This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3212013

On Structural Rank and Resilience
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Abstract—A sparsity pattern in R™*™, for m > n, is a
vector subspace of matrices admitting a basis consisting
of canonical basis vectors in R"*™. We represent a
sparsity pattern by a matrix with 0/x-entries, where
x-entries are arbitrary real numbers and 0-entries are
equal to 0. We say that a sparsity pattern has full
structural rank if the maximal rank of matrices con-
tained in it is n. In this paper, we investigate the degree
of resilience of patterns with full structural rank: We
address questions such as how many x-entries can be
removed without decreasing the structural rank and,
reciprocally, how many *-entries one needs to add so as
to increase the said degree of resilience to reach a target.
Our approach goes by translating these questions into
max-flow problems on appropriately defined bipartite
graphs. Based on these translations, we provide algo-
rithms that solve the problems in polynomial time.

Index Terms—Sparsity patterns,
matchings, max-flows, passivity

graph theory,

I. INTRODUCTION

The development of network-enabled systems [1]-[4]
is creating new opportunities for integrating theretofore
disconnected systems. These systems, however, come with
new challenges associated with their secure and resilient
operation in the face of network-level faults, or even
malicious actors intentionally aiming to disrupt their
functionality. An inherent challenge in problems related
to the resilience of these systems against faults or attacks
stems from their combinatorial nature, which is induced
by the network interconnections. Indeed, the removal or
addition of a communication link in a network is a binary
operation and does not fit well within the framework
of robust control theory. Closely related to the network
resilience problem is the study of structural properties
of dynamical systems. The structure is often described by
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graphs, where the sparsity pattern of the system parameters
indicate the presence or absence of edges in an associated
graph. The so-called structural system theory aims to
determine whether controllable or stable dynamics can be
sustained by a given system structure, which is described
via a sparsity patterns for the system matrices [5]-[12].

In this paper, we address a novel resilience problem for
structural system theory. A basic object in that domain is a
sparsity pattern, i.e., a vector space of matrices admitting
a basis comprised only of canonical basis vectors. We
represent them as matrices with 0/x-entries, where the x
denote arbitrary real entries. The starting point of our
analysis is to determine whether a given sparsity pattern
contains an open set of matrices of full rank. Necessary
and sufficient conditions for this requirement to hold are in
fact well known and can easily be described using a graph
machinery (see Lemma 3). The core problems we address
in this paper go beyond that. We consider the resilience
of the full-rank property of these sparsity patterns—here,
resilience refers to the property of a sparsity pattern being
full-rank after the removal of x-entries (which can be viewed
as attacks on communication links). The list of specific
problems will be presented in Subsection I-B.

The application areas of this work encompasses prob-
lems related to structural stability of linear systems [13],
structural controllability of linear ensemble systems [8],
and passivation of networked systems [14]. For the sake of
illustration, we elaborate on the last application domain
in Subsection I-A.

Outside of the control theory literature, problems seeking
to understand the structural rank of sparsity patterns have
also been addressed in the mathematical literature. In
particular, we mention the minimum rank problem, which
aims to determine the minimum rank of real symmetric
matrices in a sparsity pattern (where the x-entries have
to be nonzero); see [15], [16] and the references therein
for a comprehensive survey on this subject. A typical
approach to the minimal rank problem involves analyzing
a corresponding inverse problem, which is trying to identify
a graph structure from the spectrum of a matrix [17].
Some other relevant work include the rank reduction of the
adjacency matrix of a directed graph (digraph) by vertex
and/or edge deletions [18].

A. Application: Resilience for Network Passivation

To illustrate the importance of the sparsity patterns for
network systems and their influence on network robustness
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(a) Block-diagram of the net-
work system (X, II, M).

(b) Passivation of the system
over the interconnection M.

Fig. 1: A general network system and a network passiva-
tion approach.

and resilience, we will look at a general network systems
architecture. The present subsection is thus meant to
provide a system theoretic motivation for the problems
mentioned above, but the remainder of the paper does not
rely on the notions introduced here.

Consider an ensemble of n agents and m controllers that
may exchange state information over a network represented
by a matrix M € R™*™. For ease of exposition, we let the
entries of M be either 0 or 1. In this sense, when M;; = 1, it
means that controller j has access to state information from
agent 7. The matrix M can therefore also be associated
with a graph G = (V, E) with |V| = n + m nodes, and
edge-set E describing the sparsity pattern of M.

For this setup, we assume the agents and the controllers
are associated with the dynamical systems ¥; : u; — y;
for i = 1,...,n and 1I; : {5 — p;, for j = 1,...,m.
Here we assume the agent dynamics and controllers are
SISO systems (i.e., wi, ¥s, Cj, 5 € R). The loop is closed
by taking ((t) = M Ty(t) and u(t) = —Mpu(t). This
interconnection structure is motivated by the association
of each controller with a set of agents. Thus, controller j
receives a linear combination of the outputs of adjacent
agents (the adjacency relation is encoded in the jth column
of M), and distributes its control output back to the
same set of agents. We denote such systems by the triplet
(X,1I, M), shown in Fig. la. Note that if the matrices M
are taken to be the incidence matriz of a graph G, then
the system (X, II, M) describes the well-known diffusively
coupled networks [19]-[21].

The stability of the interconnection in Fig. la can be
guaranteed by the (output-strict) passivity of the systems
¥, and passivity of the controllers II; [21], [22]. In many
applications, however, it may not be possible to guarantee
the passivity of the agents ¥;. This corresponds to some
or all of the agents possessing a negative passivity index;
see [23], [24] for more details on this notion. Nevertheless,
it is still desirable to be able to interconnect these so-
called passive-short systems with each other to achieve
group coordination tasks. In this direction, there have been
recent works that aim to passify these agents over the
network itself [14], [25], [26]. This architecture can be seen
in Fig. 1b, where the gains v; are chosen to ensure the
system from external input @ to output § = y is passive.
If this can be achieved, then it can be shown that the
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network interconnection (i, I1, M) is stable, where ) maps
@ to output ¢ [14]. The conditions for which this is possible
were explored in [14]. The main result can be extended
to the general network structure M, so we state it below
without a proof:

Lemma 1. Let R = diag(p1,...,pn) be a diagonal
matrix containing the passivity index p; of each agent
3, and assume that p; < 0 for at least one agent.
If R + Mdiag(y)M " is positive-semi definite, then X,
mapping u(t) to §(t) as in Fig. 1b, is passive with re-
spect to any steady-state input-output pair. Moreover, if
R + M diag(y)M " is positive-definite, then X is output-
strict passive. Furthermore, there exist scalars ~y;, for
i = 1,...,m, such that R + M diag(y)M " > 0 if and
only if xT Rz > 0 for any nonzero x € Ker(M ).

This result shows that for a given network matrix
M, it may not even be possible to guarantee a network
passivation scheme that ensures output-strict passivity of
¥. At the same time, it hints that for a given set of passivity
indices p;, a change to the network matrix M may allow
for output-strict passivation. This result also shows that
for a full-rank matrix MM T, it will always be possible
find a single gain ~ such that R +~yMM ™ > 0.

With this setup, we can now motivate the study of the
structural rank of the interconnection matrix M. For a
matrix M with a given sparsity pattern, how many of its
entries can be removed, corresponding to compromising the
network connection between an agent and controller, before
the matrix loses rank. In the case where the network is
being used to also passify the agents, this loss of rank may
lead to the loss of passivity of %, thereby destroying the
convergence guarantees of the network system (i, IT, M).
To illustrate this, we present a brief example.

Example 1. We consider an ensemble of n = 4 identical,
but unstable plants, with dynamics of each agent described
by the SISO transfer function ¥;(s) = (s 4+ 0.5)/(s — 1)
for i € {1,...,4}. It can be verified that the agents are
output passive-short, with p = —2.! The agents are to be
controlled according to the architecture in Fig. 1a with the
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Fig. 2: The network matrix M in (a) and its graph
representation in (b). Each column of M represents a
controller II, while each row corresponds to a system ;.

1The passivity index can be computed, for example, in MATLAB
using the command getPassiveIndex.
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network matrix M, illustrated in Fig. 2. Since M is full
rank, according to Lemma 1, the ensemble can be passified
(and stabilized) over the network using the architecture in
Fig. 1b and with gain v > 3.4142 (found using, for example,
semi-definite programming [14]).

Consider now a scenario where an attacker successfully
disables controllers IT; and Ilg (corresponding to nulling
columns 1 and 6 in M). Even whith such an attack, the
matrix M maintains full column rank and can still be
passified, now with a gain of v > 13.7082. On the other
hand, if in addition the connection between X3 and II3 is
severed (i.e., changing entry Mj3 to 0), then M loses rank
and it is no longer possible too passify the system over
the network. Consequently, the architecture of Fig. 1la can
not be used to control the ensemble and the attacker was
successful in disabling the system. O

The above example illustrates the importance of struc-
tural rank for networked systems. Applications that can rely
on this analysis include plug-and-play control for networked
systems [27]-[29].

B. Problem formulation and contributions

In this subsection, we formulate the core problems
addressed in this paper. We start by introducing the notions
of sparsity patterns and their rank.

A sparsity pattern S(n,m) in R™*™ (or simply § if (n,m)
is clear from the context) is a vector subspace that admits
a basis consisting only of matrices E;;’s, i.e., matrices with
1 on the ijth entry and 0 elsewhere. Such a vector space
is thus fully determined by the pairs (4, ), which indicate
the entries of matrices in S that are not always zero. We
denote by E(S) the collection of all such pairs, hence
dim S = |E(S)|. We refer to the entries of S(n, m) indexed
by E(S) as x-entries, and the other entries as 0-entries.

Definition 1 (Rank of sparsity pattern). The rank of a
sparsity pattern S, denoted by rk S, is the maximal value
of the ranks of matrices in S:
rk S := max (rk A).
AeS

It should be clear that rk S(n,m) < min{n, m}. Return-
ing to the example of Section I-A, we are interested in
finding sparse matrices M such that MM is full rank
(i.e., rank n). Thus, we assume in the sequel that m > n.

The set of sparsity patterns of the same parameters
(n,m) admits a natural partial order:

Definition 2 (Partial order on sparsity patterns). Given
patterns S(n,m) and §'(n,m), we write S’ = S if E(S') 2
E(S) and §' - S if E(S’) 2 E(S).

We now precisely define the notions of resilience studied
in this paper:

Definition 3a (Resilience). Given positive integers n and
m with m > n, a sparsity pattern S(n,m) of rank n is
exactly k-resilient, for 0 < k < |E(S)|, if the following
hold:
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1) All patterns 8’ < S with |E(S")| > |E(S)| — k are of
rank n;

2) There exists an " < S with |E(S")| = |E(S)|—k -1
whose rank is less than n.

We denote by rslS the degree of resilience of S.

In general, finding the degree of resilience of a zero-
pattern is a difficult problem. We introduce below a slightly
stronger notion of resilience, termed strong resilience, which
will allow us to develop fast algorithms to obtain bounds
on the degree of resilience.

To motivate this definition, observe that a sparsity
pattern S is exactly O-resilient if its rank is n and there
exists a pattern &’ < S whose rank is strictly less than n.
Thus, when expressing S as a direct sum of sparsity
patterns, it is clear that if any of the summand is of rank n,
then so is S. Following this fact, we now have the following
definition:

Definition 3b (Strong resilience). Given positive integers
n and m with m > n, a sparsity pattern S(n,m) of rank n
is exactly strongly k-resilient, for k > 0, if it contains a
direct sum? of (k + 1), but not (k + 2), sparsity patterns
each of which is 0-resilient. We denote by s-rslS the degree
of strong resilience of S.

On occasion, we will deal with sparsity patterns S(n,m)
that are not full rank, i.e., rkS(n,m) < n. By convention,
we set

(s-)rslS(n,m) :== =1 if tkS(n,m) < n.

Throughout this paper, we shall always consider the
exact degree of (strong) resilience of a sparsity pattern.
Thus, for convenience, we will omit “exact” in the sequel
if there is no confusion.

By the arguments outlined before Def. 3b, if a sparsity
pattern is strongly k-resilient, then it is at least k-resilient.
However, the converse is not true: there exist k-resilient
patterns which cannot be expressed as a direct sum of
(k + 1) patterns which are O-resilient (an example is given
in Fig. 4 below). Nevertheless, we will show in Corollary 2,
Section III-A that the gap between the two notions does
not have any impact on the minimal dimensions of patterns
meeting either definition. Specifically, if dj is the minimal
dimension of a k-resilient pattern (provided that it exists),

dy, == |E(‘S)|v

then there exists a pattern of dimension dj, which is strongly
k-resilient.

Standing from the perspective of a system designer, we
pose the following questions:

min
S:rslS=k

P1: Given a sparsity pattern S, what is its degree of
(strong) resilience?

P2: Given a sparsity pattern S, what is the least number
of x-entries one should add to obtain a degree of

2The direct sum S’ @ S”, for S',S"” C S, is well defined only if
S'nS" ={0}.
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(strong-)resilience k*? This problem can be expressed
as follows:

min |E(S¥)| s.t. 8 = S with (s-)rslS™ = k*.

P3: Given a sparsity pattern S, what is the largest degree
of (strong-)resilience we can achieve by adding p -

entries? This problem can be expressed as follows:
max (s-)rsl §* s.t. 8" = § with |E(8*)| = |E(S)| + p.

We pose the above questions for both resilience and
strong resilience. Focusing on strong resilience will lead
to polynomial-time algorithms that solve these questions
exactly, thereby providing bounds for resilience. The main
results are formulated in Theorem 3, Theorem 8, and
Theorem 9, respectively.

Outline of proofs: The first step in our analysis is to
assign a bipartite graph to a sparsity pattern, and to
relate the full-rank property, and its resilience, to the
existence of matchings in this graph. This is done in Sec. II.
We then proceed toward the first result, Theorem 1, in
which relying on a result of Konig [30] to characterize
the bipartite graphs corresponding to strongly k-resilient
patterns. This is done in Sec. III-A. Relying on Theorem 1,
we then translate the three problems formulated above into
problems about maz-flows over graphs. In more details,
we first create several variations on the bipartite graphs
associated with a sparsity pattern, by adding source and
target nodes, turning undirected edges into directed ones,
and appropriately assigning edge- and node-capacities.
We then introduce several max-flow problems defined on
these modified bipartite graphs and, moreover, prove that
integral solutions to these max-flows problems provide
solutions to the original problems P1-P3. Finally, we
demonstrate that these max-flow problems can be solved
using standard algorithms in polynomial time.

II. BIPARTITE GRAPHS, MATCHINGS, AND RESILIENCE
A. Background on graph theory and flows

We introduce the necessary background and notations
about graph theory and related flow problems. In this
paper, we will be concerned with bipartite graphs, i.e.,
graphs which admit a partition of their node set into two
disjoint components with the property that nodes in the
same components share no edge.

Denote by G(n,m) = (Vo U Vs, E) an undirected
bipartite graph on (n + m) nodes: by convention, there
are n left-nodes denoted by ag, ..., a, and m right-nodes
denoted by f1,...,Bm. On occasion, we will write G by
omitting the arguments (n,m) if it is clear from the context.
Each edge of G(n,m) connects a left-node with a right-
node. An edge in G(n,m) is thus denoted by (a, 3;). We
say that G’ = (V' E') is a subgraph of G if V' C V,, U V3
and E' C E. Given a node « in G, we denote by deg(a, G')
the degree of a relative to G’, defined as the number of
edges in E’ incident to « (equivalently, the number of
neighbors of a in G’). We will also consider below directed
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bipartite graphs; we denote the directed edge from «; to
Bj by aifj.

Recall that a matching in the graph G(n,m) is a set of
edges so that no two distinct edges are incident to the same
node. For n = m, a perfect matching P in G(n,n) is a set
of n edges such that each node of G(n,n) is incident to
exactly one of these n edges. For the general case m # n,
we introduce the following definition:

Definition 4 (Left-perfect matchings). A left-perfect
matching in a bipartite graph G(n,m) = (V, U Vg, E),
with m > n, is a set of n edges in E so that no two distinct
edges are incident to the same node.

Equivalently, G(n, m), for n < m, admits a left-perfect
matching if there exist n distinct right nodes 8;,,..., 5,
such that the subgraph G’(n,n) induced by the left-nodes
Vo and {Bi,,..., B, } has a perfect matching. We say that
two matchings P, and P» of G are disjoint if P, N Py =

Let G = (V, E) be an arbitrary digraph, with two
special nodes s,t € V', termed the source and target nodes,
respectively. The source node has no incoming edges and
the target has no outgoing edges. A capacity on G is a
function ¢ : E — R>q. Given the capacity, a flow on G is
a function f : E — Rxq such that

1) f(e) < c(e) for all e € E;
2) the following balance condition is satisfied at all nodes
veV —{st}

vaw

wiwwek

The value of the flow f is defined as

fle= ) flsv)= > fvt).

visvEE vivteE

(1)

(2)

We denote by F. the set of all flows on G with capacity
function ¢. The celebrated maz-flow problem [31] is the
optimization problem formulated as follows:

max [f1.

It is well known that finding a solution f* to the above
optimization problem can be done in polynomial time using,
e.g., the Ford-Fulkerson algorithm [32]. Note that a solution
to the max-flow problem is not necessarily integer-valued,
i.e., there may exist edges e such that f*(e) are not integers,
even if ¢ is integer-valued. However, if ¢ is integer-valued
(which will be the case in this paper), then the output
of the Ford-Fulkerson algorithm initialized at an integer-
valued flow is integer-valued as well, and thus provides
an integer-valued maximum flow [31]. This statement is
referred to as the integrality theorem.

A fundamental result in the study of max-flow problems
is the maz-flow min-cut theorem, which we briefly describe
here. To this end, we recall the definition of a cut in the
digraph G = (v, E) with the capacity function c¢: An s-t
cut (S,T) in G is a partition of the node set of G into two
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Fig. 3: We illustrate the correspondence between a sparsity
pattern in (a) and a bipartite graph in (b). The left- and
right-nodes are labeled as o; and §;, respectively. A star
in the ijth entry corresponds to the edge (c, ;) in the
bipartite graph.

disjoint sets S > s and T' > t. We denote the set of all s-¢
cuts in G as C. For a given cut (S,T) € C, we let

E(S,T) = {’Ui’l}j S E | v; €5, v € T}.
Then, the capacity of the cut (S,T) is defined as

Z c(e).

eEE_/"(S,T)

c(S,T) =

The min-cut problem is then formulated as follows

min ¢(S,T).
(8,T)eC

The max-flow min-cut Theorem [33] says the following:

Lemma 2. Given a digraph G with source s and target t
and capacity function c, let F. be the set of corresponding
flow maps on G and C the set of s-t cuts in G. Then,

ftréz};x lfl = (Sml)n c(S,T).

B. Graph theoretic view on (strong) resilience

To proceed, we establish some standard connections be-
tween graph theoretic concepts and the pattern properties
introduced here. First, to a given sparsity pattern S(n,m),
we can assign the bipartite graph G(n,m) = (Vo U V3, E)
on (n+m) nodes with edge set E given by the rule: the
ijth entry of S is a * if and only if (ay, §;) is an edge in
E. See Fig. 3 for an illustration.

Since this representation of sparsity patterns as bipartite
graphs is one-to-one, we also write (s-)rsl G to refer to the
degree of (strong) resilience of the corresponding pattern
S. We now relate (s-)rsl G to perfect matchings of G. The
following result is standard, and we include a proof in the
Appendix for completeness.

Lemma 3. A sparsity pattern S(n,m) is of rank n if and
only if its associated bipartite graph G(n,m) admits a left-
perfect matching.

As an immediate consequence of the above lemma, we
can characterize k-resilient bipartite graphs as follows:
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Lemma 4. A bipartite graph G =
if and only if the following hold:
1) For any subset E' C E with |E'| =k, G' =
Vg, E — E') contains a left-perfect matching;
2) There exists a subset E' with |E'| = k + 1 such that
G = (V,UVs, E — E') does not contain a left-perfect
matching.

(Vo UV, E) is k-resilient

(Vi U

We can also characterize strongly k-resilient bipartite
graphs using perfect matchings:

Lemma 5. A bipartite graph G is strongly k-resilient if and
only if it has exactly (k + 1) disjoint left-perfect matchings.

Proof. We first show that if G has exactly (k + 1) disjoint
left-perfect matchings, it is strongly k-resilient. Denote
by Pi,..., Pyy1 the disjoint left-perfect matchings in G.
By Lemma 3, the graph induced by each left-perfect
matching in G corresponds to a O-resilient sub-pattern
of 8. Furthermore, since the (k 4 1) left-perfect matchings
are disjoint, the sparsity pattern corresponding to their
union is the direct sum of the sub-patterns corresponding
to the P;. It then follows from Definition 3b that G is
strongly k-resilient.

We now show that if G is strongly k-resilient, then it has
exactly (k4 1) disjoint left-perfect matchings. First, note
that G' cannot have more than (k + 1) disjoint left-perfect
matchings because otherwise, by the above argument, G is
at least strongly (k + 1)-resilient. It remains to show that
G has at least (k + 1) disjoint left-perfect matchings. By
definition of strong resilience, S contains (k+1) subpatterns
Si,...,Sk+1 that are O-resilient and S; N'S; = {0} for
1 # j. Owing to the correspondence between sparse patterns
and bipartite graphs, to each subpattern corresponds a
subgraph of G. Denote these subgraphs by G1,...,Gr41.
Since each pattern is O-resilient, by Lemma 3, each G,
contains at least one left-perfect matching P;. Since S; N
S; = {0} for ¢ # j, it follows that G; and G; are edge-wise
disjoint and, hence, P; and P; are disjoint as well. We have
thus shown that G has at least (k4 1) disjoint left-perfect
matchings, which concludes the proof. O

III. MAIN RESULTS
A. On k- and strong k-resilience

From Lemma 5, we know that a strongly k-resilient
pattern is associated with a bipartite graph that contains
exactly (k + 1) disjoint left-perfect matchings. To better
understand strong resilience, we characterize graphs that
can be obtained as unions of disjoint left-perfect matchings:

Theorem 1. A bipartite graph G(n,m), for m > n, is a
union of k, for 1 < k < m, disjoint left-perfect matchings
if and only if the following hold:

1) The degree of each left-node is exactly k;

2) The degree of each right-node is less than or equal to k.

Note that the degree of each right node of G(n,m) is at
most n, so for k& > n, item (2) of Theorem 1 holds trivially.
It is not too hard to see the bipartite graphs characterized
by Theorem 1 exist for every k=1,...,m
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Proof. We first establish the necessity of the two items.
The necessity of item (1) is obvious. For item (2), assume,
to the contrary, that there is at least one node in V3, say
vg;, with degree larger than k. Since each node of Vj is
incident to at most one edge in a left-perfect matching,
after removing the k disjoint perfect matchings of G(n,m),
vg, will have degree strictly larger than 0 and thus G(n,m)
is not a union of k left-perfect matchings.

We next establish the sufficiency of the two items.
The proof relies on the use of Konig’s Line Coloring
Theorem [34, Theorem 1.4.18], which can be equivalently
stated as follows: Let G = (V, U V3, E) be an arbitrary
bipartite graph, and A(G) be the maximal degree of G,
i.e., A(G) := max,cv,uv, deg(v). Further, let x(G) be the
minimal number ¢ of disjoint matchings Pj,..., Py in G
such that E = U{_, P;. Then, x(G) = A(G). Applying
Konig’s Line Coloring Theorem to G(n,m) as in the
theorem statement, we obtain that E is a union of k
disjoint matchings P, ..., P;. In order to show that these
matchings are all left-perfect matchings, it suffices to show
that they are all of cardinality n. Indeed, since n < m, any
matching of cardinality n is necessarily left-perfect. Note
that |E| = Zle |P;| and, by the hypothesis on G(n,m),
|E| = kn. Finally, since G is bipartite, the cardinality of
any matching in G cannot exceed n. We conclude that
all matchings P, ..., P have cardinality n and are thus
left-perfect matchings. O

The following result is a corollary of Theorem 1:

Corollary 2. The following two statements hold:

1) For any given k =1,...,m—1, the minimal number of
edges needed for G(n,m), with m > n, to be k-resilient
(or strongly k-resilient) is (k 4+ 1)n.

2) Given a pair of positive integers (n,m) with m > n,
the mazimal degree of resilience (or strong resilience)
of a bipartite graph G(n,m) is (m — 1).

Proof. We first establish the fact that if a bipartite graph
G(n,m) is k-resilient, then it has at least (k + 1)n edges.
To see this, recall that by Lemma 3, G(n,m) is k-resilient
if, after removing k edges, the remaining graph still admits
a left-perfect matching. Hence, the degree of each left node
has to be at least (k + 1) because otherwise, such node
can be disconnected from the others by the removal of k
edges incident to it. Since G(n, m) is bipartite, this proves
the claim. Item 1 is then an immediate consequence of the
above fact and Theorem 1.

We now prove item 2. To consider maximal degree of
(strong) resilience, it suffices to let G(n, m) be the complete
bipartite graph (owing to the monotonicity of resilience
with respect to adding edges). In this case, we show that
the degree of (strong) resilience of G(n,m) is (m —1). On
one hand, the degree of every left node is m. From the
fact established at the beginning of the proof, we have
that G(n,m) is at most (m — 1)-resilient. On the other
hand, by Theorem 1, G(n,m) is a union of m disjoint left-
perfect matchings. Thus, by Lemma 5, G(n,m) is strongly
(m — 1)-resilient. O
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Fig. 4: The graph in (a) contains three distinct (but
not pairwise disjoint) perfect matchings, depicted in (b)-
(d). The intersection of these three perfect matchings is
the empty set, i.e., there is no common edge to all these
matchings. Hence, the graph in (a) is at least 1-resilient.
Moreover, since deg(o;) = deg(f;) = 2 for i = 1,3,4,
the graph in (a) is exactly 1-resilient. However, since the
pairwise intersections of the matchings is not empty, it is
not strongly 1-resilient.

The above corollary says that k— and strongly k-
resilience require the same minimal number of edges,
and that the maximal degrees of resilience and of strong
resilience one can achieve for a given (n,m) are also the
same. Nevertheless, they are distinct notions: strong k-
resilience is strictly stronger than k-resilience. We provide
an example in Fig. 4 where a graph that is 1-resilient but
strongly O-resilient is depicted.

In the sequel, we will mostly focus on strong resilience.
The main reason for this is the characterization provided
by Theorem 1, which we can leverage to obtain provable so-
lutions to problems P1-P3. An equivalent characterization
for resilience appears harder to obtain. While the previous
example shows that resilience can be strictly weaker than
strong resilience, Corollary 2 shows that the two notions
are interchangeable when the number of edges used (which
can be viewed as resources deployed by the designer) is to
be minimized.

B. Solution to Problem P1

In this section, we show how to determine the degree of
strong resilience of a bipartite graph G(n,m) for n < m;
i.e., we provide a solution to Problem P1. The solution
is constructive, in the sense that we also exhibit a set of
edges which is a union of disjoint left-perfect matchings,
and can be obtained in polynomial-time. This is done
by translating the problem into a max-flow problem and
appealing to Theorem 1.

We start with the following definition, which takes a
bipartite graph G and a nonnegative integer ¢ and produces
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Fig. 5: Given a bipartite graph G(4,5) in (a), we plot
the digraph G(4,5) in (b). The edge set E of G(4,5) is
partitioned into two subsets Fy and E; depicted in blue

and black, respectively. The capacity of each blue (resp.
black) edge is ¢ (resp. 1).

a directed version of G, denoted by G, and a capacity
function defined on the edge set of G:

Definition 5. Let G(n,m) = (Vo U Vjs, E) be a bipartite

graph and £ > 0 an integer. Define the digraph G(n,m) =

(V,E) and the capacity function ¢, : E — Z>q as follows:
1) Add two new nodes to G, denoted by s and t:

V=V, UVaU {s,t}.
2) Create the edge set E as a union of Ey and Ey where
Ey = {sa;, Bit | o € Vi, B € V3,
By = {aif; | (i, B)) € E}.
3) Define ¢; as follows:

Eg(e) = {f

The two new nodes s and ¢ added in step 1 are the source
and the target of G, respectively. The value of ¢ will be
problem-dependent and specified below. We illustrate the
definition in Fig. 5.

Denote by Fy the set of integer-valued flow maps on G
with respect to ¢;. When £ = 0, F} is the singleton {f},
where f(e) =0 for all e € E.

Given a flow f € Fy, we define the subgraph of the
original bipartite graph G induced by f as follows:

ife S Eo,

ife S El. (3)

Gy = (VLU V&Ef) with
By :={(,B;) € E| f(eif;) # 0} (4)

In words, we select only edges of G whose directed versions
in G are used by the flow f.

Recall that for a flow f € Fy, its value |f| is given by
Eq. (2). We need the following definition:

Definition 6 (Saturated flows). Given the digraph G(n,m)
and a nonnegative integer £, we say that a flow f € Fy on
G(n,m) is saturated if |f| = nl. We denote by Fy, the set
of saturated flows on G(n,m).
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Note that a saturated flow is necessarily a max-flow
because, by Def. 5, the value of a flow f cannot exceed nt.
Further, note that by the integrality theorem (see Sec. II-A),
if a real-valued flow f with |f| = nf exists, then F} is non-
empty. The following lemma shows that saturated flows
are in correspondence with disjoint left-perfect matchings.

Lemma 6. Let £ > 1 and f € F;. Then, f € F, if and
only if G is a union of £ disjoint left-perfect matchings.

Proof. Assuming that f € Fy and Gy = (V, U V3, Ey) is
a disjoint union of ¢ left-perfect matchings, we show that
f € F,. Tt should be clear that deg(a;; Gy) = ¢ for each
a; € V,. Hence, there exist 1 < 4q,...,4y < ¢ so that
(i, Bi;) € By, for 1 < i <mnand 1 < j < (. From the
definition of Gy and the fact that f is integer-valued, we
have that f(a;8;;) > 1. On one hand, using (1) and (2),
we obtain that

1= flsa) = >
=1

(ei,Bi;)EEY

flaiBi;) = nt.

On the other hand, since f € Fy, |f| < nf. Thus, we must
have that |f| = nf and, hence, f € Fy.

Reciprocally, assuming that f € Fy, we show that G 7 is
a disjoint union of ¢ left-perfect matchings. To this end,
we claim that the degree of each left-node in G is exactly
£ and the degree of each right-node in Gy is less than or
equal to /. If this holds, then the result is an immediate
consequence of Theorem 1. We now prove the claim. For the
left-nodes, because f is saturated, nl = |f| = >"1" | f(sa;).
By the definition of the capacity function (3), f(sa;) < Z.
It follows that f(sa;) = ¢ for all i = 1,...,n. Next, by the
balance condition and the definition of Gy in (4),

flsai)= > flaip)= > flaiB).

ji(ai,B5)EE ji(e,B5)EE:

Further, by the capacity function (3) and the fact that f is
integer-valued, we have that f(a;53;) =1 for (o, B;) € Ey
and, thus, there are exactly n edges in E incident to ay. Fi-
nally, for the right-nodes, one can apply similar arguments:
first, from the capacity function, we have that f(5;t) < ¢;
then, the balance condition f(8;t) = Zi:(ai’ﬁj)eEf flaiB;)
implies that deg(f;; G¢) < £. This proves the claim. [

With the above preliminaries, we now provide a solution
to Problem P1:

Theorem 3. Let G(n,m) be a bipartite graph with m > n.
Let G(n,m) be the digraph from Def. 5 and Fy be given as in
Def. 6. Let £* := max {€ >0| Fy #+ @}. Then, 0 < £*<m
and the following hold:

1) For any ¢ € {0,...,0*}, F; # @. For any f € F, the
bipartite graph Gy(n,m) given in (4) is a union of £
disjoint left-perfect matchings.

2) The degree of strong resilience of G(n,m) is (£* —1).

Proof. Recall that when ¢ = 0, F} is a singleton, so £* > 0.
We next show that £* < m. Suppose to the contrary that
¢* > m; then, by Lemma 6, G contains at least (m + 1)
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disjoint left-perfect matchings, which contradicts item 2 of
Cor. 2 saying that the degree of strong-resilience of G(n,m)
is at most (m — 1) (and, hence, G(n,m) can contain at
most m disjoint left-perfect matchings). We now establish
the two conditions of the theorem.

Proof of item 1. Because Fy- is nonempty, by Lemma 6,
G contains ¢* disjoint left-perfect matchings, denoted by

Py, ..., Pp. Let G' = (Vo UVp, E') be the subgraph of G
induced by Py, -+, Pp. We use G’ to define a flow f on G
as follows:
J4 if e = sa; for a; € V,,
fle) = deg(f;; G") if e = fyt,
1 if e = ;85 for (a4, B;) € E,
0 otherwise.

It should be clear that f € F,. Using again Lemma 6,
we have that for any f € Fy, G¢ is a union of ¢ disjoint
left-perfect matchings.

Proof of item 2. First, we consider the case ¢* = 0 and
show that G does not have a left-perfect matching (i.e.,
s-rsl G = —1). Suppose to the contrary that there exists a
left-perfect matching P in G; then, consider the flow f on
G defined as follows:

0 if e = ;B with (v, ;) ¢ P,
fe) = |
1 otherwise.

It is not hard to see that f is a flow on G with respect to
¢ (i.e., £ = 1). By construction, f is a saturated flow in Fy,
which is a contradiction. For the other case where £* > 1,
the item follows from the definition of £* and Lemma 6. [

Example 2. Counsider the bipartite graph G(4,5) given
in Fig. 5. We run, e.g., the Ford-Fulkerson algorithm for
the weighted digraph G(4,5) with ¢ = 1,2. We show in
Fig. 6 the corresponding saturated flows, which implies
that Fy, # @ for £ = 1,2. Also, note that F = @& because
the degrees of nodes vy and ay in G(4,5) are both 2. Using
Theorem 3, we have that G(4,5) is strongly 1-resilient. [

The above theorem provides an algorithmic solution,
of polynomial-time complexity, to P1, i.e. to determine
s-1sl G(n, m). The algorithm is as follows: Start by setting
¢ := m, and repeat the following procedure:

1) Construct the digraph G(n,m) and the capacity

function ¢g. The complexity is O(m + n).

2) Run the Ford-Fulkerson algorithm on G(n,m) initial-
ized at the zero flow and denote its output by f. The
complexity is O(n?mf) [35]. If |f| = nf, then return
s-1sl G(n,m) = £ — 1. The algorithm is over.

3) If | f| < nf and if £ > 2 decrease the value of £ by 1 and
return to step 1. Otherwise, return s-rsl G(n,m) = —1
and the algorithm is over.

C. Minimal number of edges to increase s-rslG

In this subsection, we address the following simple
question: Given a graph G(n,m) which is a union of k
disjoint left-perfect matchings with £ < m — 1, how many

© 2022 IEEE. Personal use is

Authorized licensed use limited to: UNIVERSITY OF COL

ermitted, but resubllcanon/redlstrlbutlon re

8
B
/ /.2 /QQ/ '2 N
T % ey
o\ \:\.4
/ .4/7
(b)

Fig. 6: We show saturated flows f, on the graph G(4,5)
as depicted in Fig. 5 for { = 1 in (a) and ¢ = 2 in (b).
The edges with nonzero values under f, are highlighted
in blue. In the case ¢ = 2, the two disjoint left-perfect
matchings are {(Oél, ﬂl), (0427 [34)7 (Oég, Bg), (044, B5)} and
{(au, Ba), (a2, B1), (a3, B3), (a4, B1) }. Note, in particular,
that the perfect matching of case £ =1 is not part of the
disjoint matchings for £ = 2.

edges need to be added to this graph to obtain a bipartite
graph G*(n,m) which is a union of (k + 1) disjoint left-
perfect matchings? Understanding this problem provides
a solution to Problems P2 and, partially, to P3 for the
special case where G is a union of disjoint left-perfect
matchings. The advantage of the solution proposed here,
when compared to the algorithms provided in the next
subsection for solving general cases, is that it allows to
establish an analytical bound on the number of edges
needed to increase the degree of strong resilience.

To proceed, we introduce the natural notion of the graph
complement. Given the complete bipartite graph K = (V, U
Vs, Ek) and the bipartite graph G = (V, U Vg, E), we
denote by G¢ the complement of G (in K); more precisely,

G° = (Va U VQ,EK — E)
Special case m = n. We have the following result:

Lemma 7. Let G(n,n) be a union of k disjoint perfect
matchings, with k < n. Let G°(n,n) be the complement
of G(n,n). Then, G°(n,n) is a union of (n — k) disjoint
perfect matchings.

Proof. Since m = n, by Theorem 1, the degree of every
node in G(n,n) is k. It then follows that the degree of each
node in G¢(n,n) is (n — k). Using Theorem 1 again, we
conclude that G¢(n,n) is a union of (n — k) disjoint perfect
matchings. O

It should be clear that adding any perfect matching
of G¢(n,n) to G(n,n) yields a graph G*(n,n) which is a
union of (k+ 1) disjoint perfect matchings. However, such
a fact cannot be extended to the case m > n as seen in
the following example:

Example 3. To see this, consider the graph G(2,3) in
Fig. 7, which depicts a simple case for which m > n. Here,
G(2,3) is the union of two disjoint left-perfect matchings.
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Fig. 7: In (a), we depict a graph G(2,3) which is
the union of two disjoint left-perfect matchings P, =
{(a1,51), (az,B2)} and P = {(a1,B2), (a2, B1)}. In (b),
we depict the complementary graph G¢(2, 3); it does not
contain a left-perfect matching. In (c¢), we plot the three
disjoint left-perfect matchings in the complete bipartite
graph K(2,3) = G(2,3) UG*(2,3).

It is easy to see that G°(2,3) does not contain a left-perfect
matching. Nevertheless, adding G°(2,3) to G(2,3) still
yields the graph K(2,3) which is a disjoint union of 3
left-perfect matchings. The key difference between this case
and the one with n = m is that in the latter case, one
can always produce a graph G*(n,n) which is composed
of the all of the existing k disjoint perfect matchings of
G(n,n) and an additional disjoint perfect matching. In this
example G(2,3), the 3 disjoint left-perfect matchings of
G*(2,3) do not contain all of the left-perfect matchings that
were used to express G(2,3) as a disjoint union of perfect
matchings. Generally speaking, this fact precludes the use
of simple inductive arguments that rely on adding n edges
while keeping the k disjoint perfect matchings that made
G(n,m).

General case m > n. We establish the following result, the
proof of which will be constructive.

Theorem 4. Let G(n,m), with n < m, be a union of k
disjoint left-perfect matchings, for k < m. Then, one can
add In edges, for 1 < ¢ < m —k, to G(n,m) such that
the resulting graph G*(n,m) is a union of (k + £) disjoint
left-perfect matchings.

The next result is then an immediate consequence of
Theorem 4:

Corollary 5. Given a strongly k-resilient G(n,m), with
k < m, and given a budget of p additional edges, one can
select p edges {e1, ..., ep} out of G°(n,m) such that the new
graph G(n,m) U {e1,... ey} is at least strongly (k + [2])-
resilient.

The remainder of the subsection is devoted to the proof
of Theorem 4. It suffices to prove the Theorem for the
case ¢ = 1; one can then iteratively apply this case to
prove the general result. The proof has two parts: The first
part relates the feasibility of the addition problem (i.e.,
the problem of adding n edges to G(n,m) to form a union
of (k + 1) disjoint left-perfect matchings) to a max-flow
problem; this is akin to what was done in Sec. ITI-B. Here,
we define a max-flow problem whose capacity function
allows us to decide whether the addition problem is feasible.
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Fig. 8: The bipartite graph G(4,5) in (a) is a union of
two disjoint left-perfect matchings, highlighted in red and
green. The weighted digraph in (b) is G¢(4,5) for k =
3. Correspondingly, by Def. 7, the capacity of an edge
B;t is given by 4 — deg(8;; G), whereas the capacity of
each remaining edge is 1. We then run the Ford-Fulkerson
algorithm and highlight (in blue) a solution f to the max-
flow problem (6). By Prop. 7, the capacity of any such
solution is given by |f| =n = 4.

Then, in the second part, relying on the max-flow min-cut
Theorem, we compute explicitly the maximal capacity by
computing the corresponding minimal cut.

Maz-flow formulation: We start by constructing another
directed version of the bipartite graph G’(mm) with an
appropriate capacity function. The solution of a newly
defined max-flow problem on this graph will yield the
edges needed to increase the resilience:

Definition 7. Given a bipartite graph G = (Vo U V3, E)
and an integer k, define the digraph G = (V, E) and the
capacity function ¢ : E — Z>o as follows:

1) Add two new nodes to G, denoted by s and t:

Vi=V,UVzU{s,t}.
2) Create the edge set E as a union of Ey and Ey where
By = {sa; | a; € Va} U{auB; | (i, B;) & EY,
By :={B;t | B; € Vs}.
3) Ifec Ey, then ér(e) :=1;ife=pit e E\, then
¢r(e) == max{0, (k + 1) — deg(f;; G)}.

We illustrate the definition in Fig. 8.
Let F; be the set of integer-valued flow maps on G¢(n,m).
We will now relate the max-flow problem on G°(n, m):

(5)

max |
fEEy

(6)

to Theorem 4. As mentioned above, requiring an integer
solution is not constraining; it suffices to use the Ford-
Fulkerson algorithm.

Proposition 6. Let G(n,m) be a union of k disjoint left-
perfect matchings, for 0 < k < m, and G°(n,m) be given
in Def. 7. Let f be a solution to problem (6). If |f| = n,
then there exist n edges {e1,...,e,} € G°(n,m) so that
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G*(n,m) := G(n,m) U {ey,..
disjoint left-perfect matchings.

Proof. Given the flow f on G, we let G$ be the subgraph
of G¢ induced by f as defined in (4).

Because |f| = n and because the capacity assigned to
the edges sq;, for a; € V,, is 1, the inflow at every node o
is also 1. Also, since the capacities of edges of type «;3; are
1, we have that there are exactly n edges of this type for
which f is nonzero, and thus there are exactly n edges in
G?. By construction, these edges are incident to n distinct
left nodes (as otherwise, it implies that an edge of type sa;
has a flow above its capacity of 1). Denote by {e1,...,e,}
this set of edges in G‘Ji.

We show that adding this set of edges to G yields a G*
which is a union of (k4 1) disjoint left-perfect matchings.
We do so by verifying that G* satisfies the two items in
Theorem 1:

1) deg(oy; G*) = k+1, for all a; € V,,. This holds because
of the following three facts: First, by assumption,
deg(a;, G) = k. Next, note that G and G have disjoint
sets of edges. Finally, the edges e1,..., e, in G} are
incident to n distinct left nodes.

2) deg(Bj; G*) < k+1 for all 3; € V. This holds because
of the following three facts: First, by assumption,
deg(B;;G) < k for B; € V3. Second, recalling that
the capacities of the edges in E; are given in Eq. (5),
we have that for each right node 3;,

deg(B;; G%) < (k+1) — deg(B;; G).

Finally, because G* is the disjoint union of G and G,

deg(B;; G*) = deg(f;; G) + deg(B;; GF) < (k +1).
We have thus shown that the two items of Theorem 1 are
satisfied by G*. This completes the proof. O

., en} 18 a union of (k + 1)

Equipped with the above Proposition, Theorem 4 is
easily seen to be equivalent to the following result:

Proposition 7. Let G(n,m) be a union of k disjoint left-
perfect matchings, for 0 < k < m, and Gc(n,m) be as in
Def. 7. Let f be a solution to the max-flow problem (6).
Then, |f| = n.

Proof. To prove the result, we rely on the use of the max-
flow min-cut Theorem (see Lemma 2), which applied here
reduces the problem to showing that for every cut (S,7T) in
G, its capacity ¢(S,T) > n and, furthermore, this lower-
bound is realizable.

For a given cut (S,7) in G¢, we let S, := SNV, and
T, := T NV, be the sets of left-nodes contained in S
and T respectively. Similarly, we define Sz := SN Vs and
T3 : =T NV;s. Let p:= |T,| and g := |Sg|. For every such
cut, we can write its capacity into the sum of three terms:

c(S,T) =c(s,Ta) + ¢(Sa, T) + (S5, 1), (7)

where the three terms are given by

C(Sv Ta) = ZaieTa C(sai)v
c(Sa, Tﬂ) = Qi €S4,B;€Ts C(O‘iﬁj)a (8)
c(Sp,t) = Zﬂjesg c(B;t).
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Fig. 9: We illustrate the three terms defined in (8). In
this digraph, we let the cut (5,7 be such that the nodes
depicted in green (resp. red) are nodes in S (resp. T'). The
set S is circled by the dashed green line. Then, the term
¢(s,Ty) is the sum of the capacities of the edges depicted
in orange, the term c(S,,Tp) is the sum of the capacities
of the edges depicted in blue, and the term ¢(Sg,t) is the
sum of the capacities of the edges depicted in purple. The
capacity of the cut (S,T) is easily seen to be sum of these
three terms.

We evaluate below these three terms (also, see Fig. 9 for
an illustration):

First term ¢(s, T, ). Note that by item 3 of Def. 7, é(sq;) =
1, for o; € Ty, so
(9)

Second term c¢(Sq,T3). We first establish the following
inequality:

c(Sa,T3) > Z deg(ay; G°) — Z deg(B;; G°). (10)

;€Sq B; €83

C(S, Ta) =D

To see it holds, first note that total number of out-
going edges incident to the nodes «; € S, is exactly
given by >, g deg(a;; G°). Every such outgoing edge
is necessarily incident to either a node in Sg or a node in
Tp. Furthermore, the number of incoming edges incident to
nodes §8; € Sg is given by Zﬁ €S, deg(f;; G°). Similarly,
every such incoming edges can be incident to either a node
in S, or a node in T,. It then follows that the number of
edges incident to both S, and T in G is bounded below
by the expression on the right hand side of (10). Because
ér(a;85) = 1, the inequality (10) holds.

Now, we evaluate the two sums on the right hand side
of (10). For the first sum, since G is a union of k disjoint
left-perfect matchings, we have that deg(a;; G¢) = (m — k)
for all i = 1,...,n. Further, since |S,| =n — |To| = n — p,

3 deg(asG) = (m—k)(n—p). (1)
@; €Sy
For the second sum, since the degree of each node ; in

G° is n — deg(B;; G) and since |Sg| = g,
D deg(B;;G°) =qn— Y deg(B;; G).

BiE€SE BjE€Sp

(12)
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Plugging Egs. (11) and (12) in (10), we obtain that

(Sa;Tg) > (m—k)(n—p) —qn+ »_ deg(B;; G). (13)
B;€SE

Third term c(Sg,t). From (5) and the fact that |Sg| = g,

o(Sp,t) = (k+1)g— Y deg(B;;G).
BjE€Sp

(14)

We now use the facts just established to show that
¢(S,T) > n. Specifically, we use Equations (7)-(9) and (13)-
(14) to obtain that

(S, T)>p+(m—k)(n—p) —gn+ (k+1)q
> (P+q)+(m—k)n—p)—(n—kyq

> (p+a)+ (m—k)(n—p—q)
>pP+q)+(n—p—q
>n.

To obtain the second line from the first, we simply rearrange
terms. To obtain the third line from the second, we use the
fact that m > n, and using furthermore the assumption
that m > k, we obtain the fourth line from the third. This
concludes the proof. O

At the end of this subsection, we conclude that given a
graph G(n,m) which is a union of k disjoint left-perfect
matchings, and 1 < ¢ < m—k, one can obtain a G*(n,m) >
G(n,m) which is a union of (k + ¢) disjoint left-perfect
matchings using the following algorithm in polynomial-
time: Start by setting ¢ = 0 and G’ = G; While ¢ < ¢,
repeat the following steps

1) Construct G’e and Cr+e given by Def. 7. The complex-

ity is O(m + n).
2) Run the Ford-Fulkerson algorithm on (¢ and denote
by f the output. The complexity is O(n?(m — k)).
3) Update G’ to be the union of the current G’ and
G$ (note that G" and G are edge-wise disjoint) and
increase ¢ by 1. The complexity is O(n).

D. Solutions to Problems P2 and P3

In this section, we let G(n,m) be an arbitrary bipartite
graph, with m > n as above, and G¢(n,m) be its
complement in the complete bipartite graph K (n,m).

Recall that for Problem P2, we aim to find a set of edges
in G° of least cardinality which, when added to G, yields
a graph which is (strongly) k-resilient, and for Problem
P3, given a budget of p edges and a graph G, we aim to
maximize the degree of (strong) resilience by optimally
choosing these p additional edges.

We provide below complete solutions to the two problems
for strong resilience, together with a polynomial-time
algorithm that fulfills the respective goals.

Fair matchings and fair b-matchings. One of the major
hurdles in adding edges to G to increase the number of
left-perfect matchings is that one has the option to use
edges that already exist in G to create said additional
matchings. The use of these existing edges should of course
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be prioritized as much as possible over the addition of
new edges. We can recast this problem by considering
the embedding of G into the complete bipartite graph
K = (V,, V3, Ex). This embedding allows us to view both
Problems P2 and P3, which are dual to each other, as
the problem of selecting edges in K to obtain a desired
number of disjoint left-perfect matchings while mazximizing
the use of edges that belong to G. Moreover, this point of
view will allow us to appeal to algorithms that obtain such
matchings, and thus solve the above-mentioned problem,
in polynomial time.

To proceed, we rely on the notion of fair matching and,
more specifically, fair b-matching in a bipartite graph.
Such matchings are described in relation to the following
additional structures on a graph:

1) A capacity function p at the nodes, which is a positive-
integer valued function u : Vo, UVg — Zx>¢ which
provides an upper bound on the degrees of the nodes
in a b-matching.

2) A priority order for the possible neighbors of each node.
Assuming that there are r different priorities, we label
them as 1,...,r. The priority order indicates which
edges of G are preferred to appear in the matching.

For our purpose, we only need to consider a particular
class of fair b-matching problems: (1) Elements of that
class are defined on the complete bipartite graph K; (2)
The capacity functions p are constant functions with value
equal to (k* 4 1), where k* is the target degree of strong-
resilience; and (3) The priority order has r = 2 classes,
and is induced by G in the sense that a node «; (resp.
B;) prefers §8; (resp. ;) if (o, ;) is an edge in G. We
refer the reader to [36], [37]) for a general introduction to
b-matchings.

Formally, we introduce the following definition of b-
matching and fair b-matching considered in this paper:

Definition 8 (b-matching and fair b-matching). Let K =
(Vo U Vs, Ex) be the complete bipartite graph and G =
(Vo U V3, E) be a subgraph of K. A b-matching is a subset
P C Ex for which each vertex v € Vo, U Vg is incident to at
most (k*+1) edges of P. A fair b-matching is a b-matching
of maximal cardinality so that |P N E| is mazimized.

We make the following observation:

Lemma 8. The subset P is a b-matching of maximal
cardinality if and only if it is a disjoint union of (k* + 1)
disjoint left-perfect matchings.

Proof. First, it should be clear that if P is a b-matching,
then by the capacity condition in Def. 8, |P| < (k* + 1)n.
Next, let P be an arbitrary union of (k* + 1) disjoint left-
perfect matchings. Then, P satisfies the capacity condition
and |P| = (k* + 1)n. Thus, such a P is a b-matching of
maximal cardinality.

Now, let P be a b-matching of maximal cardinality and
G = (VoL UV, P). Suppose that P is not a union of (k* +1)
disjoint left-perfect matchings; then, by Theorem 1 and
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the capacity condition in Def. 8, there exists at least one
node «; € V,, such that

deg(a;; G) < k™ + 1. (15)

To see this, note that a graph G induced by a b-matching
always satisfies item 2 of Theorem 1; hence, if G is not a
union of (k*+1) disjoint left-perfect matchings, then item 1
cannot be met, which implies that deg(o;; G) < k* + 1 for
some «;. On the one hand, as a consequence of Eq. (15),
the cardinality of P is strictly less than (k* + 1)n. On
the other hand, by the arguments at the beginning of
the proof, if we let P’ be an arbitrary union of (k* + 1)
disjoint left-perfect matchings, then P’ is a b-matching
with |P’| = (k* 4+ 1)n > |P|, which is a contradiction. [

If P* C FEk is a b-matching of maximal cardinality,

a fair b-matching can be obtained by first finding all b-
matchings of cardinality |P*| and, amongst those, selecting
one which maximizes |P* N E|. It is known that finding a
fair b-matching in K (n,m) can be done in polynomial time.
To be more precise, if we let N := m + n be the number of
nodes of K(n,m) and M := mn be the number of edges
in K (n,m), there exist algorithms solving fair b-matching
problems in O(NM log(N?/M)log(N)) time, using O(M)
space [37].
Solution to Problem P2 for strong resilience. We now reduce
Problem P2 to the fair b-matching problem. Let k* be the
target degree of strong resilience. If s-rs1G > k*, then no
additional edge is needed and we are done. Otherwise, we
have the following result:

Theorem 8. Let G(n,m) = (V, U Vg, E) be a bipartite
graph with m > n and s-1sl G < k* with 0 < k* < (m —1).
Let P* be a solution to the fair b-matching problem of Def. 8.
Then, the following hold:

1) The graph G*(n,m) := (Vo U Vg, E U P*) is strongly
k*-resilient.

2) The minimal number of edges out of G¢(n, m) one needs
to add to G(n,m) to obtain a strongly k*-resilient graph
G*(n,m) is given by

" = |P*| - |P*NE]|. (16)

Note that for a given graph G(n,m), ¢* depends only
on the number k* (in particular, it does not depend on
the choice of P* from Def. 8). If necessary, we will write
explicitly 6*(k) to indicate such dependence.

By item 1, we have that G* > G; by item 2, G* contains
the least number of additional edges so as to be strongly
k*-resilient. Thus, Problem P2 is indeed solved for strong
k*-resilience.

Proof of Theorem 8. We establish the two items below:

Proof of item 1. We show that G* contains exactly (k*+1)
disjoint left-perfect matchings. By Lemma 8, P* is a union
of (k* 4+ 1) disjoint left-perfect matchings. Since the edge
set of G* contains P*, G* contains at least (k*+1) disjoint
left-perfect matchings. Now, suppose, to the contrary, that
G* contains (exactly) k disjoint left-perfect matchings, with
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k > (k*+2); then, we let { P;}¥_, be a set of such matchings.
Let p; := |P; — E|, i.e., p; is the number of edges in P; but
not in E. It follows that |[ENP*| = | P*| —Zle pi- Relabel
the F;, if necessary, so that p; > --- > pz. Then, p; has to
be positive, since otherwise p; = 0 foralli = 1, ..., k, which
implies that all these k matchings P; are contained in E,
contradicting the assumption that s-rslG < k* (the same
arguments imply that py has to be positive as well). Now,
let P:= Uf;;rzPi. Then, by Lemma 8, P is a b-matching
and |P| = |P*|. Moreover, |[EN P| = |P| — Zf:ém pi >
|E N P*|, which contradicts the assumption that P* is a
fair b-matching. This proves item 1.

Proof of item 2. Let G* = (V,, U Vg, P*) be induced by an
arbitrary fair b-matching P*. Then, the cardinality |P*NE]
is maximized over all b-matchings P of maximal cardinality
and, thus, |P| — |P N E| is minimized. This proves item 2
and completes the proof. O

Solution to Problem P38 for strong resilience. Since Problem
P3 is dual to Problem P2, it can similarly be solved via
a reduction to the fair b-matching problem. Precisely, we
have the following result:

Theorem 9. Let G(n,m) = (V, U Vg, E) be a bipartite
graph with m > n and p be a positive integer. Then, the
solution to the following optimization problem (Problem P38
for strong resilience):

max s-1sl G*(n,m) = (Vo U V3, E¥),
s.t. G*(n,m) = G(n,m) and |E*| — |E| =p

s given by
max{k | 6" (k) < p},

where 0* (k) is defined in (16).

Proof. Tt is an immediate consequence of Theorem 8: On
the one hand, for any k with §*(k) < p, one can always
add p edges out of G¢ to G so that the resulting graph
G* is at least strongly k-resilient. On the other hand, it
is clear from the definition of §*(k) that it is infeasible to
obtain a graph with strong k-resilience by adding fewer
than 6*(k) edges to G. O

IV. CONCLUSION

We have addressed in this paper the resilience of the
structural rank of sparsity patterns. The first step in our
approach to solve the problems was to recast them as
problems posed for bipartite graphs. We then provided
a characterization of bipartite graphs corresponding to
sparsity patterns of full rank (see Theorem 1). Based on this
characterization, we provided provably correct, polynomial-
time algorithms to solve three problems dealing with strong
resilience of the pattern: Given a sparsity pattern, (1) what
is its degree of strong resilience, i.e., how many *-entries
can be removed without affecting the structural rank; (2)
what is the minimal number of x-entries one needs to
add to a pattern so as to reach a target degree of strong
resilience; and (3) given that one can add p x-entries to
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a sparsity-pattern, where to place these entries so as to
maximize the degree of strong resilience. As shown in Fig. 4,
strong resilience strictly implies resilience. The problem
of computing the exact degrees of resilience for sparsity
patterns will be addressed in the future work.
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APPENDIX
PROOF OF LEMMA 3

Proof. To prove the result, we first introduce a few prelim-
inaries. Given a digraph G = (V, E) on n nodes, we say
that G admits a Hamiltonian decomposition [7) if there is
a subgraph G = (v, E’), with E' C E, such that G’ is a
disjoint union of cycles. To a sparsity pattern S(n,n), we
can associate a digraph G = (v, E) on n nodes Y1, ...,%Yn
as follows: v, € E if the pair (i, ) belongs to E(S(n,n)).
It is well-known that S(n,n) admits a matrix of full rank
if and only if G admits a Hamiltonian decomposition. Let
G(n,n) be the bipartite graph associated with the same
sparsity pattern S(n,n). It is also well know that G(n,n)
has a perfect matching if and only if the digraph G admits
a Hamiltonian decomposition (see [13] for a simple account
of this fact).

With the above preliminaries, we now return to establish
Lemma 3. First, note that the rank S(n,m) is n if and only
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if there exist n columns so that the sub-pattern induced
by these columns is of full rank; precisely, there exists
1 <41 < - < jn < mso that the sparsity pattern S’(n, n)
defined by the index set

E(S") ={(i.jr) € E(S) [ 1<k <n}

is of rank n. Owing to the preliminaries above, §’'(n,n) is
of full rank if and only if the associated digraph G’ on n
nodes admits a Hamiltonian decomposition. Furthermore,
the existence of this Hamiltonian decomposition implies
that the bipartite graph G’(n,n) corresponding to S'(n,n)
contains a perfect matching.

From the definition of &’, it is not hard to see that
G'(n,n) can be realized as a subgraph of G(n,m); more
precisely, G'(n,n) is the subgraph of G(n,m) induced by
the nodes o; € Vi, and nodes 3;,,...,5;,. Thus, a perfect
matching in G’ (n, n) is mapped using the above inclusion to
a left-perfect matching in G(n,m). We thus conclude that
the rank of S(n,m) is n if and only if G has a left-perfect
matching. O
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