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The past few years have witnessed the increasing adoption of drones in various industries such
as logistics, agriculture, military, and telecommunications. This paper considers a short-term
post-disaster unmanned aerial vehicle (UAV) humanitarian relief application where first-aid
products need to be delivered to the customer demand points. The presented problem, two-stage
robust facility location problem with drones (two-stage RFLPD), incorporates the demand
uncertainty using demand scenarios. This problem aims to find a location-allocation-assignment
plan that has minimal two-stage total cost in the worst-case scenario of all the possible demand
outcomes. Three different models of the problem are proposed, two of which incorporate a
realistic UAV electricity consumption model while the last one has greater operational flexibility.
The column-and-constraint generation method and Benders decomposition are used to solve
the two models, and a thorough comparison among the deterministic facility location problem
with drones (FLPD) models and three proposed models are also presented. Numerical analysis
results show that the proposed model has significantly less average cost in the simulation runs
compared to the deterministic FLPD.
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I. Introduction

The past few years have witnessed the increasing adoption of drones in various industries such as logistics, agriculture,
military, and telecommunications. According to Bloomberg (Bloomberg, [2019), the market value of drone package
delivery is estimated to reach US $27.4 billion by 2030. There are several reasons why drone delivery is becoming
popular in the logistics industry. First, the rapid deployment ability of drones indicates that the delivery tasks could
be performed without a costly truck operator. Second, drones are unaffected by congestion in-ground traffic; this is
especially important for time-sensitive deliveries, as in medical logistics. Third, drone delivery produces fewer carbon
dioxide emissions than delivery with conventional internal combustion engines and petroleum-fuel powered vehicles
(Goodchild and Toy, 2018)). As a result, major companies such as Amazon, Google, and DHL have announced initiatives
to deliver parcels with drones. Moreover, the ongoing COVID-19 pandemic has also fueled the rise of the no-contact
drone-based delivery method as an alternative to traditional methods (Walmart, 2020).

Drone delivery projects are quickly expanding around the globe. According to[UnmannedAirspace|(2020), more
than 27 countries have established, are testing, or are planning to test this new delivery method. Specifically, the recent
successful UAV application in humanitarian aid tasks, that is, delivering medical supplies to remote or hard-to-access
areas, has caught attention in industry and academia. In May 2016, Zipline, a US robotics and drone company, started
the world’s first commercial drone delivery service in Rwanda to deliver blood and blood products. During the operation,
local health workers can request a blood drop via text message, and the UAV can fulfill this request in 30 minutes by
dropping blood parcels on parachutes outside remote health centers (Dronezonel 2020).

A challenge associated with drone delivery is that payloads are restricted in weight and volume. Based on
UnmannedCargo| (2016)), the average payload capacity of currently-available commercial drones is approximately 4.8
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Ibs (2.2 kg). According to Wing and Zipline, two leading companies in the UAV delivery industry, their service payload
capacity is around 3.85 Ibs (1.75 kg). Although recent progress in UAVs’ propulsion system makes it possible for some
high payload drones to carry packages up to 17 lbs (AirborneDrones|, 2020), in the foreseeable future, it is still likely
that commercial UAV can only be able to serve one customer before being reloaded at a depot. One way to address this
issue is to build drone hub facilities or depots (which we term warehouses) that are close to the customers. The drone
departs from the warehouse and travels to customer locations in the delivery process. The parcel is then dropped off
near the customer’s front door, and the drone returns to the warehouse, without human intervention (Chowdhury et al.,
2017, |Chauhan et al., 2019).

This paper considers a short-term post-disaster humanitarian relief application where first-aid products (such as
blood products or medicines) must be delivered to customer demand points (e.g., health centers). Multiple warehouses,
which serve as both distribution centers and drone launch/retrieve hubs, need to be built before the delivery operation is
adopted. As a result, the problem is divided into two stages, the strategic planning stage and the operational stage. In
the strategic planning stage, the planner must decide the location of the warehouses and the allocation of the drones to
the opened facilities. Meanwhile, we further assume that the exact demand value at each health center is unknown
when the warehouses are built. Instead, the planner is given a set of estimated nominal demand values of each health
center. In the operational stage, the realized demand values at the health centers are revealed, and the planner must
assign customers to warehouses, and UAV's to customers, to satisfy this demand. The UAVs’ flight range, battery, and
payload capacity must be considered. We model demand stochasticity by scenarios, each of which represents one
possible outcome. This paper uses a cardinality constraint set to restrict the number of sites where disruption occurs.
The objective is to find a location-allocation-assignment plan with a minimal two-stage total cost in the worst-case
scenario of all the possible demand outcomes. This problem is named the two-stage robust facility location problem
with drones (two-stage RFLPD).

We propose three different two-stage RFLPD models which adopt different drone electricity consumption functions
under various delivery assumptions. The first two models incorporate realistic UAV electricity consumption functions but
prohibit split delivery in the operational process. The last model uses a slightly simplified UAV electricity consumption
function but has more operational flexibility. The column-and-constraint generation (C&CG) method and Benders
decomposition are used to solve the models. The numerical analysis section presents a thorough comparison among all
three proposed models and two additional deterministic FLPD models.

The remainder of this paper is structured as follows. Section 2 discusses previous work that addresses the facility
location problem under uncertainty and drone routing in logistics. Section 3 describes the problem in full detail and
proposes three models with various assumptions. Section 4 introduces different solution methods used to solve these
RFLPD models. Section 5 compares these models extensively and reports the experimental results based on randomly
generated instances. Finally, Section 6 presents conclusions and future work.

II. Literature Review
As RFLPD involves both FLP and drone operation, this section consists of two parts. The first part presents related
FLP papers that involve multiple-period planning or consider parameter uncertainties, while the second part reviews
papers that involve drone operation, especially in logistics.

A. FLP models

As the central problem of location science, the facility location problem has become an active research area that is
highly interconnected with multiple disciplines and has various applications in many fields. The origin of this problem
dates to the 17th century as a geometric problem of finding a point minimizing the sum of its distances to three fixed
points. The extension of this problem to the multi-facility case in the 1960s marked a new era. Significant progress
has been made in the past 60 years. Nowadays, this problem has been applied to many areas with great success, such
as logistics (Shavarani, 2019, |Lu and Bostel, [2007} |[Daskin et al., 2005), telecommunications (Fischetti et al., 2004,
Kim and O’Kelly, [2009} |An et al., 2017), routing (Balakrishnan et al., |1987, (Cappanera et al., 2003) and transportation
(Ouyang et al.| 2015} |[Hajibabai et al.| [2014)). Different FLP models exist in various fields, the most important ones
being set-covering, p—median, p—center, and fixed charge facility location models. As in many other problems, these
models can also be divided into two categories based on whether uncertainties are considered: deterministic FLP and
FLP with uncertainties. A variety of researchers have studied the deterministic facility location problem. For a full
review, we refer the reader to the surveys by (Owen and Daskin|(1998)) and Melo et al.|(2009).

Many FLP models incorporate uncertainties, as facility location generally involves strategic decisions over a longer



period, and there may be changes in demands, cost, capacity, or other parameters during the facilities’ operating lifetime.
Some examples of the review papers of FLP problems under uncertainty include |Louveaux| (1993), Snyder| (2006)),
Melo et al.| (2009), and |Correia and Saldanha-da Gamal (2019). As described in|Shen et al.| (2011)), in general, the
uncertainties can be classified into three categories: provider-side uncertainty, receiver-side uncertainty, and in-between
uncertainty. Provider-side uncertainty refers to the uncertainty in facility capacity, facility reliability, and facility
availability. Receiver-side uncertainty corresponds to the uncertainty of the customer side, for example, customer
presence, demand, and location. In-between uncertainty indicates the uncertainty of the service delivery process.
Accounting for these uncertainties in the decision-making process can produce more reliable solutions. When dealing
with these uncertainties, different types of models are available. Choosing the most appropriate model typically requires
the agency to consider several factors, such as the representation of the uncertainties, the attitude towards the future
risks, and identifying the ex-ante and ex-post decisions.

A variety of recent works consider provider-side uncertainties in the context of FLP. |Drezner| (1987) is one of the
early works that address facility failures in the p-median and p-center problems. It introduces an "unreliable" p-median
problem, where each facility has a given probability of "failure," and (p, g)-center problem, where p facilities are
to be located and at most g of them may become inactive. |Daskin et al.| (2005)) proposed the concept of "reliable"
p-median FLP and fixed charge FLP that minimizes the sum of the operating cost and the expected failure cost while
assuming each facility has the same probability of failing. A similar assumption is also used in Xie et al.| (2016)),
where a location-routing problem is solved. [Cui et al.| (2010) extends the concept of "reliable" fixed charge FLP by
assuming each facility has site-dependent failure distribution and proposes a mixed integer programming formulation
and a continuum approximation model. This failure distribution assumption is further relaxed later in|Li and Ouyang
(2010), in which spatial correlation among facility disruptions is considered in the uncapacitated fixed charge location
problem. This work then adopts a continuum approximation model to minimize the sum of construction cost and
transportation cost. [Xie et al.|(2019) presents a reliable FLP model under correlated facility disruption where facility
disruption is represented by constructed supporting stations. [Shen et al.|(2011) solve a scenario-based uncapacitated
reliable facility location problem where each scenario is associated with a known probability. Then the problem is
formulated as two-stage stochastic programming that minimizes the total cost across two stages.

Many other works account for the receiver-side uncertainties and in-between uncertainties. Miskovi¢ et al.|(2017)
considers a multi-source variant of two-stage capacitated facility location problem, where transportation costs for
plant-depot pair and depot—customer pair may increase. Box uncertainties represent the uncertainties in the transportation
cost, and a robust optimization MILP model is proposed in the paper. Zetina et al.|(2017) presents robust uncapacitated
hub location problems in which the customers’ demand, transportation cost, or both could be uncertain. Mixed-integer
programming formulations are proposed for each case, and a branch-and-cut algorithm is used to solve them. |Zeng
and Zhao| (2013)) solved the two-stage robust location-transportation problem. The facilities’ location and capacity are
determined in the first stage, and the second stage decides the allocation of customers to the facilities. |/An et al.|(2014)
addressed the p-median facility location problem to build a reliable network under disruptive scenarios. In a disruptive
scenario, the authors assume that a customer’s demand might change from its nominal demand value, and a cardinality
constrained uncertainty set is used to restrict the total change. The location and initial allocation plan are determined in
the first stage, and the allocation plan might change after the actual demand is revealed. The C&CG algorithm is used
to solve this problem. Similar to the problem proposed in this paper, |Ardestani-Jaafari and Delage| (2018) presents a
multi-period FLP where the location and capacity of each facility must be determined before exact demand is known. A
budget uncertainty set is used to describe demand uncertainty, and a robust optimization approach is adopted. Several
approximation models are proposed to estimate the problem solution, and a row generation algorithm is used to solve
problem instances of realistic size.

B. Drone-relatd routing problems

Otto et al.| (2018)) provides a detailed review of models for optimizing drone delivery operations and the various
applications. A particular focus of research is the newly emerged truck-drone tandem delivery method, in which a truck
serves as the drone hub for reloading the drone and refreshing its battery, while both vehicles perform delivery tasks
(Murray and Chu, [2015], [Ponza}, 2016, Wang et al., 2017} [Poikonen et al.,[2017,|[Daknama and Kraus|,[2017, |Carlsson and;
Song} 2017, |Agatz et al.l 2018 |Yurek and Ozmutlu, |2018| [Ha et al., 2018 |Sacramento et al.,2019). Methodologically,
these papers involve solving the traveling salesman or vehicle routing problem using trucks or trucks and drones. In
this paper, we focus on drone deliveries only and do not consider truck routing. |Dorling et al.|(2017) and (Choi and
Schonfeld (2017) model multiple deliveries by drones from single depot. This paper considers the location of multiple



drone-launching sites or depots as decision variables. We also allow drones to make multiple depot-to-customer trips if
the battery charge is sufficient.

Similar to this paper, several past researchers, for example, (Chowdhury et al.|(2017),|Golabi et al.|(2017)), Pulver|
and Wei (2018)), Macias et al.|(2020), Illkhanizadeh et al.| (2020), study drone delivery based FLPs. |Chowdhury et al.
(2017) proposes a location model of determining the location of distribution centers and the supply inventories at these
centers in a humanitarian relief scenario under stochastic demand and drone flying range constraints. A continuous
approximation (CA) model is presented to solve this model. |Golabi et al.| (2017) presents a post-disaster FLP problem
where the location of distribution centers needs to be decided. In this problem, some network edges might collapse
and thus lose their accessibility, and the goal is to minimize the total transportation cost. |Pulver and Wei| (2018)) study
a max-coverage model where drones are used to transport medical supplies. [Macias et al.| (2020) also considers a
post-disaster application where both the trajectory of drones and the location of charging stations need to be decided.
Ilkhanizadeh et al.| (2020) presents an FLP in tourism where drones are used to provide online virtual tours.

Our approach differs from these in several aspects with the papers mentioned above. In|Chowdhury et al.[(2017)),
both trucks and drones are used to make deliveries, whereas, in our model, only drones are used. |Pulver and Wei| (2018))
do not consider capacity constraints at facilities. Both |Pulver and Weil (2018) and |llkhanizadeh et al.| (2020) do not
model the increase in energy consumption with the payload. We model both these aspects. Moreover, |Chowdhury
et al.| (2017)) assume one trip per drone, whereas, in our model, drones can make multiple drone deliveries until the
battery is depleted. [Macias et al.|(2020) study a two-stage model for locating uncapacitated hubs and optimizing drone
trajectories for relief supply applications. |Golabi et al.[(2017) study the integration of drones into optimizing relief
supply post-disaster from mobile and immobile facilities. Drones are used to satisfy the demand of people living
alongside collapsed roadway segments. In this research, we consider the allocation of drones to facilities, which is
not considered in the works mentioned above. This research is different from the model proposed by |[Chauhan et al.
(2019) and (Chauhan et al.|(2020) in multiple aspects. Both|Chauhan et al.|(2019) and |Chauhan et al.| (2020) focus on
maximizing coverage, whereas our objective is to minimize cost. |Chauhan et al.|(2019) do not consider the impacts of
uncertainty. (Chauhan et al.| (2020) considers battery consumption and capacity uncertainty using a robust optimization
approach. Our paper focuses on demand uncertainty. (Chauhan et al.| (2019) and |Chauhan et al.|(2020) use a three-stage
heuristic, whereas we have developed Benders decomposition and C&CG algorithms to solve our model.

Other studies have modeled the impact of uncertainty in drone delivery problems. |[Kim et al.| (2018)) model the
effect of air temperature on uncertainty in maximum flight duration using robust optimization. However, Kim et al.
(2018)) do not consider the impact of payload on energy consumption, drone allocation to facilities, and assume facilities
to be incapacitated. [Kim et al.| (2019) model the effect of battery uncertainty using a chance constraint based on
exponential distribution. Shavarani et al.| (2018 model demand uncertainty using a Poisson distribution. However, in
the formulation, the mean demand parameter is used. [Shavarani et al.| (2019) use a fuzzy variable approach to study the
impact of uncertainty in demands, facility opening and drone procurement costs, and drone distance capacity. A genetic
algorithm is used to solve the models presented in|Shavarani et al.|(2018) and [Shavarani et al.[(2019).

Our paper differs from past research in that we incorporate drone deliveries and allocation into FLP and use an
empirically derived electricity consumption function. In the previous works in FLP, the uncertainty of customers’
demand only affects the location of the facilities and the allocation of customers to facilities. However, in this work, this
randomness also affects drones’ operation via electricity consumption and the assignment of customers to drones. Thus,
in this model, demand randomness affects the whole location-allocation-assignment process. While several researchers
have modeled uncertainty in drone operations, to our knowledge, our approach is the first to adopt a two-stage robust
optimization approach on drone-related facility location problems.

I11. Problem Description and Mathematical Formulation

In the two-stage RFLPD, we consider a humanitarian relief scenario where an agency wants to deliver first-aid items
(such as medicine or blood) to several demand points (also called customers) using the warehouse-drone delivery system
after the disaster outbreak. In this delivery system, the warehouses serve both as distribution centers where production
can be dispatched and drone hubs for launching/retrieving/refilling a limited number of drones. This problem consists
of a strategic planning stage and an operational stage. In the first strategic planning stage, the agency needs to locate
warehouses and allocate available drones to the opened warehouses before the exact customers’ demands are known.
The location and allocation decisions are made with only nominal demand value information, but this should account for
the future uncertainties. In the second operational stage, the agency needs to assign the drones to serve the customers,
whose actual demands would be revealed by then. Some of the additional assumptions are:



1) The maximum number of opened facilities is given as a fixed parameter.

2) We assume the warehouses’ capacity is a fixed parameter as they are built after the disaster outbreak

3) In the operational stage, the drone launches from the warehouse j while carrying a parcel, travels to the customer
i assigned to it, delivers the parcel, and returns to the warehouse j before it is refilled and relaunched. This full
process of service is called a drone trip. Each drone trip involves service to only a single customer.

4) The drone has a limited load capacity for the parcels it carries.

5) Each drone is equipped with a fully-charged battery which cannot be recharged. It can operate as long as its
battery is not fully depleted.

6) The service radius of drones is assumed to be large enough to cover every customer in the targeted area, which
indicates that any available drone can serve any customers in the problem, given that the drone’s load capacity
and battery capacity constraints are satisfied.

The objective of RFLPD is to obtain a feasible location-allocation-assignment plan such that the total cost is
minimized in the worst-case scenario. The total cost includes the fixed cost of opening facilities (first-stage cost),
transportation cost of serving customers (second-stage cost), and the penalty cost if a customer’s demand cannot be fully
satisfied (second-stage cost).

Let I be the set of all the customer nodes, J the set of potential facility locations, and K the set of all the available
drones. Denote the nominal demand and actual demand of customer i € I as w; and W;, respectively. In RFLPD, we
assume that only the nominal demand value is available to the planner in the first stage. The actual demand is only
revealed at the beginning of the operational stage after the location-allocation plan has been made. This assumption
reflects that the specific disruptions caused by a disaster are not known in advance, even if a “typical” or expected
scenario is envisioned. This uncertainty demand assumption is common in many related robust FLP investigations
(Ardestani-Jaafari and Delage, [2018], |Cheng et al.| 2021} |Atamtiirk and Zhang}, 2007)). In general, the delay of demand
information and uncertainty of the severity of different regions leads to the randomness of the modeling process of
RFLPD.

In this research, the customer’s actual demand w; is represented as w; = (1 + 6;s;)w;. In the above expression,
s; € S is the disruption indicator variable for site i and 6 € [—1,+c0) is a new parameter introduced to capture and
characterize these “disrupted” scenarios. Similar to|An et al.|(2014), s; is described in a budget set S, which is defined
by:

S={s;e[0,1]: ) si <T}
i€l
where I is a pre-defined parameter called disruption budget. This parameter represents the maximum number of
disruptions that can happen simultaneously in the worst-case scenario. When s; = 0 the actual demand w; remains at
its nominal value in disruption scenarios. On the other hand, when s; = 1 the actual demand w; = (1 + 6;)w;. Thus,
by setting parameter 6; to a negative value the actual demand will shrink in a disruption scenario and setting 6; to a
positive value indicates the case when the actual demand increase in a disruption scenario. Besides, let ¢;; represent the
unit demand cost of serving i by the facility located in j. There is a fixed cost f; associated with opening a facility at j.

For the decision variables, let the binary variables y; indicate whether a facility is opened at j. The binary variables
Zjk indicate whether drone k is assigned to a facility located at j. Both y; and zj; are first-stage decision variables. The
second-stage decision variables x; ;. represent the assignment of drones to customers, where i is the customer index, k
the drone index, and j the facility index where the drone is based.

In this paper, we consider a robust two-stage decision-making process. Unlike the traditional one-stage robust
optimization, where all the decision variables must be decided before realizing the uncertain data, in this paper, the
two-stage decision-making modeling enables some decision variables to be decided after the realization of the uncertain
data. The two-stage setting thus can create a more reliable network than the deterministic one-stage robust optimization
approach. In our approach, in the first stage, the values of all y; and z;; must be decided. After the uncertain data are
realized, the second-stage decision variables’ values x;;x will then be decided.

The full set of notations used in the paper is as below:

Sets

I : Setof all customers

J : Setof all potential facility locations
K : Set of all available drones
Parameters:



I' : Maximum number of disruptions that can happen simultaneously

B : Battery capacity of drone

fi : Fixed cost of opening a facility at location j € J

d;j : Distance between node i € I and node j € J

cij : Unitdemand cost of serving customer i with facility located at j
r;  : Unit demand penalty cost associated with customer i

0; : Demand change parameter associated with customer i

:  Maximum number of opened facilities
U; : Capacity of the facility located at j
Cr : load capacity of drone k € K
w; . Nominal demand at customer i € [
Ww; . Actual demand at customer i € /

Decision variables:

yj €{0,1} : First-stage decision variable, equals to one if the facility is located at j € J and 0, otherwise

Zjk € {0,1} : First-stage decision variable, equals to one if the kth drone is assigned to facility j € J and 0,
otherwise

Xijk :  Second-stage decision variable, which indicates the proportion of the satisfied demand of

customer / with drone k located at facility j. We consider cases both where demand cannot be
split (binary x;x) among UAVs, and when it can (continuous x; ).

S . Second-stage decision variable, which indicates the worst-case scenario whose cost we aim to
minimize.

The basic RFLPD formulation is as below.
RFLPD:

min E ny] +max min E E E cijwixijk + E r,w,-(l - E E xijk)
V,2,X,8 4= s xeS(y,z) & - - -
J i j k i J k

s.t.

ZijP
J

Zjk = Viel kek
Zz(,-ksl Vk € K
j
Zjk>yj € {0, 1} Viel kekK

Here x € S(y, z) is defined by a set of constraints:

Xijk S Yj Viel,jelJ,kekK
szijk <1 Viel
7k
Zbij(wixijk)SBij Viel,kekK
i
ZZ(I +9isl-)wixijk < ijj Vjeld
ik
wixijr < Cg Viel,jelJ,kekK
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The objective (I)) of RFLPD is to minimize the total fixed facility cost and the worst-case operational cost, which
includes the transportation cost of serving customers and the penalty cost if a customer’s demand is not satisfied or
partially satisfied. In the first stage, constraints (Z) indicate that the number of total opened facilities should not exceed
the pre-set limit of p. Constraints (3) enforce that a drone can be assigned to a facility j only if the facility located at j
is opened. Constraints (@) require that any specific drone can only be assigned to at most one facility. Constraints (5) are
decision variable domain constraints.

In the second stage, constraints (6) indicate that serving a customer i with a drone k located at facility j is applicable
only when the facility located at j is opened. Constraints (7) ensure that any customer cannot be served more than
its demand. Constraints indicate that for any drone k located at facility j, its total consumed electricity should
not exceed its capacity. Note that b;; () represents the electricity consumed when delivering a package of weight y
between node i € I and j € J; see the discussion below on how this energy cost is calculated. Constraints (9) require
that the total weight of packages at facility j should not exceed the facility’s capacity. Constraints (TT) are decision
variable domain constraints.

From a modeling standpoint, we study two main types of RFLPD: either with binary decision variables (representing
cases where delivery cannot be split, and a single drone must either serve a customer’s demand in full or not at all)
or with continuous decision variables (allowing split and partial service). Furthermore, as described below, there are
several choices for modeling the amount of electricity consumed when serving a customer. In all, we define six models
in the remainder of this section, representing different combinations of these choices. Three of them are intended for
practical use, and three others are proposed as benchmarks useful for comparison but either impractical to solve or
unrealistic for application.

As detailed in the following subsections, RFLPD-BL and RFLPD-BN are binary models where the electricity
consumption functions are respectively based on linear and non-linear models proposed in past literature; both include a
fixed energy consumption for making a trip, plus a weight-dependent component.

For continuous models, this fixed term poses difficulties since the electricity consumption has a discontinuity at zero
(no service at all means no consumption, but even minimal partial service should include the entire fixed amount). We
call such a model the “ideal” model: we know no efficient way to solve it, but it is the most realistic way to model split
delivery. We, therefore, propose a continuous model RFLPD-C, using a simplified energy consumption model that only
includes a weight-dependent term (no fixed cost) but with a different coeflicient that is estimated in a way that tends to
be conservative. We can then evaluate these solutions using the “ideal” model to calculate how much electricity would
be used in the RFLPD-C solutions and verify that the parameter estimation is conservative.

Directly comparing the binary models and RFLPD-C is difficult since there are two significant differences (binary
vs. continuous variables and an original vs. simplified electricity consumption function). To disentangle these effects,
we propose two additional models that only change one factor: RFLPD-BS is a binary model that uses the simplified
consumption function for RFLPD-C, and RFLPD-CL is continuous uses the same consumption function as RFLPD-BL.
Both of these models have severe shortcomings, and we do not recommend their use in practical settings: RFLPD-BS
uses a simplified consumption model without fixed costs, even though as a binary model, this simplification is unneeded;
and RFLPD-CL treats the fixed cost as if it were weight-dependent, underestimating actual battery use. Nevertheless,
including results with these latter two models helps demonstrate the impact of each change independently.

The reader may also find it instructive to refer to Table 2] when reading this section and the next.

A. Drone’s electricity consumption model

Suppose that drone k£ € K launches from facility j € J, delivers parcels of weight w; to demand point i € I with
a cruising speed v¢ and then returns to facility j (with the same cruising speed). To estimate the drone’s electricity
consumption along this trip, its whole flight profile is divided into six phases:

 Take off phase at facility j, whose required time is denoted as T]’.

* Cruise phase from facility j to customer i, whose required time is denoted as T;t.

» Landing phase at customer i, whose required time is denoted as Til

* Take off phase at customer i, whose required time is denoted as 7/

 Cruise phase from customer i to facility j, whose required time is denoted as Tl?].

* Landing phase at facility j, whose required time is denoted as T]l.

Note that in this process, we ignore the electricity consumption of service time at customer #, and thus we assume
that the service process consumes no electricity during the drone flight. During these six phases of the drone’s flight,
the drone may carry different parcel weights, travel at different speeds, and require a different amount of time. Thus, the



consumed electricity at these phases is of different amounts. To calculate the exact amount of electricity consumption at
different phases, the following notations are introduced:

* Drone’s vertical take off speed v', with unit m /s

¢ Drone’s cruise speed v, with unit m/s

* Drone’s vertical landing speed v/, with unit /s

With this notation, we are ready to introduce the drone’s electricity consumption model. There are a variety of
electricity consumption models to account for the drone’s flight endurance during its trip. The most common approach
is to assume that the drone has a fixed endurance, whether measured in time or distance, regardless of the drone’s
cruising speed and the weight of the parcels it carries. This fixed endurance approach would not be applied in our paper.
All the non-fixed endurance models can be divided into two categories: non-linear and linear models. For the rest of
this section, we introduce two electricity consumption models of each type applied in RFLPD, formulating two different
models.

1. Non-linear model

One example of the non-linear electricity consumption model is the one proposed in |Liu et al.[|(2017) and later
simplified in Murray and Raj| (2020). The calculation of the electricity consumption in different phases are:

* Power consumed in the vertical take-off/landing phase:

Vyer Vver W+
P00 Vyer) = k1 (W +w)g [ S \/( ey 08 | (W) (12)
2
* Power consumed in the cruising phase:
PE(w, Vair) = (c1+ ) [(W+w)g = ¢5(Vaircosa)?)* + (eaV,)* 1 + ca(Vair)? (13)

where ki, k2, ¢, ¢2, ca, ¢s are model coefficients whose values were estimated in|Liu et al| (2017)), as shown in Table[T]
In this formula, W is the UAV frame weight, w is the parcel weight, g is the gravitational constant (9.8 m/ 52), Voert
is the vertical speed in the taking off or landing phase and V,;, is the drone’s cruising speed. In this way, the total
electricity consumed in the drone’s whole trip of delivering parcel of weight w from j to i with cruising speed v is:

P (w, j,i) = T]’.P’l(w, v + T;iPC(W, V) + Tl.lPtl(w, vl) + Tl.’P’l(O, Vi) + T;}PC (0,v°) + T}Ptl(O, vl) (14)

In this paper, similar to the parameter setting in Murray and Raj| (2020), we assume the drone’s taking-off and landing
speed are 7.8 m /s and 3.9m/ s, respectively while the cruising speed is assumed to be 15.5 m/s, which is approximately
35 mph. Besides, the cruise altitude is also chosen to be 50 meters, per the Federal Aviation Administration’s regulation
that the maximum allowed altitude is 400 feet (122 meters) above ground level. In this way, the required taking-off time
7! and landing time 7/ are fixed values. With fixed cruising speed, now the electricity consumption P’ (w, j,i) is a
function of two decision variables: parcel weight w; and distance between facility j and customer i, which is dj;. A
representation of this multi-variable function is shown in Figure[I]

When this non-linear function is used to model drones’ electricity consumption in RFLPD, directly incorporating
the function into the constraint (8) would apparently makes the problem intractable. However, as both the drone cruising
speed and distance between facility j and customer i are fixed values, the total consumed power can be expressed as a
function of w; only, which is denoted as P;.‘l.”(w). An representation of this function when V¢ = 35 mph, d;; = 4 km is
shown in Figure 2]

To simplify and incorporate this non-linear function into RFLPD-B, with each pair of j and i and its corresponding
distance dj;, a linear regression process is carried out, to estimate the total power consumption of the delivery trip,
which includes both the service trip and return trip of the drone. The estimated linear function is denoted as 15’].?’ (w),
with the form

P (w) =aj +atw, Viel, jel (15)

non

where a} ]" and a?j’? are intercept and coeflicient of the estimated function, respectively (letter "n" in the superscript
stands for "non-linear") and w represents the weight of the parcel. A comparison of the original function P;‘l’ "(w) and
the estimated linear function f’;‘i” (w) is also shown in Figure Based on the results obtained from the numerical
analysis section, the average goodness-of-fit (R-squared) value of the linear regression results are 99.6%.

With the linear regression result, we can incorporate f’;.lo.’ (w) into constraints , which now can be represented as
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Z[a}j’.l+a%j’.l(l+€isi)wi]xijk SBij, VjEJ,kEK (16)
i
This model that express constraints in the form of constraints is named RFLPD-BN, where the letters "BN"
indicate binary x variables and a nonlinear electricity consumption model.

Table 1 Coefficient values for the non-linear and linear model

Coeflicient Value (unit)

ki 0.8554

k> 0.3051 (\/kg/m)
) 2.8037 (\/m/kg)
¢ 0.3177 (\/m/kg)

cq 0.0296 (kg/m)
Ccs 0.0279 (Ns/m)
1% 10 (degree)

g 9.8 (ms?)

m; +mp 10.1 (kg)

KsT 6.85

2. Linear model

Unlike the non-linear model, a linear electricity consumption model assumes that the power consumption rate at
different phases (taking off, cruising, landing) are the same, and thus the total electricity consumed can be expressed
as a linear function. Some examples of linear models include the one proposed in Dorling et al.[(2017) and the one
presented in |Figliozzi| (2017). In particular, [Figliozzi| (2017) expressed the total electricity consumed to deliver an item
whose weight is y from facility j to customer i as:

(my +myp +X)gdij N (m; +mp)g

bij(x) =
KsT] KsT]

dji,ViGI,jEJ (17)
where 7 is the drone’s power transfer efficiency, «; is the lift to drag ratio, m, is the drone’s battery mass, m; is the
drone’s tare mass (without battery and package) and g is acceleration due to gravity. The default values of these
parameters are shown in Table[I] In this way, the total electricity consumption of the trip is a linear function of the
parcel weight and the distance between the facility and the customer.

Function can be incorporated into constraints (§) directly, transforming it to

Z[agjl' +ait(1+0;s)wilxijx < Bzj, Vj € J k€ K (18)
iel
—2 = i ij nn o . " "
where a}jl. = (m’tj” 841 and a?l. = % and letter "I" in the superscript stands for "linear". The model where that

express constraints (§)) in the form of constraints (I8)) is named as RFLPD-BL.

B. Models allowing split delivery

In the previous two models, second-stage decision variables x;;; are assumed to be binary, which indicates that
customers must be fully served by a single drone and deliveries cannot be split. This restriction on the way customers
can be served may lead to high penalty costs. For example, when the actual demand of customer i exceeds the drone’s
capacity, this assumption indicates that the customers’ demand would never be satisfied at any portion, which results
in high penalty costs. Thus, in this section, we try to relax the "no split delivery" assumption by enabling x; ;x to be
continuous in an attempt to improve the flexibility and efficiency of the operational stage; for many products distributed
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during a disaster (food, medication, blood, etc.) it is reasonable to assume demand can be satisfied through multiple
smaller deliveries.

When the linear function is used to model drone’s electricity consumption and x; j is continuous, directly adopting
this consumption function would lead to
by (i) = {0” ) ifvip =0.Vieljel kek (19)
a;; +a;;(1+0;s))wixiji  otherwise

which we will term the “ideal” consumption function for split delivery. Compared to the consumption function when
X;jk is binary
1 2 . .
b,’j(xijk) = [ai} +aijl-(l +0,~s,~)w,~]x,~jk Vi € I,] eJ,kekK

we notice that the intercept a}jl. in the first function is incurred whenever x;;x > 0. This is because this positive intercept
a llll represents the fixed cost associated with transporting the drone’stare and battery mass.

" However, it is difficult to incorporate function (19) into the RFLPD model, because this discontinuous function has
different forms based on the value of x; i, which is the decision variable of the model. For this reason, we propose
another model that uses a simplified version of (I9):

by = 2TV e e (20)
KsT

where «; is a parameter related to customer i. This function assumes that m, + mp = a;y, Vi € I always holds, by

assuming for each customer i that drone k visits, the weight of parcel drone k carries is a fixed value. Obviously, the

effectiveness of the simplified function depends on the value of ;. To ensure the final solution obtained by the simplified

model remains feasible for the "ideal" model (which we take to be a truer representation), we adopts a conservative

approach when estimating the value of ;. Empirically, we find the simplified model renders reasonable results when

a; = % where E (W;) is the expected demand when };.; s; = I" and can be calculated as
E(Wi)=(1+9i)wi%+wi(l—%),VieI 21
By replacing b;; with equation @), now constraints @ can be represented as:
Zafj(l — 0;5)wixiji < Bzj, Yj € Jk € K (22)
i
where a? = @%?]gd” and the model that express constraints in the form of constraints while assuming

continuous x is named as RELPD-C.

Using function (20) is less accurate than using the "ideal" function (T9), as the former lacks the intercept term in the
latter. However, when proper «; values are chosen, this model can generate a solution that is feasible for the "ideal"
model (even if we cannot obtain optimal solutions). In this way, the total cost of RFLPD-C represents an upper bound to
that of the "ideal" model. The effectiveness and accuracy of the simplified continuous model RFLPD-C will be analyzed
and presented in the numerical analysis section.

We also notice that by using the simplified function, RFLPD-C assumes fixed electricity consumption for each (i, j)
pair. This fixed consumption assumption is commonly seen in past FLP literature, for example, (Snyder, 2006, Shen et al.|
2011, |Xie et al.,|2016). However, almost all past work assumes that the facility can interact with the customers it serves
directly. While in this research, the facilities can only interact with the transportation tools (e.g., ground vehicles or
drones in our case), and then the transportation tool can serve customers associated with the facilities. This assumption
indicates that this research considers allocating transportation tools and assigning customers to transportation tools,
which is often ignored in previous FLP-related research. This context-setting is commonly seen in location routing
problems (LRPs), especially multi-echelon LRPs, which is a field closely related to FLP. A recent survey of various
LRPs is (Drexl and Schneider, [2015). Meanwhile, in the field of LRP, only a few researchers (e.g., Kahfi et al.| (2021),
Ziaei and Jabbarzadeh|(2021))) solved the multi-period planning problem with a robust optimization approach. Thus,
RFLPD-C could be seen as a mixture of multi-stage FLP and LRP models.
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C. Summary of section

To summarize, in this section, we proposed three models intended for practical use (RFLPD-BN, RFLPD-BL, and
RFLPD-C), and mentioned three additional models used for benchmarking and comparison (the “ideal” continuous
model, RFLPD-BS, and RFLPD-C). The first model, RFLPD-BN, uses binary variables of x;;x and incorporates the
estimated non-linear drone electricity consumption model introduced in Liu et al.|(2017) and Murray and Raj| (2020).
Similarly, the second model, RFLPD-BL, also assumes the decision variables x;x are binary but incorporates a linear
drone electricity consumption model introduced in [Figliozzi| (2017).

Besides these two binary models, we also mentioned an "ideal" continuous model. This "ideal" continuous model
uses the original linear electricity consumption function and enables split delivery by assuming continuous x.
However, the electricity consumption function adopted in this model is discontinuous and depends on x. Thus, it is
difficult to construct this "ideal" continuous model without other specialized methods. As a compromise, we propose a
different continuous model, RFLPD-C, which adopts a simplified electricity consumption function. This model is less
accurate compared to the "ideal" continuous model, but it can be constructed easily.

The performance comparison among these models will be presented in the numerical analysis section. The numerical
analysis section mentions two additional models, RFLPD-BS and RFLPD-CL. RFLPD-BS adopts the simplified
electricity consumption function while assuming binary x;;x, and RFLPD-CL uses the original linear electricity
consumption function but assumes continuous decision variables. These two models are relatively inaccurate but
facilitate comparison of the binary and continuous models so that we can have an immediate sense of how the different
electricity consumption functions, and use of continuous x, affect the overall result of RFLPD models.

A summary of all the models mentioned is shown in Table[2} which highlights the difference among these models.

Table 2 A list of all models mentioned in the paper

Model Name Model description Model purpose
RFLPD-BN Binary model that adopts an estimation of nonlinear function l| Practical use
RFLPD-BL Binary model that adopts linear function 1} Practical use
RFLPD-C Continuous model that adopts simplified function Practical use
"ideal" continuous A theoretical continuous model that adopts discontinuous function ii Comparison only
RFLPD-BS Binary model that adopts simplified function lb Comparison only
RFLPD-CL Continuous model that adopts linear function lb Comparison only
IV. Solution Method

The solution methods for the binary models (RFLPD-BN, RFLPD-BL) and continuous model (RFLPD-C) are
similar, dualizing the inner maximization subproblem or its LP relaxation. The difference between the two solution
methods lies in how the significant scenarios are generated. Thus, in this section, we first introduce the exact solution
method for RFLPD-C. The solution method for RFLPD-BN and RFLPD-BL will be explained later with minor changes
to the former one.

A. Solution method for RFLPD-C

For RFLPD-C, the second stage problem involves solving a max-min problem. However, as the inner minimization
subproblem is LP, dualizing this subproblem would result in a max-max problem, which also means that the second-stage
problem could be solved as a single maximization problem. For this reason, we will first derive the dual formulation of
the inner minimization problem of RFLPD-C’s second stage problem. Denote the dual variables for constraints (), (7)),
@, @I), @ and as Uk, Vi, Tjk, 0, Tijk and @; k., respectively. After incorporating the dual formulation of the
inner minimization problem, the second-stage problem is:
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DualSubP-C:
DRI WESWILIATEPIELT
””” ™ 7 Tk 7
ZZZCkTijk +Zzz¢ijk+zriwi(l +0;5;) (23)
Tk Ty K f

s.t.

Uijk tVi+ a?j(l + His,-)w,-ﬂjk + (1 + Hl-sl-)wioj+

(1+01~si)wi7',~jk+¢,~jkS(cl-j—r,-)(1+65si)wi, Viel,jeJ,kekK 24)
Dosi<T (25)

i
Uijk,> Vi> Tjks 0> Pijk < 0 Viel,jelJ,kek (26)
0<s; <1 Viel 27

Since in constraint @ there exists the multiplication of two variables, we replaced the product s;0; with a new
variable A;;, s;7 ;. with a new variable p; jx and s;7;;x with a new variable g, ;x. Then the big-M method is used to
reformulate the problem. Finally, the MILP formulation of the second-stage problem is as follows, where M and —M
are the upper and lower bounds for 4;;, p;; and g; .

SubP-C:
AV T0, oo S 7 T 7
ZZZCkTijk+Zzz¢ijk+zriwi(l+9i5i) (28)
T T % T T T 7

S.t.
Uijk +vi+ a?jwinjk + Gia?jw,-p,-jk tw;o; + Giwi/lij+wirijk+
Oiwiqiji + dijk < (cij —ri)(L+60;s)w;, Viel, jelJ, keK (29
}:gsr (30)

i

Aij 2 0; Viel,jelJ (31)
Aij <o0;+M(1-s;) Viel,jel (32)
Aij = —Ms; Viel,jel (33)
qijk 2 Tijk Viel,jelJ, kekK (34)
Gijk < Tijk+M(1—3s;) Viel,jelJ,kekK (35)
Gijk = —Ms; Viel,jeJ, ke K (36)
Pijk = Tjk Viel,jelJ,kekK (37)
Pijk S+ M(1-s;) Viel,jelJ,kekK (38)
pijk = —Ms; Viel,jeJ,keK (39)
WijksVis T jks Pijk»> 0> Pijk»> Aij» Gijh> Tijk < 0 Viel,jelJ,kekK 40)
0<s;<1 Viel 1)

Now, we are ready to present the solution algorithms for RFLPD-C. First, the column-and-constraint generation
algorithm is introduced, followed by the Benders decomposition method.
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1. Column-and-constraint generation algorithm

The column-and-constraint generation (C&CG) algorithm was first introduced in|Zeng and Zhao|(2013)) as a solution
method to tackle two-stage robust optimization problems. In two-stage robust optimization problems, the second-stage
recourse problem is to identify the worst-case scenario among all the possible realizations. So, if the uncertainty set
is a finite discrete set, the RO problem can be reformulated as a large-scale problem that enumerates all the possible
scenarios. This method is not applicable when the uncertainty set is infinite or very large. However, we could still solve
the large-scale problem with a partial enumeration of scenarios by accounting for the important ones. By identifying
extreme points of the uncertainty set and adding these critical scenarios into the large-scale problem iteratively, the
algorithm produces better approximations of the feasible region successively until an optimal solution is found. Multiple
investigations (Zeng and Zhaol 2013 |An et al.||2014) have shown that this cutting-plane-like algorithm performs well in
practice. For RFLPD-C, we define the master problem as:

MP-C:
Jming 2,0+ “
s.t.

dvi<p (43)

7
ik S Yj VieJ, kek (44)
ZijSI Vk € K (45)

7
Zjk,yj €{0,1} VjelJ, kekK (46)
Zzzcijwixijk+zriwi(l_szijk) <{ 47)

i j k i 7k
X <) Viel,jeJkeK,leL  (48)
PP Viellel (49)

J ok
Z bij(Wix! ) < Bzji VielkeK,IleL (50)

i
22(1 +Ois)wixl < Upy; VieldlelL 51)
ik

(1+0;s))wixl, < Cy Viel,jel keK,l€L (52)
0<xj, <1 Viel,jeJ,keK,leL  (53)

where L is the set that contains the significant scenarios and is initialized to be a null set. In this algorithm, the
subproblem is SubP-C described in the previously. Now we are ready to introduce the C&CG algorithm:

* Step 1: Initialize LB = —oo, UB = +c0, scenario set L = (). Denote |L| as the cardinality of set L.

¢ Step2: Solve the MP, derive an optimal solution (yTL|+1,z’|"L|+1,(,“|*L|+1,x”l‘, ...,xTLl). Update LB =max{LB, fy’I*L|+1+
~[|*L|+l}

* Step 3: Solve the subproblem SubP-B or SubP-C with the first-stage decision variables ( y’I‘L|+1, ZTLHI) as derived
in Step 2. Denote the objective value of the sub-problem as Q( y"‘L‘ e z’l‘L| ,1) and the optimal scenario that attains
Q(yTL|+l’zTL\+1) as §¢". Update UB = min{UB, fyTL|+l + Q(yTLIH’zTLIH)}'

e Step 4: If UB — LB > € where € is the pre-set optimality tolerance and s"¢" is not included in L, create new
variables xTLI ,1> add the new optimal scenario into the scenario set L. Add the constraints (43)-(47) associated
with new variables xTLI 41 and 5" into MP and return to Step 2. If UB — LB < ¢, the an e-optimal solution is
found and the algorithm terminates.
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In this algorithm, f yTLI gt Tu .1 is alower bound for the original problem because it is the optimal solution for a
relaxation of the original problem. f y’l‘L| L Ty TLI T ZTL| ,1) is an upper bound for the original problem because it is a
feasible solution of the original problem.

The number of iterations needed by the C&CG algorithm is linear in the number of extreme points of the uncertainty
set S (call this number m). This is because the second-stage problem is an LP which is always feasible, regardless of the
choice of first-stage decision variables (the "relatively complete recourse" assumption). Proposition 2 of |Zeng and Zhao
(2013)) thus applies to show convergence to the optimal value in O (m) iterations.

The key idea of C&CG is to derive the significant scenario in each iteration and add all the constraints and new
second-stage decision variables associated with the new scenario into the master problem. Meanwhile, the upper and
lower bound for the problem are associated with the newly generated scenarios. Thus, an alternative is to generate
multiple scenarios in every iteration and add all the constraints associated with them into the master problem. Using this
approach, we can further speed up the feasible region approximation and have better lower and upper bound at each
iteration. For example, in each iteration, after solving the subproblem and obtaining the optimal scenario s"¢", we
could modify s*¢" in some ways to get new scenarios. For example, we can modify disrupted customers with the least
nominal demands to non-disrupted ones and modify non-disrupted customers with the highest potential demands to
disrupt. Following this approach, multiple new scenarios could be found at each iteration. This idea is generally suitable
for large instances when obtaining significant scenarios is time-consuming.

2. Benders Decomposition

Benders decomposition (BD) (Geoftrion, |1972) is one of the most widely used methods for solving problems with
complicating variables. This method is based on an iterative sequence of projection, outer linearization, and relaxation
and thus is especially suitable for solving multi-stage optimization problems. A thorough literature review of this
method could be seen in Rahmaniani et al.| (2017).

Similar to the C&CG algorithm, BD works by iteratively exchanging the information derived by solving a master
problem and subproblem. A set of feasibility and optimality cuts is gradually added into the master problem to
approximate the original problem’s feasible region until an optimal solution is found. During this process, obtaining
the dual information of the subproblem is a crucial issue. As RFLPD-BL, RFLPD-BN, and RFLPD-C have different
second-stage problems, the BD approaches used to solve these two problems are slightly different.

For RFLPD-C, as the sub-problem is an LP, and its optimal dual information is used to generate the optimality cut:

C2 )0 D vtk D vit D D Bajumy + D Uyl + ) 3 > iyt
gk ‘ Jok J T 7k
ZZZ‘P;HZ”W:‘(H&S?) (54)
i j ok i

where s*, u*, v*, 1%, 0%, ¢* are the optimal solution of SubP. These cuts are iteratively added to the master problem of
Benders decomposition:
MP of BD:

min Vi o+
¥,2,%,4 ;f]yj ¢

s.t. constraint (@3)-@6), (54). When applying this approach, instead of solving the subproblem to optimality and
using the optimal dual information to generate optimality cuts, one could also generate multiple feasibility cuts in each
iteration. Different such techniques are summarized in Rahmaniani et al.| (2017).

B. Solution method for RFLPD-BN and RFLPD-BL

Unlike RFLPD-C, whose subproblem of the second-stage problem is a linear program, in RFLPD-BN/RFLPD-BL,
the subproblem of the second-stage problem is a mixed-integer linear program. To derive the dual of the second-stage
subproblem, its integer constraint should be replaced with a continuous constraint. In this way, now the dual formulation
of the LP relaxation of the second-stage subproblem is:
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DualSubP-B:

IO INNTTIRS HOES 3) LIRSy

””” i j k i j k J
DIDIPNSEIES 353 IS JERAIPTRS &
i J k i J k i

S.t.
Uijk +v; + [(l}j + alzl(l + eiSi)Wi]ﬂjk + (1 + 91'Sl')Wl'0j+

(1+9isi)WiTijk+¢ijk < (cij—rl-)(1+6’,-s,-)w,- VlEI,J GJ,k ek (56)

Disi<T (57)

i
Uijks Vis ik 0 Tijk, Pijke < 0 Viel,jelJ, ke K (58)
0<si<1 Viel (59)

With the same trick used in dealing with RFLPD-C, we also replace the product s;0, ;7 jx with new variables 4;;,
pijk, respectively. After using the big-M method, now the MILP formulation of the second-stage subproblem is as
follows, where M and —M are the upper and lower bounds for 4;; and p;;.

SubP-B:

S0 ¢Z 2. D vkt D vik ) ) Bapmji+ ) Uyjos+

””” " i T 7
ZZZCkTijk+ZZZ¢ijk+ZriWi(1""9[5[) (60)
" " 7

S.t.
Uijk +Vi+ (a}j + Cl?jwi)ﬂjk + aizjﬁ,-w,-p,-jk +w;o;+ Hiwi/lij'*'
WiTijk +9iw,~q,~jk + ¢ijk < (Cij - Vi)(l +0isi)wi Viel,jelJ,ke K (61)
Z s; <T (62)

along with constraints (31)) - (40) and domain constraint (59).

To solve RFLPD-BN/RFLPD-BL with the above formulation, we could also adopt the C&CG method. This is
because, unlike the Benders decomposition, the C&CG algorithm does not use the dual information of the second-stage
problem. Instead, it uses the significant scenarios obtained by solving the second-stage problem and then solves the
large-scale MILP in MP. Thus, although in RFLPD-BN/RFLPD-BL, the decision variables in the second-stage problem
are binary and no dual information is available for this problem, we could still derive the significant scenarios using the
dual of the LP relaxation of the second-stage problem.

However, as the second-stage problem is an integer program, strong duality does not hold. Thus, solving SubP-B
exactly does not guarantee an optimal solution for the second-stage problem, and the scenario generated is not guaranteed
optimal. Meanwhile, in C&CG algorithm, the new upper bound is updated as f yTLI o1 H( yTL|+1, ZI*L|+1) because the
corresponding solution is feasible for the primal minimization problem of RFLPD-BN/RFLPD-BL. However, as the
second-stage inner minimization sub-problem is an integer program, the second term Q(y’l“L| +1’ZTL| ,1) obtained by
solving the LP relaxation of the integer programming is a lower bound on the integer solution objective. As a result, the
resulting upper bound of the C&CG algorithm is lower than the actual upper bound when the algorithm get close to the
optimal solution, and the C&CG algorithm does not guarantee an optimal solution for RFLPD-BN/RFLPD-BL .

Fortunately, the lower bound generated is still valid, and in the first few iterations of the algorithm, the resulting
upper bound and scenario can still be used. Thus, we propose a heuristic C&CG algorithm for RFLPD-BN/RFLPD-BL
that obtains a feasible solution by constantly improving the lower bound via generating different scenarios manually. For
RFLPD-BN/RFLPD-BL, we define the master problem MP-B as the same formulation as MP-C when the constraint
1i is replaced with the binary constraint for xfj - This algorithm is introduced as follows:
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* Step 1: Initialize LB = —oo, UB = +c0, scenario set L = (), nolmp = 0. Denote |L| as the cardinality of set L.

 Step2: Solve the MP-B, derive an optimal solution (y’|‘L|+1, ZTL|+1’ §|*L|+1’xy1" xTLI)' Update LB =max{LB, fyTL|+1+
(I*LIH}' If LB improves, nolmp = 0. Else, nolmp := nolmp + 1. If nolmp < nolmpMax, where nolmpMax
is the pre-set parameter indicating the maximal no-improvement iterations, go to Step 3. Otherwise, terminate the
algorithm.

e Step 3: Solve the subproblem SubP-B with the first-stage decision variables (yTLHl’ZTLIH) as derived in
Step 2. Denote the objective value of sup-problem as Q( y’l‘L‘ e ZTLI ,1) and the optimal scenario that solves
Q(yTLIH’ZTL\H) as s"¢". Update UB = min{UB, fyTL|+1 + Q(yTL|+1’zTL|+1)}' Go to Step 4.

» Step 4: If the new optimal scenario has not been included in set L, add it into L. Else, change the scenario
manually and add the modified scenario in L. Create new variables x7, ., and add the constraints — and

binary domain constraint associated with new variables x"‘LI 41 and s"¢" into MP-B and return to Step 2.

V. Numerical Analysis

This section presents a set of numerical analyses of the proposed models. Test data and parameters setting are
introduced first. Then, various computational experiments are conducted to test the effectiveness of the proposed
solution algorithms and analyze the sensitivity of the proposed RFLPD models on some key input parameters.

As RFLPD assumes that the delivery method only involves drones’ operation, whose service area is relatively small
compared to traditional commercial trucks, publicly available FLP data sets are not suitable for this research. Thus,
randomly generated RFLPD instances are tested.

For each tested instance, the number of customers || contained in the instance is an input parameter set by the tester.
The number of potential facility locations and available drones are set to be I_%J and L%J , respectively. All customer
locations are randomly generated in a 10km X 10km service area. Each customer’s nominal demand is randomly
generated between 1 kg and 3 kg. Similarly, each customer’s 6 value is randomly generated between 0 and 3. We assume
that the unit transportation cost of customer i is five times the distance between customer i and facility j that serves it.
The unit penalty cost of unsatisfied demand is 100 across all customers. For each instance, the disruption budget is
I' = 0.60 times the number of customers, indicating that 60% of customers would suffer from demand disruption in the
worst-case scenario. Besides, all the potential facility locations are randomly generated in the same 10km X 10km
service area, with fixed cost randomly generated between 200 and 500. The capacity of each facility is assumed to be 15
times the median nominal demand value of all customers. In these experiments, the drone’s technical parameters are
mostly adopted from [Figliozzi (2017). A summary of the parameters is shown in Table[3] All experiments are run on a
3.6 GHz Intel Core i7 desktop with 32 GB RAM.
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Table 3 A list of key parameters used in tests

Parameter Meaning Value

|1 number of customers dedicated by user
r disruption budget 10.6]1]]

|| number of all potential facilities LI1]1/2]

p maximum number of opened facilities [171/47

U; capacity of facility j 15*median(w;)
fi fixed cost of opening facility j randint(200,500)
wi nominal demand value of customer i randint(1,4)

0; theta value of customer i random(0,3)

ri unit penalty cost of unsatisfied demand of customer i 100

Cij unit demand transportation cost of customer i from facility j 5 d;j

|K| number of available drones LI]/3]

Ck load capacity of drone k 6 kg

By battery capacity of drone k 777 wh

m; +myp tare mass of drone k (including the battery) 10.1 kg

Ksh Power transfer efficiency times lift to drag ratio 6.85

A. Performance comparison between C&CG and Benders decomposition

Two different solution approaches are introduced in the solution method section: C&CG and BD. Both methods
decompose the original problem into two separate problems: the master problem and the subproblem. The method
then iterates between these two problems, aiming to better approximate the feasible region of the original problem
in the process. In this subsection, the effectiveness and efficiency of these two methods are tested and compared
on the randomly generated instances. Table ] presents computational results from solving RFLPD-C using Benders
decomposition and C&CG algorithm. The values shown in the table are the average result of at least ten independent
runs. The following observation can be drawn based on Table [

1) Both methods can obtain the optimal solution for instances with less than ten customers. However, BD fails to
converge in 30 minutes for instances containing more than ten customers. As a comparison, C&CG can obtain
an optimal result in about 30 seconds for instances containing up to 40 customers.

2) The C&CG algorithm performs much faster than Benders decomposition and terminates in many fewer iterations.
These results are consistent with Zeng and Zhao|(2013)) and |An et al.| (2014). FigureE] shows the convergence
graph of one of the 8-customer instances for both methods. As can be seen, compared to BD, which makes
minimal improvement in the lower bound, the C&CG algorithm can improve both the lower bound and upper
bound in a short time and converge to the optimal value.

3) As in each iteration, a cut is added to BD’s master problem, solving the master problem of BD becomes much
slower in later stages. BD fails to obtain an optimal solution for instances containing more than ten customers
after performing more than 2000 iterations. C&CG is still relatively efficient and can solve instances containing
up to 40 customers in 30 seconds.
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Table4 BD and C&CG performance comparison

BD C&CG
|1 Time(s) Iter Obj Opt? Time(s) Iter Obj Opt?
0.408 3.500 1973706 'Y 0.330 2.000 1973.706 'Y
8 39.021 181.800 2763.100 Y 0.555 2.000 2763.100 'Y
45.644 192.000 3268.054 Y 0.600 2.000 3268.054 'Y
10 >1800 >2000 N/A N/A 0.811 2.133 3585.632 Y
15 >1800 >2000 N/A N/A 1.763 2.000 4357123 ' Y
20 >1800 >2000 N/A N/A 5.143 2.000 4773345 Y
40 >1800 >2000 N/A N/A 31.590 2.000 9649.515 'Y
4000 ¢ 4000
3500 | 3500
3000 3000
2500\ ‘ 2500
g 2000 e—e—e—o—o o o o o o o o o o o o oo oo g 2000
1500 1500
1000 1000
500 500
0 0
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UB-e-Opt—+-LB UB ~=-Opt ~-LB
(a) BD converge graph (b) C&CG converge graph

Fig.3 Converge graphs for both algorithms

B. Comparison between RFLPD-BN and RFLPD-BL

This subsection aims to compare the performance of the two binary models, RFLPD-BN and RFLPD-BL, which
deploys two different electricity consumption functions when constructing constraints (§). The parameters used in this
test are the same as described at the beginning of this section. The test results are illustrated in Table[5] where the
numbers shown are the average results of 20 independent runs.

Table 5 RFLPD-BN and RFLPD-BL performance comparison

Objective

|| RFLPD-BN RFLPD-BL
5 3508.10 3599.70

8 5343.18 5466.71

10 7252.525 7319.03

12 8015.92 8033.03

15 10519.00 10528.44
20 13961.72 13968.46

As can be seen from Table[5] in general, the total cost obtained from both models is quite close, although RFLPD-BL
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has a slightly higher total cost than RFLPD-BN. However, this disparity seems to diminish as the size of the instance
grows. This result shows that the two binary models, RFLPD-BN and RFLPD-BL, have a similar total cost, despite
using two different electricity consumption models.

C. Effectiveness analysis of RFLPD-C

In Section 3, we proposed a continuous model called RFLPD-C, with a less accurate but much simpler electricity
consumption function in the drone flight capacity constraints (§)). By adopting this simplified consumption function,
RFLPD-C can relax the “no-split delivery” assumption and enable a more flexible delivery method, where multiple
drones could serve a customer’s demand. This section explores how these two factors (simplifying the consumption
function and allowing split delivery) affect the quality and feasibility of the overall solution compared to the binary
model RFLPD-BL.

In this section, we conduct a cross-comparison among four different models. The first model is RFLPD-BL, with
the original linear electricity consumption function and binary decision variables x;;x. The second model, RFLPD-BS,
adopts the simplified electricity consumption function while assuming binary x; ;. The third model is RFLPD-CL,
using the original linear electricity consumption function but with continuous second-stage decision variables. The last
model is RFLPD-C, which adopts the simplified electricity consumption function and assumes x; ;x are continuous.
Note that this comparison does not include the RFLPD-BN model, as we think it is unnecessary to include RFLPD-BN
when it has a similar overall cost to RFLPD-BL.

The tests use the same parameters as introduced previously. Here, we test instances of four sizes, namely,
|I| = 5,10, 15,20. The test results for four models are summarized in Table [5] where all the results showed are the
average value of 20 independent runs. In this table, “tor” stands for the total cost of the final solution obtained by
the corresponding model, “trans” stands for the transportation cost, and “pen’ represents the total penalty cost of the
solution. We also check the feasibility of the obtained solutions of the last three models based on the original linear
electricity consumption constraints (I8). The number of feasible solutions is shown in the column “#feasible”. For
example, 16/20 in the last column of the first row indicates that in 16 instances, out of a total of 20, the solution obtained
by RFLPD-C is feasible in terms of constraints (T8).

Table 6 A cross performance comparison among four models

RFLPD-BL RFLPD-BS
|| obj trans pen #feasible obj trans pen #feasible
5 1986.41 345.52  1359.00 20/20 2187.75 137.03  1777.00 20/20
10 3280.93 890.40 1770.00 20/20 3591.14 511.87  2439.00 20/20
15 4469.63 868.87  3064.00 20/20 4847.54 868.87  3064.00 20/20
20 4730.19 1534.13 2265.00 20/20 5275.89 1115.29 3147.00 20/20
RFLPD-CL RFLPD-C
|| obj trans pen #feasible obj trans pen #feasible
5 1695.67 489.57 880.90  1/20 1951.72 247.50 141326 16/20
10 2308.88 1443.57 97.40 0/20 2781.82 767.68 1331.44 16/20
15 2708.34 174425 1.79 0/20 3151.84 1362.64 78591  14/20
20 3150.49 1916.52 140.96 0/20 3706.64 1414.07 946.28  14/20

As can be seen, comparing the final solutions of RFLPD-BL and RFLPD-BS, the latter has a greater total cost in all
the test instances. The only difference between these two models is that the latter uses a linear simplified electricity
consumption function (20), while the former one uses the original linear function (I7). Although RFLPD-BS adopts
the simplified electricity consumption function, the feasibility check of its final solutions shows that all the solutions
obtained in RFLPD-BS are feasible for RFLPD-BL. Besides, the overall cost of RFLPD-BS is slightly higher than
RFLPD-BL. This result shows that the simplified electricity consumption function is a conservative estimation of the
current parameter setting’s original linear electricity consumption function.
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Meanwhile, the results of RFLPD-BL and RFLPD-CL indicate that the final solution of the latter model is about
29% lower than that of the former in terms of the total cost. Note that both models use the original linear electricity
consumption function (I7)), and the only difference is that RFLPD-BL assumes binary x while RFLPD-CL assumes
continuous x. Based on this result, it is obvious that the more flexible delivery assignment in the continuous model can
achieve a much lower total cost. In particular, when a customer’s actual demand exceeds the drone’s load capacity, it
cannot be served at all in the binary model. In the continuous model, this customer could be partially or even fully
served in multiple drone visits. However, the biggest drawback of RFLPD-CL is its feasibility issue. This is because
assuming continuous x while using function (I7), when the correct form is function (I9), clearly underestimates drones’
electricity consumption along their routes. As shown in the table, almost all the obtained solutions of RFLPD-CL are
infeasible when the most realistic electricity consumption function is used.

Table [5]also shows that the total cost of RFLPD-C, which assumes continuous x and adopts simplified electricity
consumption function, lies in between RFLPD-BL and RFLPD-CL. Overall, the total cost of RFLPD-C is about 17%
lower than RFLPD-BL. This indicates that although RFLPD-C uses a conservative approach to simplify the electricity
consumption function, which tends to overestimate the electricity consumption, the solution obtained by RFLPD-C has
a significantly lower total cost by assuming continuous x and enabling split delivery. Besides, most RFLPD-C solution
are feasible based on the original linear electricity consumption constraints (I8). This test’s results show that RFLPD-C,
as a simplification and alternative of the "perfect" model, can still generate a feasible solution whose total cost is much
lower than the binary model RFLPD-BL.

D. Reliability of RFLPD compared to FLPD

This section aims to show the "reliability” of the RFLPD solution compared to the deterministic FLPD by running a
series of simulations. As mentioned before, the robustness of RFLPD is twofold: it makes the facility location plan
based on the calculated worst-case scenario of all the possible outcomes in the future, and it can adjust its allocation plan
after the actual demand scenario is revealed. On the contrary, the deterministic FLPD makes the location-allocation
plan in a one-time fashion without considering demand variations in the future. Moreover, when the actual demand is
revealed in the operational stage, it lacks the "recourse" strategy to adjust the original allocation plan. Thus, this section
aims to show this point and compare the RFLPD solution with the deterministic FLPD solution in different scenarios.

In this section, for each randomly generated instance, we aim to compare the robustness of the solution among three
different models: RFLPD-BL model, deterministic one-stage FLPD, and two-stage FLPD. RFLPD-BL model is the
binary model introduced in this paper. The deterministic one-stage FLPD models the problem as FLPD with only the
nominal demand value of each customer point. This model indicates that the planner does not consider any future
demand variations when making the location-allocation plans. The third model, the two-stage FLPD model, is a mixture
of the two models mentioned above: it makes the location plan with only the nominal demand value, but it can adjust
its allocation plan after the demand value is revealed. Thus, this model does not consider future demand variations
when making the location plan, but it is granted extra flexibility by solving the same min-cost problem as in RFLPD-BL
with its facility location plan in the second stage. To avoid any confusion, the MILP formulation of the deterministic
one-stage and two-stage FLPD is shown in the appendix.

For each instance, after the solution of three models is obtained, a total of m demand scenarios are generated, and
we aim to compare the overall cost of three different solutions via numerous simulation runs. When generating demand
scenarios, we assume that 60% of customers have their demand deviate from the nominal value. In this way, the overall
cost of three problems can be calculated with each simulated scenario.

In this section, two sets of instances with different total customers are tested, namely, |I| = 10 and |/| = 20. For
any given number of customers, 20 random instances are generated. For each instance, m = 20 demand scenarios are
considered. Three different penalty values are considered to analyze the effect of unit demand penalty terms r of the
unsatisfied customers on the overall cost. The test results of average cost are shown in Table[7]
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Table 7 RFLPD and deterministic FLPD performance comparison

RFLPD-BL One-stage FLPD Two-stage FLPD
|1 P obj fac_cost  oper_cost  obj fac_cost  oper_cost  obj fac_cost  oper_cost
100  1873.32  718.20 1155.11 2390.56 329.00 2061.56 1918.15  329.00 1589.14
200 1870.16  632.00 1238.15 311246 387.60 2724.86 1984.97  387.60 1597.36

Il=10

7l 300 370095  602.80 3098.05 6098.20 613.00 5485.19 3886.95 613.00 3273.95
100 3649.16  845.00 2804.16 4580.83 696.19 3884.62 3719.50  696.19 6327.63

1] =20 200  4848.32  877.00 3971.30 7142.47 627.80 6514.67 5053.36  627.80 4425.56

300 7512.65  869.40 6643.25 10185.79  565.00 9620.79 7653.30  565.00 7088.30

—+—Robust_FLPD One-stage FLP  —&=Two-stage FLP —+—Robust_FLPD #-0One-stage FLP  —4—Two-stage FLP
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Fig. 4 Reliability comparison between RFLPD and FLPD

As can be seen from Table[7]and Figure ] the average simulation overall cost of RFLPD-BL is significantly less
than one-stage FLP and the two-stage FLPD model, in all of the cases with a different number of customers and unit
penalty values. Besides, as the penalty value r increases, the disparity between the RFLPD-BL and the deterministic
one-stage FLPD models also increases. The same trend can also be seen in the gap between RFLPD-BL and two-stage
FLPD. We also notice that the robust FLPD always has greater first-stage facility cost than the other two models, as the
robust FLPD model considers the worst scenario when making the location plan. On the other hand, the robust model
has significantly less transportation and penalty cost than the other two models in the operational stage.

One thing that is worth mentioning is that these randomly generated demand scenarios are not necessarily the
"worst" scenarios whose overall cost is minimized in RFLPD-BL. In fact, these tested demand scenarios might do not
even contain the "worst" scenario. Even in this situation, the RFLPD overall average cost is still less than other models.
For RFLPD, the increase in overall cost as the penalty value rises seems more "mild" and "robust" than the other two
models. Besides, the comparison between RFLPD and two-stage FLPD also shows that even with a second chance to
reallocate the resources, it is still beneficial to consider the demand variation when making the location plan in the first
planning stage.

Additional simulations are conducted to illustrate the performance of three approaches in the worst possible scenarios.
A set of illustrations when |C| = 20 are shown in Figure[5] where the final solution obtained by three different approaches
are shown in the same network. In the figure, the size of the customer node indicates its corresponding realized demand,
where a bigger-sized dot represents a higher demand. Besides, the thickness of the line indicates the portion of the
satisfied demand between an established factory and a customer. Based on Figure[3] it is evident that the robust model is
more conservative in the first location planning stage, can serve more customers, and has a much lower penalty cost than
the other two models in the operational stage.
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Fig. 5 Simulation result illustration of three different approaches

E. Effect of demand change budget I

The previous section shows that the robustness of the proposed models lies in that they can automatically make a
trade-off between the first-stage facility cost and the second-stage operational cost. Specifically, when only a minor
disruption might occur, or the penalty of unsatisfied demand is low, the model will spend a relatively small proportion
of total cost on the first-stage location plan since it is unnecessary to put a considerable investment to account for the
little potential randomness. On the contrary, when the disruption scenario is relatively "severe" or when the penalty of
unsatisfied demand is high, the model will build more facilities in the first stage, trying to "prepare"” or "alleviate" the
future disrupted scenarios. This subsection aims to verify this point by running a sensitivity analysis of the demand
change budget I' on RFLPD-BL. Recall that the demand change budget I' is an indicator of the maximum number
of customers that could be disrupted simultaneously. When I' = 0, the RFLPD is reduced to FLPD. On the other
hand, I" = |I| represents that all the customers could be disrupted. Thus, we introduce a new term called gamma ratio
v =T"/|I| € [0, 1] and test the effect of different values of v on the relative ratio of facility cost and total cost. The result
is shown in Figure [] where the vertical axis shows the ratio of the facility cost on the total cost.

As can be seen, for instances of various sizes (|/| = 10 and || = 20), the proportion of the facility cost on the total
cost grows as the value of v increases. For example, when |I| = 10, the model spends about 58% of the total cost on
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the location plan when no disruption is allowed but spends more than 70% of the total cost to account for the future
randomness when v increases to 0.8. This result verifies the trade-offs of the proposed model in different scenarios with
various randomness.
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Fig. 6 Sensitivity on demand disruption budget parameter I"

VI. Conclusion

This paper investigates a newly proposed problem called the two-stage robust facility location problem with drones
(RFLPD). This problem assumes that the customers’ demands are stochastic and could be disrupted. The planner makes
decisions in a two-stage fashion. In the first stage, the planner aims to place facilities in a set of potential locations and
assign drones to facilities. In the second stage, the planner needs to allocate customers to the opened facilities and
assign drones to serve customers. This model aims to obtain a location-allocation-assignment plan that minimizes a
sum of fixed cost, transportation cost, and penalty cost. In this problem, a budget-constrained scenario set describes the
uncertainty of customers’ demands. Besides, the drone’s battery capacity and load capacity are also considered. We first
propose two different binary models based on two different drone electricity consumption functions (RFLPD-BL and
RFLPD-BN) where no split delivery is allowed in the operational stage. Then to relax the "no split delivery" assumption,
the third model, RFLPD-C, is proposed. This model adopts a simplified electricity consumption function but has greater
delivery flexibility. For RFLPD-C, two different exact solution methods are proposed: Benders decomposition and
column-and-constraint generation. For RFLPD-BL and RFLPD-BN, a modified C&CG method is used to derive a
heuristic solution.

In the numerical analysis section, we first compare the performance of the C&CG algorithm and Benders
decomposition method and found that the former one is significantly faster than Benders decomposition. Then a
comparison between RFLPD-BN and RFLPD-BL indicates that the two models generate a final solution of similar cost,
although the total cost obtained by RFLPD-BL is slightly higher. Then an extensive analysis of the effectiveness of
RFLPD-C is conducted. Based on the cross-comparison among four models, we found that the simplified electricity
consumption function is a conservative estimate of the original linear electricity consumption function. Thus, the results
obtained by RFLPD-C could be regarded as an upper bound of the total cost when adopting the "ideal" linear electricity
consumption function and enabling split delivery. Furthermore, a reliability comparison via simulation runs among
the RFLPD-BL, and two deterministic FLP models show that the RFLPD-BL model has much less total cost in the
simulated scenarios, which indicates that it is beneficial to account for future demand variation when making both
location-allocation plan and assignment plan. Lastly, a sensitivity analysis on a budget of disruption is also conducted.

This research is the first to consider demand uncertainty in a drone operation-related facility location problem.
Besides, the models proposed in this paper are also effective in practical use as they adopt a realistic drone electricity
consumption function in the modeling process. Since the robust optimization approach is used in these models, they are
especially effective when the penalty cost of unsatisfied customer demand is high.

There are several remaining challenges for this type of problem. Several natural extensions include serving customers
in the second operational stage using a truck-drone tandem delivery method, allowing drones to be repositioned to other
facilities during the second stage, and considering the uncertainty in the drone’s delivery time or facility capacity.
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Appendices

A. MIP formulation of deterministic one-stage and two-stage FLPD
The MILP formulation of deterministic FLPD is as follows, with the same notation introduced before.

FLPD:

min 3 s+ X3 Y copwinn Y o1 = 3 Y ) g
T i j k i J ok
s.t.

Dvi<p @)
J

Zjk S Y; VielJ,kekK 3)
Zz,-ks 1 Vk € K 4)
J
Zjk,y;j € {0, 1} Viel kekK (5)
Xijk <Yy Viel,jelJ,keK (6)
szijk <1 Viel 7)
Tk
D bij(wixije) < Bz Vjelkek ®)
Zzwixiijijj Vjiel 9
Tk
wix; . < Cr Viel,jel kek (10)
xijk €{0,1} viel,jelJ,kekK (11)

For deterministic one-stage FLPD, it uses the above formulation to derive its facility location plan, drone allocation
plan (corresponding to decision variables y, z), and drone assignment plan (corresponding to variables x). In the later
stage when the demand value is revealed, this model cannot make any changes to the original assignment plan that is
made previously.

For the two-stage FLPD model, the above formulation is also used to derive the facility location plan y, drone
allocation plan z. However, unlike the one-stage FLPD, the two-stage FLPD can adjust its drone assignment plan x
when the actual demand value of each customer point is revealed, based on the established facility location plan. Thus,
in the second stage, two-stage FLPD solves the following min-cost problem:

Second-stage FLPD:
mi/nZZZcijwix;jk+Zriwi(l—ZZx;.jk) (12)
XUk i J k
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s.t.

DS (13)

J
x;.ijyj Viel,jel,kek (14)
sz;jk <1 Viel (15)

Jj ok
Zbij(wix;jk) < Bzji Viel,kek (16)
DD i < Ujy; VjelJ (17)

i k

Wix; i < Ci Viel,jeJ,kek (18)
X € {0, 1} Viel,jel,kek (19)

In the above formulation, the decision variable x is the adjusted drone assignment plan and y, z are the parameters
that are derived in the first planning phase. For the two-stage FLPD, the final solution is the combined set x , y, z.
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