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Abstract—This paper develops a method to learn op-
timal controls from data for bilinear systems without a
priori knowledge of the dynamics. Given an unknown bi-
linear system, we characterize when the available data is
sufficiently informative to solve the optimal control prob-
lem. This characterization leads us to propose an online
control experiment design procedure that guarantees that
any input/state trajectory can be represented as a linear
combination of collected input/state data matrices. Lever-
aging this representation, we transform the original optimal
control problem into an equivalent data-based optimization
problem with bilinear constraints. We solve the latter by
iteratively employing a convex-concave procedure to find
a locally optimal control sequence. Simulations show that
the performance of the proposed data-based approach is
comparable with model-based methods.

Index Terms— Data-driven control, biliner systems

[. INTRODUCTION

HE widespread availability of data, together with in-
creasing computational capabilities to store, process, and
manipulate it, has boosted the research activity in learning,
modeling, and control of dynamical phenomena across sci-
ence and engineering. Data-driven control has emerged as an
appealing way of leveraging this data surge by employing solid
theoretical principles to design controllers that do not require
explicit a priori knowledge of the plant to be controlled. This
paper contributes to this body of work by studying the data-
driven synthesis of optimal control laws for bilinear systems.
Literature Review. Data-driven control approaches include
indirect and direct methods [1]. Indirect methods identify
system models from data prior to proceeding to the synthesis
of model-based controllers, while direct approaches bypass the
intermediate modeling step and construct controllers directly
from data. A diverse range of factors, including the complexity
of the plant, the cost and practicality of performing system
identification, and the amount and quality of the available
data, play a key role in the suitability and performance
of each of these approaches, see e.g., [2], [3]. The direct
data-driven approach has been particularly fruitful for linear
systems, where tools from behavioral theory [4] have allowed
to express the system trajectories in terms of sufficiently-rich
data. This has resulted in the synthesis of feedback stabilizing
controllers [5], [6], optimal control laws [7]-[9], predictive
controllers [10], [11], network controllers [11], [12], control
experiment design [13], optimization-based controllers [14],
and extensions to various types of nonlinear systems [15]-
[17], including flat [18], second-order [19], and linear time-
varying systems [20]. Here we focus on direct data-driven
control of bilinear systems as a building block for future
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work on more complex nonlinear systems. These systems
are often viewed as the bridge between linear and nonlinear
systems due to their special properties [21]. Moreover, [22]
shows that control-affine nonlinear systems can be exactly
bilinearized. The recent work [15] proposes a local stabilizing
data-driven controller design for bilinear systems. Here, we
focus on the synthesis of optimal controllers. Model-based
approaches to optimal control of bilinear systems include [23]-
[25], which treat them as time-varying linear systems and
solve the optimization problem by applying iteratively the
Pontryagin’s maximum principle, and [26], which gives a
lower bound on the minimum control energy required to steer
the bilinear system using the reachability Gramian.
Statement of Contributions. We consider discrete-time bi-
linear control systems and study the point-to-point optimal
control problem over a finite time horizon. We assume the
system matrices are unknown and seek to learn the optimal
control from input/state data. We introduce the notion of T-
persistently exciting data to characterize when it is sufficiently
informative for reconstructing the optimal control over the
time horizon 7. Under this hypothesis, we show that any
input/state trajectory can be represented as a linear combina-
tion of the collected input/state data. Owing to the nonlinear
nature of bilinear systems, the problem of ensuring that data
is T-persistently exciting requires us to introduce an online
control experiment design. We show our design is guaranteed
to yield T-persistently exciting data in a finite number of
steps. Building on this, we pose the optimal control synthesis
problem as a data-based optimization with bilinear constraints.
We show that a local solution to this nonconvex problem
can be found by iteratively solving the convexified problems
that result from applying a convex-concave approximation
procedure. Simulations show similar performance between the
proposed data-based approach and model-based methods.

II. PROBLEM FORMULATION
Consider' the discrete-time bilinear control system

x(t+1) = Ax() + Bu(t) + [ Y% (ON|u@), (1)
j=1

'We denote by R, Z>q, and Zxq the sets of real, non-negative integer,
and positive integer numbers, resp. Let I, and O and 1 denote the identity
matrix, and zero and all-ones vector/matrix, resp. Given f : ZZO — R4
and 4,7 € Z>q, i < j, fl;,5) is the restriction of f to [3, j] in vector form,
ie, fig = @O fa+1" - fGHT and fy; ;1 the sequence

{f@),...., f(G)} For X = [x] xg --- ij]T € RY with x1,--- ,x; €
R?, H,(X) denotes the Hankel matrix of depth k € Z~¢, with k < j,
X1 X2 Xj—k+1
X2 X3 Xj—k+2
Hi(X) = T e mibx Gk
Xk Xk+1 e Xj



where x(t) € R™ and u(t) € R™ are the system state
and input, respectively, and A € R"*" B € R"*™ and
N; € R*™™ j = 1,...,n are system matrices. Denoting
N =[N; Ny --- N,,] € R**™"the dynamics (1) is

x(t+1) = Ax(t) + Bu(t) + N(x(t) @ u(t)). ()
We make the following assumption.
Assumption IL1. The pair (A, [B NJ) is controllable.

Note that Assumption II.1 is weaker than asking for the
bilinear system (2) to be controllable. Given initial x; and
target x¢ states, we consider the following (point-to-point)
optimal control problem over the time horizon 7',

min
Ujo,7—1]

Z_: x' (H)Qx(t) +u' () Ru(t)
t=0

st. x(t+1) = Ax(t) + Bu(t) + [zn:xj (t)N]} u(t),

x(0) = xg, x(T) = xs. (P1)

Here, Q € R™*", R € R™*"™ are positive semi-definite. The
minimum-energy control problem corresponds to Q = 0 and
R = I. This optimization is nonconvex and its closed-form
solution is not known in general. The optimality conditions of
(P1) lead to a nonlinear two-point boundary-value problem,
for which there is no analytical solution available [26].

We address the following problem: assume the system
matrices A, B and N;, j = 1,..., n are unknown and, instead,
we have access to input/state data of a control experiment
of (2), that is, a control input sequence uyq 1} along with
the corresponding state sequence X g} of (2). Our objective
is to develop an algorithmic procedure to learn from the data
the optimal control sequence u?O7T_1} that solves (P1).

1. T-PERSISTENTLY EXCITING DATA FOR OPTIMAL
CONTROL OF BILINEAR SYSTEMS

In this section, we characterize when the available data is
sufficient to solve the optimal control problem and discuss a
procedure to design the control experiment. To motivate our
discussion, we start by considering the linear system

x(t+1) = Ax(t) + Bu(t) 3)

(corresponding to N = 0 in (2)). Let x(o ) be a state
sequence generated by (3) with input sequence ugg r_1}-
According to Willems’ fundamental lemma [4], [27], and
assuming the pair (A,B) is controllable, if ugo 1} is
persistently exciting’? of order n + T, then Gp(L) :=
X0, Hr(up,-1))] € ROrEmT)(L=THD s full-
row rank. This ensures that for any input/state trajectory
(Q[o,7—1), X[0,7—1)) of length T of the linear system (3), there
exist some & € RE=T+1 guch that

|: 5{[07T—1] :| _ |: HT(X[O7L_1]) :|&
Ujo,7-1] Hr(ajo,1-1) )

Given matrices Y and Z, [Y Z]l and [Y; Z] denote their row- and column-
concatenations, resp. We use Z' and Im Z to represent the pseudo-inverse
and image space of Z, resp. Finally, ® denotes the Kronecker product, while
||-]| represents the Euclidean norm.

zf{oyL,l} is persist. exciting of order & if H (f]o,,—1)) is full-row rank.

Now consider the original bilinear system (2). If we regard
x(t) ® u(t) as an independent input, then the dynamics
corresponds to a linear system with input matrix [B N] and
control input v(t) = [u(t); x(¢) ® u(¢)]. Willems’ fundamen-
tal lemma applied to this linear system implies that, under
Assumption IL1, if vo 71y is persistently exciting of order
n+ T, then [x[o ,—77; Hr(V[o,r—17)] is full-row rank, which
then ensures that any input/state trajectory (Vo 7—1], X[0,7—1])
of length T' of system (2) can be represented by

{ X[o,7—1] } _ [ Hr(x[0,0-1)) }a )

Vio,T-1] Hr(Vio,L—1])

for some o € RE~T+1 However, as we know, the input v is
not independent, and ensuring it is persistently exciting is not
guaranteed by simply asking for u to be so. These observations
motivate our ensuing definitions and technical treatment.

Remark IIl.1. (Fundamental lemma for nonlinear systems):
Our exposition above uses the fundamental lemma in the
context of bilinear systems by interpreting the bilinear term
as an input. Recent literature on data-driven control has
pursued similar ideas for different classes of nonlinear systems
by relying on linear expressions in lifted coordinates, e.g.,
Hammerstein and Wiener [17], linear parameter-varying [20],
second-order Volterra [19] and flat [18] systems. >

A. Parametrization of state trajectories

We next introduce the notion of T-persistently exciting data.
Definition IIL2. (T-persistently exciting data for optimal
control of bilinear systems): Let X 1y be a state sequence

generated by (2) with input sequence uyg _1}. The data
X{0,1}» W{o,,—1} is T-persistently exciting if

Hi(Xjo,.-17)
Hr(jo,0-1))
Hr(x@ujo,—1))

is full-row rank.

c R(TL-‘,—TVLT-‘,—TVLTLT) X(L—T+1)

QT(L)::

This definition requires as a necessary condition that L >
(mn+m~+1)T+n—1. We point out that Gr (L) being full-row
rank is equivalent to [y (x[o,z—7)); Hr(V(o,—1])] being full-
row rank, as both matrices can be obtained from each other
by row permutation. Using (2), one can obtain the relation (5),
where Op € R"Txn P ¢ RT>xmT Q. ¢ RTxmnT 1f
Gr(L) is full-row rank, it immediately follows that

[Or Pr Or] = Hr(xp,1))Gr (L)'

Remark IIL.3. (T-persistently exciting data for optimal con-
trol versus for identification and stabilization): When T =1,
we have [O; P; Q1] = [A B N]. Therefore, 1-persistently
exciting data corresponds to the standard notion of persistently
exciting data, describing data needed for system identifica-
tion [5], [6]. Moreover, if H(x[o,z,—1]) is full-row rank, then
under knowledge of an upper bound on ||IN||, one can construct
locally stabilizing controllers directly from data, cf. [15].
Notice Gr (L) is full-row rank = G;(L) is full-row rank =
H1(X,—1) is full-row rank. We deduce that T-persistently
exciting data comprises data needed for system identification
and local stabilization. Note that, although Op,Pr and Qp
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can be constructed only using A,B and N when G;(L) is
full-row rank, this is not enough to express any input/state
trajectory of length 7' as a linear combination of the collected
input/state data, and thus G;(L) being full-row rank is not
sufficient to recover optimal controls. Another observation is
that, in the linear case (N = 0), according to [9], optimal
controls over the time horizon T' can be learned if Gr(L) is
full-row rank. One can identify and globally stabilize linear
systems directly using data if G;(L) is full-row rank, cf. [5].
Since Gr(L) is full-row rank = G;(L) is full-row rank, this
reinforces the parallelism between the bilinear and linear cases
regarding data conditions for different control problems. >

We have established that any input/state trajectory of (2)
admits a data-based representation of the form (4). The next
result establishes when the converse is also true, i.e., when a
trajectory of the form (4) corresponds to a trajectory of (2).

Lemma IIL.4. (Data-based representation of input/state tra-
Jjectory in terms of T-persistently exciting data): Let X 1y
and ugg 1,1y be a T-persistently exciting data set. Then
(i) Any input/state trajectory (QjoT—_1), X[0,1]) Of system (2)
can be represented as

2|
Up,7-1]

for some o € RE-T+1.
(ii) Conversely, let & € RE"T1 such that

Hri1(Xjo,2)) ] o
Hr(ajo,-1))

(6)

where Xjor_1] = Hr(Xp,r—1)o and Upr_1) =

Hr(up,r—1))o. Then, [Hri1(xj0,1)); Hr(up,z-1])]

is an input/state trajectory of (2) over the time horizon T.
Proof. For (i), note that any input/state trajectory
(Xjo,7, Ujo,r—1)) of (2) is uniquely determined by
x(0) € ImHy(x0,z—7)) and U r-1) € ImHr(up,r—1))-
Recalling that G (L) is full-row rank, (i) follows. For (ii), let «
satisfy (6) and consider the initial state X(0) = H1 (X[, —7])
and input sequence Uy, 7—1) = Hr(ujp, 1)) Then,

x(0)
Hr(x®@apr-1))
Ujo,7-1]
= [Or Pr Qr|Gr(L)a = Hr(xp,r))a,
where we have employed (5). The conclusion follows by
noting Hr1(X[o,2]) = [H1(X[0,0—1)); Hr(X[1,1))]- 0

X @ U r_1) = Hr(x @ ujp _1))a,

%1 = [Or Pr Qr]

B. Online experiment for T -persistence of excitation

We discuss next how to ensure that the available data
is T-persistently exciting. Based on our discussion above,

or

Vio,L—1) being persistently exciting of order n+7" is enough
to ensure the T'-persistence of excitation of the data for bilinear
systems. In contrast to the linear case, where ugg ;1) can be
designed to be persistently exciting of any order by selecting
control inputs offline, the persistence of excitation of vg 1,1}
depends on both the control input u(t) and the system state
x(t). Due to the unknown nonlinear dynamics, there is no
available closed-form expression of x(t) in terms of u(t).
Hence, selecting control inputs offline may not guarantee
Vio,r—1} to be persistently exciting of order n + T', which
motivates an online approach to design u. To tackle this, we
draw inspiration from [13], [16] to propose an experiment
design approach for bilinear systems that yields 7-persistently
exciting data. We start with some useful facts.

Proposition IIL5. (Scaled persistently exciting input returns a
Sfull-row rank Hankel matrix of state data): Consider system (2)
and further assume that the pair (A, B) is controllable. Then,
Jfor any input sequence uyq 11y that is persistently exciting
of order n + k, there exists € such that for all € € (0,¢), the
input sequence euy 1y with initial state x(0) = 0 ensures
Hr(X[1,17) is full-row rank.

We omit the proof for space reasons, but note that the result
follows by using for the higher-order case of k£ > 1 the same
arguments employed in [16] for the case of k = 1 (note that
the initial state x(0) = 0 remains the same after scaling by ¢).
The next result generalizes [13, Thm. 2] to bilinear systems.

Proposition IIL.6. (Property on the left kernel of Gr(t) when
it is not full-row rank): Suppose Gr(t) is not full-row rank for
some t > T. If
x(t—T+1)
U —741,t—1]
X @ Ujt—141,t-1]

Ha(xp0,e-17)
Hr—1(uj,¢—2))
Hr_1(x®@up,—2)

€ Im » (D

then there must exist £ € R", n,....n0 € R™, and
X1s-- -, XT € R™™ such that the following holds

€T n - xd o x7]Gr(t) =0,

with at least one in {nr,xr} not equal to 0.

®)

Proof. We reason by contradiction. Suppose all vectors of the
form [¢7 n| -+ n) x{ -+ x7] in the left kernel of Gr(t)
satisfy that both n7 and xr are equal to 0. Then,

T, T T T T _ 1 (Xjo.1) ]
(€ m nr_y xd o xroa] Hr—1(ujp,—2]) =0.
| Hr1(x®ujo-g)) |
Combining this with (7), we deduce that
T,T T T T (X0 141))
[5 Mo Nr—1 X1 'XT—I] HTfl(u[o,t—l]) =0.
| Hr1(x®@upg-1)) |




Combining this with the fact that

Hi (X e—741)) A B 0 NO
Hr—1(up,—1) =10 0 I 0 0 |Gr(),
HT 1(X®U[1’t_1]) 0 0O 0 o 1

we obtain
[ETA By - X7-1) Gr(t) = 0.

Consequently, given our hypothesis of contradiction, 77—
and xr_; must both be equal to 0. Following a sim-
ilar procedure iteratively, we conclude that np_; =

o= m = 0 and xr_1 = = X1 =
0. This implies that ImGr(t) = Im'Hl( X[0,t—1]) X
RO +mm)T - Left multiplying by [A B ONO] on both
sides, we obtain AImHi(xg—7)) + ImB + ImN =
Im Hy (X[1 4—741]). Since x(t — T + 1) € ImH1(x[0,1—17)-
then A Im Hq(x X[0,t— T])+ImB+ImN ImHq(x X[0,t— T])
This implies Im?—ll(x[07t_T]) is an A-invariant subspace
containing Im [B NJ. Since the reachable subspace of the
pair (A,[B NJ]) is R™ by Assumption II.1, and the fact
that it is also the smallest A-invariant subspace containing
Im [B NJ, we deduce that R™ C ImH;(x[o,s—77). Therefore
ROmFmm)THn C Tmxpg gy x ROVMWT = Im G (¢), which
contradicts the fact that Gr(t) is not full-row rank. O

cmp_y €N X

Based on Propositions II1.5 and II1.6, now we introduce the
online control experiment procedure in Algorithm 1 to ensure
the data is T-persistently exciting. The underlying idea of the
strategy is to increase the row rank of Gr(¢) at each step.

Algorithm 1 Online control experiment design

1: Input: x(0) = 0, ||u(i)|| < € for i = 0

—1 s.t.

Gr(T) # 0, € sufficient close to 0, ¢ := k = 1
2: repeat
3: while 7, 1 (up,¢—1)) is full-row rank do
4 k+—k+1 > Increase order
5: end while
6: if (7) holds then
7: select§ € R, n = [nf...nﬂ—r € R™T and y =

[XT - xz] € R™T st (8) holds, with [} xF] # 0
if 1] +xF(x(t) ®I) # 0 then
: choose [lu(t)]] < € st ETx(t —T + 1) +
nTU[thH,ﬂ + XTX QU741 # 0 holds
10: else

o ®

11: choose [[u(t)|| < e s.t. rowrk (Hyqx(ujoy))
increases

12: end if

13: else

14: choose ||u(t)|| < e arbitrarily

15: end if

16: t—t+1

17: until Gr(t) is full-row rank
18: L+t

19: Output: Full-row rank G (L)

> Update iteration

Theorem IIL.7. (Online control experiment design for T-
persistently exciting data): Let (A,B) be controllable and

design the control experiment for system (2) according to
Algorithm 1. Then the output G (L) is full-row rank.

Proof. Given t > T, assume Gp(t) is not full-row rank. If (7)
does not hold, it is easy to see that any choice of u(¢) leads to
rowrk (Gr(t+1)) > rowrk (Gr(t)). Hence, we concentrate on
the case when (7) holds. In this case, from Proposition II1.6, we
know there exist £ € R", n1,...,np € R™, and x1,...,X7 €
R™", with at least one in {nr, x7} not equal to 0 making (8)
hold. We aim to design u(t) to satisfy & x(t — T + 1) +
N up_ri1g + X' X@up_7ry1, # 0 so that [x(t — T +
1);up—741,4; X @ Up—_741,4] does not belong to Im Gr(t),
which ensures rowrk (Gr(t+1)) > rowrk (Gr(t)). Such u(?)
can be found as long as 1. + X (x(t) ® I) # 0. If this is not
the case, any selection of u(¢) will not affect whether the row
rank of Gr(t) will increase or not at this time step. We prove
by contradiction that this situation will not occur indefinitely
under Algorithm 1. Suppose nT +XT( (¢)®1I) = 0 holds for
all £ > t, it then follows that 1] +x 7 (H1 (X}, )a®I) = 0 for
any o € RZ t+1 with 1T = 1. According to Algorlthm 1, the
order k is increased, followed by an input selection that makes
Hnyr(up,g) full-row rank. Let ¢ sufficiently large so that
k > t. In this case, H,4¢(ujo) is full-row rank and, using
Proposition IIL5, H;(x[; ¢) is full-row rank too. The latter
implies that H; (X[ ¢) is full-row rank. Since at least one in
{nr,x7} is not equal to 0, there must exist o € R~**! with
17« = 1 such that nj. +x 1 (H1(X[t,q)a®I) # 0 holds, which
is a contradiction. This shows that Algorithm 1 increases the
row rank of Gp(t) by one after finitely many steps, and hence,
it eventually terminates with a full-row rank Gr(L). O

Note that the controllability assumption on the pair (A, B)
is only necessary to ensure Algorithm 1 is successful, cf.
Theorem II1.7. Our design methodology below is still valid
as long as a full row-rank matrix Gr-(L) can be obtained.

IV. DATA-DRIVEN CONTROL DESIGN

Here, we describe an algorithmic procedure to find a lo-
cal solution of the optimal control problem (P1) using 7-
persistently exciting data. Our first step is to provide an
equivalent data-based representation of the optimization. We
then iteratively apply a convex-concave procedure to solve it
efficiently. The next result provides a data-based formulation
of (P1), provided the available data is T-persistently exciting.

Theorem IV.1. (Data-based reformulation of optimal control
problem): Given a T-persistently exciting data set X(o 1y and
ugo,r,—1}), (P1) is equivalent to the data-based optimization:

T-1
min ' (H)Qx(t) +u' (H)Ra(t)
t=0
s.t. Xjo.1] } = [ M1 (Xpo.11) }a
Ujo,7-1] Hr(up,2-1))

x(0) = x0,X%(T") = x¢, (6) holds. (P2)

The proof of this result readily follows from Lemma III.4.
Notice that the optimization problem (P2) is nonconvex be-
cause of the presence of bilinear terms o;v5, 4,5 € {1,..., L—
T+1}, in the constraints. Here, we describe a convex—concave



procedure from [28] that can be iteratively employed to solve
it. We first describe the bilinear terms with new variables
735 = ooy, which we employ in the constraints in (P2) to
make them all become affine. We represent this set of con-
straints by A1 («, 7) = 0. Additionally, we write each equality
r;,; = ayo; with the following equivalent representation

(ai +a;)? = (f +oF) —2r;; <0,

(0412 + a?) — (o + cvj)2 +2r;; <0.
We gather all these new nonconvex constraints in the expres-
sion C1 () — Ca(a) + Aa(r) < 0, where {C;}?_,, and A3 are

vector-valued convex and affine functions, resp. Using Cj to
denote the convex cost function, (P2) reads

min  Co(w)

Ci(a) — Co(a) + Aa(r) <0,
Ai(a,r) =0.

s.t. (P3)

The inequality in (P3) can be convexified linearizing the
concave function —Cs. We perform such convexification it-
eratively to yield Algorithm 2, which has non-polynomial
time complexity [28]. At each iteration, the algorithm solves
a convex quadratically constrained quadratic program, with
complexity [29] O(vV'M (M + N)N?) (M constraints and N
variables). Here, M = (L—T)2+ L+ T + 3 and N =

w. The next result follows from [28, Sec. 1.3].

Lemma IV.2. (Convergence to critical point of (P2)): Given
a feasible initial point o, all iterates of Algorithm 2 are
feasible, {Co(a*)}22., decreases monotonically, and {a*}32
converges to a critical point o of (P2).

Algorithm 2 Convex-concave procedure to solve ((P3))

1: Given Initial feasible point o, k := 0.

2: repeat

3: Let Co(ar,a¥) £ Co(a¥) + VoCo(a®)T(a —a¥) >
Convexifying the constraint

4: Set a1 to be the solution of the convex problem

min  Co(w)

st. Ci(a) = Cola,a®) + Ax(r) <0
Ai(a,r) =0

5: k—k+1
6: until convergence

> Update iteration

V. SIMULATION EXAMPLES

Here we illustrate the effectiveness of the proposed data-
based approach in solving (P1) and compare it against the
model-based approaches in [24], [26] for bilinear systems.

Example V.1. (Population control): We consider a population
control problem introduced in [24, Example 1] evolving in
continuous time. For the horizon T = 20, we use a first-order
Euler discretization with stepsize 0.1. The resulting discrete-
time bilinear system is x(t + 1) = x(¢) + 0.1x(t)u(t). We
take Q = R = 1 and consider xg = 1, x¢ = % We perform

a control experiment with . = 60 using randomly generated
inputs, and verify that the resulting G2¢(60) is full-row rank.
Algorithm 2 obtains a local optimum a* of (P2). Fig. 1(a)
shows the trajectories, both displaying similar performance,
obtained from the data-based solution in Theorem IV.1 with
that of the model-based iterative method [24]. >

Example V.2. (Minimum-energy control problem): Con-
sider the bilinear system from [26, Example 4.5], x(t +

1) = Ax(t) + Bu(t) + Nx(t)u(t), where N =
diag(0.1,0.2,0.3,0.4,0.5),
0 0 0.024 0 0 0.8
1 0 —-026 O 0 0.6
A=|(01 09 O 0 , B=1 04
0 0 02 0 -0.06 0.2
0 0 015 1 0.5 0.5

We consider the minimum-energy control problem (Q =
0, R = I) with T = 10. Let X9 = O and x¢f =
[0.0004 — 0.00038 0.00318 0.00062 0.00219}T. We perform
a control experiment with L = 74 using Algorithm 1. The
execution of Algorithm 1 here increases the row rank of Gp(t)
monotonically for every ¢ > T until it becomes full-row rank
(i.e., the algorithm never falls into Step 11). We solve (P2)
using Algorithm 2. For comparison, we use the Gramian-based
lower bound of the optimal cost value obtained in [26],

T-1
> wt () = x T (T)WIx(T),
t=0

where W is the reachability Gramian of the bilinear system.
Fig. 1(b) compares this lower bound with the values obtained
with the trajectories from the data-based solution in Theo-
rem IV.1, showing a close agreement between the two. >

Example V.3. (Minimum-energy control problem): We con-
sider a minimum-energy control example from [24, Example
2], for which we use a first-order Euler discretization with
stepsize 0.02. The discrete-time bilinear system is x(t + 1) =

Ax(t) + Bu(t) + [ S5, %, ()N; |u(t), with

1 —001 0 0 0
A=|001 1 0|,B=0N = 0o 0],
0 0 1 —0.02 0
0 0 002 0
No=|0 0 [,Ny=| 0 —0.02
0 0.02 0 0

We consider 7" = 50 and perform a control experiment with
L = 452 randomly generated inputs, and verify Gs(452) is
full-row rank. We let xo = [001]', x¢ = [100] . We
solve (P2) using Algorithm 2 to obtain a* and compare,
cf. Fig. 1(c), the trajectories obtained from the data-based
solution in Theorem IV.1 with that of the model-based iterative
method [24], showing a better local optimum by the former. >

VI. CONCLUSIONS

We have presented a data-driven method to learn optimal
controls of bilinear systems directly from input/state data
without a priori knowledge of the matrices. We have pro-
vided an online control experiment design method to obtain
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Fig. 1: Performance of the proposed data-driven approach (solid blue lines) versus model-based approaches (dashed red lines). The total cost values are (a)
0.1 x Z%io x2(t) + u?(t) = 1.3346 for the data-based approach and f02 x2(1) + u?(7)dr = 1.3506 for the model-based iterative method in [24]; (b)
Z?:o u(t) " u(t) = 2.25 x 1076 for the data-based approach and x(10) T W~1x(10) = 1.64 x 10~ for the Gramian-based lower bound in [26]; and (c)
0.02 x Z?io u (t)u(t) = 2.7999 for the data-based approach and fol u' (r)u(r)dr = 4.7976 for the model-based iterative method in [24].

sufficiently informative data and introduced an equivalent
data-based reformulation of the original nonconvex optimal
control problem and employed an iterative convex-concave
algorithmic procedure to solve it. Simulations show data-based
optimal control trajectories have comparable performance to
those obtained by model-based ones. Future work will explore
extensions to noisy data and robustness analysis, weaker
notions under which data is sufficient to reconstruct optimal
controls, online implementations of the convex-concave pro-
cedure as data becomes increasingly available, and distributed
implementations for large-scale bilinear networks.
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