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Abstract— This paper develops a method to learn op-
timal controls from data for bilinear systems without a
priori knowledge of the dynamics. Given an unknown bi-
linear system, we characterize when the available data is
sufficiently informative to solve the optimal control prob-
lem. This characterization leads us to propose an online
control experiment design procedure that guarantees that
any input/state trajectory can be represented as a linear
combination of collected input/state data matrices. Lever-
aging this representation, we transform the original optimal
control problem into an equivalent data-based optimization
problem with bilinear constraints. We solve the latter by
iteratively employing a convex-concave procedure to find
a locally optimal control sequence. Simulations show that
the performance of the proposed data-based approach is
comparable with model-based methods.

Index Terms— Data-driven control, biliner systems

I. INTRODUCTION

THE widespread availability of data, together with in-

creasing computational capabilities to store, process, and

manipulate it, has boosted the research activity in learning,

modeling, and control of dynamical phenomena across sci-

ence and engineering. Data-driven control has emerged as an

appealing way of leveraging this data surge by employing solid

theoretical principles to design controllers that do not require

explicit a priori knowledge of the plant to be controlled. This

paper contributes to this body of work by studying the data-

driven synthesis of optimal control laws for bilinear systems.

Literature Review. Data-driven control approaches include

indirect and direct methods [1]. Indirect methods identify

system models from data prior to proceeding to the synthesis

of model-based controllers, while direct approaches bypass the

intermediate modeling step and construct controllers directly

from data. A diverse range of factors, including the complexity

of the plant, the cost and practicality of performing system

identification, and the amount and quality of the available

data, play a key role in the suitability and performance

of each of these approaches, see e.g., [2], [3]. The direct

data-driven approach has been particularly fruitful for linear

systems, where tools from behavioral theory [4] have allowed

to express the system trajectories in terms of sufficiently-rich

data. This has resulted in the synthesis of feedback stabilizing

controllers [5], [6], optimal control laws [7]–[9], predictive

controllers [10], [11], network controllers [11], [12], control

experiment design [13], optimization-based controllers [14],

and extensions to various types of nonlinear systems [15]–

[17], including flat [18], second-order [19], and linear time-

varying systems [20]. Here we focus on direct data-driven

control of bilinear systems as a building block for future
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work on more complex nonlinear systems. These systems

are often viewed as the bridge between linear and nonlinear

systems due to their special properties [21]. Moreover, [22]

shows that control-affine nonlinear systems can be exactly

bilinearized. The recent work [15] proposes a local stabilizing

data-driven controller design for bilinear systems. Here, we

focus on the synthesis of optimal controllers. Model-based

approaches to optimal control of bilinear systems include [23]–

[25], which treat them as time-varying linear systems and

solve the optimization problem by applying iteratively the

Pontryagin’s maximum principle, and [26], which gives a

lower bound on the minimum control energy required to steer

the bilinear system using the reachability Gramian.

Statement of Contributions. We consider discrete-time bi-

linear control systems and study the point-to-point optimal

control problem over a finite time horizon. We assume the

system matrices are unknown and seek to learn the optimal

control from input/state data. We introduce the notion of T -

persistently exciting data to characterize when it is sufficiently

informative for reconstructing the optimal control over the

time horizon T . Under this hypothesis, we show that any

input/state trajectory can be represented as a linear combina-

tion of the collected input/state data. Owing to the nonlinear

nature of bilinear systems, the problem of ensuring that data

is T -persistently exciting requires us to introduce an online

control experiment design. We show our design is guaranteed

to yield T -persistently exciting data in a finite number of

steps. Building on this, we pose the optimal control synthesis

problem as a data-based optimization with bilinear constraints.

We show that a local solution to this nonconvex problem

can be found by iteratively solving the convexified problems

that result from applying a convex-concave approximation

procedure. Simulations show similar performance between the

proposed data-based approach and model-based methods.

II. PROBLEM FORMULATION

Consider1 the discrete-time bilinear control system

x(t+ 1) = Ax(t) +Bu(t) +
[ n∑

j=1

xj(t)Nj

]

u(t), (1)

1We denote by R, Z≥0, and Z>0 the sets of real, non-negative integer,
and positive integer numbers, resp. Let I , and 0 and 1 denote the identity
matrix, and zero and all-ones vector/matrix, resp. Given f : Z≥0 → R

d

and i, j ∈ Z≥0, i ≤ j, f[i,j] is the restriction of f to [i, j] in vector form,

i.e., f[i,j] = [f(i)> f(i + 1)> · · · f(j)>]>, and f{i,j} the sequence

{f(i), . . . , f(j)}. For X = [x>
1 x

>
2 · · · x

>
j ]> ∈ R

ij with x1, · · · ,xj ∈

R
i, Hk(X) denotes the Hankel matrix of depth k ∈ Z>0, with k ≤ j,

Hk(X) :=











x1 x2 · · · xj−k+1
x2 x3 · · · xj−k+2

.

.

.
.
.
.

. . .
.
.
.

xk xk+1 · · · xj











∈ R
ik×(j−k+1).



where x(t) ∈ R
n and u(t) ∈ R

m are the system state

and input, respectively, and A ∈ R
n×n, B ∈ R

n×m and

Nj ∈ R
n×m, j = 1, . . . , n are system matrices. Denoting

N = [N1 N2 · · · Nn] ∈ R
n×mn, the dynamics (1) is

x(t+ 1) = Ax(t) +Bu(t) +N(x(t)⊗ u(t)). (2)

We make the following assumption.

Assumption II.1. The pair (A, [B N]) is controllable.

Note that Assumption II.1 is weaker than asking for the

bilinear system (2) to be controllable. Given initial x0 and

target xf states, we consider the following (point-to-point)

optimal control problem over the time horizon T ,

min
u[0,T−1]

T−1∑

t=0

x>(t)Qx(t) + u>(t)Ru(t)

s.t. x(t+ 1) = Ax(t) +Bu(t) +
[ n∑

j=1

xj(t)Nj

]

u(t),

x(0) = x0, x(T ) = xf . (P1)

Here, Q ∈ R
n×n, R ∈ R

m×m are positive semi-definite. The

minimum-energy control problem corresponds to Q = 0 and

R = I . This optimization is nonconvex and its closed-form

solution is not known in general. The optimality conditions of

(P1) lead to a nonlinear two-point boundary-value problem,

for which there is no analytical solution available [26].

We address the following problem: assume the system

matrices A, B and Nj , j = 1, . . . , n are unknown and, instead,

we have access to input/state data of a control experiment

of (2), that is, a control input sequence u{0,L−1} along with

the corresponding state sequence x{0,L} of (2). Our objective

is to develop an algorithmic procedure to learn from the data

the optimal control sequence u?
{0,T−1} that solves (P1).

III. T -PERSISTENTLY EXCITING DATA FOR OPTIMAL

CONTROL OF BILINEAR SYSTEMS

In this section, we characterize when the available data is

sufficient to solve the optimal control problem and discuss a

procedure to design the control experiment. To motivate our

discussion, we start by considering the linear system

x(t+ 1) = Ax(t) +Bu(t) (3)

(corresponding to N = 0 in (2)). Let x{0,L} be a state

sequence generated by (3) with input sequence u{0,L−1}.

According to Willems’ fundamental lemma [4], [27], and

assuming the pair (A,B) is controllable, if u{0,L−1} is

persistently exciting2 of order n + T , then G̃T (L) :=
[x[0,L−T ];HT (u[0,L−1])] ∈ R

(n+mT )×(L−T+1) is full-

row rank. This ensures that for any input/state trajectory

(ū[0,T−1], x̄[0,T−1]) of length T of the linear system (3), there

exist some α̃ ∈ R
L−T+1 such that

[
x̄[0,T−1]

ū[0,T−1]

]

=

[
HT (x[0,L−1])
HT (u[0,L−1])

]

α̃.

Given matrices Y and Z, [Y Z] and [Y;Z] denote their row- and column-
concatenations, resp. We use Z

† and ImZ to represent the pseudo-inverse
and image space of Z, resp. Finally, ⊗ denotes the Kronecker product, while
‖·‖ represents the Euclidean norm.

2f{0,L−1} is persist. exciting of order k if Hk(f[0,L−1]) is full-row rank.

Now consider the original bilinear system (2). If we regard

x(t) ⊗ u(t) as an independent input, then the dynamics

corresponds to a linear system with input matrix [B N] and

control input v(t) = [u(t);x(t)⊗ u(t)]. Willems’ fundamen-

tal lemma applied to this linear system implies that, under

Assumption II.1, if v{0,L−1} is persistently exciting of order

n + T , then [x[0,L−T ];HT (v[0,L−1])] is full-row rank, which

then ensures that any input/state trajectory (v̄[0,T−1], x̄[0,T−1])

of length T of system (2) can be represented by
[

x̄[0,T−1]

v̄[0,T−1]

]

=

[
HT (x[0,L−1])
HT (v[0,L−1])

]

α, (4)

for some α ∈ R
L−T+1. However, as we know, the input v is

not independent, and ensuring it is persistently exciting is not

guaranteed by simply asking for u to be so. These observations

motivate our ensuing definitions and technical treatment.

Remark III.1. (Fundamental lemma for nonlinear systems):

Our exposition above uses the fundamental lemma in the

context of bilinear systems by interpreting the bilinear term

as an input. Recent literature on data-driven control has

pursued similar ideas for different classes of nonlinear systems

by relying on linear expressions in lifted coordinates, e.g.,

Hammerstein and Wiener [17], linear parameter-varying [20],

second-order Volterra [19] and flat [18] systems. B

A. Parametrization of state trajectories

We next introduce the notion of T -persistently exciting data.

Definition III.2. (T -persistently exciting data for optimal

control of bilinear systems): Let x{0,L} be a state sequence

generated by (2) with input sequence u{0,L−1}. The data

x{0,L}, u{0,L−1} is T -persistently exciting if

GT (L) :=





H1(x[0,L−T ])
HT (u[0,L−1])
HT (x⊗u[0,L−1])



 ∈ R
(n+mT+mnT )×(L−T+1).

is full-row rank.

This definition requires as a necessary condition that L ≥
(mn+m+1)T+n−1. We point out that GT (L) being full-row

rank is equivalent to
[
H1(x[0,L−T ]);HT (v[0,L−1])

]
being full-

row rank, as both matrices can be obtained from each other

by row permutation. Using (2), one can obtain the relation (5),

where OT ∈ R
nT×n, PT ∈ R

nT×mT , QT ∈ R
nT×mnT . If

GT (L) is full-row rank, it immediately follows that

[OT PT QT ] = HT (x[1,L])GT (L)†.
Remark III.3. (T -persistently exciting data for optimal con-

trol versus for identification and stabilization): When T = 1,

we have [O1 P1 Q1] = [A B N]. Therefore, 1-persistently

exciting data corresponds to the standard notion of persistently

exciting data, describing data needed for system identifica-

tion [5], [6]. Moreover, if H1(x[0,L−1]) is full-row rank, then

under knowledge of an upper bound on ‖N‖, one can construct

locally stabilizing controllers directly from data, cf. [15].

Notice GT (L) is full-row rank ⇒ G1(L) is full-row rank ⇒
H1(x[0,L−1]) is full-row rank. We deduce that T -persistently

exciting data comprises data needed for system identification

and local stabilization. Note that, although OT ,PT and QT



HT (x[1,L]) =








A

A2

...

AT

︸ ︷︷ ︸

OT

∣
∣
∣
∣
∣
∣
∣
∣
∣

B 0 · · · 0

AB B · · · 0
...

...
. . .

...

AT−1B AT−2B · · · B
︸ ︷︷ ︸

PT

∣
∣
∣
∣
∣
∣
∣
∣
∣

N 0 · · · 0

AN N · · · 0
...

...
. . .

...

AT−1N AT−2N · · · N
︸ ︷︷ ︸

QT







GT (L) (5)

can be constructed only using A,B and N when G1(L) is

full-row rank, this is not enough to express any input/state

trajectory of length T as a linear combination of the collected

input/state data, and thus G1(L) being full-row rank is not

sufficient to recover optimal controls. Another observation is

that, in the linear case (N = 0), according to [9], optimal

controls over the time horizon T can be learned if G̃T (L) is

full-row rank. One can identify and globally stabilize linear

systems directly using data if G̃1(L) is full-row rank, cf. [5].

Since G̃T (L) is full-row rank ⇒ G̃1(L) is full-row rank, this

reinforces the parallelism between the bilinear and linear cases

regarding data conditions for different control problems. B

We have established that any input/state trajectory of (2)

admits a data-based representation of the form (4). The next

result establishes when the converse is also true, i.e., when a

trajectory of the form (4) corresponds to a trajectory of (2).

Lemma III.4. (Data-based representation of input/state tra-

jectory in terms of T -persistently exciting data): Let x{0,L}

and u{0,L−1} be a T -persistently exciting data set. Then

(i) Any input/state trajectory (ū[0,T−1], x̄[0,T ]) of system (2)

can be represented as
[

x̄[0,T ]

ū[0,T−1]

]

=

[
HT+1(x[0,L])
HT (u[0,L−1])

]

α

for some α ∈ R
L−T+1;

(ii) Conversely, let α ∈ R
L−T+1 such that

x̄⊗ ū[0,T−1] = HT (x⊗ u[0,L−1])α, (6)

where x̄[0,T−1] = HT (x[0,L−1])α and ū[0,T−1] =
HT (u[0,L−1])α. Then,

[
HT+1(x[0,L]);HT (u[0,L−1])

]
α

is an input/state trajectory of (2) over the time horizon T .

Proof. For (i), note that any input/state trajectory

(x̄[0,T ], ū[0,T−1]) of (2) is uniquely determined by

x̄(0) ∈ ImH1(x[0,L−T ]) and ū[0,T−1] ∈ ImHT (u[0,L−1]).
Recalling that GT (L) is full-row rank, (i) follows. For (ii), let α

satisfy (6) and consider the initial state x̄(0) = H1(x[0,L−T ])α
and input sequence ū[0,T−1] = HT (u[0,L−1])α. Then,

x̄[1,T ] = [OT PT QT ]





x̄(0)
HT (x̄⊗ ū[0,T−1])

ū[0,T−1]





= [OT PT QT ]GT (L)α = HT (x[1,L])α,

where we have employed (5). The conclusion follows by

noting HT+1(x[0,L]) = [H1(x[0,L−T ]);HT (x[1,L])].

B. Online experiment for T-persistence of excitation

We discuss next how to ensure that the available data

is T -persistently exciting. Based on our discussion above,

v{0,L−1} being persistently exciting of order n+T is enough

to ensure the T -persistence of excitation of the data for bilinear

systems. In contrast to the linear case, where u{0,L−1} can be

designed to be persistently exciting of any order by selecting

control inputs offline, the persistence of excitation of v{0,L−1}

depends on both the control input u(t) and the system state

x(t). Due to the unknown nonlinear dynamics, there is no

available closed-form expression of x(t) in terms of u(t).
Hence, selecting control inputs offline may not guarantee

v{0,L−1} to be persistently exciting of order n + T , which

motivates an online approach to design u. To tackle this, we

draw inspiration from [13], [16] to propose an experiment

design approach for bilinear systems that yields T -persistently

exciting data. We start with some useful facts.

Proposition III.5. (Scaled persistently exciting input returns a

full-row rank Hankel matrix of state data): Consider system (2)

and further assume that the pair (A,B) is controllable. Then,

for any input sequence u{0,L−1} that is persistently exciting

of order n+ k, there exists ε̄ such that for all ε ∈ (0, ε̄), the

input sequence εu{0,L−1} with initial state x(0) = 0 ensures

Hk(x[1,L]) is full-row rank.

We omit the proof for space reasons, but note that the result

follows by using for the higher-order case of k ≥ 1 the same

arguments employed in [16] for the case of k = 1 (note that

the initial state x(0) = 0 remains the same after scaling by ε).

The next result generalizes [13, Thm. 2] to bilinear systems.

Proposition III.6. (Property on the left kernel of GT (t) when

it is not full-row rank): Suppose GT (t) is not full-row rank for

some t ≥ T . If




x(t− T + 1)
u[t−T+1,t−1]

x⊗ u[t−T+1,t−1]



 ∈ Im





H1(x[0,t−T ])
HT−1(u[0,t−2])
HT−1(x⊗ u[0,t−2])



 , (7)

then there must exist ξ ∈ R
n, η1, . . . , ηT ∈ R

m, and

χ1, . . . , χT ∈ R
mn such that the following holds

[
ξ> η>1 · · · η>T χ>

1 · · · χ>
T

]
GT (t) = 0, (8)

with at least one in {ηT , χT } not equal to 0.

Proof. We reason by contradiction. Suppose all vectors of the

form
[
ξ> η>1 · · · η>T χ>

1 · · · χ>
T

]
in the left kernel of GT (t)

satisfy that both ηT and χT are equal to 0. Then,

[
ξ> η>1 · · · η>T−1 χ>

1 · · ·χ>
T−1

]





H1(x[0,t−T ])
HT−1(u[0,t−2])
HT−1(x⊗u[0,t−2])



 = 0.

Combining this with (7), we deduce that

[
ξ> η>1 · · · η>T−1 χ>

1 · · ·χ>
T−1

]





H1(x[0,t−T+1])
HT−1(u[0,t−1])
HT−1(x⊗ u[0,t−1])



 = 0.



Combining this with the fact that




H1(x[1,t−T+1])
HT−1(u[1,t−1])
HT−1(x⊗ u[1,t−1])



 =





A B 0 N 0

0 0 I 0 0

0 0 0 0 I



GT (t),

we obtain

[
ξ>A ξ>B η>1 · · · η>T−1 ξ>N χ>

1 · · · χ>
T−1

]
GT (t) = 0.

Consequently, given our hypothesis of contradiction, ηT−1

and χT−1 must both be equal to 0. Following a sim-

ilar procedure iteratively, we conclude that ηT−1 =
· · · = η1 = 0 and χT−1 = · · · = χ1 =
0. This implies that ImGT (t) = ImH1(x[0,t−T ]) ×
R

(m+mn)T . Left multiplying by [A B 0 N 0] on both

sides, we obtain A ImH1(x[0,t−T ]) + ImB + ImN =
ImH1(x[1,t−T+1]). Since x(t − T + 1) ∈ ImH1(x[0,t−T ]),
then A ImH1(x[0,t−T ]) + ImB + ImN = ImH1(x[0,t−T ]).
This implies ImH1(x[0,t−T ]) is an A-invariant subspace

containing Im [B N]. Since the reachable subspace of the

pair (A, [B N]) is R
n by Assumption II.1, and the fact

that it is also the smallest A-invariant subspace containing

Im [B N], we deduce that Rn ⊆ ImH1(x[0,t−T ]). Therefore

R
(m+mn)T+n ⊆ Imx[0,t−T ]×R

(m+mn)T = ImGT (t), which

contradicts the fact that GT (t) is not full-row rank.

Based on Propositions III.5 and III.6, now we introduce the

online control experiment procedure in Algorithm 1 to ensure

the data is T -persistently exciting. The underlying idea of the

strategy is to increase the row rank of GT (t) at each step.

Algorithm 1 Online control experiment design

1: Input: x(0) = 0, ‖u(i)‖ < ε for i = 0, . . . , T − 1 s.t.

GT (T ) 6= 0, ε sufficient close to 0, t := T , k := 1
2: repeat

3: while Hn+k(u[0,t−1]) is full-row rank do

4: k ← k + 1 . Increase order

5: end while

6: if (7) holds then

7: select ξ ∈ R
n, η =

[
η>1 . . . η>T

]> ∈ R
mT , and χ =

[
χ>
1 . . . χ>

T

]> ∈ R
mnT s.t. (8) holds, with

[
η>T χ>

T

]
6= 0

8: if η>T + χ>
T (x(t)⊗ I) 6= 0 then

9: choose ‖u(t)‖ < ε s.t. ξ>x(t − T + 1) +
η>u[t−T+1,t] + χ>x⊗ u[t−T+1,t] 6= 0 holds

10: else

11: choose ‖u(t)‖ < ε s.t. rowrk (Hn+k(u[0,t]))
increases

12: end if

13: else

14: choose ‖u(t)‖ < ε arbitrarily

15: end if

16: t← t+ 1 . Update iteration

17: until GT (t) is full-row rank

18: L← t

19: Output: Full-row rank GT (L)

Theorem III.7. (Online control experiment design for T -

persistently exciting data): Let (A,B) be controllable and

design the control experiment for system (2) according to

Algorithm 1. Then the output GT (L) is full-row rank.

Proof. Given t ≥ T , assume GT (t) is not full-row rank. If (7)

does not hold, it is easy to see that any choice of u(t) leads to

rowrk (GT (t+1)) > rowrk (GT (t)). Hence, we concentrate on

the case when (7) holds. In this case, from Proposition III.6, we

know there exist ξ ∈ R
n, η1, . . . , ηT ∈ R

m, and χ1, . . . , χT ∈
R

mn, with at least one in {ηT , χT } not equal to 0 making (8)

hold. We aim to design u(t) to satisfy ξ>x(t − T + 1) +
η>u[t−T+1,t] + χ>x⊗ u[t−T+1,t] 6= 0 so that [x(t − T +
1);u[t−T+1,t];x⊗ u[t−T+1,t]] does not belong to ImGT (t),
which ensures rowrk (GT (t+1)) > rowrk (GT (t)). Such u(t)
can be found as long as η>T +χ>

T (x(t)⊗ I) 6= 0. If this is not

the case, any selection of u(t) will not affect whether the row

rank of GT (t) will increase or not at this time step. We prove

by contradiction that this situation will not occur indefinitely

under Algorithm 1. Suppose η>T +χ>
T (x(`)⊗I) = 0 holds for

all ` ≥ t, it then follows that η>T +χ>
T (H1(x[t,`])α⊗I) = 0 for

any α ∈ R
`−t+1 with 1>α = 1. According to Algorithm 1, the

order k is increased, followed by an input selection that makes

Hn+k(u[0,`]) full-row rank. Let ` sufficiently large so that

k > t. In this case, Hn+t(u[0,`]) is full-row rank and, using

Proposition III.5, Ht(x[1,`]) is full-row rank too. The latter

implies that H1(x[t,`]) is full-row rank. Since at least one in

{ηT , χT } is not equal to 0, there must exist α ∈ R
`−t+1 with

1>α = 1 such that η>T +χ>
T (H1(x[t,`])α⊗I) 6= 0 holds, which

is a contradiction. This shows that Algorithm 1 increases the

row rank of GT (t) by one after finitely many steps, and hence,

it eventually terminates with a full-row rank GT (L).

Note that the controllability assumption on the pair (A,B)
is only necessary to ensure Algorithm 1 is successful, cf.

Theorem III.7. Our design methodology below is still valid

as long as a full row-rank matrix GT (L) can be obtained.

IV. DATA-DRIVEN CONTROL DESIGN

Here, we describe an algorithmic procedure to find a lo-

cal solution of the optimal control problem (P1) using T -

persistently exciting data. Our first step is to provide an

equivalent data-based representation of the optimization. We

then iteratively apply a convex-concave procedure to solve it

efficiently. The next result provides a data-based formulation

of (P1), provided the available data is T -persistently exciting.

Theorem IV.1. (Data-based reformulation of optimal control

problem): Given a T -persistently exciting data set x{0,L} and

u{0,L−1}, (P1) is equivalent to the data-based optimization:

min
α

T−1∑

t=0

x̄>(t)Qx̄(t) + ū>(t)Rū(t)

s.t.

[
x̄[0,T ]

ū[0,T−1]

]

=

[
HT+1(x[0,L])
HT (u[0,L−1])

]

α,

x̄(0) = x0, x̄(T ) = xf , (6) holds. (P2)

The proof of this result readily follows from Lemma III.4.

Notice that the optimization problem (P2) is nonconvex be-

cause of the presence of bilinear terms αiαj , i, j ∈ {1, . . . , L−
T+1}, in the constraints. Here, we describe a convex–concave



procedure from [28] that can be iteratively employed to solve

it. We first describe the bilinear terms with new variables

ri,j = αiαj , which we employ in the constraints in (P2) to

make them all become affine. We represent this set of con-

straints by A1(α, r) = 0. Additionally, we write each equality

ri,j = αiαj with the following equivalent representation

(αi + αj)
2 − (α2

i + α2
j )− 2ri,j ≤ 0,

(α2
i + α2

j )− (αi + αj)
2 + 2ri,j ≤ 0.

We gather all these new nonconvex constraints in the expres-

sion C1(α)−C2(α) +A2(r) ≤ 0, where {Ci}2i=1, and A2 are

vector-valued convex and affine functions, resp. Using C0 to

denote the convex cost function, (P2) reads

min
α,r

C0(α)

s.t. C1(α)− C2(α) +A2(r) ≤ 0, (P3)

A1(α, r) = 0.

The inequality in (P3) can be convexified linearizing the

concave function −C2. We perform such convexification it-

eratively to yield Algorithm 2, which has non-polynomial

time complexity [28]. At each iteration, the algorithm solves

a convex quadratically constrained quadratic program, with

complexity [29] O(
√
M(M +N)N2) (M constraints and N

variables). Here, M = (L − T )2 + L + T + 3 and N =
(L−T+1)(L−T+2)

2 . The next result follows from [28, Sec. 1.3].

Lemma IV.2. (Convergence to critical point of (P2)): Given

a feasible initial point α0, all iterates of Algorithm 2 are

feasible, {C0(αk)}∞k=1 decreases monotonically, and {αk}∞k=1

converges to a critical point α? of (P2).

Algorithm 2 Convex-concave procedure to solve ((P3))

1: Given Initial feasible point α0, k := 0.

2: repeat

3: Let C̄2(α, αk) , C2(αk) +∇αC2(αk)>(α− αk) .

Convexifying the constraint

4: Set αk+1 to be the solution of the convex problem

min
α,r

C0(α)

s.t. C1(α)− C̄2(α, αk) +A2(r) ≤ 0

A1(α, r) = 0

5: k ← k + 1 . Update iteration

6: until convergence

V. SIMULATION EXAMPLES

Here we illustrate the effectiveness of the proposed data-

based approach in solving (P1) and compare it against the

model-based approaches in [24], [26] for bilinear systems.

Example V.1. (Population control): We consider a population

control problem introduced in [24, Example 1] evolving in

continuous time. For the horizon T = 20, we use a first-order

Euler discretization with stepsize 0.1. The resulting discrete-

time bilinear system is x(t + 1) = x(t) + 0.1x(t)u(t). We

take Q = R = 1 and consider x0 = 1, xf = 1
3 . We perform

a control experiment with L = 60 using randomly generated

inputs, and verify that the resulting G20(60) is full-row rank.

Algorithm 2 obtains a local optimum α? of (P2). Fig. 1(a)

shows the trajectories, both displaying similar performance,

obtained from the data-based solution in Theorem IV.1 with

that of the model-based iterative method [24]. B

Example V.2. (Minimum-energy control problem): Con-

sider the bilinear system from [26, Example 4.5], x(t +
1) = Ax(t) + Bu(t) + Nx(t)u(t), where N =
diag(0.1, 0.2, 0.3, 0.4, 0.5),

A =









0 0 0.024 0 0
1 0 −0.26 0 0
0 1 0.9 0 0
0 0 0.2 0 −0.06
0 0 0.15 1 0.5









, B =









0.8
0.6
0.4
0.2
0.5









.

We consider the minimum-energy control problem (Q =
0, R = I) with T = 10. Let x0 = 0 and xf =
[0.0004 − 0.00038 0.00318 0.00062 0.00219]

>
. We perform

a control experiment with L = 74 using Algorithm 1. The

execution of Algorithm 1 here increases the row rank of GT (t)
monotonically for every t ≥ T until it becomes full-row rank

(i.e., the algorithm never falls into Step 11). We solve (P2)

using Algorithm 2. For comparison, we use the Gramian-based

lower bound of the optimal cost value obtained in [26],

T−1∑

t=0

u?>(t)u?(t) ≥ x>(T )W−1x(T ),

where W is the reachability Gramian of the bilinear system.

Fig. 1(b) compares this lower bound with the values obtained

with the trajectories from the data-based solution in Theo-

rem IV.1, showing a close agreement between the two. B

Example V.3. (Minimum-energy control problem): We con-

sider a minimum-energy control example from [24, Example

2], for which we use a first-order Euler discretization with

stepsize 0.02. The discrete-time bilinear system is x(t+1) =

Ax(t) +Bu(t) +
[
∑3

j=1 xj(t)Nj

]

u(t), with

A =





1 −0.01 0
0.01 1 0
0 0 1



 ,B = 0,N1 =





0 0
0 0

−0.02 0



 ,

N2 =





0 0
0 0
0 0.02



 ,N3 =





0.02 0
0 −0.02
0 0



 .

We consider T = 50 and perform a control experiment with

L = 452 randomly generated inputs, and verify G50(452) is

full-row rank. We let x0 = [0 0 1]
>

, xf = [1 0 0]
>

. We

solve (P2) using Algorithm 2 to obtain α? and compare,

cf. Fig. 1(c), the trajectories obtained from the data-based

solution in Theorem IV.1 with that of the model-based iterative

method [24], showing a better local optimum by the former. B

VI. CONCLUSIONS

We have presented a data-driven method to learn optimal

controls of bilinear systems directly from input/state data

without a priori knowledge of the matrices. We have pro-

vided an online control experiment design method to obtain
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Fig. 1: Performance of the proposed data-driven approach (solid blue lines) versus model-based approaches (dashed red lines). The total cost values are (a)

0.1 ×
∑19

t=0 x
2(t) + u

2(t) = 1.3346 for the data-based approach and
∫ 2
0 x

2(τ) + u
2(τ)dτ = 1.3506 for the model-based iterative method in [24]; (b)

∑9
t=0 u(t)

>
u(t) = 2.25× 10−6 for the data-based approach and x(10)>W−1

x(10) = 1.64× 10−6 for the Gramian-based lower bound in [26]; and (c)

0.02×
∑49

t=0 u
>(t)u(t) = 2.7999 for the data-based approach and

∫ 1
0 u

>(τ)u(τ)dτ = 4.7976 for the model-based iterative method in [24].

sufficiently informative data and introduced an equivalent

data-based reformulation of the original nonconvex optimal

control problem and employed an iterative convex-concave

algorithmic procedure to solve it. Simulations show data-based

optimal control trajectories have comparable performance to

those obtained by model-based ones. Future work will explore

extensions to noisy data and robustness analysis, weaker

notions under which data is sufficient to reconstruct optimal

controls, online implementations of the convex-concave pro-

cedure as data becomes increasingly available, and distributed

implementations for large-scale bilinear networks.
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