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A gossip process is an iterative process in a multi-agent system where only two neighboring agents
communicate at each iteration and update their states. The neighboring condition is by convention
described by an undirected graph. In this paper, we consider a general update rule whereby each
agent takes an arbitrary weighted average of its and its neighbor’s current states. In general, the limit
of the gossip process (if it converges) depends on the order of iterations of the gossiping pairs. The
main contribution of the paper is to provide a necessary and sufficient condition for convergence of
the gossip process that is independent of the order of iterations. This result relies on the introduction
of the novel notion of holonomy of local stochastic matrices for the communication graph. We also
provide complete characterizations of the limit and the space of holonomic stochastic matrices over
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1. Introduction

Consensus problems have a long history (DeGroot, 1974) and
are closely related to Markov chains (Seneta, 2006). Over the
past decades, there has been considerable interest in developing
algorithms intended to cause a group of n > 1 agents to reach
a consensus in a distributed manner, see Blondel and Olshevsky
(2014), Cao, Morse, and Anderson (2008a), Chen, Belabbas, and
Basar (2016), Hendrickx and Tsitsiklis (2011), Jadbabaie, Lin, and
Morse (2003), Moreau (2005), Nedi¢ and Liu (2017), Olfati-Saber
and Murray (2004), Ren and Beard (2005), Touri and Nedi¢ (2014)
and Tsitsiklis (1984) just to cite a few. A simple idea to solve the
consensus problem exploits a form of iterative message passing,
in which each agent exchanges information with at most one
other agent per iteration. One such exchange is called a gossip.
Whenever two agents gossip, they set their state variables equal
to the average of their values before gossiping (Boyd, Ghosh,
Prabhakar, & Shah, 2006). This process, which we term standard
gossip process, is known to make all agents’ values converge to
the average of their initial states, provided that the neighbor
graph is connected. In the standard gossip process, the update
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matrix associated with each iteration is doubly stochastic. Recall
that all doubly stochastic matrices share the same left- (and
right-) eigenvector, namely the vector 1 of all 1’s, corresponding
to eigenvalue 1. Therefore, if the product of doubly stochastic
matrices converges to a rank-one matrix, it can only converge to
%IIT, where n is the number of agents in the system.

In this paper, we enable convergence of a gossip process to an
arbitrary weighted ensemble average. To this end, the update rule
of the standard gossip process is generalized to allow neighboring
agents to update their states according to a weighted average of
their current values. We emphasize that when a pair of agents,
say i and j, communicates, they are not required to take the
same weighted average. For example, agent i can weigh its and
Jj's values by 1/3 and 2/3, whereas agent j's weighs its and i's
values by 2/5 and 3/5. We call this generalized version of a gossip
process a weighted gossip process.

The extension of the update rule to (asymmetric) weighted
average at each iteration gives rise to several important ques-
tions: (1) Can we still guarantee (exponential) convergence of the
weighted gossip process? (2) Since different gossiping pairs can
take different weighted averages and the corresponding stochas-
tic matrices are not necessarily doubly stochastic, can we char-
acterize the limit of a weighted gossip process (provided that
the product of those stochastic matrices converges to a rank-one
matrix)? (3) Furthermore, when can the limit of the product be
independent of the order of appearance of the stochastic matrices
in the product? (4) Finally, in settings for which questions (1)-(3)
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have positive answers, can we design an update rule (or, equiv-
alently, the set of stochastic matrices) to ensure convergence of
the gossip process to any desired weighted ensemble average?

We address in the paper the above four questions and provide
answers to them. To do so, we first introduce a novel notion
of holonomy of stochastic matrices assigned to the edges of
a given undirected graph that describes the neighbor topology
(also referred to as communication topology) of the multi-agent
system. We borrow this terminology from Riemannian geometry,
which encodes transformations of vectors transported along close
curves. In the present context, we take products of stochastic
matrices along edges in arbitrary walks in the graph, and the term
holonomy is used to indicate a change of a certain eigenvector
corresponding to eigenvalue 1 of the product along any closed
walk in the graph. Holonomy in this context is related to the
so-called graph balance for signed (or, more generally, voltage)
graphs (Chen, Belabbas, & Basar, 2017), as both concepts require
the net effect of a contextually-defined transformation over a
closed walk to be trivial.

Based on the notion of holonomy, we establish a necessary
and sufficient condition for a weighted gossip process to (expo-
nentially) converge to a unique rank-one matrix, and characterize
explicitly this limit. Note that any such limit can always be
written as 1p' where p is a probability vector. The above facts
imply the existence of a map = that assigns a set of holonomic
stochastic matrices to the probability vector p.

Moreover, we show that for an arbitrary probability vector
p in the interior of the standard simplex, there exists a set of
holonomic stochastic matrices so that a corresponding weighted
gossip process converges to 1p', thus providing an affirmative
answer to question (4) above. In other words, we show that the
map 7 is onto the interior of the standard simplex. Another major
contribution of the paper is to provide a complete characteriza-
tion of the preimage 7 ~!(p), i.e., all sets of holonomic stochastic
matrices that are mapped to p by .

This paper shares the same spirit as the recent work (Belabbas
& Chen, 2021), in the sense that both consider convergence to
arbitrary rank-one stochastic matrices, and both provide condi-
tions for the limits of products of certain stochastic matrices to
be independent of their orders of appearance in the products.
However, the specific settings and analyses differ significantly.
In the present work, the stochastic matrices considered have a
nontrivial 2 x 2 principal submatrix, with the remaining part
being an identity matrix, reflecting the fact that communication
at each iteration is pairwise. Stochastic matrices appearing in Be-
labbas and Chen (2021) have in contrast a non-trivial 3 x 3
principal submatrix, reflecting communications for three agents
simultaneously. This seemingly minor extension in fact increases
the complexity of the products drastically. As a trade-off for the
reduced complexity of the products in the current paper, we do
not impose any restriction on the structure of the graph (as long
as it is connected); whereas in Belabbas and Chen (2021), only a
special class of rigid graphs, termed triangulated Laman graphs,
allowed us to draw conclusions similar to the ones of the current
paper.

Our work answers questions about weighted gossip processes
that have not been investigated in the extant literature. For a
comparison with existing works, we describe a few recent results
about the standard gossip process. For a deterministic standard
gossip process, if each pair of neighboring agents gossips in-
finitely often, then all agents’ states asymptotically converge to
the average of their initial values (Hendrickx & Tsitsiklis, 2011);
if there exists a period T such that each pair gossips at least
once within each successive subsequence of length T, the con-
vergence will be exponentially fast (Liu, Mou, Morse, Anderson,
& Yu, 2011). Moreover, if the underlying graph is a tree and each
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neighboring pair is restricted to gossip only once per period, it
is known (Yu et al., 2017) that the convergence rate is fixed and
invariant over all possible periodic gossip sequences the graph
allows. For a randomized standard gossip process, in which each
pair of neighbor agents is randomly selected to gossip, all agents’
states converge to the average of their initial values almost surely
and in mean square (Boyd et al., 2006). Finally, we emphasize that
the terms “gossip” and “weighted gossip” have, over the years,
had evolving meanings. We defined here a gossip process as being
an iterative process in which interactions are between pairs of
agents only. For some, a “gossip” process is moreover required to
have agents converge to the average of their initial states (Boyd
et al.,, 2006); also, “weighted gossip” is used in Bénézit, Blondel,
Thiran, Tsitsiklis, and Vetterli (2010) to describe a variant of
the push-sum algorithm (Kempe, Dobra, & Gehrke, 2003), whose
purpose is to reach an average consensus over directed graphs.
These works thus differ from ours.

The remainder of the paper is organized as follows: We gather
a few key notations and conventions at the end of the section.
The notion of holonomy and the main results of the paper are
presented in Section 2. Analyses and proofs of the main results
are provided in Section 3. The paper ends with a conclusion in
Section 4.

Notations and conventions. We denote by G = (V, E) an undi-
rected graph, without multiple edges but, possibly, with self-
loops. We call G simple if it has no self-loops. The graphs we
consider here are connected. The node set is by convention de-
noted by V = {vq, ..., vy} and the edge set by E. We refer to the
edge linking nodes v; and v; as (v;, vj). A self-loop is then of the
form (v;, v;).

Given a sequence of edges y = ey---e; in E, we say that a
node v € V is covered by y if it is incident to an edge in y. For y =
eje; - - - an infinite sequence, we say that v is covered infinitely
often by y if there exists an infinite number of sub-indices i; <
ip < --- such that ej is incident to v.

Given a sequence y = eqe; - - -, we say that y’ is a string of y
if it is a contiguous subsequence, i.e., ¥’ = ejei1 - - - €, for some
i>1and ¢ > i Let y = e;---e, be a finite sequence and ey 1
be an edge of G. Denote by y V ey the sequence e; - - - exei1
obtained by adding ey, to the end of y. .

For a given undirected graph G as above, we denote by G =
(V, E) a directed graph on the same node set and with a “bidirec-
tionalized” edge set; precisely, E is defined as follows: we assign
to every edge (v;, vj) of G, i # j, two directed edges v;v; ind Vjvi;
to a self-loop (v;, v;) of G corresponds a self-loop v;v;_of G.

Let w = vj, ... v;, be a walk in the directed gragh G, i.e., every
Vi, Vig,,, for £ = 1,...,k — 1, is an edge of G. We call v;
the starting-node and v;, the ending-node of w. We define by
w! = Vi Vi,_, - - - Vi, the inverse of w. Let w' = Vi Uiy "~ Vi
be another walk in G, where the starting-node of w’ is the same
as the ending-node of w. We denote by ww' = v;, ... v, ...
the concatenation of the two walks.

A square nonnegative matrix is called a stochastic matrix if all
its row-sums equal one. A matrix is irreducible if it is not similar
via a permutation to a block upper triangular matrix (with strictly
more than one block of positive size). The graph of an n x n matrix
is a directed graph on n nodes: there is a directed edge from node
vj to node v; whenever the ijth entry of the matrix is nonzero. It
is known that a matrix is irreducible if and only if its graph is
strongly connected (Horn & Johnson, 1985, Theorem 6.2.24).

On the space of n x m real matrices, we define the following
semi-norm: for a given A € R™™,

m

[Alls == max max |ai; — diyl-
1<j<m 1<iy,ip<n

The zero-set of this semi-norm is the set of matrices with all rows
equal. See Wolfowitz (1963) for more details.
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The support of a matrix A = [a;], denoted by supp(A), is the set
of indices ij such that a; # 0. We denote by minA the smallest
non-zero entry of A:

minA = _min aj.

ijesupp(A)
In this paper, we will only consider minA for A being a nonneg-
ative matrix.

We say that p € R" is a probability vector if p; > 0 and
2?21 pi = 1. The set of probability vectors in R" is the (n — 1)-
simplex, which is denoted by A", Its interior with respect to
the standard Euclidean topology in R" is denoted by int A®~ 1, If
p € int A", then all entries of p are positive.

We let 1 be a vector of all ones, whose dimension will be clear
from the context.

Given a real number x, we denote by |x]| the largest integer
that is smaller than or equal to x, i.e., | x| := maxX,cz{z | z < X}.

The Cartesian product of k linearly independent open bounded
line segments in an Euclidean space is called a k-dimensional open
box. An open box is not necessarily parallel to the coordinate axes.

We denote by R the set of positive real numbers.

2. Main results

We now present the main results proved in this paper, and the
main concepts introduced.

2.1. Local stochastic matrices and holonomy for digraphs

Let G = (V,E) be a simple graph on n nodes. Each node
represents an agent, and each agent is assigned a variable x;(t) €
R at the time step t. To each edge (v;, v;) of G, with i < j,
corresponds a potential interaction of agents i and j, whereby they
update their current states x;(t) and x;(t) (if this gossip pair is
activated) according to the rule:

X(t+1) g (xi(t)
x(t+ 1)~V x0)]
where f_\ij is the 2-by-2 row stochastic matrix given by

Ao |1 gy
Al] T [ aji 1 _aji ) (1)

with a; and aj; real numbers in the open interval (0, 1).

During this update, all the other agents k, for k # i, j, keep
their states unchanged: x;(t 4+ 1) = x,(t). Thus, if we let Ej; be the
n-by-n square matrix with 1 at the ijth entry and 0 elsewhere,
then the update of the entire network can be described by x(t +
1) = A;x(t), where A; is the n-by-n row stochastic matrix defined
as follows:

A,‘j =(1- aij)E,',‘ + a;E; + a;iEji + 1- aj,‘)Ejj

+ ZEkk. (2)
ket j
In words, the matrix A; is such that the principal submatrix
associated with columns/rows i and j is the 2 x 2 stochastic
matrix A;, and the complementary principle submatrix is the
identity matrix I,_,. Note that A; = A;; from (2).

We call these Ay's, for (v;, v;) € E, local stochastic matrices
of G. The graph of each local stochastic matrix is a bi-directional
graph with exactly two directed edges v;v; and vjv;, and self-arcs
at all n nodes.

A local stochastic matrix Ay, for (v;, v;) an edge of G, has two
degrees of freedom, namely a;; and gj; as defined in (2). We denote
by S; the set of |E|-tuples of local stochastic matrices over a
connected graph G = (V, E), which is an open convex subset of
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an Euclidean space of dimension 2|E|. Given an ordering of the
edges in G, we will use A = (Aij)(vi,vj)eg to denote an element of
Sc.

For a finite sequence y = e, ... e, of edges in G and for a given
pair of integers 0 < s < t < k, we define a product of local
stochastic matrices as follows: for t > s+ 1,

Py(l' 18) = Ae[Ae[q e 'A€s+1’

and P,(t : s) =1 for t < s. For the case wheres =0 and t =k,
we will simply write P, = P, (k : 0). The notation can be used
on infinite strings y, with k = oo, as well. We single out the
following sequences:

Definition 1 (Spanning Sequence). Let G = (V,E) be a simple,
undirected graph. A finite sequence of edges of G is spanning if
it covers a spanning tree of G. An infinite sequence of edges is
spanning if it has infinitely many disjoint finite strings that are
spanning. An infinite sequence is m-spanning if every string of
length m is spanning.

Let G = v, E‘) be the directed version of G. For each directed
edge v;v; in G, we define the ratio
@
T,'j = ')
aji
Note that r;; is well-defined, because a; € (0, 1). Also, it follows
from the definition that r;; = rij”. Let w = v;, ...v; be a walk in

G. We define
k—1

R, = 1_[ Tig.ipyr- (3)
=1

Let wy; and w, be two walks in G, with w; ending at the
starting node of wy. Then, Ry, w, = Ry, Ru,. In particular, setting
wi=wp = wz_l, we getR,,,-1 = 1.

The following definition is instrumental to our results:

Definition 2 (Holonomic Local Stochastic Matrices). Let C be a cycle
in G of length greater than 2. The local stochastic matrices A;; are
holonomic for C if Rc = 1, and are holonomic for G if they are
holonomic for every cycle of G of length of greater than 2.

With foresight, we borrow the word holonomic from differen-
tial geometry to characterize the set of matrices. The justification
of the name is the following: in geometry, this notion, roughly
speaking, describes variation of some quantity (e.g., a parallel-
transported vector) along loops in a given space. If there is no
variation of the quantity while ‘traveling’ around the loop, the
process is said to be ‘holonomic’. Here, the space is the graph
and the quantity is the product of the ratios r; along cycles of
the graph. The notion of holonomy will appear through a formula,
established below, that involves the products of r;’s along walks
in G. Clearly, for the product of these r; along walks to depend
only on the starting- and ending-nodes, it is necessary that such
products along cycles be equal to 1; indeed, these cycles can
be inserted an arbitrary amount of times to a walk without
changing its starting nor its ending node. Because of such one-to-
one correspondence, we use the term ‘holonomy’ as a definition
of the properties of the matrices A; described in Definition 2.

Remark 1. Note that if C is a 2-cycle, then Rc is 1 by definition.
Thus, if G is a tree, then every set of local stochastic matrices is
holonomic for G.
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2.2. Statement of the main results

We have three main results: the first two deal with conver-
gence of infinite products of stochastic matrices and existence of
a unique limiting rank-one matrix, and the last one states that one
can choose local stochastic matrices to obtain any desired limiting
distribution of their products.

2.2.1. Convergence of products and invariance of limits
For a given A € Sg, we define

a:= min (minA;) and €:=gda""". (4)
(vj,vj)eE

The first main result is as follows:

Theorem 1. Let G = (V, E) be a simple, connected undirected graph
on n nodes. Then, for every set of local stochastic matrices A; € R™",
(vi,vj;) € E, defined as in (2), the following two statements are
equivalent:

(1) There is a unique p € int A" ! such that for any infinite
spanning sequence y, P, = 1p".
(2) The Ajj are holonomic for G.

Furthermore, if the A;; are holonomic for G and y is m-spanning, then
_t__q
IP,(t: O)ls < (1— ™5 . (5)

Remark 2. Note that uniqueness of the probability vector p is
with respect to a given set of holonomic local stochastic matrices
Ajj, and with respect to all infinite spanning sequences y. The
dependence of p on the A;'s will be characterized shortly in
Algorithm 1. Also, it is easy to verify that the standard gossiping
process has local stochastic matrices such that A; = %11T for all
(vi,vj) € E, so rj = 1. Thus, these local stochastic matrices A;
are holonomic for any connected graph. For this special case, the
corresponding probability vector p is simply %1.

Note that an infinite spanning sequence can be obtained with
probability one by selecting an edge out of E uniformly at ran-

dom. The following fact is then an immediate consequence of
Theorem 1:

Corollary 1. Let y be a simple random sequence obtained by
selecting an edge out of E uniformly at random. If the A; are
holonomic for G, then there exists a unique probability vector p such
that P, = 1p" with probability one.

We characterize below the probability vector p. We do so by
first presenting a positive vector, denoted by q = [q1; - ; qnl,
and then normalizing it. The entire procedure is summarized in
the following algorithm:

Algorithm 1. Construction of p:
Step 1: Pick an arbitrary node, say vy, of G, and set q; := 1.
Step 2: For all nodes v;, i # 1, of G, let w be an arbitrary walk
from vq to v; in G (since G is connected, such a walk always
exists). Define q; := R,,.
Step 3: Normalize the vector q by
q
> di
It should be clear that every entry of q, defined in Steps 1 and
2, is positive, so the vector p is well defined.

p= (6)

Theorem 2. The probability vector p in Theorem 1 is given by (6).

Remark 3. From its construction, p appears to depend on both
the base node chosen (v; above, Step 1), and on the walks from
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v1 to v; chosen (Step 2). On the way of proving the main results,
we will show that, under the assumption that the local stochastic
matrices are holonomic for G, p is in fact independent of these
two parameters.

2.2.2. The space of holonomic local stochastic matrices
In this subsection, we study the set of |E|-tuples of holonomic
local stochastic matrices for G as a subset of S¢:

He == {A € S | R = 1 for all cycles in G}. (7)

Since holonomic constraints arise only if cycles are present, if G
is a tree, then Hg = Sg.

By Theorems 1 and 2, an element A € H gives rise to a unique
probability vector p, defined in Algorithm 1. Formally, we define
a map 7 as follows:

T:AEHcH peintA™ L (8)

Following the steps of Algorithm 1, it is easy to see that = is
analytic. We now characterize the preimages 7 ~(p) precisely:

Theorem 3. The map m defined in (8) is surjective. For each
p € int A", the preimage ~(p) is an |E|-dimensional open box.

It is an immediate consequence of the theorem that the di-
mension of H¢ is (n + |E| — 1); indeed, since the dimension
of 7~ !(p) is independent of p and since 7 is onto A™!, the
dimension of % is the sum of the dimension of A™"!, which is
(n — 1), and the dimension of some (and, hence, any) preimage
7~ 1(p), which is |E|. Note that the segments defining the box
are not necessarily aligned with the coordinate axes, and will
generally be slanted.

3. Analysis and proofs of theorems

In this section, we establish relevant propositions and prove
the main results.

3.1. Holonomy and Algorithm 1

In the subsection, we show that the output of Algorithm 1
is indeed independent of the base node chosen in Step 1 and
the walks chosen in Step 2. These statements are proven in
Proposition 2, and in Proposition 1 and Corollary 2 respectively.

Proposition 1. Let A; be a set of local stochastic matrices that are
holonomic for G, and w be a closed walk in G. Then, R,, = 1.

Proof. Any closed walk w can be decomposed, edge-wise, into
a union of disjoint cycles, labeled as Cy,..., C;. Then, R, =
R¢, - - - Rg,. From Definition 2, R, = 1 for every i = 1, ..., k and,
hence,R, =1. O

The next result follows as a corollary to Proposition 1:

Corollary 2. Let A; be a set of local stochastic matrices that are
holonomic for G. Let w and w’ be two distinct walks in G from the
same node v; to the same node vj. Then, R,, = R,y.

Proof. By concatenating w with w’~!, we obtain a closed walk,
which we denote by w*. On one hand, by Proposition 1, R+ = 1.
On the other hand, R,» = RyR,-1 = R, /R, . It follows that
Ry, =Ry. O

The above corollary has shown that if the base node v;, chosen
in Step 1 of Algorithm 1, is fixed, then the values of other entries
qj, for j # i, are independent of the choices of walks from v; to v;.
Though the value of the vector q depends on a particular choice
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of base node, we show below that this dependence only changes
a normalization constant. Consequently, the value of the vector p
in Step 3 is independent of said base node.

We now let q and ¢’ be the vectors obtained from Algorithm 1
by using v and v/, respectively, as the base nodes.

Proposition 2. Let w be any walk from v’ to v in G. Then, q = Ryq.

Proof. We establish the proposition by showing that for 1 <
i < n, we have q; = R,q;. Let w; be a walk from node v to v;
(if v; = v, then w; can be the empty walk), and w] be the walk
from node v’ to v; obtained by concatenating the given w and w;.
Then, Rwl{ = RyRy,;. From Algorithm 1, we know that g; = R,,, and

q = Rw{' so q; = R,,q; as desired. O
3.2. A common left-eigenvector

This subsection is devoted to first showing that the vector p
of Theorem 2 is in fact a left-eigenvector of all local stochastic
matrices Aj; for G, associated with the eigenvalue 1, provided that
these matrices are holonomic for G. This result is the first step in
the proof of Theorem 1. We also show here that if the holonomic
constraint is not met, the vector p is not well-defined.

Proposition 3. There is a probability vector p such that pTA; = p"
for all (v, v;) € E if and only if the set of A; is holonomic for G.
Moreover, if such p exists, then it is unique.

To prove Proposition 3, we use the following lemmas:

Lemma 1. Let 7y = [1;ry] € R Then, ¥y is the unique
left-eigenvector (up to scaling) of A corresponding to eigenvalue 1.

Proof. Recall that r;j = a;j/a;. It follows that

A= |1-% @i || 1] [(0—ay)+ary
v @ V=i || [e5+1—ary

_| O=a)ta; | _| 1| _5
ajitij + 1- aji)rjj Tjj v

so 7y is a left-eigenvector of A; corresponding to eigenvalue 1.
The uniqueness follows from the fact that A; is an irreducible
stochastic matrix (with all entries being positive). O

We next have the following fact:

Lemma 2. If there exists a vector p # 0 such that pTAj=p' for
any (v;, vj) € E, then for any walk w in G from node v, to node vy,
it holds that p, = Ry,pe.

Proof. Since pTA; = p', the vector [p;; pj], with i < j, is a left-
eigenvector of A; corresponding to eigenvalue 1. From Lemma 1,
[pi; pj] is necessarily proportional to 7j; and thus p; = ryp;. Thus,
we can apply this relation repeatedly along the sequence of the
edges in w and obtain that py = R,p,. O

With Lemmas 1 and 2 above, we prove Proposition 3:

Proof of Proposition 3. We first assume that the set of A; is
holonomic for G. Let g and p be given as in Algorithm 1. Since
g and p differ by a multiplicative factor, it suffices to show that
q'TA;j = q'. By construction (see Eq. (2)), the matrix Ay is equal
to the identity matrix save for the 2 x 2 principal submatrix at
columns/rows i and j, A;. Without loss of generality, we assume
that i < j, and let q; = [g;; g;]. It is enough to show that for
any pair i < j, g is a left-eigenvector of ;\,j with eigenvalue 1.
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Since (v;, v;) is an edge of G, g; = ry;q; by Algorithm 1. Thus, g; is
proportional to j; introduced in Lemma 1 and, hence, F]UT- Aj = F]UT- .

We now show that p is the only probability vector that sat-
isfies pTA; = p' for all (v, v;) € E. Let p’ be another such
probability vector. To every Ay, the equality p’TAij = p'T implies
that the two entries p; and p} satisfy pj/. = ryp; by Lemma 1. By
Lemma 2, if we fix a base node, say vy, of G, and let w be a
walk from vq to v; (since G is connected), then p; = R,p; for
alli = 2,...,n. From Step 2 in Algorithm 1, we see that p’ is
proportional to p and, hence, p’ = p.

It remains to show that if the set of A;’s is not holonomic
for G, then no p such that pTA; = p, for all (v, v;) € E, exists.
We proceed by contradiction and assume that there exists such a
vector p. Then, for any walk w starting at v; and ending at v;, we
have from Lemma 2 that p; = R,,p;. .

Because R,, is always positive and because G is strongly con-
nected, every entry of p is nonzero (otherwise, p has to be the
zero vector). But, since the set of A;; is not holonomic, there exists
a closed walk w in G such that R,, # 1. Pick a node, say v;, in w;
then, p; = Ry,p;i # p;, which is a contradiction. This completes the
proof. O

Let A € Sg. To any spanning tree G = (V,E’) of G, the
corresponding subset of local stochastic matrices Ay, for (v;, vj) €
E’, is always holonomic for G'.

Thus, the follow result is an immediate consequence of Propo-
sition 3:

Corollary 3. To every spanning tree G = (V, E') of G we can assign
a unique probability vector p’ such that

p'TA; =p' forall (vi, v;) € E'. (9)

Note, in particular, that if the local stochastic matrices are
holonomic for G, then for any two spanning trees G’ and G’
of G, their associated probability vectors p’ and p” are equal.
Conversely, we have the following:

Proposition 4. Suppose that the set of A is not holonomic for
G; then, there exist two distinct spanning trees G' and G” of G with
distinct probability vectors p’ and p” satisfying Eq. (9).

Proof. Because the set of A; is not holonomic for G, there exists at
least one cycle C = vqv, - - - vgv7 of G such that Rc # 1. Let G’ and
G” be two spanning trees such that G’ contains edges (v, vyy1),
forall¢ =1,...,k—1and G” contains the edge (v1, vi). It should
be clear that such G’ and G” exist and are distinct because G’
cannot contain the edge (vq, vg). By Corollary 3, we can uniquely
assign the probability vectors p’ and p” to G’ and G”, respectively.
We claim that p’ and p” are distinct. To establish the claim, we let
w = vq - - - v be the unique path in G’ from v; to v,. Then, since
p’ satisfies Eq. (9), by Lemma 2, we have that p, = R,,p]. Similarly,
for G”, since v vy is a directed edge, we have that p; = ryp/. But,
Rc = Ry7i = Ry, /i # 1, which implies that the two ratios p; /p
and pj/p/ are different. This completes the proof. O

3.3. Uniform lower bound for nonzero entries of P,

For a given vector z € RZ, recall that supp(z) is the support
of z. Let y be a walk in G and z, := P,z. If y is an empty walk,
then P, =1 and z, =z.

We also recall that minz, the smallest non-zero entry of z,,
ie,minz, = min{z, ; | i € supp(z,)}. Note that if P is an arbitrary
n X n nonnegative matrix with positive diagonal entries, then
supp(z) C supp(Pz); indeed, if z; > 0, then (Pz); > P;z; > 0.
As a consequence, we have the following fact:

y1 is a string of y, = supp(z,,) € supp(z,,). (10)
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When we consider a nested family of edge strings y; C y, C
.-+ for which the supports of the corresponding z,, are the same,
the smallest non-zero entry over the support is non-decreasing
as shown below:

Lemma 3. Let y be a string of edges and e be an edge of G. Let
y' =y Ve If supp(z,’) = supp(z,), then minz,, > minz,.

Proof. For convenience, but without loss of generality, we as-
sume that e = (v1, v3), s0 A;; = diag(Ar2, I,_2), where A, was
defined in Eq. (1).

The matrix P,/ differs from P, in its first two rows only;
we denote by z,; and z,, the first two entries of z,. Since
supp(z,/) = supp(z, ) and since all entries of Aj are positive, we
have that z, ; is 0 if and only if z, , is 0; indeed, say z, ; = 0 and
z,, > 0, then, after multiplication, the first entry of z,» will be
positive, contradicting the fact that supp(z,/) = supp(z,). Now,
consider the following two cases:

Case 1.1f z,1 = z,, = 0, then z, = z,» and, hence, minz, =
minz,.

Case 2.1fz, 1 # 0 (and, hence, z, , # 0), then the first and second
entries of z,/ are given by

Zy'1 1. |%va
Y2 V.2

Because Aj; is a stochastic matrix, both z,1 and z, , are convex
combinations of z, ; and z, ;. Thus,

. Zy' 1 . Zy 1 .

min (Y| > min | """ | > minz,.
Zy',2 Zy 2

In either case, we conclude that minz,» > minz,. O

With Lemma 3, we can now establish a lower bound on
minP,:

Proposition 5. Let A € S; and a be defined as in (4). Then, for
any sequence y of edges,

n—1 __

minP, > a €.

Proof. Let {e;}} ; be the standard basis of R". Then, the ith
column of P,, denoted by P, ;, is given by P,e;. It should be

clear that minP, = min}, P, ;. Thus, it suffices to show that
minP,; > g 'foralli=1,...,n.
To establish the fact, we fix an arbitrary i € {1, ..., n}, and let

N, ; be the cardinality of supp P, ;. We will show below that
minP, ; > @i~ (11)

Note that if (11) holds, then the proof is done because N, ; is
bounded above by n and, hence, minP, ; > a

The proof of (11) is by induction on N, ;. For the base case
N, ; = 1, the sequence y can only comprise edges (v;, v¢) that are
not incident to node v;. To see this, note that by the definition
of the local stochastic matrices, if ¥ does not contain any edge
incident to node v;, then P, ; = e; and, hence, N, ; = 1. Next,
we assume that y contains an edge incident to v;, and let y; =
(vi, vj) be the first such edge in y. Then, by the above arguments,
P, i(t — 1 : 0) = e;. Moreover, using the same arguments as in
the proof of Lemma 3, we have that both the ith and jth entries
of P, ;(t : 0) are nonzero. Further, since the support of P, ; is
monotonic by (10), we have N, ; > 2. We have thus shown that
if N, ;=1,then P, ; =¢; and minP, ; = 1.

For the inductive step, we assume that the statement holds for
any y with N, ; = k (for 1 < k < n — 1), and prove that it holds
for any y with N, ; =k + 1.
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For any given y with N,; = k+ 1, we let t > 1 be chosen
such that the two strings ' := y(t : 0) and y” .= y(t + 1 : 0)
satisfy the condition that N, ; = k and N,,» ; = k+1. Such t exists
because N, .0y, is @ monotonically non-decreasing function in t
due to Eq. (10) and suppe; = 1.

Let A; be the local stochastic matrix corresponding to the last
edge in y”. It is so that P,» = A;P,. By the induction hypothesis,
minP, ; > a*~!, we have that

min P, ; > minA; min P,/ ; > a*.

Finally, note that the sequence y is obtained from y” by adding
edges to the end of y”. One can thus iteratively apply Lemma 3
to obtain that min P, ; > min P~ ;. This completes the proof. O

3.4. Proofs of Theorems 1 and 2

For a stochastic matrix A € R™", its coefficient of ergodic-
ity (Seneta, 2006) is defined as

1 n
w(A) = 3 TT}?X; lax — ajl.

We always have that u(A) < 1. It has been shown in Hajnal and
Bartlett (1958, Lemma 3) that for any two stochastic matrices P
and Q,

IPQIs = n(P)IQs- (12)

A stochastic matrix A is called a scrambling matrix if no pair of
rows of A is orthogonal. The following result is well known (see,
e.g., Eq. (25) in Cao, Morse, and Anderson (2008b)):

Lemma 4. For any scrambling matrix A,
M(A) < 1—minA.

Let y be a finite spanning sequence of edges of G. Then,
by (10), the graph of P, is strongly connected with self-arcs
(more precisely, the graph contains a bi-directional spanning
tree). It then follows that P,, is irreducible (Horn & Johnson, 1985,
Theorem 6.2.24). We also need the following lemma:

Lemma 5. The product of any set of £ > |3 irreducible n x n
stochastic matrices with positive diagonal entries is a scrambling
matrix.

Proof. We will use a graphical approach. We call a digraph
neighbor-shared if any two distinct nodes share a common in-
neighbor.

Let G, and G, be two directed graphs with the same node
set V. The composition of G, with G, denoted by G, o G, is a
digraph with node set V and edge set defined as follows: v;v; is
an edge of G4 o G, whenever there is a node v, such that v;v
is an edge of G, and viv; is an edge of G,. Since composition is
an associative binary operation, it extends unambiguously to any
finite sequence of digraphs with the same node set. Let M and M,
be two nonnegative n x n matrices, and G, G, be their respective
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graphs. Then, by construction, the graph of M,M; is G, o G;.
From Cao et al. (2008a, Prop. 9), we have that the composition
of any set of £ > | 7] strongly connected graphs with self-arcs
with the same node set is neighbor-shared. It has been shown
in Cao et al. (2008b) that a stochastic matrix is scrambling if and
only if its graph is neighbor-shared. This concludes the proof. O

With the preliminaries above, we will now prove Theorems 1
and 2.

Proof of Theorems 1 and 2. We first assume that the A; are
holonomic for G and prove the two theorems. Let y be an infinite
spanning sequence. Since ||P,(t : 0)||s is monotonically non-
increasing by (12), the limit exists as t goes to co. We show below
that the limit is 0. Let 0 =: tyg < t; < t;--- be a monotonically
increasing sequence such that every string y(ty+1 @ t), for k >
0, has L%J disjoint spanning sub-strings. From Lemma 5, every
product P,(tg11 : &), for k > 0, is a scrambling matrix. By
Proposition 5 and Lemma 4, (P, (ty+1, t)) < (1 — €). It follows
from the inequality (12) and ||I||s = 1 that

lim [|Py(ti : 0)lls < lim (1 — €)[IP, (tk—1 : 0)lls
k— o0 k— o0

< lim(1—€) =0,
k—o00

which implies that lim;_. [|P,(t : 0)|ls = 0. It is known (Chat-
terjee & Seneta, 1977) that the semi-norm ||P,(t : 0)||s converges
to 0 if and only if P,(t : 0) converges to a rank-one matrix. This
establishes asymptotic convergence.

If y is, furthermore, m-spanning, then the sequence {t;}x>o can
be chosen such that 1 — t; < mL%J =: T. Let t be an arbitrary
time index and choose k with t;, <t < ty41. Then,

1P, (t = O)lls < IIP,(t : O)lls < (1 —€)f = (1 — &)Lt
<(1—e)

which establishes exponential convergence and Eq. (5) in Theo-
rem 1.

To show that the vector p is the one given in Algorithm 1, we
first note that from Proposition 3, pTA; = p' for all (v;, v;) € E.
Thus, p"P,(t : 0) = p" for all t > 1. Because P, (t : 0) converges
to a rank-one matrix as t — oo, it must converge to 1p'.

Finally, we assume that the A; are not holonomic and show
that there does not exist a probability vector p such that P, =
1p" for any infinite spanning sequence y. Under the assumption
on Aj, owing to Proposition 4, there exist at least two distinct
spanning trees G’ and G” of G for which the associated probability
vectors p’ and p” are distinct. Let ' and y” be two infinite
spanning sequences for G, with the property that edges in y’
(resp. ") belong to G’ (resp. G”). Because G’ and G” are trees,
the associated (A,‘j)(vi,vj)eE/ and (A,j)(vi,uj)ey are holonomic for ¢
and G”, respectively. Thus, by the above arguments P, = 1p’ and
P,» = 1p”. Since p’ # p”, P,» # P,». This completes the proof. O

3.5. Proof of Theorem 3

Recall that a local stochastic matrix A; assigned to an undi-
rected edge (v;, vj) € E gives rise to two ratios rj; = Zl and
) i
Tji = ? which are inverse of each other, as defined in Section 2.1.

ij

The set of all such ratios is thus the |E|-dimensional subset of R?/£!
defined as follows:

V= i(yij)uivjef e R |y =1 Vo € E] :

It is easy to see that Y is diffeomorphic to R‘f'.
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Also, recall that S is the set of all |E|-tuples of local stochastic
matrices for G. We now introduce the map ¢ : S¢ — Y defined
as follows:

aj
¢S = YV (At (*) - (13)
aji vivjsf

Moreover, we have the following result:

Proposition 6. The map ¢ defined in (13) is surjective and for
any y € Y, the pre-image ¢~ '(y) is an |E|-dimensional open box
embedded in R,

Proof. The map ¢ can be realized as a Cartesian product of maps
¢ : (0,1)x(0,1) — Ri, for (v;, vj) € E withi < j, where each ¢;
is defined by sending the matrix A; to a pair of reciprocal ratios
(aj/aji, aji/ay), i.e., we have that

& ((Ajdwpupee) = ]_[ ®ii(Ay)
(vi,vj)€E

= ((a,-j/ajf, aﬁ/“z‘j))

(Ui,vj)GE.

Thus, taking inverses, we obtain that

o7 ((@i/aer) = TT 65" (@i/ai aifay)

(vj,vj)€E

Now, let (r) with rj > 0 and ryT;; = 1, be an arbitrary point

in the codomain of ¢. We claim that ¢i]f](r,»j, rl.j’l) is nonempty

and, moreover, it is an open bounded segment in RZ2. If the
claim holds, then the proof is complete: Indeed, if ¢i]Tl(rU, rl-j_l)
is nonempty, then ¢j is surjective. Owing to the Cartesian prod-
uct structure exhibited above, ¢ is also surjective. By the same
arguments, if ¢>Uf1(ri], r,.jf]) is an open bounded segment, then
¢*1((r,-j)viv,€,-5) is an open box.

We will now establish the claim stated above. For ease of
presentation, we will represent the matrix A; by the pair of
entries (aj, a;;) (recall that all the other entries of A; are uniquely
determined by this pair). This representation can be viewed as
a bijective linear map. With this representation, it follows from

computation that

vivj €k

{(rjx,x) | 0 <x < 1}

{(xr;'%) 10 <x <1}

1 1 if rj < 1,

.o r--’ T.. = .
¢u (ry ij ) { ifrj > 1.
Thus, the preimage is an open segment parameterized by x €
(0, 1) as is claimed. O

The map ¢ relates the local stochastic matrices to the ratios
rii, for vijv; € E. We next construct a map that relates these ratios
to the probability vector p. To this end, let 8 : int A" ! — ]Ri'E !
defined as follows:

0:p=1Ip1 - pal" > (B/Pi)yyyyci - (14)

We will show that the map 6 is one-to-one, and thus admits
a well-defined inverse. To this end, we describe the image of
6 explicitly, as an algebraic subset of R?l. For a given positive
vector y = (y,‘j)vivjez- € Y and for a given walk w = vq--- v, in G,

we let Y, = 1_[’2;} Ye.e+1- Define a subset of Y as follows:
Yy = {y €Y |Y, =1 for every closed walk w of 6} . (15)

Note that if A € S; is holonomic for G, then the correspond-
ing vector of ratios r = (ry) belongs to the set Y, by
construction.

We have the following result:

vjveE
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Proposition 7. The map 0 is one-to-one and onto )y.

Proof. First, ify = 6(p) for some p € int A"!, it follows from (14)
that Y,, = 1 for any closed walk w = vy - - - vgvy, so the image of
6 is contained in ).

Next, we show that the map 6 is one-to-one. Let p and p’ be
two distinct vectors in int A"~ 1. Then, there exists at least a pair
of distinct indices (i, j) such that p;/p; # pj’./plf. Indeed, if no such
pair exists, then p’ is proportional to p which, since both p and
p’ belong to A", contradicts the fact that they are distinct. This
shows that 6 is one-to-one.

Finally, we show that for any y € Y, there exists a p €
int A" such that #(p) = y. One can obtain such a vector p
by using Algorithm 1, but with r; and R, replaced by y; and
Y,, respectively. The choice of the base node and the choices
of walks from the base node to the other nodes do not matter
since Y,, = 1 for all closed walks w—the same arguments used in
Propositions 1 and 2, and Corollary 2 can be applied to establish
the fact. Then, by construction, the vector p indeed satisfies
f(p) = y. To see this, we let vjv; be an arbitrary edge in G and
show that p;/p; = yj;. Let v; be a base node chosen in Step 1 of
Algorithm 1. Since v;v; is an edge, by Step 2 of Algorithm 1, we
have that p; = yyp;, i.e,, pj/pi =y O

With the propositions above, we prove Theorem 3:

Proof of Theorem 3. By Proposition 7, the map 0 is a bijection.
Moreover, by Definition 2 of holonomic local stochastic matrices,
He = ¢~ (V). We can thus write the map 7 : H¢ — int A"
as w(-) = 6~ 1(¢(-)) by restricting the domain of ¢ to the subset
H¢. Thus, for a given p € int A", since 7 ~'(p) = ¢~ '(6(p)) and
since 8(p) € Y C YV, we conclude from Proposition 6 that 7 ~!(p)
is an |E|-dimensional open box. O

4. Conclusions

In this paper, we have investigated convergence of weighted
gossip processes and characterized their limits. Mathematically, a
weighted gossip process can be expressed as an infinite product
of local stochastic matrices, which are not required to be doubly
stochastic. Using the notion of holonomy, we have provided a
necessary and sufficient condition for the product to converge to a
unique rank-one matrix, independent of the order of the appear-
ance of the stochastic matrices in the product. We characterized
explicitly both the limit and the sets of holonomic stochastic
matrices that can give rise to a desired limit. Amongst the fu-
ture directions in which the present work can be extended, we
mention generalization of the results to local stochastic matrices
with zeros in the 2 x 2 principal submatrices. This case, though
seemingly close to the one studied here, in fact exhibits a very
different asymptotic behavior. We will also aim to generalize
the results to vector-valued gossip processes, and to establish a
unified framework that accommodate the results of the paper and
the results of the previous work (Belabbas & Chen, 2021).
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