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the provided distributions.
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1 INTRODUCTION

In many published papers, researchers often need to test their implementations of new index structures or query

execution methods on large scale spatial data. While some real datasets exist, the research community also needs to

try datasets with specific characteristics to highlight how the proposed research behaves under certain circumstances.

Synthetic data generation gives researchers full control over the data characteristics such as data skewness, complexity

of geometries, or amount of overlap between datasets.

This article proposes a practical tool for generating synthetic spatial datasets with various skewed distributions.

These generators have been successfully used in existing research to evaluate index construction, query processing,

spatial partitioning, and cost model verification. While the generators are already used in many papers, there is a fact

that the researchers rarely describe the details of generating these datasets for two reasons. First, it is not usually a

research contribution and the authors do not want to draw attention to it. Second, it takes a precious space of the paper

that authors usually prefer to utilize for other parts.

This gem takes the burden of describing, in detail, how to generate synthetic data of six common distributions. As

the gems are designed to be flexible, it fits very well the generation of synthetic data where other researchers can add

more datasets in the future.

Figure 1 gives an overview of the main parts of the proposed generator. First, the dataset descriptor is a vector that

contains information about the dataset to be generated. It acts a unique identifier for the synthetic dataset and it consists
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Fig. 1. Overview of the spatial generator

of three parts, (1) the distribution ID 𝑖 ∈ [1, 6] for six implemented distributions, (2) the model parameters depending

on the chosen distribution, and (3) a transformation matrix used later by the transformer. The first two components

of the dataset descriptor, i.e., distribution ID and model parameters, are passed to the generator which generates the

desired dataset. After that, the transformer applies an affine transformation on the generated data according to the

third component of the dataset descriptor.

Since the dataset descriptor fully identifies the generated dataset, researchers who use these generators can simply

cite this gem and list the descriptors of the datasets they used. Other researchers can then regenerate the same datasets

following the same procedure described in this gem. For guidance, it provides a reference implementation [1] to all the

generators as a supplementary material, but researchers can develop other generators that follow the same guidelines,

e.g., a Spark-based generator for big spatial data. For example, Table 1 at the end of this gem defines the six datasets

used in this article.

The final component, combiner, can be used to create compound datasets by simply merging two or more simple

datasets. In this case, the descriptor of the compound dataset is simply the concatenation of all the descriptors of the

simple datasets.

As shown in Figure 1, this gem uses six different distributions for generating the simple datasets, which are all

described in the next section.

2 DATA GENERATORS

This section describes the six synthetic generators which are used in this gem, namely, uniform, diagonal, Gaussian,

Sierpinski, bit, and parcel. Some of these generators are inspired by a benchmark developed by Beckmann and Seeger [2].

This article provides more details about these generators and defines some additional generators. Each generator 𝐺∗
takes a list of common parameters [𝑐𝑝1, 𝑐𝑝2, . . . ] and a list of distribution-specific parameters [𝑠𝑝1, 𝑠𝑝2, . . . ]. For the
family of generators that are considered in this gem, there are two common parameters, the dataset cardinality

(𝑐𝑎𝑟𝑑) specifying the total number of geometries and the number of dimensions (𝑑). The generator here considers the

generation of two-dimensional geometries; the extension to multi-dimensional datasets is straightforward.

For all these generators, the reference space that contains the generated data is [0, 1]𝑑 , where 𝑑 is the number of

dimensions. Additionally, these generators assume the existence of a random number generator Rnd() which generates

random numbers in the range [0, 1). This generator can be used to generate random numbers for three popular

distributions, Bernoulli, Uniform, and Normal, as follows
1
.

1
More efficient implementations are usually available in standard packages
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𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝) =
{

1 ;Rnd() < 𝑝

0 ;𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(1)

𝑈 (𝑎, 𝑏) = (𝑏 − 𝑎)Rnd() + 𝑎 (2)

𝑁 (𝜇, 𝜎) = 𝜇 + 𝜎
√︁
−2 lnRnd1 () · sin(2𝜋Rnd2 ()) (Box and Muller [3]) (3)

Algorithm 1 shows the general schemata of the first five generators, namely, uniform, diagonal, Gaussian, Sierpinski,

and bit distribution. These five generators can generate both points and rectangles. Points are generated using the

GenPNT∗ methods, described shortly, while rectangles are generated by using these points as centers. Lines 1,2 initialize

the result set G to the empty set and the random number generator. If desired, the seed of the random number generator

can be fixed to generate exactly the same random dataset. The loop in lines 3-11 generates one record at a time.

Line 4 calls a generic GenPNT∗ function that is different for each generator. This function returns a random point

(𝑥,𝑦) according to the desired distribution. Then, Line 5 tests if the point is inside the reference space [0, 1]𝑑 as some

generators can generate points outside that space, e.g., Gaussian. If the point is inside the reference space, the algorithm

continues by generating randomwidth and height for the rectangle by using the parameters 𝑠𝑝1 and 𝑠𝑝2 as the maximum

allowed width and height. Finally, a rectangle is generated with (𝑥,𝑦) as the center and (𝑤,ℎ) as its dimensions, i.e.,

the corner point is at (𝑥 −𝑤/2, 𝑦 − ℎ/2). The notation 𝐵𝑜𝑥 (𝑥,𝑦,𝑤,ℎ) is used to indicate a box with its lower corner

point at (𝑥,𝑦) and has dimensions of𝑤 and ℎ.

The following parts are the descriptions of the point generators (GenPNT∗) for the first five distributions and then

the parcel distribution which generates rectangles directly without generating points first.

Algorithm 1: 𝐺∗ (): basic algorithm for the first five generators.

Input: 𝑐𝑎𝑟𝑑, 𝑑 = 2, 𝑠𝑝1, . . . , 𝑠𝑝𝑛
Result: Set of geometries: G = {𝑔𝑒𝑜𝑚}

1 G ← ∅; 𝑖 ← 0;

2 Initialize the random number generator;

3 while 𝑖 < 𝑐𝑎𝑟𝑑 do
4 (𝑥,𝑦) ← GenPNT∗ (𝑖, 𝑠𝑝3, . . . , 𝑠𝑝𝑛);
5 if (𝑥,𝑦) ∈ [0, 1]𝑑 then
6 𝑤 = 𝑈 (0, 𝑠𝑝1);
7 ℎ = 𝑈 (0, 𝑠𝑝2);
8 G = G ∪ {𝐵𝑜𝑥 (𝑥 −𝑤/2, 𝑦 − ℎ/2,𝑤, ℎ)};
9 𝑖 ← 𝑖 + 1;

10 end
11 end
12 return G

2.1 Uniform

In the uniform distribution, points are generated randomly inside the reference space [0, 1]𝑑 as shown in Figure 2(a).

This distribution models non-skewed data such as data in suburban areas. No additional specific parameters are needed

for this generator. The point (𝑥,𝑦) is generated using the following equations.

3
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(a) Uniform distribution (b) Diagonal distribution (c) Gaussian distribution

Fig. 2. Examples of the first three distributions

𝐺𝑒𝑛𝑃𝑁𝑇𝑢𝑛𝑖 () = (𝑥 = 𝑈 (0, 1), 𝑦 = 𝑈 (0, 1)) (4)

2.2 Diagonal

The diagonal point generator generates points that are concentrated around the diagonal line 𝑥 = 𝑦 as illustrated in

Figure 2(b). This distribution models real data concentrated around a line such as a river bank or a highway. The affine

transformation, described later, can be used to arbitrarily rotate this line. This generator takes two additional parameters

𝑝𝑒𝑟𝑐 and 𝑏𝑢𝑓 , where 𝑝𝑒𝑟𝑐 ∈ [0, 1] is the percentage (ratio) of the points that are exactly on the line, and 𝑏𝑢𝑓 ∈ [0, 1]
is the size of the buffer around the line where additional points are scattered. The additional points are scattered

according to a normal distribution. Algorithm 2 illustrates the generation of a point using the diagonal distribution.

Line 1 decides with a probability 𝑝𝑒𝑟𝑐 to generate a point exactly on the diagonal. Otherwise, with probability 1−𝑝𝑒𝑟𝑐 , it
generates a point that is shifted with a distance 𝑑 from the center. The distance is generated from the normal distribution

𝑁 (0, 𝑏𝑢𝑓 /5) which has almost a 99% probability in generating a number in the range [−𝑏𝑢𝑓 , +𝑏𝑢𝑓 ]. This distance is
then divided by

√
2 to calculate the orthogonal offset for 𝑥 and 𝑦. Finally, the point location is generated.

Algorithm 2: GenPNT𝑑𝑖𝑎 (𝑝𝑒𝑟𝑐 , 𝑏𝑢𝑓 )

1 if 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝𝑒𝑟𝑐) = 1 then
2 𝑥 = 𝑦 = 𝑈 (0, 1);
3 else
4 𝑐 = 𝑈 (0, 1);
5 𝑑 = 𝑁 (0, 𝑏𝑢𝑓 /5);
6 𝑥 = 𝑐 + 𝑑/

√
2;

7 𝑦 = 𝑐 − 𝑑/
√
2;

8 end
9 return (𝑥,𝑦);

4
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2.3 Gaussian

In the Gaussian distribution, the points are concentrated around the center of the input space (0.5, 0.5) as illustrated in

Figure 2(c). This distribution can model real data concentrated around a point such as a metro area. The coordinates

follow a normal distribution 𝑥,𝑦 ∼ 𝑁 (0.5, 0.1). This ensures that almost 99% of the points fall in the box [0, 1]𝑑 . If
points are generated outside that space, the loop in Algorithm 1 will drop the point and generate another one. This

might make the data distribution is a bit different from original Gaussian distribution. In summary, the Gaussian point

generator follows the following formula.

GenPNT𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = (𝑥 = 𝑁 (0.5, 0.1), 𝑦 = 𝑁 (0.5, 0.1)) (5)

2.4 Sierpinski triangle

In this case, the skewed distribution is obtained by applying a rule for generating points that belong to a fractal (the

Sierpinski’s triangle) [4]. Figure 3(a) gives an example of this data. This pattern could be found in many real model

such as cellular automata or motors. This rule is based on an iterative approach such that the generation of the next

point of the set depends on the current point and a random function. The function GenPNT𝑠𝑖𝑒 (𝑝𝑛𝑡, 𝑖) has two specific

parameters: the previous point of the iteration 𝑝𝑛𝑡 and the iteration variable 𝑖 . It generates a two-dimensional point at

each iteration as follows:

GenPNT𝑠𝑖𝑒 (𝑝𝑛𝑡, 𝑖) =



(0.0, 0.0) if 𝑖 = 0

(1.0, 0.0) if 𝑖 = 1

(1/2,
√
3/2) if 𝑖 = 2

MiddlePoint(𝑝𝑛𝑡, (0.0, 0.0)) if 𝑖 > 2 ∧ Dice(5) ∈ {1, 2}
MiddlePoint(𝑝𝑛𝑡, (1.0, 0.0)) if 𝑖 > 2 ∧ Dice(5) ∈ {3, 4}
MiddlePoint(𝑝𝑛𝑡, (1/2,

√
3/2)) if 𝑖 > 2 ∧ Dice(5) = 5

where Dice(5) = ⌊𝑈 (0, 5)⌋ +1 is a random function producing a number between 1 and 5 andMiddlePoint(𝑝𝑛𝑡1, 𝑝𝑛𝑡2)
computes the middle point between two points, 𝑝𝑛𝑡1 and 𝑝𝑛𝑡2. Notice that, the first three points are the corners of

the triangle; the successive points are generated starting from the current point 𝑝𝑛𝑡 and computing the middle point

between 𝑝𝑛𝑡 and one of the vertices of the triangle chosen according to the random function Dice(5). The vertices of
the base are chosen with a probability of 2/5, the other vertex with a probability of 1/5. Figure 3(a) shows an example

of the resulting set.

2.5 Bit distribution

Another approach for generating a skewed point dataset is to introduce a rule for generating the coordinates of the points

by assigning higher probability to a subset of coordinates. For instance in the Bit distribution, the point coordinates are

generated as a bit string of a fixed length where each bit is set with a fixed probability 𝑝 ∈ [0, 1]. This generator takes
two parameters, 𝑝 and 𝑑𝑖𝑔𝑖𝑡𝑠 , where 𝑝 represents a fixed probability of setting each bit independently to 1 and 𝑑𝑖𝑔𝑖𝑡𝑠

represents the number of binary digits after the fraction point. It generates a point in a higher dimensional space by

setting each dimension independently in the same method as shown below:

GenPNT𝑏𝑖𝑡 (𝑝, 𝑑𝑖𝑔𝑖𝑡𝑠) = (Bit(𝑝, 𝑑𝑖𝑔𝑖𝑡𝑠), Bit(𝑝,𝑑𝑖𝑔𝑖𝑡𝑠))

where Bit(𝑝,𝑑𝑖𝑔𝑖𝑡𝑠) generates a real number between 0.0 and 1.0 as shown in the following Algorithm 3,

5
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(a) Sierpinski distribution (b) Bit distribution (c) Parcel distribution

Fig. 3. Examples of the last three distributions

Algorithm 3: Bit(𝑝, 𝑑𝑖𝑔𝑖𝑡𝑠)
Input: 𝑝, 𝑑𝑖𝑔𝑖𝑡𝑠
Result: Real number: 𝑛

1 𝑛 ← 0.0; 𝑖 ← 0;

2 for 𝑖 = 1 to 𝑑𝑖𝑔𝑖𝑡𝑠 do
3 𝑐 ←Bernoulli(p);

4 𝑛 ← 𝑛 + 𝑐/2𝑖 ;
5 end
6 return 𝑛

2.6 Parcel distribution

This generator directly generates rectangles according to the parcel distribution. The parcel distribution generates

geometries that represent boxes of different sizes as illustrated in Figure 3(c). This distribution can model land sections

delineated in urban areas.

In addition to the cardinality 𝑐𝑎𝑟𝑑 of the generated dataset, the parcel generator takes two specific parameters 𝑟 and

𝑑 , where:

• 𝑟 ∈ [0, 0.5] is the minimum tiling range for splitting a box. 𝑟 = 0 indicates that all the ranges are allowed while

𝑟 = 0.5 indicates that a box is always split into half.

• 𝑑 ∈ [0, 1] is the dithering parameter that adds some random noise to the generated rectangles. 𝑑 = 0 indicates no

dithering and 𝑑 = 1.0 indicates maximum dithering that can shrink rectangles down to a single point.

Algorithm 4 describes how the parcel generator works. The first loop in lines 3-15 repetitively splits the reference

space [0, 1]𝑑 along one of the two axes 𝑥 and 𝑦. It always splits along the longer axis of the given box. This loop runs

𝑐𝑎𝑟𝑑 − 1 times as it generates one new box at each iteration.

The second loop in lines 16-19 adds the dithering effect by shrinking each box with a ratio 1 −𝑈 (0, 𝑑). This means

that if 𝑑 = 0, the ratio will always be equal to 1.0 which means no shrinking. If 𝑑 = 1.0, the ratio can reach up-to 1.0

which shrinks the boxes all the way to a single point.

6
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Algorithm 4: 𝐺𝑝𝑎𝑟𝑐𝑒𝑙 (𝑟, 𝑑): Generated boxes of the parcel distribution

Input: 𝑐𝑎𝑟𝑑, 𝑑 = 2, 𝑟 , 𝑑

Result: Set of geometries: G = {𝑔𝑒𝑜𝑚}
1 Initialize the random number generator;

2 G ← {𝐵𝑜𝑥 (0, 0, 1.0, 1.0)};
3 while |G| < 𝑐𝑎𝑟𝑑 do
4 𝑏 ← G.dequeue;
5 if b.width > b.height then
6 splitSize = b.width ∗𝑈 (𝑟, 1 − 𝑟 ) ;
7 𝑏1=Box(b.x, b.y, splitSize, b.height);

8 𝑏2=Box(b.x + splitSize, b.y, b.width - splitSize, b.height);

9 else
10 splitSize = b.height ∗𝑈 (𝑟, 1 − 𝑟 ) ;
11 𝑏1=Box(b.x, b.y, b.width, splitSize);

12 𝑏2=Box(b.x, b.y + splitSize, b.width, b.height - splitSize);

13 end
14 G.enqueue(𝑏1); G.enqueue(𝑏2);
15 end
16 for 𝑏 ∈ G do
17 𝑏.𝑤𝑖𝑑𝑡ℎ = 𝑏.𝑤𝑖𝑑𝑡ℎ · (1 −𝑈 (0, 𝑑));
18 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 · (1 −𝑈 (0, 𝑑));
19 end
20 return G

3 POST TRANSFORMATIONS

This section describes two methods that can giver further flexibility on customizing the generated data, transformation

and compounding. The transformation method applies a simple affine transformation on the generated geometries. The

compounding method combines several datasets by simply unifying all their geometries.

3.1 Affine Transformation

The generators described above are designed to be very simple on purpose. Instead of complicating each generator,

most of the customization is moved to this step. This step simply applies a standard affine transformation to all the

generated geometries. In the case of points, the transformation is applied to the coordinates of the point. For rectangles,

the transformation is applied to the two opposite corners, i.e., the lower left and upper right corners. This ensures that

the rectangle remains orthogonal even after rotation which is usually desired in data structures and algorithms that

deal with bounding boxes.

An affine transformation is defined by a fixed-size matrix. For two-dimensional data, the affine transformation

transforms a point (𝑥,𝑦) to a transformed point (𝑥 ′, 𝑦′) according to the following equation.


𝑥 ′

𝑦′

1

 =

𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6

0 0 1



𝑥

𝑦

1

 (6)

7
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Distribution ID 𝑐𝑎𝑟𝑑 𝑑 𝑠𝑝1 𝑠𝑝2 𝑠𝑝3 𝑠𝑝4 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

Uniform (Figure 2(a)) 1000 2 0.02 0.02 1 0 0 0 1 0

Diagonal (Figure 2(b)) 1000 2 0.01 0.01 0.2 0.1 1 0 0 0 1 0

Gaussian (Figure 2(c)) 2000 2 0.1 0.1 1 0 0 0 1 0

Sierpinski (Figure 3(a)) 1000 2 0.01 0.01 1 0 0 0 1 0

Bit (Figure 3(b)) 5000 2 0.01 0.01 0.3 10 1 0 0 0 1 0

Parcel (Figure 3(c)) 1000 2 0.2 0.2 1 0 0 0 1 0

Table 1. Identifiers for the six sample datasets shown in this paper. For simplicity, all of them use the identity transformation (affine)
matrix

where 𝑎1 · · ·𝑎6 are the parameters of the affine transformation. This formula could be modified to work with higher

dimensional data.

3.2 Compound Datasets

The final stage is to combine several datasets of either the same distribution but different parameters, different

distributions, or with different transformation matrices. Show some examples of how combining datasets can generate

new interesting datasets.

Fig. 4. Example of compound dataset obtained by combining two different Gaussian distributions and one diagonal distribution.

3.3 Identifying Datasets

Based on the proposed method, each generated simple datasets, i.e., not compound, can be identified using a fixed

vector. This vector is the one illustrated in Figure 1 and it contains the generator model 𝐺∗, the common parameters

𝑐𝑎𝑟𝑑 and 𝑑 , the specific parameters 𝑠𝑝1 · · · 𝑠𝑝𝑛 , and the affine transformation matrix parameters 𝑎1 · · ·𝑎6. Researchers
who use the generators described in this paper can simply list all these parameters in a table to allow other researchers

to generate datasets of the same characteristics. For example, Table 1 identifies the six sample datasets illustrated in

Figure 2 and 3.

4 SPIDER: WEB-BASED SPATIAL DATA GENERATOR

The proposed spatial data generator is available as open source [1] in Python for users with basic programming skills.

In order to serve a wider range of users, Spider Web [5, 6] was proposed as a web-based spatial data generator based

on the proposed design. Figure 5 shows a simple example of data generation using Spider Web. Users can choose the

distribution type, parameters, and affine matrix in the panel on the left. The visualization immediately reflects how the

dataset will look like. Users can then download the selected dataset with an arbitrary size in standard formats, CSV,

WKT, or GeoJSON. Furthermore, as illustrated in Figure 5, users can generate multiple datasets and visually compare

8
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Spider: Spatial Interactive Data Generator

How to use Spider !Copyright © 2020 UC Riverside

Datasets Add

#1 uniform.csv " # $ %
#2 diagonal.csv " # $ %
& #3 gaussian.csv " # $ %
#4 parcel.csv " # $ %

' Distribution parameters
' Distribution
Gaussian

' Cardinality
500

' Seed

' Geometry
Point

' Format
CSV

' Affine matrix (Click to hide)
' a1 (Sx)
1

' a2 (Rx)
0

' a3 (Tx)
0.7

' a4 (Ry)
0

' a5 (Sy)
1

' a6 (Ty)
0

More ways to access this dataset
' Permalink

(
' Python Code (Instructions) !

(

https://spider.cs.ucr.edu/?G&500&2&&point&1,0,0.7,0,1,0

+
−

#

Fig. 5. Spider Web: Online service for spatial data generation [https://spider.cs.ucr.edu]

them. Finally, Spider Web provides a permalink for any generated dataset that can be shared between team members

or researchers to promote the reproducibility of results. With these comprehensive features, Spider Web aims to be a

standard tool to improve the reproducibility of experiments in the spatial research community.
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