coefficient matrix.
the encoding coefficient matrix for edge device s;.
the unit cost of edge device s;.
the costs of edge devices, C = {ci, ..., ¢}
the m x m dimensional identity matrix.
the number of edge devices.
the linear span space of row-vectors of a matrix.
the number of row-vectors in the data matrix A.
the number of column-vectors in the data matrix A.
the p x ¢ dimensional zero matrix.
The set of random vectors R = {R;,Rs, ..., R, }.
the number of random vectors to be encoded with
the data vectors.

() the rank of a vector set or matrix.
the set of edge devices and a user device, S =
{8() 81 Sk}
the new matrix composed of data matrlx Aand
random vectors R, T = [AT AR LR

InTmEQo WwWe

3

=
=

TEOT

i
=)
3
=

m?
the number of row-vectors in a matrlx

the sequence of resource limits of edge devices, W =

{wi,...,wi}.

the [ x 1 dimensional input vector.

y = Ax.

. the number of edge devices to participate in the SCEC.
matrix transposition.

1 the matrix composed by the set of row-vectors with

indexes from a to b in a matrix.

the element in the pth row and gth column of a matrix.

2= A

< X

Definition 3 (Security Condition). An a(m +r) dimen-
sional LCEC ¢(S,W,C, A, a,r) satisfies the requirements of
ITS iff

H(A|B,T) = H(A),Vj € {1,...,k}. )

Let E,, be the m x m dimensional identity matrix and O,,,
be the p x ¢ dimensional zero matrix. Let X = [Ep! O, and
L(-) be the span space of row-vectors of a matrix. Accordmg to
[29], Eq. (2) is equivalent to: dim(L(B;)NL(X)) =0, Vje

{1,...,k}. Suppose B; = {—]—3)5 —}, we next present a sufficient
J
and necessary condition of the ITS requirement.

Theorem 1. B, satisfies the security requirement shown in
Eq.(2), lffRank( ;) = m + Rank(B;).

Proof. According to the properties of the linear space, we
have
dim(L(B;)) + dim(L(X))

= dim(L(B;) + L(X)) +
= Rank(B;) + dim(L(B;) N

dim(L(B;) N L(X))
L(X).

Since dim(L(B;)) = Rank(B;) and dim(L(X)) = m, we
have dim(L(B;) N L(X)) = m + Rank(B;) — Rank(B;).

If Rank(B;) =m + Rank(B;), then dim(L(B;)N
L(X)) = 0. Therefore, B; satisfies the security require-
ment shown in Eq. (2).
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On the other hand, if B; satisfies the security require-
ment shown in Eq. (2), we have dim(L(B;) N L(})) = 0.
Therefore, Rank(B;) = m + Rank(B;). O

2.3 Problem Definition

In this paper, we study the Minimum Cost Secure Coded Edge
Computing (MCSCEC) problem as follows:

Definition 4 (The MCSCEC Problem). Given an edge
computing system S, the resource limits of edge devices W,
the costs of edge devices C, a data matrix A and the
computing redundant rate a, the MCSCEC problem is to
minimize the total cost c by finding a subset of edge devices
that satisfy the availability, decodability and security
conditions

min c
#(S,W,C,A,a,r)

Availability Condition (Definition 1)
Decodability Condition (Definition 2)
Security Condition (Definition 3).

subject to

We note that if an LCEC ¢(S, W, C, A, q,r) satisfies the
availability, decodability and security conditions, then it is a
feasible solution for the MCSCEC problem.

2.4 The MCSCEC Framework

In this section, we provide an overview of the framework to
solve the MCSCEC problem where the key components in
the framework will be elaborated upon in the following
sections.

e Task Allocation. In this step, the cloud shall first
determine two parameters: r (the number of ran-
dom vectors to be encoded with data vectors) and
0, (the number of edge devices to participate in the
SCEC). We will elaborate on this in Section 4.1.

e Coded Data Distribution. As explained in the system
model, the cloud shall first generate » random vec-
tors {Ri,Ro,...,R,}, then generate the encoding
coefficient matrix B = [B/,..., BGTT]T. Finally, the
cloud computes and then distributes B;T to each
selected edge device s;. We will present the design
of B in Section 4.2.

o  Coded Edge Computing. After user device s, sends the
input vector x to each edge device s;, s; multiplies
the coded data matrix B;T by x and sends the inter-
mediate results B;Tx back to s.

e Original Result Recovery. When user device s
receives the first returned m + r intermediate results,
ie., B(unTx, it can decode and obtain Ax. In
Section 4.2, we will discuss how to use B,,+,)Tx to
efficiently calculate the desired result Ax.

3 THEORETICAL ANALYSIS

In this section, we will first conduct a solid theoretical anal-
ysis to show the conditions for the existence of a feasible
solution. We then prove the necessary conditions on the
range of r for the optimal solution, which enables us to fur-
ther design the optimal task allocation scheme.
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3.1 The Existence of a Feasible Solution

Lemma 1. If LCEC ¢(S,W,C, A a,r) is a feasible solution
of the MCSCEC problem, then the number of coded
vectors allocated to s; satisfies Rank(B;) =V(B;) <r,
vie{l,..., k}.

Proof. First, since LCEC ¢(S,W,C, A a,r) is a feasible
solution of the MCSCEC problem, it satisfies the ITS
requirements. According to Theorem 1, Rank(B;) = m +
Rank(B;), where the dimension of matrix B; is (V(B;) +
m) x (m+r). We have Rank(B;) <m+r. Therefore,
Rank(B;) = Rank(B;) —m <r, Vje{l,...,k}. Next,
since LCEC ¢ also satisfies the decodability condition,
according to Definition 2, every m + r row-vectors of B
are linearly independent, we have Rank(B;) = min(m +
r,V(B;)). Consequently, Rank(B;)=min(m +r,V(B;)) <.
Since m > 0, we have min(m+r,V(B;)) =V (B;) <r,
Vj e {l,...,k}. Therefore, Rank(B,;) = V(B,) <. 0

Remark 1. Lemma 1 shows that the decodability condition
and the security condition require that the number of
coded vectors allocated to each edge device is no more
than r.

Before we show the following theorem, we let
h;:Zmin(wj,r),Vi e{l,...,k} and Vr > 1. 3)
J=1

We note that /] is monotonically increasing with respect to i
and r.

Theorem 2. If LCEC ¢(S, W, C, A, a,r) is a feasible solution of
the MCSCEC problem, then hj, > a(m+r) and V(B;) <
min(w;,r), ¥j € {1,...,k}.

Proof. Since LCEC ¢(S, W, C, A, a,r) is a feasible solution of
the MCSCEC problem, it satisfies the availability condition.
Therefore, V(B;) < w;, V5 € {1,...,k} and Zle V(B;) =
a(m+ 7). According to Lemma 1, V(B;) < r. Therefore,
V(B;) < min(wj,r), Vj € {1,...,k}. Moreover, since h; =
o min(w,r) > S8 V(B,), B > a(m+ 7). O

Remark 2. Theorem 2 shows the necessary conditions for
the feasible solution of the MCSCEC problem.

Before we give the following theoretical analysis, we let

0, =min({i|i € {1,...,k} and i > a(m +1)}), 4)
Or—1

Coun(r) = Y min(uwy, r)e; + [alm+7) =T | ©)
j=1

From the definition of 6,, we have 1 <a(m +7)—hy | <
min(wy,,r). We next give the sufficient and necessary
condition that a feasible solution exists for the MCSCEC
problem.

Theorem 3. For a given r, there exists a feasible solution ¢(S,
W, C, A, a,r) of the MCSCEC problem, iff by, > a(m+r).

Proof. For a given r, if there exists a feasible solution
¢(S,W,C, A, a,r) of the MCSCEC problem, according to
Theorem 2, j, > a(m + 7).
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On the other hand, if &}, > a(m + r) for a given r, then
0, < k. We can obtain a task allocation as follows:

min(w;, ) Vie{l,...,0,—1}
V(Bj) =< alm+r)—hy_y ,j=0; (6)
0 Vje {6, +1,... k},

which satisfies the availability condition. Based on the task
allocation, we can also obtain a secure coding scheme as
designed in Section 4.2, which satisfies the decodability
and security conditions (Theorem 8). Therefore, the scheme
composed by the task allocation and the secure coding is a
feasible solution of the MCSCEC problem. 0

Remark 3. For a given r, Theorem 3 shows the sufficient and
necessary condition that a feasible solution exists for the
MCSCEC problem. It will be used to further determine the
range of r in the feasible solution of the MCSCEC problem.

Let e, = max(W), we have the following theorem.

Theorem 4. There exists a feasible solution for the MCSCEC prob-
lem, iff there exists a parameter r that satisfies r € {1,..., Wae }
and by, > a(m + ).

Proof. If there exists a parameter r that satisfies r € {1,...,
Winaz } and A}, > a(m + r), according to Theorem 3, there
exists a feasible solution of the MCSCEC problem.

Next, if there exists a feasible solution ¢(S, W,C, A,
a,r) of the MCSCEC problem, we have r > 1. In ¢, since
V(B;) is the number of coded vectors allocated to s;,
according to Theorem 2, we have V(B;) < min(wj;, r) and
hi, > a(m + r). Consequently, when 1 < r < wy,q,, then r
satisfies € {1, ..., Wy, } and A}, > a(m +r).

On the other hand, when r > w,,, then min(w;,r) =
wj, Vje{l,...,k}. Since V(B;) < min(wj,r)=w;. we
have Zf:] V(B;) < Zé‘f:] wj. Since ¢ satisfies the availabil-
ity condition, Zf;:l V(B;) = a(m+r) and consequently
ijl w; > a(m+r). Suppose that r' = wy,,, we have
By = o5 min(w;, 1) = S5 w; > a(m +7r) > a(m4 1),
Therefore, according to Theorem 3, there exists a feasible
solution ¢(S,W,C, A, a,r’), where 7' satisfies that ' €
{1,..., Wnq} and hz, >a(m+1).

In summary, there exists a feasible solution for the
MCSCEC problem, if and only if there exists a parameter
r that satisfies 7 € {1,..., Wye, } and ki, > a(m + 7). O

Remark 4. Theorem 4 shows the sufficient and necessary
condition that the MCSCEC problem has a feasible solu-
tion, which will be used to judge whether the MCSCEC
problem has a feasible solution or not in the design of
task allocation shown in Section 4.1.

3.2 The Range of r in the Optimal Solution

In the previous subsection, we only consider the case that
there exists a feasible solution for the MCSCEC problem,
i.e., there exists a parameter r that satisfies r¢€
{1,..., Wnas} and hy, > a(m + r). In the following theoreti-
cal analysis, we try to figure out the range of r in the opti-
mal solution of the MCSCEC problem, for which we
define two parameters:
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Tmin = min({rjr € {1,..., Wyna} and hy, > a(m+r1)}),

Tmaz = max({r\r € {L B wmar} and h; > CL(’ITL + 7')})

Lemma 2. If there exists an optimal solution ¢*(S, W,
C, A, a,r) of the MCSCEC problem, then there exists an opti-
mal solution ¢(S, W, C, A, a,r), in which the task allocation
satisfies Eq. (6), and the cost of ¢ is Coym (T).

Proof. We prove this statement in a constructive way.
If ¢*(S,W,C,A,a,r) is one of the optimal solutions
for the MCSCEC problem and the minimum cost is ¢,
according to Theorem 3, h; > a(m+r). Moreover,
based on the given r, we can allocate the task
according to Eq. (6) and obtain a feasible LCEC
¢(S,W,C,A a,r) according to the secure coding
designs shown in Section 4.2. Specifically, in Sec-
tion 4.2, Theorem 8 shows that ¢(S,W,C,A,a,r) is a
feasible solution because it satisfies the availability,
decodability and security conditions.

We now show that ¢(S W,C,A,aq,r) is also optimal.
According to Eq. (6), Z V(B;) = a(m + r) and the cost
of ¢ i ¢sym () shown in Eq (5). Since the optimal solution
of the MCSCEC problem ¢* satisfies the availability con-
dition, we have Zﬁ:l V(Bj) = a(m +r), where we let
V(B;) be the number of the coded vectors stored on s; in
¢*. According to Theorem 2, for both the optimal ¢* and
the feasible solution ¢, V(B*) < min(wj,r) and V(B;) <
ml}?(w],r) for Vj e {1,. k:} Moreover, Zz 1V(B*) =
> -1 V(By) = a(m +r). leen r, for Vje{l,...,k},
min(wj,r) and a(m + r) are fixed. When 1 < j; < j2 g k,
¢j, < ¢j,- Therefore, coum(r) < c.

On the other hand, since ¢* is an optimal solution of
the MCSCEC problem while ¢ is a feasible solution of the
MCSCEC problem, we have ¢ < ¢y, (7). Consequently,
Csum(T) = ¢, i.e, ¢ is also an optimal solution of the
MCSCEC problem, in which the task allocation satisfies
Eq. (6), and the cost of ¢ is ¢y (7). O

Remark 5. Lemma 2 shows the existence of an optimal
solution of the MCSCEC problem that satisfies Eq. (6). It
will be used to design task allocation shown in Section 4.1
and coding design in Section 4.2.

Before we Contmue the following analysis, we let w],
max({wjlj € {1,...,6, = 1}}).

Lemma 3. If }! > a(m +71), B2 > alm+re) and ry > ry >
wit - then Coum (1) > Coum(T2).

max

Proof. Since a(m+ri) > a(m+r2) and ri > ro > Wi, ,

we have 6,, < 6,,, min(w;, 1) = wj, Vri € {1,...,6,, — 1},
and min(w;, ) = wj, Vre € {1,...,6,, — 1}

Oy —1
Csum(T1) Z min(w;,71)c
0r, —1
+[a(m+7) — Z min(wy,r1)]cs,,
J=1
O, —1
Z (m+mr)-— Z wilca,, -
=1 =1
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Ory—1
Csum(TQ) = Z min(wjﬂ"Q)CJ
j=1
Or,—1
+ [a(m + 1) — Z min(w;, r2)]ce,,
j=1
9r2*1 97«271
= Z wjcj + [a(m + 1) — Z wilce,, -
J=1 j=1
If 97-2 = 97«], then Csum(rl) — Csum(TQ) = a(rl — TQ)C(%I >

0.1f6,, < 6,,,then

Or,—1 6y, —1

E wjc; + E w;c;

J= 611
Or, —1

E min(w;, ) 09“.

Csum 7"1

+ [a(m + 1)

Ory—1 .
Z] 1 Wy S mln(wg,«z ,TQ) S ’11]97,2, Csum
-1

Since a(m + rq9) —

0,
(r1)— Cbum(TQ) > Z] =6y, chj — la(m +12)— ZJ‘Z] wj}c%
> Z/ o, w j¢j — W, Cg,, > 0.

Therefore, we have g (r1) > Coum(r2). a

Theorem 5. If an LCEC ¢(S, W, C, A, a,r) is an optimal solu-
tion of the MCSCEC problem, then 7 < 1 < Ty

Proof. First, we consider the case that 1 < r < w,,q,. Since ¢
is an optimal solution, ¢ must be feasible and r must sat-
isfy 7y, > a(m +r) in Theorem 3. Then, according to the
definitions of 7,,,;, and 70, Tmin < T < Tmaz-

Next, we let r* = w,,,., and show that » > r* will lead
to a contradiction. According to Lemma 2, for each opti-
mal solution ¢(S, W,C, A, aq,r), there exists an optimal
solution ¢'(S, W, C, A, a,r), in which the task allocation
satisfies Eq. (6) and the cost of ¢’ is ¢y (r). In ¢/, suppose
that the number of coded vectors allocated to s; is V(BY),
Vje{l,...,k}, wehave Z L V(B)) =a(m+7).

Accordmg to Theorem 2, V(B’) < rmn(w]7 r) <w; <7
We have £ =Y min(w;,r*) > " V(B)) = a(m+
r) > a(m +r*). According to the proof of Theorem 3, we
can obtain a feasible solution ¢*(S, W, C, A, a,r*) of the
MCSCEC problem in which the number of random vectors
is r*, the task allocation satisfies Eq. (6), and the total cost of
¢ is csum(r*). Since Ay > a(m + 1), hf > a(m+r*) and
r > r* >w ., according to Lemma 3, we have ¢y () >
Csum (), which contradicts with the assumption that ¢/ is
the optimal solution. O

Remark 6. Theorem 5 gives the range of r in the optimal
solution. It will be used to determine the range of r to
find the optimal task allocation shown in Section 4.1.

Theorem 6. For each r € {rmin, - . ., "'max |, there exists a feasible
solution (S, W, C, A, a,r) for the MCSCEC problem.

Proof. When 7 = i, OF 7 = 1y, according to the defini-
tions of 7y, and 7,4, we have iy, > a(m + r) so a feasible
solution exists. When r # r,,;, and 7 # 7,4, We can infer
that 7, < r < rpg. For this case, we will prove that
hj, > a(m + r) by contradiction.
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Before further discussions, we define

yr=Hssli e {1,

which is the number of edge devices with the resource lim-
its larger than or equal to 7. Then, according to Eq. (3), for
Vri1 > 2, we have

k} and w; > r}l,

k
i r—1_
It —nh' = E min(wj, 1)

g min(wj,r — 1)

k

E min(w;,r1)

J=1

— min(w;, 7 — 1)).

In the equation above, Vj € {1,...,k}, if w; > 1, min(w;,
r1) —min(w;,7 — 1) =7 — (r; — 1) = 1. Otherwise, if w;
< ry, min(wj,ry) — min(wj,ry — 1) = w; — w; = 0. There-
fore, Vry > 2, we have h'.l h’kl L= = y,,. Consequently, if
1<ry < 1 < Wingy, We have Yr, <y, and Ryl = R+
Yrge F oy =B+ 300 Y

We now construct a contradiction by assuming A; <
a(m + r) for an arbitrary r with rp,,;;, < 7 < rpgq. Accord-
ing to the definition of 7,,,,, we have ;™" > a(m + ry).

Therefore, R =R + 3, 1Y > alm T +
Z{ Tin+1 y] Since hT < a(m + T)r a(m + 71min) +

imro1 Y < a(m+r).  Therefore, Z.'j:,rmm Y <
a(m + T) - a(m + rmm) = CI( Tmm) We have

L > i 1Y < a, where the left hand side is the

T=Tmin

average of all y; whenr,,;, < j <.

ForVri € {r+1,..., 7} and Vry € {riym, .. r} we
ha:/e Yr, <yr,. Therefore, rmalf Sy ey < P
Zj:rmm-kl yl < a ie 4 Z;mﬁll y/ < a’(rmul - 7')- Slnce
ﬁ}';"‘“" =Ny, + 27”:;1 y; < a(m+7)+ a(rpe — 1) = a(m+

Tmaz), We have BJ™ < a(m + rpq,), which contradicts
with the definition of 7., that 7, > a(m + Tmaa)-
Therefore, for each r € {ryn, ..., "maes }, we have iy >
a(m + ). According to Theorem 3, there exists a feasible
solution ¢(S, W, C, A, a, ) for the MCSCEC problem. O

Remark 7. Theorem 6 shows that for each r € {r,, ...,
Tmaz}, there always exists a feasible solution of the
MCSCEC problem, which will be used to guarantee that
the solution obtained by task allocation algorithm shown
in Section 4.1 is feasible.

4 THE MCSCEC SCHEMES

In this section, based on the theoretical analysis shown
in Section 3, we develop efficient optimal algorithms to
first obtain a set of selected edge devices, i.e., task alloca-
tion, and then design secure coded computing schemes,
i.e., coding designs. Moreover, we also prove that the
cost achieved by the proposed schemes is the minimum
cost.

4.1 Task Allocation (TA) Algorithm

In this subsection, we give the optimal task allocation (TA)
algorithm for the MCSCEC problem. The details of the TA
algorithm are shown in Algorithm 1. First, according to
Theorems 4 and 5, we can judge whether the MCSCEC
problem has a feasible solution or not and obtain the range
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of r in the optimal solution, which is shown in Algorithm 1
lines 1-13. For each r in this range, Theorems 3 and 6 show
that there exists a feasible solution of the MCSCEC prob-
lem, in which the number of random vectors is r, the task
allocation satisfies Eq. (6) and the total cost is cgum (7).
Then, we can obtain the optimal r with the minimum
csum () by exploiting the exhaustion algorithm, which is
shown in Algorithm 1 lines 14-20. After that, based on
the obtained r, we compute 6, and cy,,(r) according to
Egs. (4) and (5). We note that the task can be allocated to
the first 6, edge devices according to Eq. (6) and the cost
of the task allocation is ¢ = ¢y (7).

In Algorithm 1, lines 2-8 are looped at most w,q, times,
lines 9-13 are also looped at most wy,,, times, lines 14-20 are
looped at most w;,, times and the complexity of line 15 is
O(k). Finally, the complexity of line 21 is O(k). Therefore,
the complexity of Algorithm 1 is O(kwyqs ).

Algorithm 1. Task Allocation (TA) Algorithm

Input: S, W,C, m, a, r
Output:r, 6,, c
1 Tmin = 0/ Tmaz = O/ r,c= INT,]\IAX,

2 for Tmin = 1 Timin < Winaz; Tmin = Tmin + 1 do
3 if "™ > a(m + rpn) then
4 break;
5 elseif r,,;, == Wy, then
6 return ERROR: no feasible solution exists;
7 end
8 end
9 for 7 = Wimaz; Tmaz = Tming Tmaz = Tmaz — 1 dO
10 if By > a(m + rype,) then
11 break;
12 end
13 end

14 forr* = Tmins r* < Trmazs r*=r"+1do
15 = Csum(r*);
16 if¢* < cthen

17 c=c"
18 r=r"
19 end

20 end

21 Compute 6, and ¢, (r) according to Egs. (4), (5);
22 return r, 97«/ Csum(r);

We next prove that the task allocation obtained by the
proposed TA algorithm is optimal.

Theorem 7. The TA algorithm gives the optimal task allocation
of the MCSCEC problem.

Proof. If there does not exist a parameter r that satisfies r €
{1,..., Wna} and A} > a(m + r), according to Theorem 4,
there does not exist a feasible solution for the MCSCEC
problem. In this case, the TA algorithm returns ERROR as
shown in the lines 1-8 of Algorithm 1, which means that
there does not exist a valid r € {1,..., w4} with A} >
a(m+r). 0

If there exists a parameter r that satisfies 7 € {1, ..., W}
and Ay, > a(m+r), i.e., the MCSCEC problem has at least
one feasible solution, then in the TA algorithm, we can obtain
Tmin and 74, as shown in the lines 1-13 of Algorithm 1.
Moreover, the TA algorithm will return an r and r €
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{Tmins---sTmaz}. Theorem 6 guarantees that there always
exists a feasible solution of the MCSCEC problem, in which
the task allocation satisfies Eq. (6), the coding design is
shown in Section 4.2 and the total cost is ¢y, (7). In this case,
the task allocation returned by the TA algorithm is a feasible
solution.

Next, we will prove that the task allocation obtained by the
proposed TA algorithm is optimal. If there exists an optimal
solution for the MCSCEC problem, in which 7 is the number
of random vectors, according to Theorem 5 and Lemma 2, 7’ €
{Tmins - - -, "maz  and the total cost of it is ¢, (). Suppose that
the TA algorithm returns r, 6, and ¢, (1), as shown in the lines
14-22 of Algorithm 1, since Coum(r) = milyefy, .
Csum (T, Csum (1) < Csum (7). Therefore, task allocation obtained
by the TA algorithm gives the optimal task allocation for the
MCSCEC problem.

4.2 Secure Linear Coding Designs
From the task allocation algorithm shown in Section 4.1, we
have determined the number of random vectors to be encoded
with data vectors, i.e., 7, and the number of edge devices par-
ticipating in the secure CEC, i.e., 6,. Moreover, the number of
coded vectors allocated to each edge device, ie., V(B;), Vj €
{1,...,6,}, can also be obtained according to Eq. (6). Based on
the task allocation, in this subsection, we will provide the
designs of secure coding for the general case ¢ > 1 and the
special case a = 1. Specifically, the secure coding designed for
the special case has lower decoding complexity. Furthermore,
we also prove that both of them satisfy the availability, decod-
ability, and security conditions.

Letby=0and b; = > 7, V(B;), Vj€{1,...,0,}. We give
the two designs of secure linear coding as follows.

4.2.1 Redundant Secure Coding Design fora > 1

When a > 1, we use an a(m + 1) x (m + r) dimensional Van-
dermonde Matrix as the encoding coefficient matrix B
because the Vandermonde Matrix has the maximal distance sep-
arable (MDS) property and can guarantee that any (m + )
rows of matrix B satisfies full-rank with probability 1. Since
the task allocation obtained by the proposed TA algorithm
satisfies Eq. (6), we have B; = {B},/ I e (1,0, — 1}

and By, = {B}b@’m Sl We next show the proposed redun-

dant secure codmg scheme is feasible for the MCSCEC
problem.

Theorem 8. For an LCEC ¢(S, W, C, A, a,r), if the task alloca-
tion of ¢ satisfies Eq. (6) and the encoding coefficient matrix of
¢ is an a(m+r)x (m+r) dimensional Vandermonde
Matrix, then ¢ satisfies the availability, decodability, and secu-
rity conditions.

Proof. First, LCEC ¢ satisfies the availability condition because
the task allocation of ¢ follows Eq (6), in which V(B;) <
min(wj,r),Vj € {1,...,k}, and Z] 1 V(Bj) =a(lm+r).

Second, since B is an a(m + ) x (m + r) dimensional
Vandermonde Matrix and a > 1, Rank(B) = min(a(m +
r),m+r) =m-+r and every (m + r) rows-vectors of B
are linearly independent. Therefore, the LCEC ¢ satisfies
the decodability condition.

Third, we prove that B; satisfies the security condition
for each edge device s;, Vj € {1,...,0,}. For s;, we have
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in which we can partition matrix B; into BJL and Bf’,
using the first m columns and the last r columns in B,
respectively. Since B; is a V(B;) x (m +r) dimensional
Vandermonde Matrix, Bf is a V(B;) x r dimensional Van-
dermonde Matrix. According to Eq. (6), V(B;) <r so
Rank(BR) V(Bj) = Rank(B;). Since B; can be treated as
apartltloned matrix, Rank(B;) > > Rank(E m)+ Rankz(BR)

m + V(B;). On the other hand, B; has m + V(B;) rows, so
Rank(B ) <m+V(B;). Therefore, Rank(B;) = m + Rank
(B)). Accordmg to Theorem 1, B; satisfies the security con-
dition, Vj € {1,...,6,},ie., the LCEC ¢ satisfies the security
condition. O

4.2.2 Non-Redundant Secure Coding Design fora = 1

Before we provide the design of secure coding for the special
case that a = 1, we prove that the task allocation obtained
from the TA algorithm has the following special properties.

Lemma 4. If (S, W,C, A, a,r) is an optimal solution of the
MCSCEC problem and task allocation satisfies Eq. (6), then
there exists an edge device s; which satisfies V(B;) =r,
jed{1,...,6,}.

Proof. If ¢(S,W,C, A a,r) is an optimal solution of the
MCSCEC problem and the task allocation of ¢ satisfies
Eq. (6), then we have V(B;) < min(wj,r), Vj € {1,...,6,},
the total cost is cem(r) and hy = Z?;l min(w;,r) >
Z?;l V(B;) = a(m +r). Next, we will prove the lemma
by contradiction.

We assume thatin ¢, V(B;) < r,Vj € {1,...,6,}. Since
task allocation of ¢ satisfies Eq. (6), we have V(B;) =
min(wj,r) < r, ¥j€{1,...,6, — 1}. Therefore, V(B,) =
w; < r,Vje{l,...,0, — 1}. According to Eq. (6), we have
V(Bg,) =a(m+r)— Ej’ 11 wj < min(w,,T).
Z? " w] >a(m+r)— mln(wer,r).

Let 7' = max({V(B;)|j € {1,. —1}}). Since V(B;)
=w; <1, Vje{l,...,0,—1}, we haver—wm”<r.
Therefore, 7, > hg/ = Z?’ L min(w;, )4+ min(wg,, ) =
Z? 11 w; + mln(w97, M.

If wy, <7, h;r = Z?:l wjand fy, = Z?;l wj. Therefore,
we have h;: = hy . Since hy > a(m +r) and a(m +7) >
alm+1'), h;: > a(m+7r). If wy, > 7/, h": = Z?’llw, +

7. Since Z?gl wj > a(m+1) —

a(m+r) —min(wy,,r) +7 > alm+r) —r+1r > alm+r)

—a(r —r") =a(m +1'). Therefore, hz > a(m+1').
According to Theorem 3, we can obtain a feasible

solution ¢'(S,W,C, A a,r) of the MCSCEC problem

in which the usage of random vectors is v/, the task
allocation satisfies Eq. (6), and the total cost of ¢’ is

Csum (1)

Since hj, > hgr >a(m+r), h',’; >a(m+7r) and r >

r >w! ., according to Lemma 3, we have ¢, (r) >

csum ("), which contradicts with the assumption that ¢ is

the optimal solution. Therefore, there exists an edge

device s; that V(B;) = r in the optimal solution ¢. o

Therefore,

min(wg,,7), we have iy, >
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Theorem 9. In the task allocation obtained from the TA algo-
rithm, there exists an edge device s, z € {1,...,0, — 1}, which
satisfies V(B,) = r.

Proof. According to Theorem 7, the task allocation obtained
from the TA algorithm is optimal and satisfies Eq. (6).
Next, we prove the theorem by contradiction.
Considering an optimal LCEC ¢(S,W,C, A, aq,r)
whose task allocation follows Algorithm 1, we assume that
V(Bj) <7 Vje{l,...,0, —1}. According to Lemma 4,
V(By,) = r. According to Theorem 2, we have V(By,) <
min(w;, 7). Therefore, min(wg,,r) = r. Since the task alloca-
tion of ¢ satisfies Eq. (6) and V(B;) < r,Vj e {1,...,6,
1}, we know V(B;) = min(w;,r) = w;, Vj € {1,...,6, — 1}
and fy = Z?;] min(w;,r) = Zf’ ;! wj+r. Based on
Eq. (6), we also have h,; = ZH’ min(w;,r) > ZQT 1

j=1
V(B;) = a(m + r). Therefore, Z o w] +r>a(lm+r).
Let v = max {V( )|J e{1,. —1}}). Since V(B ,)
=w; <r Vjed{l,. 1} we haver—wmm<

R

Since 10[1110(111977 r) =r, we have  min(wy,,r") =
Therefore, hk > hy = Zfr " min(wj, r’) + min(we,, ') =
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in which

[{Em}b] B I{EY}V(B } Jef{l...,z—1}
Bj = [OwmiEr] =z

j— 1+1= l’l

[{Emb TTHE },je{z+1,...,9r}.

Next, we prove that the LCEC designed based on encod-
ing coefficient matrix B satisfies the availability, decodabil-
ity, and security conditions. Let (B),, be the pth row gth
column element of B.

Lemma 5. If Bj = [{Em}};{Er}jlth},
Jo — j1 > 0, then B; satisfies the security condition.

=zl jp=1r>

Proof. Using the definition of B;, we have

E |:X:| Em Omﬁr
T Bi | {Em ;; {Er}ilri1+1

S wir = e =y > a(mbr) -1t
¥ >am+r)—alr—1)=alm-+r).

According to Theorem 3, we can obtain a feasible solu-
tion ¢'(S,W,C, A a,’) of the MCSCEC problem in
which the usage of random vectors is 7/, the task alloca-
tion satisfies Eq. (6), and the total cost of ¢ 18 gy (1').

Since hj, > hy > a(m+r), hk >a(m+1) and r >
r >w! . according to Lemma 3, we have cgu,(r) >
Csum ("), which contradicts with the assumption that ¢ is
the optimal solution. Therefore,there exists an edge
device s, which satisfies V(B,) =r, z € {1,...,6, — 1}. O

To construct an (m +r) x (m +r) encoding matrix B,
we let E, be an r x r dimensional identity matrix. From
Theorem 9, there exists an edge device s, z € {1,...,6, —
1}, with V(B.) = r. For any other edge devise s; (j # 2), we
can use the first V(B;) row vectors in E,, denoted as
{ET}WB to construct an m x r dimensional matrix shown
as follows

Since Z?T V(Bj)=m+r and V(B.)=r, we have
> vijz. V(Bj) = m. We can then define an (m + r) x (m + 1)
dimensional encoding coefficient matrix B as follows:

EI‘ ) (7)

o |

Since j2 — j1 + 1 < r, we can further express Ej as

[ Em  Omjpjit1 Omr(ip-js1) }
i1 . o . '
{Em}jz Ejpjii1 Ojpjyttr—(p-j1+1)

_ Em | Omjpisi1
Clearly, Rank(B;) = Rank( j2 i1t }

{Em ;; E Ej, i1

jo— j1 + 1. For the rank of B, we note that jo — j; +1 <7,
so Rank({E,}} i1 +1) = je — j1 + 1. Furthermore, since the
number of rows in B is j» — j; + 1 and the rank of its sub-

matrix {E, }]2 i is jo» —j1 +1, we have Rank(B;) =

jo— i1 +1.  Therefore,  Rank(B;) = m + Rank(B;).
According to Theorem 1, B; satisfies the security
condition, O

= m-+

Theorem 10. For an LCEC ¢(S, W, C, A, 1,r), if the task allo-

cation of ¢ satisfies Eq. (6) and the encoding coefficient matrix
of ¢ is defined in Eq. (7), then ¢ satisfies the availability, decod-
ability and security conditions.

Proof. Since the task allocation of ¢ satisfies Eq. (6), V(B;) <

min(w;,7), Vje{l,...,k}, and Z/ V(B =m+r.
Therefore, the LCEC ¢ satisfies the availability condition.

With row transform, the matrix B becomes B’ =
{_C];:_@_J:_]j:]‘iﬁr_} , Rank(B) = Rank(B’). Since B’ is an

rm , T
upper triangular matrix and (B'), , = 1,Yp € {1,...,m +
r}, B’ is full rank. Therefore, B is full rank and the LCEC
¢ satisfies the decodability condition.

For edge device sj, first, if j = z, since all the elements
in the 1th to mth column of matrix B, are 0, B,Tx are
linear combinations of random vectors, i.e., s, cannot
obtain any nonzero vector which is the linear combina-
tion of row-vectors of A. Therefore, B, satisfies security
condition. Second, if je {1,...,2—1}, we have B; =

[{Em}b‘ v HE g, } Since b; — (b1 +1) = V(Bj) — 1,
0<bj—(bj-1+1) < r. According to Lemma 5, B, satis-
fies the security condition, Vj € {1,...,z— 1}. Third, if
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TABLE 3
Simulation Settings

Comparison TA, MinNode, MaxNode, RNode

Algorithms

Evaluation Parameters a, k, m, Craz, Cu, Cos Winaz, Wy, W

Default Values a=1.25,k=25,m = 5000, ¢pez = 5,
¢o = 1.25, Wyyq, = 7000, w,, = 6000,
w, = 420

Simulations Groups (1) C ~ U(1, cipaz), W ~ U(100, wyqy );
2 C~ M(L Cma;l,‘)/ W~ N(wlﬁ w(’z);
(3) C ~ N(cy, %), W ~

U100, Wynaa );

(4) C ~ N (cu, %), W ~ N (w,,, ws?).

) bj_q+1-r!
j€{z+1,...,6,}, we have Bj = [{Em}b;fr r:{E,}%“B]_)}.

b‘j—r—(bj_l—&—l—r):V(B]-)—l, OSb‘j—'l"—
(bj-1+1—r) < r. According to Lemma 5, B; satisfies
the security condition, Vj € {#+1,...,6,}. Finally, for
edge device s;, Vj € {6, +1,...,k}, since it is not allo-
cated any coded vectors, the security condition is obvi-
ously satisfied. Therefore, B; satisfies the security
condition, Vj € {1,...,k}.

Therefore, the LCEC ¢ satisfies the availability, decod-
ability and security conditions. ]

Since

We now discuss the efficiency of the decoding process.
Based on the encoding coefficient matrix B, the coded data
matrix B;T is migrated and stored on each edge device s;,
Vi€ {1,...,0,}. After user device s, sends the input vector
x to each edge device s;, Vj € {1,...,0,}, s; multiplies the
coded data matrix B, T by x. Then, it sends the intermediate
results B;Tx back to sy. After the user device receives the
intermediate results {B;Tx, ..., By, Tx} from 6, edge devi-
ces, it can obtain

B1 Tx
BTx = :
Bgr Tx

Then, it can decode and recover the required result
B, Tx — {B,Tx}yg,)

B, Tx-— {BZTX}%/(B;/A)

Ax =
Bz+lTx - {BZTX}%/(B:/H)

| By, Tx— {B.Tx}y,, |
For the computational complexity of decoding operations in
the user device, it only needs to perform m times calcula-
tions on the received m + r intermediate results, i.e., values,
to obtain the required results Ax, which is much lower than
the complexity of decoding m + r intermediate results gen-
erated by using the Vandermonde Matrix as the encoding
coefficient matrix B.

In summary, the task allocation and coding design have
been proposed in Sections 4.1 and 4.2, respectively. Theo-
rem 7 shows that the proposed TA algorithm can derive the
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optimal task allocation, and the coding designs proposed in
Section 4.2 can make the solutions satisfy the availability,
security and decodiability conditions. Therefore, the solu-
tions composed by task allocation shown in the TA algo-
rithm and secure coding schemes shown in Section 4.2 are
the optimal solutions of the MCSCEC problem.

5 SIMULATIONS

In this section, we conduct simulation experiments to evalu-
ate the performance of the proposed scheme for the
MCSCEC problem.

5.1 Simulation Settings

In the following simulations, we will compare the perfor-
mance of the proposed scheme with the following baseline
algorithms.

e For the MinNode scheme, as few edge devices as pos-
sible are selected to participate in the computation.
To this end, we first sort edge devices in descending
order by their resource limits. Then, we obtain the
minimum number of edge devices, ie., 6, =
min,.cg .10 that can participate in the compu-
tation. The first 0,,;, edge devices can be allocated
with tasks according to Eq. (6).

e For the MaxNode scheme, as many edge devices as
possible are selected to participate in the computa-
tion. Specifically, we first sort edge devices in
ascending order by their resource limits. Then, we
obtain the maximum number of edge devices, i.e.,
Omar = MaX,cfp, 10, that can participate in the
computation. The first 6,,,, edge devices can be allo-
cated with tasks according to Eq. (6).

e For the RNode scheme, we randomly select the value
of r from its range {Tumin,- .-, Tma} and the first 6,
edge devices can be allocated with tasks according
to Eq. (6).

We consider the performance of the TA algorithm when
unit cost and resource limit, i.e., C and W, obey different
distributions, i.e., uniform distribution &/ and normal distri-
bution A [1], [5]. Specifically, we will consider four
groups of simulations when (1) C~U(1,cnes), W ~
u(loovwmuw); (2 C~ u(L Cmar)yw ~ N(wuwaZ); 3 C~
N(eu,co?), W ~ U100, wyq,) and (@) C ~ N(cy,co?), W ~
N (wy,w,?). Including the above parameters of distribu-
tions, we also consider the performances of the TA algo-
rithm under different values of the redundant rate, i.e., a,
the number of edge devices, i.e., k, and the number of row
vectors in data matrix A, i.e., m. The default values of these
parameters are: a = 1.25, k = 25, m = 5000, ¢ee = 5, ¢y = 4,
Co = 1.25, Wyee = 7000, w, = 6000, wy = 420. For given a, m
and 7, we use [a(m + )] instead of a(m + r) to represent
the total number of coded vectors to be stored on the edge
devices. For each combination of parameters, we generate
1,000 instances to report the average results. Next, we will
evaluate the performance of the proposed scheme for the
MCSCEC problem from the impacts of computing parame-
ters (a, k and m), cost distributions (¢, ¢ne: and ¢;) and
resource limits (w,, Wnq, and w,), respectively. All simula-
tion settings are shown in Table 3.

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on December 27,2022 at 23:10:35 UTC from IEEE Xplore. Restrictions apply.



2828

«10* <10

Fod
@

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 4, OCTOBER-DECEMBER 2022

x10*

43

.5 /
=33 O~ MinNode
? 3
3 ¢ —= MaxNode
Q238 e Anode
E V1A
S 23
-

1.8

1.3
B

w

»

P

Total Cost

P—O—O—O—O—O0—0—0—0—0 5

4
.5
E

.5

2

15

3

.5‘

=@~ minNode
=~ MaxNode|
A anode

¥-n

~@- MinNode
=~ MaxNode|

FANode

> ¢

2,

Total Cost

. 1
1 1.05 1.1 115 1.2 1.25 1.3 1.35 1.4 1.45 1
a

a) k = 25, m = 5000,

Cmaz = 9, Wmaz = 7000

x10

- wintode
~i— MaxNode
A Aode
i )

6.5

5.5

Total Cost
©  »
o

»
o

i

F=d
o

»
©
IS
@
®
~
®
©
3

d) @ = 1.25, m = 5000,
k = 25, Wimae = 7000

Fig. 2. Total cost versus different parameters, when C ~ U(1, ¢y05), W ~

5.2 The Impacts of Computing Parameters

In Figs. 2a, 3a, 4a, and 5a, we demonstrate the impacts of the
redundant rate, i.e., a. Specifically, experiments show that
the total costs of MaxNode, RNode, and TA increase with the
increase of a, while the cost of MinNode does not monotoni-
cally increase with a. These results are due to the fact that a
has a complicated effect on the number of random vectors,
ie, r. In particular, when a is near 1, we observe that
increasing a does not change the set of selected edge devices
in the optimal settings. Therefore, the costs of all schemes
increase with the increase of a when a < 1.1. When a contin-
ues to increase, the increase of a leads to a larger set of
selected edge devices. In such a scenario, depending on the
task allocation scheme, when the selected number of devi-
ces is small, each device is allocated with a large number of
coded vectors so r must be large to satisfy the security
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condition. On the other hand, when more new edge devices
are selected, » may decrease shapely. For instance, when
MinNode is used, we observe that the total cost decreases
when a increases from 1.1 to 1.15. In the case that the
selected number of edge devices is large enough,
the decrease of r becomes negligible. Therefore, for all the
schemes, the total costs increase as the redundant rate a
increases beyond 1.2. Finally, our results show that, when a
is sufficiently large, compared with the MinNode, MaxNode,
and RNode algorithms, the TA algorithm can reduce the
total cost by more than 58.2, 23.8, and 15.4 percent under
different distributions of unit cost and resource limits,
respectively.

Figs. 2b, 3b, 4b, and 5b illustrate the impacts of the num-
ber of edge devices, i.e., k. These results show that the total
costs of MaxNode, RNode, and TA decrease with the increase
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of k, while the cost of MinNode is almost the same with dif-
ferent k. The behaviors of MinNode is mainly due to the facts
that this scheme aims to select the minimal number of devi-
ces that have high resource limits, and that, in our experi-
ments, the increase of k£ does not significantly affect the
characteristics of the set of selected devices. On the other
hand, for MaxNode, RNode, since more edge devices with
low unit costs are available for selection, the total costs of
them decrease with the increase of k. For TA, when k
increases, the optimization spaces of the TA algorithm
become larger, which decreases the usage of random
vectors r and the total cost of task allocation. Finally, when
k is sufficiently large, compared with the MinNode,
MaxNode, and RNode algorithms, the proposed TA algo-
rithm can reduce the total cost by more than 59.6, 33.5, and
16.3 percent under different distributions of unit cost and
resource limits, respectively.
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Next, we use Figs. 2c, 3c, 4c, and 5c to evaluate the
impacts of the number of rows in data matrix A, i.e., m. The
experimental results show that the total costs of MaxNode,
RNode, and TA increase with the increase of m. On the other
hand, for MinNode, the impact of m is similar to the impact
of a on the total cost. We observe that the reasons are also
similar, i.e., when m is in a certain range (e.g., 3.5 x 103 to
4.5 x 10%), increasing m will require more edge devices to
participate in the computing so the required r is decreasing
significantly, which leads to the decrease of the total cost. In
addition to these observations, we can see that the gap
between RNode and TA becomes smaller as m increases.
This is because (1) the resource limit of each edge device is
fixed, and (2) the increase of m results in a smaller range of
r for feasible solutions, i.e., a smaller optimization space of
the TA algorithm. Nevertheless, the proposed TA can still
outperform all others. In particular, when m is sufficiently
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large, compared with the MinNode, MaxNode, and RNode
algorithms, the TA algorithm can reduce the total cost by
more than 54.0, 25.2, and 10.0 percent under different distri-
butions of unit cost and resource limits, respectively.

5.3 The Impacts of Cost Distributions

In the next two groups of experiments, we study the
impacts of the cost distributions. Figs. 2d, 3d, 4d and 5d
show that the total costs of all algorithms increase as ¢4
and ¢, increase. The reason is obviously that the unit cost
of each edge device increases. Moreover, when the unit
costs of all edge devices are almost the same, i.e., ¢pqz is
small or ¢, is large, the TA algorithm will select as many
edge devices as possible to reduce the value of r. There-
fore, in this case, the total cost of TA is very close to that
of MaxNode. However, with the increase of c¢,. oOr
decrease of c¢,, the gap between TA and MaxNode
becomes larger because the range of unit costs increases
as Cmqe increases, but decreases as ¢, increases. Interest-
ingly, while MaxNode performs well when the range of
unit costs is small, RNode performs well when the range
of unit costs is large. Therefore, the performance relation-
ship of MaxNode and RNode in Figs. 2d and 3d is opposite
to that of Figs. 4d and 5d. Finally, we note that the pro-
posed TA algorithm can achieve the best cost perfor-
mance in all cases. In particular, when c,,,, is sufficiently
large, compared with the MinNode, MaxNode, and RNode
algorithms, the TA algorithm can reduce the total cost by
more than 70.0, 50.9, and 16.2 percent under different dis-
tributions of unit cost and resource limits, respectively.
When ¢, is sufficiently large, compared with the MinNode,
MaxNode, and RNode algorithms, the TA algorithm can
reduce the total cost by more than 45.5, 10.8, and
23.0 percent under different distributions of unit cost and
resource limits, respectively.

In Figs. 4e and 5e, we note that the performance of Min-
Node and MaxNode almost do not change with the increase
of ¢,. This is because we order the edge devices according
to their resource limits in MinNode and MaxNode, so the
order of devices is independent to c,. Besides, each point in
any curve represents the average cost in a large number of
experiments. Therefore, the total costs of MinNode and Max-
Node are related more to the average value of C, i.e., ¢,. By
comparison, the total costs of RNode and TA decrease as ¢,
increases. The reasons are as follows. First, when ¢, is suffi-
ciently small, e.g., ¢, = 0.01, the unit costs of all the edge
devices are almost the same. In this case, the TA algorithm
will select as many edge devices as possible to reduce the
value of r so the total cost of TA is almost the same as that of
MaxNode, while the RNode algorithm tries to find the small-
est number of low-cost devices so the total cost of RNode is
the same as that of MinNode. Second, with the increase of ¢,
the number of edge devices with low unit costs increases. In
this case, since both RNode and TA try to allocate tasks to
edge devices with low unit costs, their total cost decrease as
¢, increases. Since the increase of ¢, does not change the
range of » and RNode always randomly selects an r from
this range, the cost of RNode decreases faster than the cost of
TA. Nevertheless, the cost of TA is always lower than that of
RNode. Finally, when ¢, is sufficiently large, compared with
the MinNode, MaxNode, and RNode algorithms, the TA
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algorithm can reduce the total cost by more than 74.4, 58.2,
and 17.4 percent under different distributions of unit cost
and resource limits, respectively.

5.4 The Impacts of Resource Limits

In the last two groups of experiments, we investigate the
impacts of the resource limits. Figs. 2e, 3e, 4f, and 5f illus-
trate that, with the increase of the average resource limit,
the total costs of MinNode and RNode increase, the total
cost of MaxNode is almost unchanged, and the total cost
of TA can slightly decrease. For the MinNode algorithm,
(1) when wy,,,; and w, are small, since the MinNode algo-
rithm needs to use more edge devices to allocate the task,
the performance of MinNode is close to that of MaxNode;
(2) when wy,,, and w, become larger, since the MinNode
algorithm tries to use as few as possible edge devices, the
number of random vectors used in the computation
becomes larger so the total cost of MinNode increases; (3)
when w,q, and w, become sufficiently larger, the Min-
Node algorithm will use only two edge devices to com-
plete the task so the increase of wy,,, and w, will have no
impact on the performance of MinNode. For the MaxNode
algorithm, since it tries to use as many as possible edge
devices, the number of coded vectors allocated to each
selected edge device is small. Therefore, the increase of
Wmae and w, will have a negligible impact on the perfor-
mance of MaxNode. For the RNode algorithm and the TA
algorithm, the increase of wy,,, and w, will increase the
range of r, which leads to the poor performance of RNode,
but will increase the optimization space of the TA algo-
rithm. Therefore, when wy,,, and w, increase, the cost of
RNode increases, and that of TA decreases. Finally, when
Wpae and w, are sufficiently large, compared with the
MinNode, MaxNode, and RNode algorithms, the TA algo-
rithm can reduce the total cost by more than 71.2, 27.1,
and 28.6 percent under different distributions of unit cost
and resource limits, respectively.

In Figs. 3f and 5g, with the increase of w,, the total costs
of MinNode and RNode increase, the total costs of MaxNode
and TA are rather stable. For MinNode, when w, increases,
the number of edge devices with high resource limits
increases so the MinNode algorithm will select a smaller
number of edge devices involved in the computing, which
leads to the increase of r and the total cost. The increase of
w, will enlarge the range of , which leads to the poor per-
formance of RNode. For the MaxNode algorithm, since it tries
to use as many as possible edge devices, and the number of
coded vectors allocated to each selected edge device is
small. Therefore, the increase of w, will have less impact on
the performance of MaxNode. For TA, since nodes are sorted
according to the unit cost of computing, the impacts of w,
will be average out in a large number of experiments.
Finally, when w, is sufficiently large, compared with the
MinNode, MaxNode, and RNode algorithms, the TA algo-
rithm can reduce the total cost by more than 55.8, 28.0, and
18.0 percent under different distributions of unit cost and
resource limits, respectively.

From all the above simulation experiments, we can con-
clude that the proposed TA algorithm always outperforms
the MinNode, MaxNode, and RNode algorithms.
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6 RELATED WORK

For the edge computing systems, in many scenarios, the
computing devices are operated by service providers. For
instance, using the standardized multi-access edge comput-
ing (MEC) [2], a mobile network operator can deploy edge
computing devices in the edge of its cellular network. Simi-
larly, in Google’s gaming platform, Stadia, game engines are
running in Google’s edge nodes to generate video streams to
users [30]. Although the aforementioned edge computing
systems are important, open edge computing platforms,
such as the KubeEdge system [31] and the Baetyl platform
[32] have also attracted more and more attentions. In such
scenarios, security concerns, especially the confidentiality
and privacy of user data, become more important because
some computing devices may be malicious. Therefore, in
this paper, we investigate an edge computing system, in
which the computing task of one user device can be distrib-
uted to multiple nearby user devices using coded distributed
computing to protect the confidentiality of user data.

In recent years, coded distributed computing (CDC) has
been proposed and applied to efficiently perform different
distributed computing tasks. First, to minimize the total
computation time, Yu et al. proposed an optimal resource
allocation scheme for distributed computation [7]. Lee et al.
proposed Product Code to reduce the total computation time
of distributed computation [14]. Dutta et al. designed a
Short-Dot coding scheme for matrix-vector multiplication
Ax, in which each device only needs a part of vector x to
perform coded computation [15]. Yu et al. designed Polyno-
mial Codes to achieve the optimum recovery threshold, i.e.,
the minimum number of workers that the master needs to
wait for decoding the final result [16]. Second, to minimize
the total communication load, Li et al. proposed a CDC
framework for MapReduce based distributed computing by
repetitively mapping tasks to different servers and exploit-
ing coded multicast for results exchange [8].

In addition to reducing computation latency by exploit-
ing coded computation, data confidentiality is also con-
cerned by users. Recently, two kinds of attack models have
been studied in the literature, including the external wire-
tapping attack and the internal eavesdropping attack. For
the external wiretapping attack, the transmission channels
in the edge computing may be wiretapped and intermediate
results exchanged by the edge devices can be acquired by
the attackers. Specifically, Zhao et al. considered the secure
data shuffling problem under the external wiretapping
attack model by utilizing the linear coding [33]. In the inter-
nal eavesdropping attack, each edge device may be a poten-
tial attacker and can eavesdrop data stored by itself. Under
this kind of attack, for the secure matrix-vector multiplica-
tion problem (i.e., calculating Ax), Bitar et al. designed stair-
case codes to ensure the information-theoretic security (ITS) of
data matrix A on each computing device, and analyzed the
expected delay of task completion [10], [11]. For the secure
matrix multiplication problem (i.e., calculating AB), Yang
et al. designed a polynomial code scheme to ensure the ITS
of A and B on each computing node, analyzed the upper
and lower bounds of recovery threshold and the total task
completion delay [12]. In [22], Kakar et al. studied the coop-
erative attack model and improved the polynomial coding
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scheme. Although existing studies have considered confi-
dentiality in the distributed computing, they focus on the
homogeneous distributed-computing scenario, in which
each computing device is allocated to the same size compu-
tation task.

Recently, some researchers have started to investigate the
more general heterogeneous distributed computing sce-
nario, in which computing devices can have different capa-
bilities. For instance, Reisizadeh et al. discussed the optimal
task allocation scheme for heterogeneous devices that have
various computation latencies [21]. Kiamari et al. investi-
gated the MapReduce-based CDC in heterogeneous systems
by designing file allocation and the optimal coding scheme
to achieve the minimum communication load [34]. How-
ever, these existing works have not considered the security
issue in the heterogeneous distributed computing scenarios.

About the resource consumption of coded distributed
computing, Li et al. studied the trade-off between the
computational load and the communication load [5]. Li et al.
designed a unified coding framework to enable a trade-off
between the computation latency and the communication
load [6]. To effectively deal with “stragglers” in large-scale
distributed linear transform problems, Wang et al. designed
the Diagonal Code to achieve minimum recovery threshold
and low computation load [23]. In [35], Yan et al. analyzed
the optimal tradeoff between the storage, the computation,
and the communication for the coded distributed comput-
ing model proposed in [5]. Mallick et al. proposed a rateless
fountain coding strategy to reduce latency while reducing
computational redundancy and decoding complexity [24].
However, these existing studies have not comprehensively
analyzed the total resource consumption, i.e., storage, com-
puting and transmission, of the coded distributed comput-
ing, especially, in the secure coded distributed computing.

In this paper, we consider a general edge computing sce-
nario, in which computing devices are heterogeneous,
dynamic, and resource-limited. For such a scenario, the task
allocation should be designed based on these characteristics
and jointly studied with the secure coding scheme design.
To this end, we jointly study two highly-coupled problems,
i.e., task allocation and secure coding scheme, which not
only achieves the ITS but also minimizes the total resource
consumption, when different edge devices have different
costs for storage, computing and transmission.

7 CONCLUSION

In this paper, we have investigated a secure coded comput-
ing problem in heterogeneous edge computing, with the
objective to minimize the total resource usage, by jointly study-
ing the task allocation that assigns data blocks in a computing
task to edge devices, and the linear code design that generates
data blocks by encoding the original data with random infor-
mation. Specifically, we first theoretically analyzed the nec-
essary conditions for the optimal solution. Based on the
theoretical analysis, we developed an efficient task allocation
algorithm to obtain a set of selected edge devices and the
number of coded vectors allocated to them. Using the task
allocation results, we designed two secure coded computing
schemes for both the case with redundant computation and
the case without redundant computation, and we further
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proved the feasibility and the optimality of these schemes.
Finally, we conducted extensive simulation experiments that
demonstrate the effectiveness of the proposed schemes. In
the future, we will implement the proposed MCSCEC
scheme in real edge computing systems and study a more
general case that edge devices can attack cooperatively.
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