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Abstract— Multi-robot task allocation is a practical way to
identify synergies between robots. When all the robots within
a system fall under the auspices and authority of a single
organization, they can simply be compelled to share their
information and participate in cooperative protocols. But when,
for instance, they are rivals vying in the marketplace, their
own private data may be copyrighted or sensitive, so that
disclosing information may erode a competitive advantage. Yet,
even limited cooperation, by offering some arbitrage of common
resources (such as shared infrastructure), often reduces costs
for all parties; indeed, competition and cooperation are not
mutually exclusive. We examine the question of how to allocate
robots to tasks optimally while ensuring that no task valuations,
utilities, positions, or related data are released. We do this via an
auction-based assignment algorithm implemented using secure
multi-party computation operations, without requiring any
trusted auctioneer. The approach offers precise and effective
privacy guarantees that are stronger than present methods.
We demonstrate the feasibility of the approach via tests in a
case study inspired by autonomous driving. First, we tested
the approach in a single-computer setup, using parties with
virtual network interfaces, where we studied the effects of
varying the number of parties and the associated parameters
of the auction. Next, we tested the approach in a decentralized,
physical test-bed using single board computers running over
a WiFi LAN network. Finally, we conducted a small proof-
of-concept experiment using two autonomous mobile robots
performing a decentralized, private auction.

I. INTRODUCTION

Multi-robot task allocation addresses the problem of multi-

robot coordination by decomposing the work that a set of

robots seeks to accomplish into smaller, self-contained sub-

elements called tasks, and then matching robots to those

tasks. A variety of classical algorithms have been employed

in robotics to solve the simplest case of this combinatorial

problem [25], viz. for the single-robot tasks, single-task

robots, instantaneous assignment (ST-SR-IA) problem. These

include direct methods, ranging from heuristic techniques

(such as picking greedy associations), to exact direct so-

lutions (e.g., the Hungarian method, Linear Programming

approaches). Such methods are usually implemented via a

centralized algorithm on a single node that computes on

aggregated data. When this happens, that node is privy
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Fig. 1: A demonstration experiment: Subfigure (a) shows the initial position
of the robots. At the end of the auction, each robot will be assigned a target.
In subfigure (b) both robots start their motion toward their assigned targets.
In (c) robot 2 detected an object and stops to avoid a collision using infrared
sensors. Finally, in (d), both robots reached their target positions

to task evaluation information for each robot. Sharing this

information may be undesirable.

In contrast, so-called market-based techniques are alter-

natives that are intrinsically more distributed. They em-

ploy auctions (e.g., [48], [24], [4]) or other economics-

inspired means (e.g., [30]), and they may apply to ST-SR-

IA instances, or more involved forms that allow additional

constraints (e.g., [27], [12]). Though these approaches are

more decentralized in general, they do usually involve some

arbitrator (for auctions, termed an auctioneer). Less informa-

tion is proffered to this party: bids are typically not placed

on undesirable items/tasks, their values are only indirectly

and imprecisely divulged. Even so, these are merely informal

privacy properties and what is disclosed will vary depending

on the items/tasks and robots participating. When informa-

tion security is vital, new techniques with stronger privacy

guarantees —such as the one we provide— are valuable.

The key innovation in this paper is that it shows how to

use secure m-party computation (SMC) to enable distributed

task-allocation without the robots revealing their preferences,

nor the participating robots learning others’ final assign-

ments. We describe a probabilistic variant of the auction

algorithm for assignment [21], [4], modified for the SMC

setting. This algorithm, though implemented using crypto-

graphic primitives, is practically feasible for real systems,

illustrated via the experiments we conduct (including in a

small-scale case study with basic robotic hardware).

Briefly, contributions of the paper can be summarized

as: it presents a privacy preserving solution to the multi-

robot task allocation problem, along with specialized privacy

preserving constructions for the case of multi-vehicle rout-

ing. We provide an analysis of the algorithm (specifically:

correctness and its probabilistic behavior, aspects of its



complexity, and the compositional-basis for its security). And

then we describe our fully distributed implementation of the

approach, report data from experiments, and a demonstration

on physical hardware (see Figure 1). We also present a case

study of autonomous vehicle ride-sharing for participants

who require transportation between locations while preserv-

ing privacy.

II. RELATED WORK

Multi-robot task allocation (MRTA) is a central problem

in multi-robot teaming and distributed robot systems [38];

it involves the assignment of robots to tasks to maximize

the collective performance of the system. Several reviews

of this sub-area have been published [26], [28], [35], [25],

speaking to both the applicability of the approach and the

rapid evolution of the area. Part of the increment of the

work deals with more complex, constrained, or specialized

variants of the problem (e.g., [40], [45], [43]). One nascent

line of work, highly relevant to the present study concerns

robust or resilient task allocation (e.g., [32], [46], [34], [36]).

Perhaps the closest work in spirit to the present paper is that

of Prorok and Kumar [39], where an assignment problem is

tackled where information leakage is explicitly considered

as undesirable. That paper uses the differential privacy set-

ting [20], where adding suitable noise will suffice, as distinct

from the cryptographically secure model considered herein.

Our work is inspired by the use of Secure Multi-Party

Computation (SMC) in auctioneering outside the robotics

setting. Several types of auctions and benchmarking pro-

cedures have been proposed (see [14] for an overview and

examples). Particularly related to our approach is Denmark’s

sugar beets auction problem [6], one of the first real-world

deployments of SMC. In addition, [7] and [8] are prior

works on maintaining fairness, privacy, and transparency in

allocation and assignments.

Our approach employs the same techniques and tools as

some of the recent applications of Machine Learning using

Shamir Secret Sharing (SSS). Examples include Deep Neural

Networks [1], Decision Trees [18], and Ridge Regression [5].

These approaches modify ML algorithms to use secure

primitives that work on shared data; we provide similar

modifications too. Secret Sharing has also been used in

sensor processing where privacy is desired, such as fall

detection [31]. Our work also connects with research that

applies different SMC techniques to problems in estimation,

control, robotics and sensor fusion [29], [2], [47].

III. PRELIMINARIES AND PROBLEM FORMULATION

We have a group of m robots that are moving in a two-

dimensional workspace W ⊂ R
2, containing an obstacle

region O ⊂ W . The robots move in the free space of the

environment, defined as E =W\O. The robots are modeled

as points in E , and each senses its own position via, say, GPS

or other sensors (perhaps along state estimation techniques).

There will be m tasks that the robots need to accomplish,

each of the robots has a valuation that encodes the preference

for each task. We will denote by vi,j the preference that

the i-th robot has for the j-th task. Let V be the valuation

matrix, whose entries are vi,j . The goal of our protocol will

be to assign robots to tasks. Let A be the assignment matrix

comprising entries ai,j with ai,j = 1 if robot i is assigned

task j and ai,j = 0 otherwise.

Privacy-Preserving MRTA: Given a group of m robots

and m tasks, obtain an assignment A which maximizes the

sum of the selected valuations, without revealing either the

robots’ valuations V or the tasks assigned to others.

IV. SECURE MULTY-PARTY COMPUTATION FRAMEWORK

We will succinctly describe only the basic elements of

Secure Multi-party Computation used in this paper. For a

complete treatment, see standard references [15], [22].

A. Shamir Secret Sharing

We employ MPC based on Shamir Secret Sharing

(SSS) [42]. This procedure distributes S , a secret, to a group

with m parties, by creating m shares {S1,S2, . . . ,Sm} with

the following properties: i ) every subset of t parties can

recover the secret and ii ) no subset of (t− 1) or fewer can

reconstruct the secret.

SSS relies on the fact that t points are sufficient to

uniquely determine a polynomial on a finite field GF (p)
(with p a prime of appropriate size) of degree less or

equal than t − 1. We represent the secret S as an element

b0 ∈ GF (p) and then choose randomly t − 1 elements

b1, b2, . . . , bt−1 from GF (p) to build the polynomial f(x) =
b0+b1x+b2x

2, . . . , bt−1x
t−1. After the polynomial is built,

m points are obtained from this polynomial (i, f(i)) with

i ∈ {1, . . . ,m} and each given to the participant i. This

procedure is shown in Protocol 1 [11].

Protocol 1 ShamirShare(S,m, t, p)

Inputs: S ∈ GF (p) the secret, m the number of parties,

t threshold for reconstruction, p cardinality GF (p)
Output: Shares [s]j for each of the m parties

1: Party Pi selects b1, b2, . . . , bt−1 from GF (p)
2: foreach j ∈ {1, 2, . . . ,m}

3: [s]j ← S +
t−1
∑

k=1

bkj
k

4: Send [s]j to party Pj

5: end foreach

The secret S can be reconstructed if t or more parties com-

bine their shares. Any subset of t parties can interpolate the

polynomial to obtain f(0) = S = b0. This is achieved by the

routine OpenShare(A, [s]) [11], where [s] are the shares of

the secret and A is a set of parties with |A| > t. OpenShare

can be implemented using Lagrange interpolation [11].

B. Secure Operations on Secrets

One key aspect of SSS is that it allows each party to

perform locally linear computations of secrets and public

values. These linear combinations of secrets and public

values include:

• Addition of secrets [c] ← [a] + [b], in which each

party Pi computes locally its share of the result

[c]i ← [a]i + [b]i.



• Addition of a secret and a public value [c]← [a]+α,

α ∈ GF (p) in which each party Pi computes locally

its share of the result [c]i ← [a]i + α.

• Multiplication of a secret and a public value

[c]← [a] · α, where α ∈ GF (p) in which each party Pi

computes locally its share of the result [c]i ← [a]i · α.

We will write the addition operation on secrets as

Sum([a], [b]), where [x] represents the shares of x for

x ∈ {a, b}. Another important primitive in shares is

Mul ([a], [b]) that calculates the product of two shared num-

bers. This operation requires an interactive protocol to ensure

that the resulting polynomial is uniformly random and has a

degree t. (An implementation can be found in [11].)

Several other important operations can be built using these

primitives. For example, Inner([a], [b]) which calculates the

inner (dot) product between two shared vectors a and b

(vectors are shared elementwise). Inner can be implemented

naively via Sum and Mul or through a customized protocol.

Also, we will use other operations on shares built on

these primitives such as LEqualThan([a], [b]), which takes

two shared scalars a, b ∈ GF (p) and returns 1 if a > b

and 0 otherwise, and Min([a]) which returns a share of the

smallest number in the shared vector [a]. Details on these

primitives can be found in [11] and implementations in the

packages VIFF [23] and MPyC [41].

V. METHODS

We will perform the m × m assignment through the

AUCTION algorithm [4], [21], where one might consider the

interpretation of each robot as a self-interested agent acting

in a market. Each task j will have a price, denoted price[j],
and the robot needs to pay this price to get assigned this

task. Therefore, the utility that each robot will get by getting

assigned task j is ui,j = vi,j − price[j]. Each robot wants

to obtain an assignment that maximizes its utility.

A. Privacy-Preserving Auction Algorithm

Protocol 2 gives the proposed procedure for carrying out

task allocation via a secure auction, where bidding is man-

aged via MPC primitives using shares. In the pseudocode,

Pi is the party whose Vi valuation row is an input to the

Auction , and ShamirShare is used to split the shares between

all parties to maintain privacy. Boolean variable ‘match’

indicates if the given matrix [A] leads to an assignment (a

perfect matching), i.e., one that has none of the m parties

claiming the same task. The vector variable ‘prices’ is

shared among all robots, initialized with 0 values, and is

monotonically increased over time to resolve ties. In lines 4–

12, each Pi computes their preferences locally and securely

enters the computation.

After each auction round, lines 13–23 determine whether

there is a winner who will be assigned a task if [A] is a

match. Otherwise, every Pi will compute the δ, the difference

between the two highest utilities |u
(1)
i − u

(2)
i | and again

share it securely between the parties using ShamirShare .

This is so that all the parties will jointly compute the value

[inc] which is the increment for to the ‘prices’ vector to

Protocol 2 Auction(V )

Inputs: [V ] = {[V1], [V2], . . . , [Vm]} where

each vector [Vi] = {[vi1], [vi2], . . . , [vim]}
Output: [A] = {[A1], [A2], . . . , [Am]} where

each vector [Ai] = {[ai1], [ai2], . . . , [aim]}

1: Initialize: prices← {0, 0, . . . , 0}
2: match← False

3: while ¬match do

4: foreach i ∈ {1, 2, . . . ,m} do in parallel

5: Pi locally computes ui ← (vi − prices[i])
6: Pi locally computes posi ← argmax(ui)
7: Pi locally sets ai ← {0, 0, . . . , 0}
8: Pi locally sets ai,posi ← 1
9: foreach j ∈ {1, 2, . . . ,m}

10: Pi shares ai,j into [ai,j ]← ShamirShare(ai,j)

11: foreach i ∈ {1, 2, ...,m} do in parallel

12: Pi computes match← IsAMatch ([A])

13: if match then

14: return [A]

15: else

16: Pi computes δi ← |u
(1)
i − u

(2)
i |

17: Pi shares δi into [δi]← ShamirShare(δi)

18: Pi computes [inc]←Min(δ)

19: if LEqualThan([inc], [1]) then

20: [inc]← [ǫ]

21: [C]← {
m
∑

i=0

[ai,1],
m
∑

i=0

[ai,2], . . . ,
m
∑

i=0

[ai,m]}

22: foreach j ∈ {1, 2, ...,m} do

23: if GreaterThan([Cj], [1]) then

24: prices[j]← prices[j] + [inc]
25: end while

break the tie existing between the parties. In the case that

LEqualThan([inc], [1]), we add a small numerical value: [ǫ].
The column totals are placed in [C] for all [A]. In lines 23–

24, we check if GreaterThan([Cj], [1]) so that we increase

the ‘prices’ vector by [inc] at the j-th position.

Protocol 3 (see the next page) is designed to check if the

given assignment matrix [A] is a perfect match based on a

probabilistic algorithm that is dependent on the calculated

determinant of a matrix [X]. The determinant of [A] being

zero can be an indication that some task may still be

unassigned; unfortunately, it can also result when there is

redundancy (or additional choice). The solution we employ,

inspired by the idea of probabilistic polynomial identity

testing introduced in the Schwartz–Zippel lemma [19], is to

pick random directions from the values that are assigned. On

the basis of A, in Protocol 3, we construct a random matrix

X: each zero element in A gives a corresponding zero in

X , but each ai,j = 1 results in a non-zero xi,j , picked as a

random integer between {1, . . . , 2m}. (See Lines 2–7.) We

then compute the determinant of the resulting X; if A has

some unassigned task, so the matching is not perfect, then

Determinant(A) = 0 and also Determinant(X) = 0. The

false positive that Determinant(A) = 0 but the matching

is perfect, will result in Determinant(X) = 0 only if the



Protocol 3 IsAMatch ([A])

Inputs: [A] = {[A1], [A2], . . . [Am]} where each

vector [Ai] = {[ai1], [ai2], . . . , [aim]}
Output: True if [A] has a match, otherwise False.

1: [X] ← [zero(X, len(A)]
2:3: foreach t ∈ {1, 2, . . . , k} do

4: foreach i ∈ {1, 2, . . . ,m} do

5: foreach j ∈ {1, 2, . . . ,m} do

6: if ai,j = 1 then

7: [xi,j ]← RandInt([1, . . . , 2m])

8: else

9: [xi,j ]← [0]
10: [d]← Determinant([X])
11: if Equal([d], [0]) then

12: return False

13: return True

random selections also happens to be linearly dependent.

From [19], we see that the preceding gives a randomized

protocol with error probability less than 1
2 . By running this

protocol k times (Line 1), we can make the probability of

error arbitrarily small. Our secure determinant was inspired

by [5] where we use a secured determinant function based

on secured primitives (line 8) to compute the determinant of

matrix [X]. In lines 9–10, if [d] is Equal to 0, then return

false, and terminate the loop. Otherwise, iterate through the

process again. Only after k successes, does it return true.

B. Complexity

We will proceed to calculate the complexity of the algo-

rithm, first in the time required for each individual party, and

then in communication and round complexity related to the

interactive parts of the protocol.

1) Computational Complexity: The computational com-

plexity of protocol 2 depends on the number of auction

rounds r (While loop in Line 3, Protocol 2). Lines 5 and

8 are constant (O(1)), while lines 6 and 7 are O(m), where

m is the number of parties and tasks. The time required

in line 15 is O(k · m3) in the worst case, i.e., when

Protocol 3, IsAMatch ([A]), is called. Here, k is parame-

ter of the randomized algorithm for checking the match,

while O(m3) represents the computational complexity of

calculating the determinant of an m × m matrix. Since k

is a fixed small constant (in practice, 4 or 5 is suffices to

get a high probability of match detection), we will write

it as O(m3). The function call in line 15 dominates the

computational complexity for the while-loop in each round

of the protocol. Therefore, the worst-case complexity for

Protocol 2 is O(r ·m3), where r is the number of auction

rounds and m is the number of tasks.

2) Round Complexity: The other factors that affect the

performance of the algorithm are the round and communica-

tion complexity. A round is a logical unit of the protocol

when the parties must block to wait for messages from

other parties to continue their computation [11]. To illustrate:

unlike local addition of shares (for Sum([a], [b])), the multi-

plication primitive Mul ([a], [b]) requires one round of com-

munication to be completed. The reader is referred to [11]

for round complexity analysis of several SSS primitives.

The primitives in lines 10 and 19 in Protocol 2 take 1
communication round, while the primitives in lines 20, 21,

and 26 take 4+log(ℓ+2) communication rounds [11], where

ℓ is the length in bits of p in GF (p) (e.g., if p = 2ℓ − 1).

Since the while-loop in line 3 repeats per round, it would be

r ·(2+3(ℓ+4)+γ), where γ is the number of rounds needed

by line 14, which calls Protocol 3 (i.e., IsAMatch ([A])).

Protocol 3’s number of rounds includes k · m2 calls to

RandInt (each of which takes takes one round [11]), a call

to Determinant (which can be implemented in a constant

number of rounds d following the protocols presented in [5],

[13]), and a call to Equal (which takes 2 + log(ℓ) rounds).

Therefore, γ = 2+log(ℓ)+k ·m2+d and the total number of

rounds for Protocol 2 is r·(2+3(ℓ+4)+2+log(ℓ)+k·m2+d).

C. Correctness and Convergence

Our privacy-preserving algorithm is based on the AUC-

TION algorithm for optimal assignment presented in [4], [21],

and as such it inherits its convergence and approximation

properties as it will be discussed in the following subsections.

Proposition 1: Protocol 2 halts after a finite number of

steps and finds a match with a probability of at least

1−
(

1
2

)k
, where k is the parameter that randomized match

checking procedure of Protocol 3.

Proof Sketch: The termination analysis is based on the

ideas in [21]. Procedure of protocol 2 will stop when the

vector ‘prices’ becomes market-clearing, so that each robot

gets assigned a different task in the assignment matrix. It can

be proven (see [21, Chapt. 10, and references therein]) that

for any set of robot valuations, there exists a set of market-

clearing prices. Unlike [21, chapt. 10], we do not solve the

bipartite matching problem, but instead, owing to the privacy

requirement of our approach, implement IsAMatch . It has at

least 1− ( 12 )
k probability of success in detecting matches.

D. Security Analysis

Proposition 2: Protocol 2 is secure under the semi-honest

model when fewer than 1
2m parties are corrupted.

Proof Sketch: The analysis of the security of Protocol 3

based on Canetti’s Universal Composition framework [10]

that enables the modular analysis and design of complex

cryptographic protocols from simple building blocks.

More specifically, Protocol 2 is built upon these

7 primitives: ShamirShare , LEqualThan , Min , GreaterThan ,

RandInt , Equal , and Determinant . Each of these primitives

have been proven to be either perfectly secure or statistically

secure under a passive adversary. See [11] (plus references

therein) for the first 6 primitives; the comparable result for

Determinant appears in [5], [13].

Therefore, if at some point during the execution of the

protocol, the adversary has access to at most t < m
2 shares

of the Shamir’s (t,m)-threshold secret sharing scheme the



reconstructed secret will be a random element in the field

GF (p). Thus, the privacy property holds.

VI. EXPERIMENTAL RESULTS

A. Case Study

Motivation for our ideas comes from the problem of ride-

sharing vehicles wherein clients ought to be transported

between places, but privacy between elements participating

in the system is a valuable. Autonomous cars may wish to

perform their tasks cooperatively whilst maintaining their

privacy, working in a decentralized fashion so that multiple

parties jointly perform a set of tasks without disclosing

private information. One wishes that there is a fair approach

to guarantee a satisfying assignment to all parties.

Our problem is formulated as follows: different au-

tonomous robot taxis R = {r0, . . . , rm} are requested to

transport a set of clients C = {c0, . . . , cm} between points

g = {g0, . . . , gm} based on distance D = {d0, . . . , dm}
guaranteeing that set of tasks T = {t0, . . . , tm} are con-

ducted privately using our secure Protocol 2.

We are interested in testing our Protocol 2 for task allo-

cation in R
2 in a world using robots as a proof-of-concept.

Each robot knows its location as well as the coordinates

of the targets C = {c0, . . . , cm}, through a visual fiducial

system [37] (this will be discussed in more detailed in

Section VI-D.

We calculate the distance between robot ri to the targeted

positions in R
2 following the ideas in [17, Chapt. 5]. The Eu-

clidean distance di between ri and ci is privately computed

in R
2 by finding the square root of the dot product where

the distance between gi and gj determines ri’s preferences.

We assume every ri wishes to get the furthest distance di to

maximize their return.

B. Single Computer Experiment

The single computer experiment was done using one

computer which runs on an Ubuntu 18.04 LTS machine with

an Intel i7 3.60GHz CPU and 16 GB RAM using Python 3.

Each simulation experiment runs 30 times. Every time ri
receives a random coordinate from the world R

2. Each party

has a communication profile, which contains an IP and port

number preserved for TCP/IP socket connections, and that

is used to communicate with other parties.

Each party runs in a different virtual network interface

that is associated with an MPyC asynchronous operation

as discussed in detail here [16]. This means the auction

runs with parties using a TCP/IP connection between each

possible pair of parties, for a total of
(

m
2

)

connections

where m is the number of parties. The simulation results

are constructed after the robots reach the optimal allocation

where they run the distributed algorithm using the virtual

interfaces.

Every m − by − m simulation experiment is conducted

30 times with random positions of robots R and clients

C. The destinations g is computed based on finding the

Euclidean distance d as mentioned previously. Every sim-

ulation experiment consists of a different number of rounds

where the number of rounds depends on the number of ties

between parties preferences. Our results are promising and

precise, but the number of parties bidding in the auction plays

an important role in finding a fast match. For example, an

auction between 3 parties will take less time than an auction

between 10 as shown in Figures 2 and 3. We observe that

most of the time spent is to break the ties between conflicting

parties. For clarifications, each green triangle in the figures

represents the average of round or time respectively. Some

outliers shown as solid rounds appear in a few figures in

particular experiments.

Our single computer experiment was conducted on a range

of 3× 3, 5× 5, 7× 7, and 10× 10-sized auctions between

simulated parties. Figures 2 and 3 show the number of rounds

and time in ms required for each experiment depending

on the m × m size of the array. Of note is that while

time increases at a exponential rate (appropriate provided

the nature of matrix operations), the number of comparative

operations, rounds, increases almost linearly.

Fig. 2: Number of rounds for auctioning m different simulated target
locations and m simulated parties on single computer.

Fig. 3: Time (in ms) for auctioning m different simulated target locations
and m simulated parties on single computer on a logarithmic scale.



Following this, in Figures 4 and 5, a series of tests were

carried out on 5 × 5 arrays in which the increment value,

ǫ, is increased. As a general trend, an increasing value of

ǫ leads to a decreasing number of rounds and total time.

However, this seems to reach a limit and converge, as

values significantly over 1 (the value used as reference) saw

continuously decreasing outputs.

Fig. 4: Number of rounds by Epsilon value for auctioning 5 different
simulated target locations and 5 simulated parties on single computer.

Fig. 5: Time (in ms) by Epsilon value for auctioning 5 different simulated
target locations and 5 simulated parties on single computer.

We also vary the values for k to 3, 4, 5, and 6. There

appears to be no direct correlation between a change in its

value and a change in either time or rounds taken as shown

in Figures 6 and 7.

C. Distributed Computer Experiments

We conducted a 3 × 3 experiment using 3 single board

computers each with a 1.5GHz 64-bit quad-core CPU (4GB

RAM) in a distributed fashion. Each single board computer

runs a Raspbian OS, and communicates through WiFi LAN

predefined with the MPyC package.

Fig. 6: Number of rounds by k value over 30 experiments on 5-by-5
assignment grids.

Fig. 7: Time (in ms) by k value over 30 experiments on 5-by-5 assignment
grids.

Figure 8 shows the single board computers as well as

three other dummy targets randomly placed on the map.

Each party set their preferences by calculating the distances

between their own position and positions of the targets and

then, jointly participating in the auction. (See Figure 9.)

Fig. 8: Distributed Single Board Computer setup

The average time for the 30 experiments on 3 single

board computers and 3 target locations in Figure 10 (e) was

considerably longer than the experiment performed on the

single computer because the specs of the single board com-





the specific focus of study herein. An interesting question is

to ask whether the addition of dummy elements leaks any

important information.
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