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A region R is a dwell region for a moving objectO if, given a threshold distance rq and duration τq , every point of R remains

within distance rq from O for at least time τq . Points within R are likely to be of interest to O , so identiication of dwell

regions has applications such as monitoring and surveillance. We irst present a logarithmic-time online algorithm to ind

dwell regions in an incoming stream of object positions. Our method maintains the upper and lower bounds for the radius

of the smallest circle enclosing the object positions, thereby greatly reducing the number of trajectory points needed to

evaluate the query. It approximates the radius of the smallest circle enclosing a given subtrajectory within an arbitrarily small

user-deined factor, and is also able to eiciently answer decision queries asking whether or not a dwell region exists. For

the oline version of the dwell region problem, we irst extend our online approach to develop the ρ-Index, which indexes

subtrajectories using query radius ranges. We then reine this approach to obtain the τ -Index, which indexes subtrajectories

using both query radius ranges and dwell durations. Our experiments using both real-world and synthetic datasets show

that the online approach can scale up to hundreds of thousands of moving objects. For archived trajectories, our indexing

approaches speed up queries by many orders of magnitude.

CCS Concepts: · Information systems→ Geographic information systems; Data streaming.

Additional Key Words and Phrases: Spatio-temporal databases, Stay regions, Smallest enclosing circle, Regions of interest,

Trajectories.

1 INTRODUCTION

The widespread use of GPS devices has made position data readily available for millions of moving objects.
Such data could be real-time streams of moving object locations, or archived trajectory collections. Queries on
such data are of great importance in many applications, including monitoring and advertising. In this paper, we
revisit the dwell region query, introduced in [47] for identifying regions of interest, and show how to address it
more eiciently in both online (streaming) and oline (archived) environments. These two cases pose diferent
challenges. In streaming environments, object positions change rapidly, so online dwell region queries must be
answered in real-time. In the oline case, the size of archival datasets is a challenge, but preprocessing can be
used to improve query times.
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Fig. 1. (a) Two stay points defined by centroids of {p3} and {p5,p6,p7,p8}, respectively, and bounded by δq and τq , (b) A

dwell region R defined by S . All points in R remain within distance rq from p1,p2,p3 for at least time τq .

1.1 Stay Points and Dwell Regions

Earlier works [26, 62, 63] have considered the problem of identifying stay points in a trajectory dataset. The terms
łstay pointž and łstay regionž refer to parts of a trajectory in which the object travels no more than distance δ in
a speciied time τ . More precisely, a set S of consecutive trajectory locations constitutes a stay region if the object
covers the locations in S in no more time than τ , and no pair of these locations is farther apart than δ . This stay
region can be of any shape depending on the trajectory. [11, 36] identify stay regions with uncertain boundaries
and arbitrary shapes from trajectories. A stay point is a geographic representation of the stay region, in some
work [26, 33], the centroid of the set of points S is marked as the stay point. Figure 1a shows two types of stay
points referred in the literature.

Stay points deine locations or regions of natural interest for mobile users or other objects, and the problem of
identifying them is important for a variety of reasons. Some examples appear in [41]: stay points are useful for large-
scale population and context-aware applications, including city planning, transportation, and communication
infrastructure. Stay points often reveal living patterns of populations, and may have public health or medical
applications.

1.1.1 Dwell Regions. In this paper, we focus on identifying dwell regions that present a much more diicult
technical challenge. Instead of simply considering points along the trajectory that remain within a distance δ
of each other for at least time τ , we seek the set of points in the region which are within a distance rq from the
trajectory points for at least time τq .

That is, a region R ⊂ R2 is a dwell region for a moving object O if, given a query radius rq and time duration
τq , O remains within distance rq from every point in R for at least time τq . Let us assume that in the duration τq ,
object O moves through n positions in 2-dimensional space. Let S be the set of these positions. Computing R
then reduces to computing the smallest enclosing circle (SEC) of the points in S denoted as CS [32]. Computing
R in real time is a hard problem. We therefore begin by examining how to eiciently compute CS , and then
propose approximate methods to compute the dwell region query.

Figure 1 makes clear the diference between stay points and dwell regions. Figure 2 illustrates the dwell region
identiication problem, and how we can identify the dwell region from a set of points S = {p1,p2, . . . ,p9}. Let’s
assume that for a given query radius rq and time duration τq , points {p5,p6,p7,p8,p9} remain within distance
rq from every point of R for at least τq time. We can identify R from the intersections of the circles centered
at points {p5,p6,p7,p8,p9}. Instead of considering all of these 5 points, if we choose p5,p6,p9, that will suice to
identify R. Note that p5,p6,p9 are on the boundary of CS , so the dwell region identiication problem reduces to
computing CS . Also, the trajectory points deining a dwell region can be inside the dwell region (shaded region
in Figure 1b) or outside of the dwell region (Figure 2).
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Fig. 2. An example of identifying a dwell region R from a set of points S = {p1,p2, . . . ,p9} and a given query (rq ,τq ).

This problem has many real life applications. In security applications, the objectO may represent a threat potent
at range rq , so the region R may contain potential targets for O . Similarly, O may be conducting surveillance on
the region R , or communicating with objects within range rq . Fast detection of R might be of critical importance.
Identifying dwell regions is also important in animal behavior tracking, and may reveal animal territories. Wolf
packs are known to stalk prey before attacking it. Animals can be expected to remain close to their dens or
nesting sites for extended periods. Identifying such behaviors can be revealing, and very important to ecosystem
researchers [14]. The behaviors we consider in this paper include both going around a region, as in Figure 3a, or
random movement in a certain enclosed region, as in Figure 3b.

A possible application of dwell region queries in indoor environments [22] is in suggesting frequently visited
places to users. For example, in a museum or a mall, a dwell region of several trajectories indicates a region that is
of interest to several patrons. Extracting such dwell regions from archived trajectories and recommending them
to other visitors might help improve overall user experience. Identifying dwell regions from archival trajectories
can be useful to identify popular regions of interest and in activity or location recommendation systems [58, 62].
However, depending on the trajectory dataset size, these applications can take a long time to ind dwell regions
which is undesirable. Thus it requires an eicient method to precompute dwell regions and access them while
query processing.
Our work also has applications in real time trajectory simpliication based on spatio-temporal criteria. One

such criterion [4] is the łdisk criterionž, which collapses into one segment all contiguous trajectory segments that
can be enclosed by a ixed size disk. Our data structures and algorithms can be used to maintain a subtrajectory
as long as it satisies the disk criterion. For streaming scenarios, it is desirable to do this simpliication in real
time, without having to store the data.

1.2 Our Approach and Contributions

Given a set of points S, we denote the smallest enclosing circle for S by CS . For the online scenario, we assume
that we receive regular position updates from each moving object, and will maintain a streaming window (or just

(a) (b)

Fig. 3. Behaviors considered in this paper.
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window) of recent position records. We are to identify dwell regions as records are being added to and deleted
from this window in real time. A window corresponds to a set of location points S. In the following we use
window and S interchangeably.

Given a window S, our approach approximates the smallest enclosing circle CS of the points in S as a polygon
with a user-speciied number, k , of sides. We maintain data structures which are used to compute upper and
lower bounds on the radius of CS . We show that the actual radius is within a factor of (1 +O ( 1

k2 )) of the lower
bound. The data structures can be updated for addition/deletion in O (k logn) time, where n is the window size
|S|. We can compute the upper and lower bounds in time O (k ).
Typically, we are able to decide whether CS has radius rq or less from just the upper and lower bounds. When

these bounds are insuicient to evaluate the query, we propose a method which allows us to consider only a
few points in the window to compute CS . Computing CS only gives the center of the circle, not the complete
region R. We then propose a method for quickly approximating the region R. In our experiments with real
trajectory datasets, the online approach can handle hundreds of thousands of moving objects. In the archival
scenario, trajectories are already available, and can thus be preprocessed. We will adapt the idea of using CS to
build eicient indexes for the archived trajectories, that can speed up dwell region queries by many orders of
magnitude.

1.2.1 Our Contributions. In previous work [47], we introduced the problem of identifying dwell regions, but
considered only the online version of the problem. In this paper, we also examine the oline version of the
problem (on archival data), and show how preprocessing can speed up queries. We address the case of archival
data in two stages. First, we develop a natural extension of the ideas we developed for the online case, and deine
a one-dimensional index called the ρ-Index, which indexes subtrajectories using query radius ranges, i.e., it
considers only the distance parameter of dwell region queries. Next, based on an evaluation of the ρ-Index and
an analysis of its shortcomings, we develop the two-dimensional τ -Index, which indexes subtrajectories using
both query radius ranges and dwell durations, that is, it considers both the distance and time parameters of dwell
region queries. We validate the eiciency of our approach on archival data using the case without indexes as the
baseline. This being the irst work to address this problem, our choice of baseline is reasonable.
We build the ρ-Index by partitioning query radius ranges, and precomputing dwell regions for some ixed

radius values ri . For each such ri , we use the online algorithm to identify the maximal subtrajectories that can be
enclosed within a circle with the radius ri . To build the τ -Index, we partition both query radius and duration
ranges, and use a modiied online algorithm that indexes subtrajectories with duration τ and radius r , where,
τi ≤ τ ≤ τi+1 and r j−1 < r ≤ r j . These indexes can be used to answer dwell region queries.

Since the ρ-Index indexes subtrajectories corresponding to a predetermined set of query radii, it does not directly
yield dwell regions for any arbitrary query radius. Whereas the τ -Index indexes subtrajectories corresponding
to both radius and duration ranges, the result set of dwell regions can be built directly using the τ -Index. Our
experimental results show that both ρ-Index and τ -Index can ofer several orders of magnitude speedup in query
evaluation time over the non-indexed dwell region queries. However, since the τ -Index consists of partitions
along two dimensions, it has greater pruning power, and therefore can answer queries several times faster than
the simpler ρ-Index.
Our contributions are as follows:

• We show how to maintain an approximation of CS in logarithmic update time.
• We devise a method to compute CS exactly using a few points, based on our data structures. We also show
how to quickly obtain a good approximation of the dwell region R.
• We identify upper and lower bounds for the CS radius, and show that the radius of CS is within a factor of
(1 +O ( 1

k2 )) of the lower bound, for user deined k .

ACM Trans. Spatial Algorithms Syst.
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• We extend the online method to dwell region queries on archival data. We present two novel indexes:
ρ-Index and τ -Index, which speed up queries by using precomputed results.
• We present extensive experimental results for both online and oline versions of the problem, the code for
which is publicly available 1.

The rest of the paper is organized as follows: Section 2 provides the deinitions and background while Section 3
describes related work. Our proposed methods and data structures are described in Section 4. Sections 5 and 6
present the preprocessing and query evaluationmethods for both online and oline versions respectively. Section 7
presents the experimental results and Section 8 concludes the paper.

2 BACKGROUND

We assume the following environment of objects moving in a 2-dimensional space. Every moving object has a
unique object oid and sends its position updates at certain regular intervals. A position update contains the object
oid , its spatial coordinates xi ,yi ∈ R

2, and a timestamp ti ∈ R
+. A trajectory is created by subsequent position

updates from a given object and is a inite sequence of triples (xi ,yi , ti ) with ti < ti+1 for i = 0, 1, . . . A trajectory

segment is the straight line between two consecutive tuples (xi ,yi , ti ), (xi+1,yi+1, ti+1) of the same trajectory. A
subtrajectory of lengthm of a trajectory T = (x0,y0, t0), . . ., (xp ,yp , tp ), is a subsequence T

′
= (xi ,yi , ti ), . . . ,

(xm+i ,ym+i , tm+i ), ofm contiguous trajectory segments, where i ≥ 0,m < p. A single trajectory segment is a
subtrajectory of length one.

For each moving object we maintain a streaming window. A streaming window of size n is the time-ordered
sequence of the latest n positions of the moving object. The length of the window depends on the duration t

speciied by the query and the frequency of position updates from a moving object. A streaming window is
updated by adding the most recent position when a new update record arrives and deleting the least recent point
when necessary. For example, in applications like trajectory simpliication, records can be added (without any
deletion) as long as they satisfy the query condition.

We consider two types of queries. A dwell region query (rq ,τq ) inds region R, each point of which is within a
distance rq from any point on the trajectory of moving object for time at least τq . A decision query (rq ,τq ) asks

whether the positions of a given object during the window of size τq , fall within distance rq from any point in R2.
This decision query returns a Boolean value and the center of the smallest enclosing circle. Decision queries are
important for applications like trajectory simpliication [4].

Consider circles of radius rq centered at each point in a window S. The intersection of these circles is precisely
the dwell region R, since all points of S are within distance rq from any point in R. We hence consider two
approaches. The irst maintains the overlap region of a set of circles centered at the object positions in S. The
other computes CS , the smallest enclosing circle for S. Finding CS suices to answer decision queries, but not
dwell region queries.
A naive approach to maintaining the overlap between circles is to recompute their intersections whenever a

point is inserted into or deleted from the window. However, to the best of our knowledge, there exists no eicient
online algorithm to maintain intersection of circles. Additions of a point can be made fast, but a deletion is always
O (n) making the update timeO (n). Our proposed method is based on approximating the smallest enclosing circle
with a polygon of k sides, and calculating the upper and lower bounds of the radius to answer decision queries.
We allow the user to make the lower bound arbitrarily close to the actual radius of the smallest enclosing circle
by tuning k .
Computing CS gives only the center of CS , not the entire dwell region R. To answer region queries, we use

eicient pruning to avoid unnecessary computation. First, no dwell region R can exist if the lower bound for
the radius of CS exceeds rq . In this case, we do not compute the intersecting region. When the upper bound is

1https://github.com/PayasR/DwellRegions-open
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Algorithm 1MinDisk (S,B)

1: S : a set of points, {p1,p2, . . . ,pn }

2: B : may contain at most 3 points, B ⊂ S.

3: S′ = B,B′ = B,D = CB ▷ S′: set of points seen so far, B′: current basis of S′.

4: for each pi ∈ (S − S′) do

5: S′ = S′ ∪ {pi }

6: if pi is not inside D then

7: B′ = MinDisk(S′,Basis(B′ ∪ {pi }))

8: D = CS′

9: end if

10: end for

11: return B′

Algorithm 2 Basis (A)

1: A : set of 4 points {p1,p2,p3,p4}

2: A′ = all possible subsets of size 3 points of A

3: for each set of 3 points A′i in A′ do

4: c = circle deined by points of A′i
5: if c contains all points in A then

6: return A′i as the basis

7: end if

8: end for

less than rq , we compute an overestimate R+ and an underestimate R− for the actual region R. We also identify
critical points that are more likely to afect the shape of the region. We can eiciently maintain approximations
by considering only critical points. Details are described in Section 4.5.

2.1 Computing the Smallest Enclosing Circle CS

The irst deterministic linear time algorithm for the smallest enclosing circle appeared in [32]. Several improve-
ments were presented in [10, 12, 43]. These methods are based on linear programming techniques and involve
expensive computations, such as solving systems of polynomials. None of these methods was designed for
streaming environments, and require repeating the computation for every addition/deletion. Welzl proposed a
simple-to-implement randomized algorithm [52] with expected linear run-time. It recursively inds three points
on the boundary of the circle. The algorithm can handle addition in constant time but deletion has expected
linear time. However, the worst case runtime of Welzl’s algorithm is quadratic. We will adapt Welzl’s algorithm
for computing CS for a small set of points S.
Algorithm 1 gives the pseudo code for Welzl’s algorithm. Given a set of two dimensional points S =
{p1,p2, . . . ,pn }, there is a łbasisž set B of at most three points that determines CS , i.e., CB = CS . Computa-
tion of the basis of a set of at most 4 points can be done in constant time (Algorithm 2). Three points are randomly
selected from S as the initial basis, i.e. B = {pi ,pj ,pk }, i, j,k ≤ n, and the initial circle is D = CB . The algorithm is
started with the call MinDisk (S,B). The remaining points in S − B are tested one by one whether they are inside
D. Let S′ be the set of points seen so far. If a point pi ∈ (S − S′) is inside D, then D is the smallest enclosing
circle of S′. Otherwise, a recursive call (Line 7) is made to compute CS′ . This time the basis is Basis(B′ ∪ {pi }).
When this recursive call returns we have the basis and the smallest enclosing circle of points seen so far.

ACM Trans. Spatial Algorithms Syst.
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3 RELATED WORK

Retrieving semantic and/or activity information from trajectories has attracted much research attention, as it has
applications in many domains. A number of works consider inding regions of interest (ROIs) such as restaurants,
museums, or parks, and variations thereof. In [1, 53], information on ROIs is given in a relational database, and
a join operation between trajectory and ROI relations is performed to evaluate activity sequence queries. It is
assumed that the querying application will specify a inite set of pairs (∆,τ ) of interesting geographic regions ∆
and durations τ . If a trajectory spends at least τ duration in a speciied region, then the portion of the trajectory
inside region ∆ is considered a stop area in that trajectory.

Other work on discovering ROIs include [5, 26, 37, 44, 46]. For example, [44] identiies an ROI as the cluster of
object locations that is dense and remains closer to a given route. In [46], a region is considered as interesting if
the objects have remained within the region for some time interval threshold. In [26, 62, 63], the notion of łstay
pointž is presented using a maximum distance threshold Dt and a minimum duration threshold Tt . Stay points
are obtained by averaging the points of the trajectory, and may not themselves be on a trajectory (like stay point
2 in Figure 1a). However, reducing a subtrajectory to a particular point, possibly not on the trajectory, can lead to
loss of information. For example, if density-based methods are applied on stay points to identify stay regions,
they might generate false negatives.

In [37], ROIs are discovered for each individual trajectory instead of considering all trajectories and identifying
commonly interesting places. The DBSCAN method [13] is modiied so that parts of a particular trajectory within
a small region and with suicient stay duration in that region will be considered as clusters (ROIs). Related
are also works on density-based queries over moving object databases. A spatial area is dense if the number of
moving objects it contains is above some threshold [18, 34].

There are also works that consider identifying interesting patterns from trajectory data. For example, [6, 40, 54]
consider various similarity queries on trajectories. An approach to mine common sequence of locations, visited

with similar travel times between them appears in [15]. An example is Railway Station
15 min
−−−−−→ Book Store

30 min
−−−−−→

University, meaning that Railway Station to Book Store to University is a common travel sequence with travel time
between them 15 min and 30 min respectively. Similarly, [63] inds travel sequences for a user based on their
location history and the number of visits. There has also been work on annotating trajectories with semantic
information. A survey appears in [38]. A semantic trajectory can be a sequence of Points-of-interest (POIs)
with both location and text information which can then be used to ind similar trajectories [9]. [57] identiies
trajectories from a semantic trajectory database that contain most relevant keywords to the query and require
minimum distance to travel. [22] introduces a semantic indoor trajectory model. Work in [50] considers lexible
pattern queries on trajectories. Trajectory data is used to ind better routes in [30, 51, 56]. In [7, 55], trajectories
are used to understand city dynamics, causes of traic jams, etc.
Research has considered using user activities to identify interesting behavior. Work on single user activity

includes inferring transportation mode [61], periodic activity recognition [28], route prediction [2, 23], etc.
In [29, 39, 61], the authors consider users’ locations to recognize their activities and identify their transportation
routines. Activity recommendation from trajectory data [58, 62] is another popular research trend.
There has also been research on identifying collaborative behaviors, such as lock patterns [49], convoy

detection [19], swarm identiication [27], assemblies [48], or rendezvous regions [45]. The work in [34] uses the
current location of moving objects to identify the density of moving objects, while [24, 25] consider trajectory
clustering. In [35], clustering on big trajectory data is studied to ind the hotspots in a parallel setting while
[20, 21] considers detecting hotspots from indoor trajectory data. Here, we consider inding dwell regions for
individual trajectories.

Related is also the work in [8] that proposes several heuristics for computing circle intersections. Unfortunately,
these heuristics are not useful in environments where points are added/deleted dynamically. In particular, an

ACM Trans. Spatial Algorithms Syst.
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R-tree [17] maintains all the static sites and circle intersections are computed only when a moving object is out of
the safe zone. The computation requires traversing the R-tree and making a heap of R-tree entries. With streaming
data, the R-tree must be updated and traversed, building the heap for every addition/deletion. Moreover, we will
show that our proposed data structures render three of the heuristics in [8] unnecessary.

In previous work [47], we addressed the dwell region problem in streaming environments. In this paper, along
with the streaming environment, we consider the archival trajectories and propose index structures to identify
dwell regions in the archival setting.

4 DATA STRUCTURES & ALGORITHMS FOR COMPUTING CS

We proceed with the presentation of our algorithms and data structures for approximating the smallest enclosing
circle CS . We also show how to bound the radius of CS above and below by using circles constructed from the
minimum bounding polygon for S. Some of the notable symbols used in this section to discuss the algorithm for
computing CS are listed in Table 1.

a

magnitude

direction

B end

Ɵ
b

B end 
point

|a| cos ƟA initial 
point

(a)                                                          (b)                                                      (c)

Fig. 4. (a) A Euclidean vector, (b) Scalar projection of a⃗ onto b⃗, (c) Eight uniformly spaced vectors in a circle.

An n-dimensional vector v⃗ is an n-tuple (v1,v2, . . . ,vn ), where vi is its component along the ith axis. The

magnitude of vector v⃗ is |v⃗ | =
√

∑n
i=1v

2
i . The dot product of two vectors a⃗ and b⃗ is a⃗ · b⃗ =

∑N
i=1 aibi = |a⃗ | |b⃗ | cosθ ,

where θ is the angle between a⃗ and b⃗. If b⃗ is a unit vector then the dot product a⃗ · b⃗ is the component of a⃗ in the

direction of b⃗, also called the projection of a⃗ onto b⃗.
If k vectors are uniformly spaced around a circle, the angle between any two adjacent vectors is 2π

k
. Figure 4

shows (a) a Euclidean vector, (b) scalar projection of a⃗ onto b⃗ and (c) eight uniformly spaced vectors around a
circle. In a Euclidean space each side of a straight line is called a half space. Given the straight line ax0 + by0 = c ,
(x0,y0) ∈ R

2, one half space is H = {(x ,y) : ax + by ≤ c}.

4.1 Minimum Bounding Polygons and Frontiers

Figure 5a shows a set of points and its minimum bounding rectangle (MBR), suggestive of the maximum extents of

a set of points in S. In the 2-D case, we can construct an MBR for S as follows. We take four vectors d⃗1, d⃗2, d⃗3, d⃗4,

spaced 90◦ apart, and four lines ei ⊥ d⃗i , 1 ≤ i ≤ 4. Now we sweep each ei in a direction orthogonal to d⃗i , in from
ininity towards S. We stop when each ei touches a point pi ∈ S. The lines ei form the edges of the MBR.

We can generalize, and get tighter upper and lower bounds by usingk uniformly spaced vectors d⃗1, d⃗2, . . . , d⃗k , k >
4. Figure 5c shows eight uniformly spaced vectors and the bounding convex octagon they deine. The lines ei are
swept inwards from ininity until they touch points pi ∈ S.
We denote the k-polygon bounding S by Pk

S
. IfVk

S
is the set of vertices of Pk

S
, thenVk

S
1 S.

ACM Trans. Spatial Algorithms Syst.
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Fig. 5. (a) A set S of points and its bounding k-polygon, k = 4. The polygon has verticesVk
S
= {a,b, c,d }. The frontier F k

S
is

the set of points touching the polygon’s edges. (b) The in-circle Cin
S

is the smallest circle enclosing F k
S
, and the out-circle

Cout
S

is the smallest circle enclosingVk
S
. (c) The efect of using k = 8.

Definition 1. (Frontier) Given a minimal bounding k-polygon Pk
S
, the frontier of S is the set F k

S
of points

pi ∈ S lying on the edges of Pk
S
.

We note thatVk
S
1 S, but F k

S
⊂ S by deinition.

4.2 Using CS and Pk
S
in ueries

Let rS be the radius of CS . We can now get upper and lower bounds for rS as follows. The smallest circle CVk

S

enclosing the setVk
S
of vertices of Pk

S
is guaranteed to contain all the points of S, and yields an overestimate for

CS (see Figure 5b). Similarly, CF k

S
, the smallest circle enclosing all the frontier points of S yields an underestimate

for CS .

Definition 2. (In- and out-circles) Let the minimum bounding k-polygon Pk
S
for S have vertex set Vk

S
and

frontier F k
S
. The in-circle for S is Cin

S

def
=== CF k

S
and the out-circle for S is Cout

S

def
=== CVk

S
. (See Figure 5.)

Let r in
S
and r out

S
be the radii of Cin

S
, and Cout

S
, respectively, so that r in

S
≤ rS ≤ r out

S
. We will show that the distance

from the center of Cin
S
to any point in S is at most r in

S

(

1 +O
(

k−2
))

. The values r in
S
and r out

S
are also very useful

in optimizing decision queries, since we can immediately respond yes when rq > r out
S

and no if rq < r in
S
.

4.3 Constructing the Smallest Enclosing Circle CS

If neither rq > r out
S

nor rq < r in
S
holds, we must construct CS explicitly. We now show how to construct this with

minimal overhead.

Definition 3. (Convex hull) The convex hull HS of a given set S is the minimal convex region enclosing S.

We denote the set of points forming the vertices ofHS byVHS ⊆ S.

Lemma 4.1. IfHS is the convex hull for a set S, then CVHS
= CS .

Proof: HS is a convex region enclosing all points of S. The minimal circle CVHS enclosingHS encloses this

convex region, and therefore all points in S. □
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Symbol Meaning Symbol Meaning

S A set of 2D points HS Minimal convex region enclosing S

Pk
S

Minimal k-polygon bounding S F k
S

Frontier: Points of S on edges of Pk
S

Vk
S

Vertices of Pk
S

hi Heap corresponding to unit vector di

CS Smallest circle enclosing S rS Radius of CS

Cin
S

In-circle: smallest circle enclosing F k
S

r in
S

Radius of Cin
S

Cout
S

Out-circle: smallest circle enclosingVk
S

r out
S

Radius of Cout
S

Table 1. Symbols used in this paper.

Clearly,HS ⊆ P
k
S
, since Pk

S
may include dead space beyondHS . Our approach is to identify a subset S′ ⊆ S

such thatHS ⊆ S
′. We will ind CS′ , which will give us CVHS , and consequently CS . This approach is eicient,

since we expect S′ to be much smaller than S.

4.4 The Algorithm

The quality of the algorithm depends on k , the number of directional vectors used. The algorithm maintains
the frontier point in each direction. We now show how to identify frontier points, and how to update them
dynamically as points are added to and deleted from the window S.
Each point p ∈ S deines a vector. To identify a frontier point lying on an edge of Pk

S
, we identify a point

whose projection onto the corresponding unit vector has maximum length. We calculate the dot product of each
of the k vectors with each point of S, and use the point with maximum projection length for each of the edges.
The algorithm works as follows.

Select k unit vectors d⃗1, d⃗2, . . . , d⃗k uniformly spaced around a circle. For each d⃗i , maintain the point p⃗ in the

current set that maximizes d⃗i · p⃗, which will be the point p⃗ furthest in direction of d⃗i . This requires computing n
dot products and building a max heap with the values of these dot products. There is one max heap for each
vector. The point at the root of a heap is the one that has maximum scalar projection on the corresponding vector.
Calculating the dot products isO (n) for each vector and is performed only once. Heap building is also done at the
same time and its complexity is O (n logn). Addition (deletion) of a point from the streaming window requires
one addition (deletion) from the heap. This can be done in O (logn) time per unit vector i.e. O (k logn) time for k
vectors. The set F k

S
consists of the points at the heap roots. The setVk

S
is computed from the intersection of

adjacent edges of Pk
S
.

Algorithm 3 BuildHeaps (S,H ,d)

1: S : streaming window, {p⃗1, p⃗2, . . . , p⃗n }.

2: H : k heaps, {h1,h2, . . . ,hk }, one for each direction being tracked.

3: d : k directions, {d⃗1, d⃗2, . . . , d⃗k }.

4: for ∀d⃗i ∈ d do

5: for ∀p⃗j ∈ S do

6: hi [j] = d⃗i · p⃗j
7: end for

8: heapify(hi )

9: end for
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Algorithm 3 describes the initial processing. The dot product between each vector and each point is calculated
in line 6. One heap is built with the values of dot products for each vector. The heapify operation at line 8 builds
the heap, which takesO (n logn). The dot product calculation for each vector in lines 5Ð7 isO (n). As a result, the
complexity of this pre-processing for k vectors is O (kn + kn logn) = O (kn logn). Note that a particular point
will be at diferent locations in diferent heaps because of diferent dot product values with diferent vectors. If

we want to access a particular point p⃗j and/or its dot product d⃗i · p⃗j with the vector d⃗i we need to know where is
this value in the heap hi . For example we need to access a point if it is to be deleted. Therefore we also build a
Lookup Table (LT ) while building these heaps. The lookup table contains the location of a point in every heap.

For example LT [d⃗i ][p⃗j ] contains a pointer to d⃗i · p⃗j in hi .

Algorithm 4 UpdateHeap (S,H ,d,p)

1: S : streaming window, {p⃗1, p⃗2, . . . , p⃗n }.

2: H : k heaps, {h1,h2, . . . ,hk }, one for each direction being tracked.

3: d : k directions, {d⃗1, d⃗2, . . . , d⃗k }.

4: p⃗ : next point to be added in S.

5: for ∀d⃗i ∈ d do

6: delete LT [d⃗i ][p⃗1] from hi

7: val = d⃗i · p⃗

8: insert val into hi
9: end for

10: delete p⃗1 from S

11: add p⃗ to the end of S

After building the heaps we must update them when inserting and deleting points from S; Algorithm 4
describes the update step. At each update step, a point p⃗ is added to the window S as the most recent point, while
the least recent point, p⃗1, is deleted from S. This requires deleting the record for p⃗1 from each heap (table LT is

used for this purpose). Next, the dot product between p⃗ and each vector d⃗i is calculated and the result inserted in
the corresponding heap. Since insertion and deletion in a heap takeO (logn), the update is aO (k logn) operation.

4.5 Determining CS

We have described the data structures used to maintain the upper and lower bounds and to approximate the
radius of CS . We now show how to evaluate queries. We irst consider decision queries, which ask whether or
not the current window satisies the query condition.

As we have seen, we maintain k heaps, with heap hi corresponding to the vector d⃗i . The root of heap hi is a

frontier point, since it maximizes the extent of Pk
S
in d⃗i ’s direction. Recall that the bounding k-polygon P

k
S
for S

has verticesVk
S
and frontier points F k

S
.

To get r in
S
and r out

S
, we use Welzl’s algorithm to compute CVk

S
and CF k

S
(see Deinition 2). As already noted, r in

S

and r out
S

can be used to answer decision queries without actually computing CS . However, when r
in
S
and r out

S
are

insuicient for this purpose (i.e., when rq < r out
S

and rq > r in
S
) we must compute CS .

4.5.1 Eficient Computation of CS . We now show how to compute CS using only a small subset S′ ⊂ S. Our
central idea is to identify a set of points S′ that includes all points on the convex hullHS . In Figure 6a, let O be

the center of CS , and consider the angular sector between vectors d⃗1 and d⃗2. Let f⃗ be the point in this sector

with the maximal projection on to d⃗1, so f⃗ is the frontier point in the direction of d⃗1.
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Fig. 6. (a) Computing S′. Point f is a frontier point in the direction of d⃗1. Point h is farther fromO than f , so it should lie on

the convex hull. We include all points whose projections exceed |O f1 | cos
(

π
k

)

in S′, and (b) The shaded region is R−.

However, f⃗ need not be the furthest point in this sector from O . As Figure 6a shows, there could be a non-

frontier point h⃗ in this sector such that |Oh | > |O f |, but if we consider their projections h1, f1 on d⃗1, we have

|Oh1 | < |O f1 |. It is quite likely that h⃗ lies on the convex hull HS , but we would miss it if we only looked at

projections on the vectors d⃗i .

Our challenge is to include all such points h⃗ in S′. We irst note that this situation arises because the angular

distance of f⃗ from d⃗1 is less than that of h⃗. (If we consider their projections h2, f2 on to d⃗2, we ind |Oh2 | > |O f2 |.)

We irst observe that the projection of f⃗ on d⃗1 will be largest when f⃗ lies on d⃗1.

Let the lineOh bisect the sector between d⃗1 and d⃗2. (We make this choice since it also minimizes the projection

of h⃗ on both d⃗1 and d⃗2, and maximizes the likelihood that point h⃗ will not be a frontier point.) Let f⃗ lie on

d⃗1 and rotate the line O f so that it coincides with the bisector Oh. The projection of f⃗ on d⃗1 will now be

λf = |O f | cos
(

π
k

)

. By selecting all points whose projections on d⃗1 are of length at least λf , we are sure to get all

points in the half-sector that are at least as far from the center as f⃗ is, and remain candidates forHS . To get S′,
we proceed as follows:

(1) Place all frontier points f⃗i ∈ F
k
S

into S′.

(2) Let f⃗i be the frontier point in the direction of vector d⃗i , and let its projection on d⃗i be λfi Place into S
′ all

points in the half-sector between d⃗i and ⃗di+1 whose projections on d⃗i are larger than λfi cos
(

π
k

)

.

We can now state the following result.

Theorem 4.2. CS = CS′ .

Proof: Since the convex hullHS is the maximal convex region enclosing S, all frontier points f⃗i ∈ F
k
S

are in

HS . Step 1 above places F k
S

into S′. However, not all points inHS are in F k
S
. Convexity ofHS ensures that

such points must be farther from the center of CS than the frontier points. Step 2 above places all such points
into S′. □

By Theorem 4.2, we need consider only points in S′, which is much smaller than S. Then, we can compute the
SEC with these smaller number of points in S′ from Algorithm 1. As a result, decision queries now run much
faster.
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Fig. 7. Showing the importance of points near the boundary to compute the dwell region R when the are at (a) the same

angular position (b) a diferent angular position.

5 ONLINE DWELL REGION QUERIES

As we have seen, the dwell region R is the intersection of all the circles of radius rq centered at each point of S.
When rS = rq , the circles centered at the points on the perimeter of CS will share only its center. In that case, R
will consist of only one point, namely, the center of CS .

Next, consider the case when rq ≥ rS . LetCx be a circle of radius rq centered at a point x on the circumference
of CS . Consider the region R

−
=

⋂

x Cx . (See shaded region in Figure 6b.) If we move the center of Cx along the
circumference of CS , the intersection of the resulting circles will be a disk R− of radius δ = rq − rS centered at
the center of CS .
We can also calculate a region, R+, that contains R. The intuition behind our method is as follows. Suppose

we have a partially computed region Rm , which is the intersection of somem circles. To get R , we must compute
the intersection of the remaining |S | −m circles with Rm . Now, if any of these circles fully contains Rm , then it
will not afect Rm at all. Our goal is to use those points irst that are more likely to intersect Rm , as the remaining
circles are less likely to have an efect on Rm .
Intuitively, points closer to the boundary of CS are more likely to afect the region Rm , as we will illustrate

through an example. Our reasoning is similar to that used to prove Lemma 3 of [8].
Figure 7a shows CS for some set of points S. Assume that points p1,p2,p3 are on the boundary and c is the

center of the CS . The partial region Rm appears near the center as the intersection of three circles of radius rq
centered at p1,p2,p3, respectively. Consider two other points p4,p5 inside CS lying on the same radial vector a⃗. Let
p5 be closer to the center of CS than p4, and let Cp4 and Cp5 be circles of radius rq centered at p4,p5 respectively.
The minimum distances from the center c to any point on Cp4 and Cp5 are δ1 = rq − |cp4 | and δ2 = rq − |cp5 |

respectively. Since δ1 < δ2, Cp5 is more likely to fully include Rm than Cp4 .
This illustration shows the importance of points closer to the boundary among the points that are at a same

angular position in the circle. However, if p4 and p5 had diferent angular position then p5 might have trimmed
Rm more than p4, as in Figure 7b. Nevertheless, if the points are uniformly distributed, considering them in the
order from the boundary towards the center will still give us a better chance to get points which are more likely
to afect the shape of R . Our experimental evaluation shows that when the answer to the decision query is łyesž,
points are fairly uniformly distributed around the circle and thus the above heuristic applies in practice.
To calculate a region R+ ⊇ R, it suices to consider points in a subset of S. Our goal is to make this subset

as small as possible, and make R+ as close to R as possible. Towards this goal, we select points closer to the
boundary of CS irst. The heap data structures we maintain can be used to select points that are closer to the
boundary of the circle. If we consider only the k points that make up the frontier points (the heap roots), we will
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get an intersecting region that contains R. If a tighter approximation is required (at the cost of more CPU time)
points in the set S′ (Figure 6a) can be considered.

[8] describes ive heuristics to discard circles which are not going to afect the intersecting region. Heuristics
2, 3, 5, are used to discard circles that do not have a common intersecting region. For our case since we want
to ind the intersection only when every circle shares the intersecting region, heuristics 2, 3, 5 do not need to
be considered. Heuristics 1, 4, are used to discard circles that fully contain the intersecting region computed so
far and so are not going to afect the region. By considering points in the above mentioned order and applying
heuristics 1 and 4 from [8] we can further avoid computing unnecessary circle intersections.

The correctness of the algorithm for the decision query follows from (1) the fact that we actually compute the
SEC when upper/lower bounds cannot decide the query answer and (2) theorem 4.2.
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Fig. 8. Replacing the bounding arcs of the dwell region with straight lines: (a) actual region, (b) bounding arcs replaced with

straight lines; and (c) Approximating R+.

5.1 Goodness of the Approximation

To measure the goodness of the region approximations, we will attempt to derive the ratio R+/R−. The area of
the circular region R− is πδ 2, where δ = (rq − rS ). We calculate the area of R+ in the following ideal scenario.
We assume R+ is calculated using k frontier points at the heap roots, so that there are k circular arcs deining the
boundary of R+. We further assume that the arc lengths are equal. Figure 8a shows R+ with eight bounding arcs.
Each of the sectors in this igure is equivalent to the sector ABDC in Figure 8c. We obtain the area of this sector
as follows.
We begin by noting that |BC| = 2δ sin(θ ), and that

α = arcsin

(

|BC|

2rS

)

= arcsin

(

δ sin(θ )

rS

)

. (1)

Standard formulas yield the area of the circular segment

BCDB =
(rS )

2

2
(2α − sin(2α )) .

Now, using elementary trigonometry and simplifying,

ABDC = ABCA + BCDB

=

1

4
δ 2 sin(2θ ) +

(rS )
2

2
(2α − sin(2α )) .
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2! ; and (c) Proving

Theorem 5.1. Pk
S
= ABCDEFGH.

The combined area of all sectors in Figure 8b is k times the above area. Hence,

R+

R−
=

k

(

1
4δ

2 sin(2θ ) +
(rS )

2

2 (2α − sin(2α ))
)

πδ 2

=

k

π

(

1

4
sin(2θ ) +

(

rS

δ

)2 (

α −
1

2
sin(2α )

)

)

We can now use the value of α in Equation 1.
The above analysis gives an exact value for this ratio, but the following approximation yields a better intuition

for how it changes with k . In Figure 8a, consider the circular sector CAB, where C is the center of the CS . Recall
that the centers of the bounding arcs are on the boundary of CS . The closest point from C on arc AB is D, with
|CD| = δ . Let the angle ACD be denoted by θ . Since limθ→0 (sin(θ )/θ ) = 1, we can approximate the circular arc
between A and D with the line segment AD, for suiciently small θ . By increasing k , the number of arcs deining
the boundary of R+ can be increased. This in turn will result in smaller arc lengths and smaller θ .
Proceeding thus, we replace the circular sectors which collectively deine R+ with triangles, obtaining a

polygon with k sides. Figure 8b shows the polygon with eight sides which replaces the area of Figure 8a. Now,
AD = δ tanθ , so △ CAB = 2 ∗ (△ CAD) = δ 2 tanθ . Since R− = πδ 2, we get

R+

R−
=

kδ 2 tanθ

πδ 2
=

k tanθ

π
=

k

π
tan

2π

k
=

sin 2π
k

π
k

·
1

cos 2π
k

We know that limx→0
sin 2x
x
= limx→0 cos 2x = 1. Since 2π

k
→ 0 as k → ∞, R

+

R−
→ 1. Figure 9a shows that this

ratio approaches 1 very rapidly as k increases.
Finally, we prove that rS ≈ (1 +O (1/k2))r in

S
. That is, we can get arbitrarily good approximations to the radius

by maintaining only a constant number k of direction vectors, in O (logn) time per update.

Theorem 5.1. Let S be the current set of points in the streaming window, and F k
S

be the set of frontier points, so

that r in
S
is the radius of the minimal enclosing circle for F k

S
. Then, rS ≤ r in

S
(1 +O (1/k2)).
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Proof: Figure 9c shows a set of points S, their corresponding Pk
S
= ABCDEFGH, the set F k

S
of frontier points

in the directions of vectors d⃗1, d⃗2, . . ., as well as the minimal enclosing circle Cin
S
for the frontier points f1, f2, and

f3. Let O be the center of Cin
S
. Clearly, |Of1 | = r

in
S
. Let OX bisect the angle between d⃗i and ⃗di+1, and OY bisect the

angle between d⃗i and ⃗di−1.
The sector between the bisectors OX and OY is fully contained in the isosceles triangle deined by the lines OX,

OY, and AH (extended as needed). From trigonometry, all points in this isosceles triangle, and hence all points in

the sector of Pk
S
deined by OX and OY lie within distance |Of1 |/ cos

(

π
k

)

= r in
S
/ cos

(

π
k

)

of the point O.

Since all points in S lie within the polygon Pk
S
, all points pi ∈ S in this sector are within distance r in

S
/ cos

(

π
k

)

of the point O. Clearly, this means that we can include all of S in a circle of this radius.

Hence, rS ≤ r in
S
/ cos

(

π
k

)

. Using a Taylor series expansion, cos
(

π
k

)

= 1 − π 2

2k2 + O
(

π 4

k4

)

, so that cos
(

π
k

)

=

1 −O
(

1
k2

)

as
(

π
k

)

→ 0, that is, as k increases. Hence rS ≤ r in
S

(

1 +O
(

1
k2

))

. □

6 IDENTIFYING DWELL REGIONS OVER ARCHIVAL DATA

So far, we have described an online algorithm to ind dwell regions for streaming data. To identify dwell regions
from archival data, the most straightforward way would be to apply the online algorithm to the archival dataset.
This would be ineicient, but we use this method as the baseline standard for evaluating our approach for archival
data. No other benchmark is available or appropriate, since this is the irst paper to address the dwell region
problem for archival data.

Algorithm 5 BaselineApproach (τq , rq )

1: for each trajectory T in the dataset do

2: for k ← 0 : lenдth(T ) do

3: S ← (xk ,yk , tk ),τ ← 0, e ← k + 1

4: while S satisies (τq , rq ) and e < lenдth(T ) do

5: append (xe ,ye , te ) to S,τ ← τ + (te − te−1), e ← e + 1

6: Find S′ from S and compute CS
7: if rS > rq then

8: remove (xe ,ye , te ) from S, τ ← τ − (te − te−1)

9: Find S′ from S and compute CS
10: if rS ≤ rq and τ ≥ τq then

11: add CS to the result-set R ▷ R : the set with resultant dwell regions

12: end if

13: break

14: end if

15: end while

16: end for

17: end for

18: return R

Algorithm 5 gives the pseudocode for this baseline approach. Given a dwell region query (τq , rq ), the CS is
computed using the online algorithm (Algorithm 1) at Line 6 for each subtrajectory S of a trajectory T starting
at each point of T . We continue adding points to S until rS > rq . We then remove the last added point from S,
compute the CS again (Line 9), and add S to the result-set R if S satisies the query (Lines 7ś14).
As noted in Section 7, this baseline approach is too ineicient to be useful in practice. We now show how to

extend the ideas we developed for online computation of dwell regions to computing them on archival data. We
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address the archival case in two phases. First, we present the ρ-Index, a natural extension of the online case, which
creates an index using query radius ranges only. Based on an evaluation of the ρ-Index, we reine our approach
to develop the τ -Index, which indexes subtrajectories using both query radius ranges and dwell durations. These
indexes allow us to focus on small portions of the archival dataset to identify dwell regions. We show that queries
using these indexes can be an order of magnitude faster than queries run without them. These indexes are built
in three steps:

(1) Partitioning:We partition the allowable query radius and duration ranges using a partitioning scheme.
(2) Extraction: We extract subtrajectories matching the ranges in each partition by running the online query

algorithm over the archival trajectories.
(3) Storage:We store these extracted subtrajectories into our index structure.

The one-dimensional ρ-Index is created by partitioning the range of possible query radii, extracting subtrajectories
from the dataset that match this radius, and storing them in bins. Each bin in the ρ-Index corresponds to a ixed
query radius, and each bin entry is a subtrajectory that satisies a dwell region query of that radius and some
duration.
The τ -Index is built by partitioning both query radius and duration, and is an M × N grid. Each entry in a

cell of the τ -Index contains a subtrajectory that matches the radius and duration ranges corresponding to that
cell. The semantics of ρ-Index bins are diferent from those for τ -Index cells, so the query algorithms for the two
indexing methods are diferent.
In Sections 6.1 and 6.2, we elaborate on how we preprocess archival data to build the ρ-Index and τ -Index

respectively, and how these indexes speed up the evaluation of dwell region queries on archival data.

6.1 The One-Dimensional ρ-Index

Let rmin and rmax be the minimum and maximum permissible query radii, so every query radius rq satisies
rmin ≤ rq ≤ rmax . We partition the range [rmin , rmax ] into N − 1 discrete intervals rmin = r0, r1, . . . , rN−1 = rmax

using a partitioning scheme. In this section, we assume a linear partitioning scheme where all intervals are equal

in size and ri = r0 + i
(

rmax−rmin

N−1

)

. We shall discuss other partitioning schemes in Section 6.3. The ρ-Index is a

sequence of bins ρmin , . . . , ρmax where each bin ρi collects all subtrajectories that satisfy an online dwell region
query of radius ri and arbitrary duration. We call ri the bin radius of bin ρi .

6.1.1 Preprocessing and building the ρ-Index. We say subtrajectory S = (xk ,yk , tk ), . . . , (x j ,yj , tj ) is ri -maximal

if S can be enclosed in a circle of radius ri , but not if extended either with (xk−1,yk−1, tk−1) or (x j+1,yj+1, tj+1).
For each bin radius ri , we iterate over trajectories in our dataset and extract all ri -maximal subtrajectories. We
store them in bin ρi sorted by duration.
Algorithm 6 presents the pseudocode for updating the ri -maximal bins of the ρ-Index for each trajectory

T of the dataset. We irst build the ρ-Index with N sorted ri -maximal bins, where ri ∈ {r0, r1, . . . , rmax }. We
extract ri -maximal subtrajectories from a trajectory T in our dataset as follows: We initialize S to a single point
(xk ,yk , tk ) inT , and add the remaining points ofT to S, one at a time, in temporal order. We ind r in

S
and r out

S
using

the online algorithm after each addition. We continue adding points to S as long as r out
S
≤ ri . When r out

S
> ri , we

ind rS and check if rS ≤ ri .
If rS > ri , we discard the last added point from S, and if rS ≤ ri , we enter S into ρi . We now consider the next

subtrajectory by moving the starting point from (xk ,yk , tk ) to (xk+1,yk+1, tk+1), and repeat the above procedure
with the same bin radius ri . After processing T for ri , we process T for ri+1 and so on.

6.1.2 Structure of ρ-Index Bins. Let ski ∈ ρi and s
k
i+1 ∈ ρi+1 be two subtrajectories of T appearing as entries in

ρ-Index bins. Let these subtrajectories start at point (xk ,yk , tk ) of T , with durations τ ki and τ ki+1 respectively.

Clearly, rki ≤ rki+1, τ
k
i ≤ τ ki+1, and ski ⊆ ski+1. We say ski+1 is the extension of ski in ρi+1 (we term this as the
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Algorithm 6 UpdateRhoIndex (ρ-Index, ri ,T )

1: for k ← 0 : lenдth(T ) do

2: S ← (xk ,yk , tk ),τ ← 0, e ← k + 1

3: while S satisies ri and e < lenдth(T ) do

4: append (xe ,ye , te ) to S,τ ← τ + (te − te−1), e ← e + 1

5: compute r in
S
and r out

S

6: if r out
S
> ri then

7: compute rS
8: if rS > ri then

9: remove (xe ,ye , te ) from S, and compute rS
10: if rS ≤ ri then

11: add S to the bin of ρ-Index with ri
12: end if

13: break

14: end if

15: end if

16: end while

17: end for

subsequence property). Let the last point of ski+1 be (xℓ,yℓ, tℓ ). To facilitate query evaluation, we store ℓ and τ ki+1
with the entry ski .

Each entry ski for a subtrajectory S in the bin ρi is a 5-tuple ⟨T ,k,τ , ℓ,τ
k
i+1⟩, where T is the trajectory ID of S

in the archival dataset, k is the start index of S inT , τ is the duration of S, ℓ is the last point index of ski+1 in ρi+1,

and τ ki+1 is the duration of ski+1 in ρi+1.
Figure 10 shows the ρ-Index structure with N bins ρmin = ρ0, ρ1, . . . , ρN−1 = ρmax . The dots represent

ri -maximal subtrajectory entries, sorted by duration.

rq

r

Q1
Q2

Q3 Q4

ρi
ρi
<

≥
τq

τ

ρmin ρi ρi+1 ρmax
Fig. 10. Evaluation of a dwell region query (τq , rq ) using the ρ-Index.

6.1.3 uery Evaluation. Let a query arrive with query radius rq and duration τq . If rq equals the radius ri
corresponding to a bin ρi , the subtrajectory entries in ρi with duration τ ≥ τq satisfy the query, and are added

to the result set. Entries in ρi are ri -maximal, so we can ignore the members of ρ j , j > i . Also, because ski is

a subsequence of ski+1, that is, s
k
i ⊆ ski+1, for s

k
i ∈ ρi , and s

k
i+1 ∈ ρi+1, we automatically capture all elements of

ρ j , j < i .
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Now consider the case where rq falls between bin radii, so ri < rq < ri+1. Figure 10 can be viewed as a plot of
the bin radii versus the duration of maximal subtrajectories. The query radius rq and duration τq divide the space
into four quadrants Q1,Q2,Q3 and Q4. However, because of the subsequence property alluded to above, we need
only consider the entries of ρi and ρi+1 in these quadrants. All entries ski+1 ∈ ρi+1 in quadrant Q4 have r

k
i+1 > rq

and τ ki+1 < τq . These fail the query criteria, and can be disregarded. We can add all entries ski ∈ ρi in quadrant Q2

to the query result, as they have rki < rq and τ ki+1 ≥ τq .

Let ρi be partitioned as ρi = ρ<i ∪ ρ⩾i such that every entry ski ∈ ρ
<

i has duration τ ki < τq , and every entry

ski ∈ ρ
⩾

i has duration τ ki ≥ τq . Similarly, ρi+1 can be partitioned as ρi+1 = ρ<i+1 ∪ ρ⩾i+1. We have already shown

that all entries ski ∈ ρ
⩾

i in quadrant Q2 are in the query result, but the entries ski+1 ∈ ρ
<

i+1 in quadrant Q4 are not.

We are now left with ρ<i and ρ⩾i+1.

The entries ski ∈ ρ
<

i in quadrant Q3 have radii r
k
i ≤ rq and durations τ ki < τq . Hence we can extend each ski

in quadrant Q3 maximally with points in T to get sk
i>

such that τ k
i>
≥ τq and rk

i>
≤ rq . Conversely, the entries

ski+1 ∈ ρ
⩾

i+1 in quadrant Q1 have radii r
k
i+1 > rq and durations τ ki+1 ≥ τq . We can shorten each ski+1 in quadrant Q1

minimally to arrive at sk
i+1<

, which ensures both τ k
i+1<
≥ τq and rk

i+1<
≤ rq . As s

k
i and ski+1 both start at (xk ,yk , tk )

in T , ski+1 is the extension of ski in ρi+1. We can hence arrive at ski by shortening ski+1, or we can arrive at ski+1 by

extending ski . If we choose to shorten ski+1, we do not need to extend ski , as both will give us the same results, and
vice versa.

To make a decision between shortening or extending subtrajectory entries, we use a heuristic based on the
diference between rq and ri or ri+1. If |rq − ri | < |rq − ri+1 |, we choose to extend the entries in ρ<i ; otherwise, we

choose to shorten the entries in ρ⩾i+1. We extend or shorten the entries as long as they do not satisfy the given
query, and then add them to the result set.

Extending or shortening a subtrajectory. Figure 11a illustrates extending or shortening a subtrajectory. Let
S1 = {p1,p2, . . . ,p5} be an entry in ρ<i and S2 = {p1,p2, . . . ,p9} be an entry in ρ⩾i+1. A and B depict circles with
radius ri and ri+1, enclosing S1 and S2 respectively. Let C represent the dwell region with radius rq that encloses
the subtrajectory S = {p1,p2, . . . ,p7}.
To answer a query with radius rq , we can use the above heuristic and either extend S1 or shorten S2. We can

extend S1 by adding points starting with p6, computing the resulting smallest enclosing circles, until we ind S .
Similarly, we might shorten S2 by removing points one by one, until we ind S . However, these iterative operations
are expensive.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p 11

A
C

B

(a)

p21      p22 p23           p27 p28 p29                    p34  p35 p36

X Y
Z

U

(b)

Fig. 11. (a) An example of extending or shortening a subtrajectory, and (b) An example showing the importance of storing

multiple subtrajectory entries instead of one entry in the τ -Index.
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These operations can be especially expensive if we have to extend or shorten a subtrajectory entry of the
ρ-Index to ind multiple dwell regions during query evaluation. Consider the trajectory shown in Figure 11b, and
let S ′ = {p21,p22, . . . ,p27}, S

′′
= {p23,p24, . . . ,p29} and S

′′′
= {p28,p29, . . . ,p34} be the dwell regions that satisfy a

given query. Assume that these are not stored in the ρ-Index. Let X ,Y and Z be the smallest enclosing circles of
S ′, S ′′ and S ′′′ respectively. Let the subtrajectory S3 = {p21,p22, . . . ,p34} be an entry in ρ⩾i+1 andU be the circle
with radius ri+1, enclosing S3. Now, to ind S ′ by shortening S3, we must remove the points p34, . . . ,p28, one by
one, each time performing the operations we marked as expensive. Similarly, to ind S ′′ and S ′′′, we must remove
points one by one from both ends of S3 and from the beginning of S3 respectively. Instead, if we had stored
S ′, S ′′, S ′′′, S3 in an index, we would not need to extend or shorten S3. Another observation about the ρ-Index is
that the subsequence property of subtrajectory entries ski ∈ ρi allows us to answer queries by examining just
the two bins ρi and ρi+1. While this speeds up query evaluation, every point in a trajectory will create an entry
in every bin (and this happens for all trajectories in the archival dataset). We will address these shortcomings
of the ρ-Index by introducing the τ -Index which avoids extending or shortening subtrajectories during query
evaluation time and removes the subsequence dependency among the subtrajectory entries stored in the index.

6.2 The Two-Dimensional τ -Index

An analysis of the performance of the ρ-Index reveals that while the binning idea is efective, it results in bins
that are quite large, since the time dimension remains unrestricted. We now show how to partition the dataset
along both distance and time dimensions, a further reinement of the ideas behind the ρ-Index. We will show
that this strategy is very efective, and yields the τ -Index, which is a two-dimensional index with performance
far superior to that of the ρ-Index. The τ -Index is useful for both decision and dwell region queries.
Let the query radius rq and duration τq be bounded, with rmin ≤ rq ≤ rmax , and τmin ≤ τq ≤ τmax . The

τ -Index is efectively anM × N grid, whose cells are obtained by partitioning these ranges. Let τmin = τ0 < . . . <

τi < . . . < τM−1 = τmax and rmin = r0 < . . . < r j < . . . < rN−1 = rmax . A cell (τi , r j ) in the τ -Index contains all
maximal subtrajectories matching queries (τq , rq ) with τi ≤ τq ≤ τi+1 and r j−1 < rq ≤ r j . We discuss various
partitioning schemes in Section 6.3.

6.2.1 Structure of the τ -Index. Each entry in a τ -Index for a subtrajectory S in a cell (τi , r j ) is a 6-tuple
⟨T ,k, e,τ , rS, cS⟩, where T is the trajectory ID of S in the archival dataset, k and e are, respectively, the start and
end indexes of S in T , τ is the duration of S, rS is the radius of the smallest enclosing circle CS , and cS is the
center of CS . We will have r j−1 < rS ≤ r j and τi ≤ τ ≤ τi+1. The entries in each cell are sorted by radius rS .
Unlike the ρ-Index an, τ -Index entries contain no information regarding subsequent subtrajectories. Figure 12
shows the τ -Index structure.
In principle, we could build the τ -Index from the ρ-Index by applying the deined duration partitions to the

subtrajectories in the ρ-Index bins. However, placing these subtrajectories into the appropriate cells of the τ -Index
requires extending or shortening them, which can be expensive (as discussed in Section 6.1). Instead of obtaining
the τ -Index cells by segmenting the ρ-Index bins, we build the τ -Index directly by partitioning both query radius
and time durations. We discuss the eicient preprocessing steps in Section 6.2.2.

6.2.2 Preprocessing. To build a τ -Index ofM × N sorted grid cells (τi , r j ), we precompute dwell regions from
each trajectoryT for each duration τi , and store a subtrajectory ofT in to a cell (τi , r j ) in the τ -Index if it satisies
r j−1 < r ≤ r j and τi ≤ τ ≤ τi+1 (see Algorithm 7). We preprocess all trajectories T for all duration partitions τi ,
where 0 ≤ i ≤ (M − 1). The steps to preprocess a trajectoryT , and store its qualiied subtrajectories S in the cells
(τi , r j ) of the index are as follows:

Step 0: Initialize a subtrajectory S to a single point (xk ,yk , tk ) in T .
Step 1: Add the remaining points of T to S in temporal order until its duration τ ≤ τi .
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rmin   . . . .                 rj-1      rj                      . . . .     rmax

rq

Selected cells

Decision cells

Query radius, rq

Query duration,  τq
τq

τmax

τmin
τi
τi+1

Fig. 12. The τ -Index and its use in answering dwell region queries.

Algorithm 7 UpdateTauIndex (τ -Index, τi , r j ,T )

1: k ← 0

2: while all points in T not considered do

3: S ← (xk ,yk , tk ),τ ← 0, e ← k + 1 ▷ S : current subtrajectory, k : start point index of S

4: while τ ≤ τi do

5: append (xe ,ye , te ) to S, τ ← τ + (te − te−1), e ← e + 1

6: end while

7: compute r in
S
and r out

S

8: if r out
S
< r in
S
or r out

S
> r j then

9: k ← k + 1, continue

10: end if

11: compute rS
12: if r j−1 < rS ≤ r j then

13: while (xe ,ye , te ) is inside CS and τi ≤ τ ≤ τi+1 do

14: append (xe ,ye , te ) to S, τ ← τ + (te − te−1), e ← e + 1

15: end while

16: add E = ⟨T ,k, e,τ , rS , cS⟩ to the cell (τi , r j ) of τ -Index

17: end if

18: k ← k + 1

19: end while

Step 2: Compute r in
S
and r out

S
. If r out

S
< r in
S
or r out

S
> r j , discard S and go to Step 4.

Step 3: Compute CS .
(a) If rS > r j , discard S for the cell (τi , r j ) and go to Step 4.
(b) If r j−1 < rS ≤ r j , add more points of T to S in temporal order as long as the newly added points can be

enclosed by the same CS and τi ≤ τ ≤ τi+1. Then add an entry E = ⟨T ,k, e,τ , rS, cS⟩ for S in the cell
(τi , r j ).

Step 4: Slide the window forward to ind the next subtrajectory starting at (xk+1,yk+1, tk+1) and go to Step 1.
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6.2.3 uery Evaluation. Figure 12 shows how to evaluate a dwell region query using the τ -Index. Let τq and
rq be the duration and the radius of a dwell region query, where τi ≤ τq < τi+1 and r j−1 < rq ≤ r j . To build the
result set of dwell regions, we choose the candidate cells from the τ -Index, and ind the resultant dwell regions
for the given query from these cells. These candidate cells can be either selected cells or decision cells (as shown
in Figure 12). We can ind the dwell regions satisfying the given query from the τ -Index as follows:

1. Choose candidate cells: The subtrajectory entries S in the white cells in Figure 12 have either radii
rS > rq , or duration τ < τq , and do not meet the query criteria. We discard them from the query results.
Since τi ≤ τq < τi+1 and r j−1 < rq ≤ r j , we can locate the query results to be in cells (τ≥i , r≤j ). These cells
are the candidate cells.

2. Classify candidate cells: We classify the chosen candidate cells of the τ -Index as follows:
(i) [Selected Cells] All the subtrajectory entries S in the candidate cells (τ>i , r<j ) have τ > τq and rS < rq ,

and satisfy the given query. We call these cells Selected cells. We retrieve the smallest enclosing circles
from all entries in these cells and add them to the result set.

(ii) [Decision Cells] We call the candidate cells (τ≥i , r j ) and (τi , r≤j ) Decision cells. We add the smallest
enclosing circles of the subtrajectory entries of these cells that meet the query criteria to the result
set, and discard the others.

3. Explore decision cells: The subtrajectory entries in each cell of the τ -Index are sorted by their radius
values. Depending on the duration and the radius, the subtrajectory entries of the decision cells may or
may not meet the query criteria.
(a) From the decision cell (τi , r j ), we can consider the entries as long as their radii rS ≤ rq , and add the

smallest enclosing circles of these entries to the result set if and only if their duration τ ≥ τq .
(b) From the decision cells (τ>i , r j ), we can add the smallest enclosing circles of the entries to the result set

as long as their radii rS ≤ rq , as their duration τ > τq .
(c) From the decision cells (τi , r<j ), we can add the smallest enclosing circles of the entries to the result set

if and only if their duration τ ≥ τq , as their radii rS < rq .

6.3 Partitioning schemes for ρ-Index and τ -Index

The choice of the number and size of partitions can have a signiicant efect on performance of the indexes in
both preprocessing and query stages. If the chosen partitions are too ine, the ρ-Index will have a large number
of ρ bins, which could make index construction prohibitively expensive in both time and space. On the other
hand, having too few partitions could result in high query times, as it increases the number of shorten and extend
operations for most queries. The same trade-of applies to the τ -Index. Having too many cells increases the
preprocessing time and space signiicantly, while having too few cells would increase the query times, possibly
defeating the purpose of preprocessing altogether.

Choosing a suitable partitioning scheme for a range of the input parameters involves reasoning about precise
application for which dwell region queries are being used, the ranges of permissible input query parameters, and
the expected distribution of entries in the bins or cells in the dataset. Ideally, all bins or cells in the index would
have roughly equal numbers of entries, as a skewed distribution can slow down index lookups. Now, say that we
seek to determine if some person is engaged in surveillance. Here, we might expect most dwell region queries
to have a small rq value, since while surveilling an area, humans might not want to stray too far from it. We
use this criterion in our experiments using the GeoLife dataset [59], which comprises trajectories of individuals
collected over approximately two years and within a small geographic region (city), and the TDrive dataset [60]
that consists of taxi trajectories collected for one week within a small geographic area.

In contrast, animals tend to stay in small regions for long times and move steadily for food. Hence, we consider
extended time windows during experiments with the ElkDeer dataset [42], which contains trajectories of deer,
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elk and cattle collected to document the habitat use of these animals in the presence of habitat changes and
human activities in an experimental forest setting. We note that similar queries have been found useful for widely
diferent applications from locating galactic habitable zones between stars [16], and inding regions of overlap
from wildlife tracking data [31]. Had we used dwell region queries for one of these other semantics, our current
assumptions would not hold and we would have to change them as appropriate.

Given a continuous range [l ,h] where l ,h ∈ R, a partitioning scheme divides [l ,h] into n ranges and returns a
sequence l = s0, s1, s2, . . . , sn−1 = h, where si ∈ R and an si denotes the boundaries of a partition. We use three
partitioning schemes:

(i) A linear partitioning scheme divides the given range into partitions of equal size, and therefore si = s0 +

i
(

smax−smin

n−1

)

.

(ii) A quadratic partitioning scheme divides the input range into smaller ranges of sizes that increase at a
quadratic rate, so si = (i + c )2, where c ≥ 1.

(iii) An exponential partitioning scheme divides the input range into smaller ranges of sizes that increase as an
exponential of a given constant x , so si = ax i + c , where a , 0, c ≥ 0.

Table 2 shows the partitioning schemes used to build the ρ-Index and τ -Index for radius and duration dimensions
in this paper. We use the linear partitioning scheme for the radius dimension while constructing both ρ-Index
and τ -Index, and show experiments with linear, quadratic and exponential partitioning schemes in the duration
dimension of the τ -Index.

Dimension
Partitioning Scheme

ρ-Index τ -Index

Radius Linear Linear

Duration N/A Linear, Quadratic and Exponential

Table 2. Partitioning schemes used for ρ-Index and τ -Index in our experiments.

We choose quadratic and exponential schemes for only the duration dimension because all of our datasets
contain trajectories that span a much longer duration and only cover a small geographic area. In an exponential
partitioning scheme for the radius dimension, the distance span of diferent cells would have been widely variant,
ranging from a cell covering only a small neighborhood, to another covering a large section of the city. Such
highly skewed partitions are generally undesirable as they can lead to large diferences between the number
of entries per cell, which may afect query performance. We can make the same argument for the quadratic
partitioning scheme.
Assuming constant speed and ixed sampling frequency, an object travels about the same distance in each

sampled interval. A quadratic or exponential growth in the radii of bins or cells results in a skewed distribution
in the number of entries. Further, the subtrajectory entries in bin ρi+1 can be very large compared to the
corresponding subsequent subtrajectory entries in bin ρi . During query evaluation, we must perform extend
or shorten operations on the bin entries, so that a quadratic or exponential partitioning scheme increases the
number of shorten or extend operations during query evaluation. We therefore use linear partitioning for the
radius dimension in all experiments.
For the duration dimension of the τ -Index, we use linear, quadratic and exponential partitioning schemes in

the experiments. Since the cells with the linear partitioning scheme span equal ranges of duration, for a ixed
number of partitions and a ixed τmax , it sets relatively higher duration for cells than that of the corresponding
cells with quadratic and exponential partitioning schemes. To build the τ -Index, these higher durations in the
cells can afect the τ -Index performance (considering both preprocessing and query evaluation). We will observe
its efect in the experiments (see Section 7.2).
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7 EXPERIMENTS

We evaluate dwell region query performance both on streaming (Section 7.1) and archival data (Section 7.2). We
conduct our experiments using three real-world datasets, namely Geolife, ElkDeer and TDrive (described below);
we also run scaling experiments using much larger synthetic datasets (see Section 7.3). The GeoLife dataset [59]
contains public activity data, such as shopping, dining, sightseeing, hiking and cycling in Beijing, China. The
dataset contains 8,970 trajectories for 165 objects and a total of 24,778,552 spatial points. The sampling frequency
of the points in trajectories is 2 ∼ 5 seconds. The ElkDeer dataset [42] contains trajectories of deer, elk and cattle
in the Starkey Experimental Forest and Range in Oregon, USA. It contains 253 object trajectories and > 287, 000
spatial points. The dataset was collected within 40 square miles at an average sampling frequency of ∼ 1 hour.
The TDrive dataset [60] contains one-week trajectories of 10,375 taxis and about 17 million spatial points. The
sampling frequency of points in trajectories is 2 ∼ 6 minutes. Table 3 summarizes the properties of the real-world
datasets used. These datasets are chosen as their sampling frequencies range from seconds to hours, capturing
object movement in diferent practical contexts. Further, this allows us to better evaluate the efect of the duration
dimension in the τ -Index.

Dataset Location No. of trajectories No. of spatial points Sampling frequency

GeoLife Beijing, China 8,970 24,778,552 2 ∼ 5 seconds

ElkDeer Starkey, Oregon, USA 253 > 287, 000 ∼ 1 hour

TDrive Beijing, China 10,375 ∼ 17 million 2 ∼ 6 minutes

Table 3. Summary of real-world datasets used in the experiments.

All experiments were run on an Intel Xeon E5-2430 processor with a base clock of 2.5 GHz running CentOS 7
with Linux kernel 3.10.0 and 32GB of DDR3 main memory. Our C++ implementation is publicly available2.

Fig. 13. A dwell region R (the intersection of the circles) identified from the TDrive dataset, and the pinpoint represents the

center of CS .

Figure 13 visualizes a dwell region R identiied from the TDrive dataset with the SEC radius of 0.42 miles. The
circles are drawn centering at the trajectory points on CS and considering the radius. The intersection of these
circles is identiied as the dwell region R . The pinpoint represents the center of CS which is inside R , as expected.

2https://github.com/PayasR/DwellRegions-open
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7.1 Performance of Online Dwell Region ueries

We ran a series of experiments to demonstrate the pruning power of our method in Section 4 for computing
CS . First, we ixed the streaming window size to 4000 points, and then ran a set of dwell region queries with
τq = 20000 seconds and rq ∈ {0.8, 1.2, 1.6, 2.0} miles over all trajectories in GeoLife and TDrive datasets. However,
the ElkDeer dataset is much smaller and has a low sampling frequency, we ixed the streaming window size to
120 points, so τq = 450000 seconds (=∼ 5.2 days) for each dwell region query.

When rq ≥ r out
S

or rq ≤ r in
S
, we can answer decision queries without computing CS . This feature allows rapid

response to decision queries, and is an important beneit of our method. Figure 14 shows the percentage of
subtrajectories S where computing CS is unnecessary. We use this metric to show how well our methods allow
answering decision queries quickly using just r in

S
and r out

S
.

However, if r in
S
< rq < r out

S
, we must compute CS . As the number of vectors k increases, we need to compute

CS signiicantly fewer times, since with higher k , the minimum bounding polygon Pk
S
better resembles CS ,

which in turn makes our bounds r in
S
and r out

S
closer to CS . We note that CS needs to be computed for less than

0.3% of queries even with k as low as 4 for both GeoLife and TDrive datasets, and 2% with k as low as 8 for the
ElkDeer dataset.
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Fig. 14. Fraction of results where r in
S
and r out

S
sufice to answer dwell region queries.
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Fig. 15. Fraction of points selected to calculate the smallest enclosing circle.

When decision queries cannot be answered only using bounds r in
S
and r out

S
, points lying between Cin

S
and

Cout
S

can be used to compute CS . Figure 15 shows the fraction of such points in subtrajectories. We see that the
fraction of selected points decreases quadratically with increase in k . This can be attributed to our data structure
becoming increasingly selective with the increase in k , as the Pk

S
better approximates CS .

Since the online algorithm operates on a stream of points, we now measure the average time required to add
an incoming point to the heaps. The results appear in Figure 16. As the number of vectors is equal to the number
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Fig. 16. Average heap update time for an incoming point per dwell region query.
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Fig. 17. uery evaluation time per trajectory.

of heaps, we see that the average heap update time increases linearly with the increase in the number of vectors,
but remains within 0.04 seconds. Since the error in the approximated radius is O ( 1

k2 ), we can approximate the
radius of SEC to within 1% of the actual radius using k = 10.

Finally, Figure 17 plots the average time required to evaluate dwell region queries per trajectory in the datasets.
We observe that with GeoLife and ElkDeer datasets, the query evaluation time irst decreases with the increase
of the number of vectors and subsequently increases, and it increases with the increase of the number of vectors
while using the TDrive dataset. This behavior can be explained as follows: as the number of vectors increases,
our data structure becomes more selective, and we need to process far fewer points to compute CS . However, the
cost of inserting a point in the heaps increases linearly (as we can see in Figure 16). The dip and rise pattern we
see in Figures 17a and 17b is the combined efect of the two behaviors.

7.2 Performance of Ofline Dwell Region ueries

To evaluate the oline preprocessing methods for the archival data presented in Section 6, we built both the
ρ-Index and τ -Index for k ∈ {4, 6, 8, . . . , 14}. As discussed in Section 6.3, we choose the linear partitioning
scheme in the radius dimension of both of ρ-Index and τ -Index to avoid the highly skewed radius partitions.
Also, since our trajectories are constrained to relatively small geographic regions, so we set rmin = 0.6 miles
and rmax = 2.0 miles for both indexes. While building the τ -Index, we experimentally evaluate linear, quadratic,
and exponential partitioning schemes in the duration dimension, setting the number of temporal partitions to
M ∈ {3, 4, 5 . . . , 7}. Table 4 shows the parameter set for diferent partitioning schemes in the duration dimension
used for the τ -Index. Since the trajectories in all of our real datasets are collected at a variable sampling frequency
and span a much longer duration, we set the durations in hours for GeoLife and TDrive datasets. We increased the
durations from hours to days due to the very low sampling frequency of the ElkDeer dataset. We ran queries with
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rq ∈ {0.7, 0.9, 1.1, . . . , 1.9} miles for each τq ∈ {1, 3, 5, . . . , 31} hours while using GeoLife and TDrive datasets,
and for each τq ∈ {1, 3, 5, . . . , 31} days while using the ElkDeer dataset.

Partitioning Scheme
GeoLife & TDrive ElkDeer

τmin τmax τmin τmax

Linear 1 hour 64 hours 1 day 64 days

Quadratic 1 hour 49 hours 1 day 49 days

Exponential 1 hour 64 hours 1 day 64 days

Table 4. Parameters for diferent partitioning schemes in the temporal dimension used for the τ -Index.

We note that the oline dwell region queries operate on entire trajectories and not just on points within a
sliding window of ixed size. Therefore, without using indexes, we expect oline dwell region queries to take
much longer to execute than their online counterparts.
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Fig. 18. Speedup factor of the query evaluation time compared to the baseline approach (i.e., without any indexes) varying

the number of vectors k , for queries with rq = {0.7, 0.9, . . . , 1.9} miles, τq ∈ {1, 3, 5, . . . , 31} hours for GeoLife and TDrive

datasets, and τq ∈ {1, 3, 5, . . . , 31} days for the ElkDeer dataset.

Dwell region queries run without using indexes serve as the baseline approach with which we compare the
performance of our indexes. In this case, the online algorithm is directly applied to the trajectories in the archival
data. This is reasonable since ours is the irst work to address this problem for archival data. Figure 18 shows the
speedups in query evaluation time over the baseline when using ρ-Index and τ -Index with linear, quadratic, and
exponential partitioning schemes in the temporal dimension. Note the logarithmic scale. When using the ρ-Index,
the evaluation algorithm looks up preprocessed subtrajectory entries of the index and extends or shortens as
required, using the subsequence property. Therefore, as the number of vectors k increases, the queries get slower
as all the points in a trajectory need to be processed. Since the extension and shortening are cheaper operations
than processing whole trajectories, the ρ-Index achieves an order of magnitude speedup over the baseline on
GeoLife and ElkDeer datasets and is two orders of magnitude faster on the TDrive dataset. Further, as the τ -Index
does not use the subsequence property at all during query evaluation, a simple lookup into the index suices to
evaluate queries. As a result, increasing the value of k has a negligible efect on the query evaluation time. The
τ -Index speeds up dwell region queries by four orders of magnitude on GeoLife and TDrive datasets and three
orders of magnitude faster on the ElkDeer dataset.
Figure 19 shows that the preprocessing time for the ρ-Index increases linearly with the number of bins. This

is because the ρ-Index construction requires running queries on the archival data using bin radii as the query
radii, and the number of such preprocessing queries grows linearly with the number of bins. When considering
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Fig. 19. Preprocessing time for the ρ-Index for varying the number of bins.

the speedup in query evaluation time (Figure 18) and the preprocessing time (Figure 19) for the ρ-Index, we
see that both times are an order of magnitude higher for the GeoLife than the TDrive dataset. This is simply
because the GeoLife dataset has a higher sampling frequency and contains 1.5 times more spatial points than the
TDrive dataset (see Table 3), and our queries use the same time window for both datasets. We can expect the
same behavior for the τ -Index preprocessing time in Section 7.2.1.

Since using the τ -Index results in signiicantly lower query evaluation and preprocessing times than the ρ-Index
(Figures 19 and 20), we focus our discussion on the τ -Index for the remainder of this section. This is expected
because unlike the two-dimensional τ -Index, the one-dimensional ρ-Index maintains the subsequence property
while preprocessing and requires subtrajectory entries to be extended or shortened while evaluating queries (as
we discussed in Sections 6.1.3 and 6.2).

7.2.1 Efect of partitioning schemes on τ -Index build time. The time needed to build a τ -Index depends on two
factors: the number of partitions of the temporal and radius dimensions, and the partitioning schemes used for
each dimension. As discussed in Section 6.3, under our settings, we expect most dwell regions to be of short radii
and durations. Hence, cells that store entries with low values of ri and τi have more entries than other cells. The
τ -Index does not utilize the subsequence property.
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Fig. 20. Average preprocessing time for the τ -Index for varying the number of vectors k , averaged ∀M ∈ {3, 4, . . . , 7}.

Figure 20 shows the average time (averaged overM ∈ {3, 4, . . . , 7}) to build a τ -Index using all three partitioning
schemes for the duration dimension, with varying number of vectors k . Two observations follow: irst, we see
that with increase in k , the preprocessing time for each partitioning scheme remains nearly constant while using
the GeoLife dataset (Figure 20a), and increases very slowly for ElkDeer and TDrive datasets (Figures 20b and 20c).
Although the heap data structure becomes more selective as k increases, and fewer points need to be processed
when computing CS , a large number of dwell region queries still need to be run to build the index. Overall, the
higher selectivity does not suice to make a measurable diference in the index build time. Next, in the GeoLife
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dataset, we observe that the linear partitioning scheme results in a higher preprocessing time than the quadratic
or the exponential schemes. This is because the cost of sorting entries per cell afects the preprocessing time more
than the increase in k . In the linear scheme, the cells span equal temporal ranges, and with higherM , the number
of entries per cell increases, in turn increasing the sorting overhead and thereby the average preprocessing time
relative to the other two schemes. However, the rate of increase is linear inM .

 0

 10000

 20000

 30000

 40000

 50000

 3  4  5  6  7

P
re

p
ro

ce
ss

in
g
 t

im
e
 (

in
 s

e
co

n
d
s)

Number of temporal partitions, M

τ-Index (exp)
τ-Index (quadratic)
τ-Index (linear)

(a) GeoLife Data

 0

 10

 20

 30

 40

 50

 60

 70

 80

 3  4  5  6  7

P
re

p
ro

ce
ss

in
g
 t

im
e
 (

in
 s

e
co

n
d
s)

Number of temporal partitions, M

τ-Index (exp)
τ-Index (quadratic)
τ-Index (linear)

(b) ElkDeer Data

 0

 1000

 2000

 3000

 4000

 5000

 6000

 3  4  5  6  7

P
re

p
ro

ce
ss

in
g
 t

im
e
 (

in
 s

e
co

n
d
s)

Number of temporal partitions, M

τ-Index (exp)
τ-Index (quadratic)
τ-Index (linear)

(c) TDrive Data

Fig. 21. Average preprocessing time for the τ -Index for varying the number of temporal partitions M , averaged ∀k ∈

{4, 6, . . . , 14}.

Figure 21 shows the variation in τ -Index preprocessing time with the number of temporal partitionsM using
linear, quadratic and exponential partitioning schemes. The τ -Index build time irst increases, and then becomes
nearly constant for M ≥ 6 for Elkdeer and TDrive datasets. However, on the GeoLife dataset while linear
partitioning, the preprocessing time is high for lower values of M , decreases thereon, and then for M ≥ 6,
becomes nearly constant.

AsM increases, the τ -Index preprocessing times are afected by two factors. First, the number of dwell region
queries required to compute the τ -Index increases, as a query needs to be run per partition of the duration
dimension. This increases the preprocessing time. Second, the number of entries in each cell decreases withM ,
thereby decreasing the cost of sorting and storing the entries in the cells. When using the quadratic and the
exponential partitioning schemes, in the GeoLife dataset, the irst factor dominates and the preprocessing time
increases with the number of partitions as the cells of larger duration are added to the index. However, since the
dataset has far fewer dwell regions of higher durations, corresponding cells also have fewer entries, so forM ≥ 6,
the additional entries in the these cells do not signiicantly add to the index build times, and we see the plateau.
When using the linear partitioning scheme to build the τ -Index, the cells span equal ranges of duration. Having
more smaller cells decreases the total preprocessing time slightly as the cost of sorting and storage decreases due
to fewer entries.

Conversely, the sampling frequency for ElkDeer and TDrive datasets is relatively low. Therefore, these datasets
contain more dwell regions as the query duration increases, which increases the number of entries in the
higher-duration cells. As the cost of sorting and storing cell entries increases, so does the preprocessing time.

7.2.2 Efect of partitioning schemes on τ -Index query evaluation time. The query evaluation time when using
a τ -Index highly depends on the relative number of the entries in the cells of the τ -Index. Figure 22 shows
the change in query time with change in the number of vectors, k . We notice that quadratic and exponential
partitioning schemes perform better than the linear partitioning on the GeoLife dataset, the quadratic partitioning
scheme performs better on the ElkDeer dataset, and all schemes perform similarly on the TDrive dataset. We also
observe that the query evaluation time for all partitioning schemes remains nearly constant for any value of k .
This is because the bulk of the query processing cost when using a τ -Index is disk I/O, so the better pruning of
points aforded by high values of k does not help in answering queries faster.
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Fig. 22. uery evaluation time using the τ -Index and varying the number of vectors k , for queries with rq = {0.7, 0.9, . . . , 1.9}

miles, τq ∈ {1, 3, 5, . . . , 31} hours for GeoLife and TDrive datasets, and τq ∈ {1, 3, 5, . . . , 31} days for the ElkDeer dataset.
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Fig. 23. uery evaluation time using the τ -Index and varying the number of temporal partitions M , for queries with

rq = {0.7, 0.9, . . . , 1.9} miles, τq ∈ {1, 3, 5, . . . , 31} hours for GeoLife and TDrive datasets, and τq ∈ {1, 3, 5, . . . , 31} days for

the ElkDeer dataset.

Figure 23 shows the query evaluation time for the τ indexes with all three partitioning schemes for diferent
values ofM . We noted in Section 7.2.1 that an increase in number of cell entries is directly proportional to the
preprocessing and query times. The efect is clearly visible in our experiments, with increase in number ofM , the
query processing time increases, irrespective of partitioning scheme used. However, quadratic and exponential
partitioning schemes using the GeoLife dataset perform better than the linear scheme with approximately 50%
faster queries. This is because both of quadratic and exponential partitioning create more cells that span smaller
durations, closer to the low duration dimension values than the linear partitioning. This means smaller cells hold
roughly the same number of entries, and therefore can be used to answer the dwell region queries faster.

7.3 Scaling the Number of Trajectories

Having established the performance advantages of the τ -Index in our earlier experiments, we now evaluate its
scalability as the number of trajectories grows to 500K. Real datasets of such size are generally unavailable, so
we chose the road network of Riverside County, and generated synthetic datasets with 100K, 300K, and 500K
trajectories, each covering a duration of one week, using the trajectory generator of [3]. This road network covers
an area of 7,304 sq mi (166 mi × 44 mi), and has 92,607 nodes and 58,546 edges.
Dwell region query parameters must be carefully chosen to get meaningful dwell regions, and depend on

factors such as object speed and sampling frequency. If the sampling frequency is low and the object is moving
rapidly, two successively sampled points on its trajectory are likely to be far away from each other. Dwell regions
of small query radius may be missed. For example, say that an object moving at an average speed of 20 mph is
sampled every 20 seconds. The object travels about half a kilometer (≈ 0.33 miles) in a minute, and we get 3
points per minute on the trajectory, with an average separation of 0.11 miles. If a dwell region query has rq = 0.33
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miles and τq = 1 minute, we are likely to ind some dwell regions, since successive object positions are within
0.33 miles during this minute. On the other hand, if the same trajectory is sampled every 90 seconds, the distance
between two subsequent points can exceed rq = 0.33 miles. No dwell region will be found for the same trajectory.
There is also the risk of generating too many dwell regions. Continuing with the same example, if the object

moves at 20 mph along a straight line, and the sampling frequency is 20 seconds, every set of three successively
sampled points will remain within 0.33 miles of each other, so that every point on the trajectory gives rise to a
dwell region. These parameters identify too many dwell regions, all of them likely meaningless, as they simply
relect the default motion of the object.
Based on such considerations, we set the sampling frequency in our trajectory generator to 10 seconds, and

the maximum speed to 80 mph. On average, with these parameters, the generated trajectories had speeds of ∼ 20
mph, and between 168 and 170 points (see Table 5).

No. of trajectories No. of spatial points Average trajectory size

100K ∼ 16 million 168
300K ∼ 50 million 170
500K ∼ 82 million 169

Table 5. Summary of synthetic trajectory datasets generated on the Riverside county road network with sampling frequency

10 seconds.

We used a quadratic partitioning scheme for the time dimension in the following experiments, since the results
from Section 7.2.1 show that it has better preprocessing time than the other schemes on real datasets. We built the
τ -Index using k = 8 vectors, and the number of temporal partitions,M = 5. In the real datasets the preprocessing
time increases very slowly when k ≥ 8 andM ≥ 5. Given the relatively high sampling frequency (10 seconds),
we consider the duration dimension for the τ -Index in minutes.
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Fig. 24. Synthetic trajectory datasets. (a) Number of dwell regions for queries with τq = 9 minutes and 0.1 ≤ rq ≤ 1.0 miles.

(b) Drilling down for 0.2 ≤ rq ≤ 0.6 miles (The y-axis scale is logarithmic).

7.3.1 Number of dwell regions. We irst examine the efect of query radius rq on the number of dwell regions.
For a given τq , a dwell region subsumes all dwell regions of smaller radius. Figure 24a shows the number of dwell
regions for queries with τq = 9 minutes, for 0.1 ≤ rq ≤ 1.0 miles. For a ixed τq , the number of dwell regions
increases exponentially with query radius. Figure 24b drills down on Figure 24a, focusing on 0.2 ≤ rq ≤ 0.6
miles, where the same exponential increase is apparent (the y-axis scale is logarithmic). This result highlights
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the importance of choosing a meaningful query radius (e.g. 0.3 miles), based on the sampling frequency and the
number of trajectories in the dataset. Clearly, most of the dwell regions identiied are uninteresting, arising from
the relation between object behavior and query parameters, as we have discussed earlier.

7.3.2 τ -Index build time. We next examine the efect of the number of trajectories on the τ -Index build time.
We built each τ -Index for the synthetic datasets with k = 8 and M = 5, using τmin = 4 minutes and τmax = 36
minutes. Each τ -Index incorporated 10 radii, following the linear partitioning scheme from rmin = 0.1 miles to
rmax = 1.0 miles. We chose the linear partitioning scheme in the radius dimension so as to avoid highly skewed
radius partitions (see Section 6.3).
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Fig. 25. Synthetic trajectory datasets. τ -Index preprocessing time, with k = 8 vectors,M = 5 temporal partitions and total

number of index entries in the τ -Index.

Figure 25 shows that the τ -Index preprocessing time grows quadratically with the number of trajectories
in the synthetic datasets. The number of trajectory points increases linearly with the number of trajectories,
which are all sampled at the same frequency (Table 5). However, the index stores dwell regions, not trajectory
points. Therefore, we examine how the number of index entries grows with the number of trajectories. Figure 25
also shows the total number of index entries in the τ -Index. The number of index entries increases with the
increase in number of trajectories, which justiies the increasing preprocessing time with the increase in number
of trajectories.

8 CONCLUSIONS

In this paper we have considered the dwell region query in spatio-temporal databases. This query identiies
regions where a moving object stays within a certain distance for at least a certain duration. We have reduced
the problem of identifying dwell regions to computing smallest enclosing circles (SEC) of subtrajectories of the
moving object. We have also examined the related decision query that determines whether a dwell region (or
dwell behavior) exists or not for a moving object’s trajectory. We have irst considered the online version of the
problem and proposed a method that evaluates the decision query in logarithmic time, by maintaining the upper
and lower bounds for the radius of the SEC of a subtrajectory. This also signiicantly reduces the number of
spatial points that should be considered in order to approximate the radius of the SEC. In all experiments, we have
observed that the upper and lower bounds suice to answer on average 97.1% − 99.9% decision queries without
computing the SEC. Moreover, to approximate the radius of the SEC we have to consider only 4.5% − 13.5%
spatial points on average. As a result, our approach is capable of evaluating the online version of dwell region
queries on hundreds of thousands of moving objects per second. We have also examined the oline version of
the problem using archival datasets of trajectories. We have introduced two indexes that evaluate dwell region
queries by looking into few candidate subtrajectories: the ρ-Index that indexes subtrajectories by radius ranges,
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and the τ -Index further reines the approach to index subtrajectories by radius and duration ranges. Experiments
have shown that using ρ-Index and τ -Index, we achieve at least an order of magnitude speedup and at least three
orders of magnitude speedup respectively, over a baseline approach, for inding dwell regions. Moreover, the
τ -Index ofers orders of magnitude better preprocessing and query evaluation performance over the ρ-Index.
Finally, experiments using synthetic datasets where the number of trajectories goes up to 500K, have validated
the scalability of the τ -Index.
An interesting future research direction is to detect common dwell regions for groups of trajectories in both

streaming and archived environments.
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