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a b s t r a c t

A gossip process is an iterative process in a multi-agent system where only two neighboring agents
communicate at each iteration and update their states. The neighboring condition is by convention
described by an undirected graph. In this paper, we consider a general update rule whereby each
agent takes an arbitrary weighted average of its and its neighbor’s current states. In general, the limit
of the gossip process (if it converges) depends on the order of iterations of the gossiping pairs. The
main contribution of the paper is to provide a necessary and sufficient condition for convergence of
the gossip process that is independent of the order of iterations. This result relies on the introduction
of the novel notion of holonomy of local stochastic matrices for the communication graph. We also
provide complete characterizations of the limit and the space of holonomic stochastic matrices over
the graph.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Consensus problems have a long history (DeGroot, 1974) and
re closely related to Markov chains (Seneta, 2006). Over the
ast decades, there has been considerable interest in developing
lgorithms intended to cause a group of n > 1 agents to reach
consensus in a distributed manner, see Blondel and Olshevsky

2014), Cao, Morse, and Anderson (2008a), Chen, Belabbas, and
aşar (2016), Hendrickx and Tsitsiklis (2011), Jadbabaie, Lin, and
orse (2003), Moreau (2005), Nedić and Liu (2017), Olfati-Saber
nd Murray (2004), Ren and Beard (2005), Touri and Nedić (2014)
nd Tsitsiklis (1984) just to cite a few. A simple idea to solve the
onsensus problem exploits a form of iterative message passing,
n which each agent exchanges information with at most one
ther agent per iteration. One such exchange is called a gossip.
henever two agents gossip, they set their state variables equal

o the average of their values before gossiping (Boyd, Ghosh,
rabhakar, & Shah, 2006). This process, which we term standard
ossip process, is known to make all agents’ values converge to
he average of their initial states, provided that the neighbor
raph is connected. In the standard gossip process, the update

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Julien M.
Hendrickx under the direction of Editor Christos G. Cassandras.
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matrix associated with each iteration is doubly stochastic. Recall
that all doubly stochastic matrices share the same left- (and
right-) eigenvector, namely the vector 1 of all 1’s, corresponding
to eigenvalue 1. Therefore, if the product of doubly stochastic
matrices converges to a rank-one matrix, it can only converge to
1
n11

⊤, where n is the number of agents in the system.
In this paper, we enable convergence of a gossip process to an

arbitrary weighted ensemble average. To this end, the update rule
of the standard gossip process is generalized to allow neighboring
agents to update their states according to a weighted average of
their current values. We emphasize that when a pair of agents,
say i and j, communicates, they are not required to take the
same weighted average. For example, agent i can weigh its and
j’s values by 1/3 and 2/3, whereas agent j’s weighs its and i’s
values by 2/5 and 3/5. We call this generalized version of a gossip
process a weighted gossip process.

The extension of the update rule to (asymmetric) weighted
average at each iteration gives rise to several important ques-
tions: (1) Can we still guarantee (exponential) convergence of the
weighted gossip process? (2) Since different gossiping pairs can
take different weighted averages and the corresponding stochas-
tic matrices are not necessarily doubly stochastic, can we char-
acterize the limit of a weighted gossip process (provided that
the product of those stochastic matrices converges to a rank-one
matrix)? (3) Furthermore, when can the limit of the product be
independent of the order of appearance of the stochastic matrices
in the product? (4) Finally, in settings for which questions (1)–(3)
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ave positive answers, can we design an update rule (or, equiv-
lently, the set of stochastic matrices) to ensure convergence of
he gossip process to any desired weighted ensemble average?

We address in the paper the above four questions and provide
nswers to them. To do so, we first introduce a novel notion
f holonomy of stochastic matrices assigned to the edges of
given undirected graph that describes the neighbor topology

also referred to as communication topology) of the multi-agent
ystem. We borrow this terminology from Riemannian geometry,
hich encodes transformations of vectors transported along close
urves. In the present context, we take products of stochastic
atrices along edges in arbitrary walks in the graph, and the term
olonomy is used to indicate a change of a certain eigenvector
orresponding to eigenvalue 1 of the product along any closed
alk in the graph. Holonomy in this context is related to the
o-called graph balance for signed (or, more generally, voltage)
raphs (Chen, Belabbas, & Başar, 2017), as both concepts require
he net effect of a contextually-defined transformation over a
losed walk to be trivial.
Based on the notion of holonomy, we establish a necessary

nd sufficient condition for a weighted gossip process to (expo-
entially) converge to a unique rank-one matrix, and characterize

explicitly this limit. Note that any such limit can always be
written as 1p⊤ where p is a probability vector. The above facts
imply the existence of a map π that assigns a set of holonomic
tochastic matrices to the probability vector p.
Moreover, we show that for an arbitrary probability vector
in the interior of the standard simplex, there exists a set of
olonomic stochastic matrices so that a corresponding weighted
ossip process converges to 1p⊤, thus providing an affirmative
nswer to question (4) above. In other words, we show that the
ap π is onto the interior of the standard simplex. Another major
ontribution of the paper is to provide a complete characteriza-
ion of the preimage π−1(p), i.e., all sets of holonomic stochastic
atrices that are mapped to p by π .
This paper shares the same spirit as the recent work (Belabbas
Chen, 2021), in the sense that both consider convergence to

rbitrary rank-one stochastic matrices, and both provide condi-
ions for the limits of products of certain stochastic matrices to
e independent of their orders of appearance in the products.
owever, the specific settings and analyses differ significantly.
n the present work, the stochastic matrices considered have a
ontrivial 2 × 2 principal submatrix, with the remaining part
eing an identity matrix, reflecting the fact that communication
t each iteration is pairwise. Stochastic matrices appearing in Be-
abbas and Chen (2021) have in contrast a non-trivial 3 × 3
rincipal submatrix, reflecting communications for three agents
imultaneously. This seemingly minor extension in fact increases
he complexity of the products drastically. As a trade-off for the
educed complexity of the products in the current paper, we do
ot impose any restriction on the structure of the graph (as long
s it is connected); whereas in Belabbas and Chen (2021), only a
pecial class of rigid graphs, termed triangulated Laman graphs,
llowed us to draw conclusions similar to the ones of the current
aper.
Our work answers questions about weighted gossip processes

hat have not been investigated in the extant literature. For a
omparison with existing works, we describe a few recent results
bout the standard gossip process. For a deterministic standard
ossip process, if each pair of neighboring agents gossips in-
initely often, then all agents’ states asymptotically converge to
he average of their initial values (Hendrickx & Tsitsiklis, 2011);
f there exists a period T such that each pair gossips at least
nce within each successive subsequence of length T , the con-
ergence will be exponentially fast (Liu, Mou, Morse, Anderson,

Yu, 2011). Moreover, if the underlying graph is a tree and each

2

eighboring pair is restricted to gossip only once per period, it
s known (Yu et al., 2017) that the convergence rate is fixed and
nvariant over all possible periodic gossip sequences the graph
llows. For a randomized standard gossip process, in which each
air of neighbor agents is randomly selected to gossip, all agents’
tates converge to the average of their initial values almost surely
nd in mean square (Boyd et al., 2006). Finally, we emphasize that
he terms ‘‘gossip’’ and ‘‘weighted gossip’’ have, over the years,
ad evolving meanings. We defined here a gossip process as being
n iterative process in which interactions are between pairs of
gents only. For some, a ‘‘gossip’’ process is moreover required to
ave agents converge to the average of their initial states (Boyd
t al., 2006); also, ‘‘weighted gossip’’ is used in Bénézit, Blondel,
hiran, Tsitsiklis, and Vetterli (2010) to describe a variant of
he push-sum algorithm (Kempe, Dobra, & Gehrke, 2003), whose
urpose is to reach an average consensus over directed graphs.
hese works thus differ from ours.
The remainder of the paper is organized as follows: We gather
few key notations and conventions at the end of the section.
he notion of holonomy and the main results of the paper are
resented in Section 2. Analyses and proofs of the main results
re provided in Section 3. The paper ends with a conclusion in
ection 4.

otations and conventions. We denote by G = (V , E) an undi-
ected graph, without multiple edges but, possibly, with self-
oops. We call G simple if it has no self-loops. The graphs we
onsider here are connected. The node set is by convention de-
oted by V = {v1, . . . , vn} and the edge set by E. We refer to the
dge linking nodes vi and vj as (vi, vj). A self-loop is then of the

form (vi, vi).
Given a sequence of edges γ = e1 · · · ek in E, we say that a

node v ∈ V is covered by γ if it is incident to an edge in γ . For γ =

e1e2 · · · an infinite sequence, we say that v is covered infinitely
often by γ if there exists an infinite number of sub-indices i1 <

2 < · · · such that eij is incident to v.
Given a sequence γ = e1e2 · · · , we say that γ ′ is a string of γ

if it is a contiguous subsequence, i.e., γ ′
= eiei+1 · · · eℓ for some

i ≥ 1 and ℓ ≥ i. Let γ = e1 · · · ek be a finite sequence and ek+1
be an edge of G. Denote by γ ∨ ek+1 the sequence e1 · · · ekek+1
obtained by adding ek+1 to the end of γ .

For a given undirected graph G as above, we denote by G⃗ =

(V , E⃗) a directed graph on the same node set and with a ‘‘bidirec-
tionalized’’ edge set; precisely, E⃗ is defined as follows: we assign
to every edge (vi, vj) of G, i ̸= j, two directed edges vivj and vjvi;
to a self-loop (vi, vi) of G corresponds a self-loop vivi of G⃗.

Let w = vi1 . . . vik be a walk in the directed graph G⃗, i.e., every
viℓviℓ+1 , for ℓ = 1, . . . , k − 1, is an edge of G⃗. We call vi1
the starting-node and vik the ending-node of w. We define by
w−1

:= vikvik−1 . . . vi1 the inverse of w. Let w′
= vikvik+1 · · · vim

be another walk in G, where the starting-node of w′ is the same
as the ending-node of w. We denote by ww′

= vi1 . . . vik . . . vim
the concatenation of the two walks.

A square nonnegative matrix is called a stochastic matrix if all
its row-sums equal one. A matrix is irreducible if it is not similar
via a permutation to a block upper triangular matrix (with strictly
more than one block of positive size). The graph of an n×n matrix
is a directed graph on n nodes: there is a directed edge from node
vj to node vi whenever the ijth entry of the matrix is nonzero. It
is known that a matrix is irreducible if and only if its graph is
strongly connected (Horn & Johnson, 1985, Theorem 6.2.24).

On the space of n × m real matrices, we define the following
semi-norm: for a given A ∈ Rn×m,

∥A∥S := max
1≤j≤m

max
1≤i1,i2≤n

|ai1j − ai2j|.

The zero-set of this semi-norm is the set of matrices with all rows
equal. See Wolfowitz (1963) for more details.
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The support of a matrix A = [aij], denoted by supp(A), is the set
of indices ij such that aij ̸= 0. We denote by min A the smallest
non-zero entry of A:

min A = min
ij∈supp(A)

aij.

In this paper, we will only consider min A for A being a nonneg-
ative matrix.

We say that p ∈ Rn is a probability vector if pi ≥ 0 and∑n
i=1 pi = 1. The set of probability vectors in Rn is the (n − 1)-

simplex, which is denoted by ∆n−1. Its interior with respect to
the standard Euclidean topology in Rn is denoted by int∆n−1. If
p ∈ int∆n−1, then all entries of p are positive.

We let 1 be a vector of all ones, whose dimension will be clear
from the context.

Given a real number x, we denote by ⌊x⌋ the largest integer
hat is smaller than or equal to x, i.e., ⌊x⌋ := maxz∈Z{z | z ≤ x}.

The Cartesian product of k linearly independent open bounded
ine segments in an Euclidean space is called a k-dimensional open
ox. An open box is not necessarily parallel to the coordinate axes.
We denote by R+ the set of positive real numbers.

2. Main results

We now present the main results proved in this paper, and the
main concepts introduced.

2.1. Local stochastic matrices and holonomy for digraphs

Let G = (V , E) be a simple graph on n nodes. Each node
epresents an agent, and each agent is assigned a variable xi(t) ∈
R at the time step t . To each edge (vi, vj) of G, with i < j,
corresponds a potential interaction of agents i and j, whereby they
update their current states xi(t) and xj(t) (if this gossip pair is
activated) according to the rule:[
xi(t + 1)
xj(t + 1)

]
= Āij

[
xi(t)
xj(t)

]
,

where Āij is the 2-by-2 row stochastic matrix given by

Āij :=

[
1− aij aij
aji 1− aji

]
, (1)

with aij and aji real numbers in the open interval (0, 1).
During this update, all the other agents k, for k ̸= i, j, keep

their states unchanged: xk(t+1) = xk(t). Thus, if we let Eij be the
n-by-n square matrix with 1 at the ijth entry and 0 elsewhere,
then the update of the entire network can be described by x(t +
1) = Aijx(t), where Aij is the n-by-n row stochastic matrix defined
as follows:

Aij := (1− aij)Eii + aijEij + ajiEji + (1− aji)Ejj

+

∑
k̸=i,j

Ekk. (2)

In words, the matrix Aij is such that the principal submatrix
associated with columns/rows i and j is the 2 × 2 stochastic
matrix Āij, and the complementary principle submatrix is the
identity matrix In−2. Note that Aij = Aji from (2).

We call these Aij’s, for (vi, vj) ∈ E, local stochastic matrices
of G. The graph of each local stochastic matrix is a bi-directional
graph with exactly two directed edges vivj and vjvi, and self-arcs
at all n nodes.

A local stochastic matrix Aij, for (vi, vj) an edge of G, has two
degrees of freedom, namely aij and aji as defined in (2). We denote
by SG the set of |E|-tuples of local stochastic matrices over a

connected graph G = (V , E), which is an open convex subset of

3

an Euclidean space of dimension 2|E|. Given an ordering of the
edges in G, we will use A = (Aij)(vi,vj)∈E to denote an element of
SG.

For a finite sequence γ = e1 . . . ek of edges in G and for a given
air of integers 0 ≤ s ≤ t ≤ k, we define a product of local
tochastic matrices as follows: for t ≥ s+ 1,

γ (t : s) := AetAet−1 · · · Aes+1 ,

and Pγ (t : s) = I for t ≤ s. For the case where s = 0 and t = k,
we will simply write Pγ = Pγ (k : 0). The notation can be used
on infinite strings γ , with k = ∞, as well. We single out the
following sequences:

Definition 1 (Spanning Sequence). Let G = (V , E) be a simple,
undirected graph. A finite sequence of edges of G is spanning if
it covers a spanning tree of G. An infinite sequence of edges is
spanning if it has infinitely many disjoint finite strings that are
spanning. An infinite sequence is m-spanning if every string of
length m is spanning.

Let G⃗ = (V , E⃗) be the directed version of G. For each directed
edge vivj in G⃗, we define the ratio

rij :=
aij
aji

.

Note that rij is well-defined, because aji ∈ (0, 1). Also, it follows
from the definition that rji = r−1

ij . Let w = vi1 . . . vik be a walk in
G⃗. We define

Rw :=

k−1∏
ℓ=1

riℓ,iℓ+1 . (3)

Let w1 and w2 be two walks in G, with w1 ending at the
starting node of w2. Then, Rw1w2 = Rw1Rw2 . In particular, setting

:= w1 = w−1
2 , we get Rww−1 = 1.

The following definition is instrumental to our results:

efinition 2 (Holonomic Local Stochastic Matrices). Let C be a cycle
n G⃗ of length greater than 2. The local stochastic matrices Aij are
olonomic for C if RC = 1, and are holonomic for G if they are

holonomic for every cycle of G⃗ of length of greater than 2.

With foresight, we borrow the word holonomic from differen-
tial geometry to characterize the set of matrices. The justification
of the name is the following: in geometry, this notion, roughly
speaking, describes variation of some quantity (e.g., a parallel-
transported vector) along loops in a given space. If there is no
variation of the quantity while ‘traveling’ around the loop, the
process is said to be ‘holonomic’. Here, the space is the graph
and the quantity is the product of the ratios rij along cycles of
the graph. The notion of holonomy will appear through a formula,
established below, that involves the products of rij’s along walks
in G. Clearly, for the product of these rij along walks to depend
only on the starting- and ending-nodes, it is necessary that such
products along cycles be equal to 1; indeed, these cycles can
be inserted an arbitrary amount of times to a walk without
changing its starting nor its ending node. Because of such one-to-
one correspondence, we use the term ‘holonomy’ as a definition
of the properties of the matrices Aij described in Definition 2.

Remark 1. Note that if C is a 2-cycle, then RC is 1 by definition.
Thus, if G is a tree, then every set of local stochastic matrices is

holonomic for G.
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.2. Statement of the main results

We have three main results: the first two deal with conver-
ence of infinite products of stochastic matrices and existence of
unique limiting rank-one matrix, and the last one states that one
an choose local stochastic matrices to obtain any desired limiting
istribution of their products.

.2.1. Convergence of products and invariance of limits
For a given A ∈ SG, we define

:= min
(vi,vj)∈E

(min Aij) and ϵ := an−1. (4)

The first main result is as follows:

Theorem 1. Let G = (V , E) be a simple, connected undirected graph
on n nodes. Then, for every set of local stochastic matrices Aij ∈ Rn×n,
(vi, vj) ∈ E, defined as in (2), the following two statements are
equivalent:

(1) There is a unique p ∈ int∆n−1 such that for any infinite
spanning sequence γ , Pγ = 1p⊤.

(2) The Aij are holonomic for G.

Furthermore, if the Aij are holonomic for G and γ is m-spanning, then

∥Pγ (t : 0)∥S ≤ (1− ϵ)
t

m⌊
n
2 ⌋

−1
. (5)

Remark 2. Note that uniqueness of the probability vector p is
with respect to a given set of holonomic local stochastic matrices
Aij, and with respect to all infinite spanning sequences γ . The
dependence of p on the Aij’s will be characterized shortly in
Algorithm 1. Also, it is easy to verify that the standard gossiping
process has local stochastic matrices such that Āij =

1
211

⊤ for all
vi, vj) ∈ E, so rij = 1. Thus, these local stochastic matrices Aij
re holonomic for any connected graph. For this special case, the
orresponding probability vector p is simply 1

n1.
Note that an infinite spanning sequence can be obtained with

robability one by selecting an edge out of E uniformly at ran-
om. The following fact is then an immediate consequence of
heorem 1:

orollary 1. Let γ be a simple random sequence obtained by
electing an edge out of E uniformly at random. If the Aij are
holonomic for G, then there exists a unique probability vector p such
that Pγ = 1p⊤ with probability one.

We characterize below the probability vector p. We do so by
first presenting a positive vector, denoted by q = [q1; · · · ; qn],
and then normalizing it. The entire procedure is summarized in
the following algorithm:

Algorithm 1. Construction of p:
Step 1: Pick an arbitrary node, say v1, of G, and set q1 := 1.
Step 2: For all nodes vi, i ̸= 1, of G, let w be an arbitrary walk

from v1 to vi in G⃗ (since G is connected, such a walk always
exists). Define qi := Rw .

Step 3: Normalize the vector q by

p :=
q∑n
i=1 qi

. (6)

It should be clear that every entry of q, defined in Steps 1 and
2, is positive, so the vector p is well defined.

Theorem 2. The probability vector p in Theorem 1 is given by (6).

Remark 3. From its construction, p appears to depend on both
the base node chosen (v above, Step 1), and on the walks from
1

4

v1 to vi chosen (Step 2). On the way of proving the main results,
we will show that, under the assumption that the local stochastic
matrices are holonomic for G, p is in fact independent of these
two parameters.

2.2.2. The space of holonomic local stochastic matrices
In this subsection, we study the set of |E|-tuples of holonomic

local stochastic matrices for G as a subset of SG:

HG := {A ∈ SG | RC = 1 for all cycles in G⃗}. (7)

Since holonomic constraints arise only if cycles are present, if G
is a tree, then HG = SG.

By Theorems 1 and 2, an elementA ∈ HG gives rise to a unique
probability vector p, defined in Algorithm 1. Formally, we define
a map π as follows:

π : A ∈ HG ↦→ p ∈ int∆n−1. (8)

Following the steps of Algorithm 1, it is easy to see that π is
nalytic. We now characterize the preimages π−1(p) precisely:

heorem 3. The map π defined in (8) is surjective. For each
∈ int∆n−1, the preimage π−1(p) is an |E|-dimensional open box.

It is an immediate consequence of the theorem that the di-
ension of HG is (n + |E| − 1); indeed, since the dimension
f π−1(p) is independent of p and since π is onto ∆n−1, the
imension of HG is the sum of the dimension of ∆n−1, which is
n − 1), and the dimension of some (and, hence, any) preimage
−1(p), which is |E|. Note that the segments defining the box
re not necessarily aligned with the coordinate axes, and will
enerally be slanted.

. Analysis and proofs of theorems

In this section, we establish relevant propositions and prove
he main results.

.1. Holonomy and Algorithm 1

In the subsection, we show that the output of Algorithm 1
s indeed independent of the base node chosen in Step 1 and
he walks chosen in Step 2. These statements are proven in
roposition 2, and in Proposition 1 and Corollary 2 respectively.

Proposition 1. Let Aij be a set of local stochastic matrices that are
holonomic for G, and w be a closed walk in G⃗. Then, Rw = 1.

Proof. Any closed walk w can be decomposed, edge-wise, into
a union of disjoint cycles, labeled as C1, . . . , Ck. Then, Rw =

RC1 · · · RCk . From Definition 2, RCi = 1 for every i = 1, . . . , k and,
hence, Rw = 1. □

The next result follows as a corollary to Proposition 1:

Corollary 2. Let Aij be a set of local stochastic matrices that are
holonomic for G. Let w and w′ be two distinct walks in G⃗ from the
same node vi to the same node vj. Then, Rw = Rw′ .

Proof. By concatenating w with w′−1, we obtain a closed walk,
which we denote by w∗. On one hand, by Proposition 1, Rw∗ = 1.
On the other hand, Rw∗ = RwRw′−1 = Rw/Rw′ . It follows that
Rw = Rw′ . □

The above corollary has shown that if the base node vi, chosen
in Step 1 of Algorithm 1, is fixed, then the values of other entries
qj, for j ̸= i, are independent of the choices of walks from vi to vj.

Though the value of the vector q depends on a particular choice
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f base node, we show below that this dependence only changes
normalization constant. Consequently, the value of the vector p

n Step 3 is independent of said base node.
We now let q and q′ be the vectors obtained from Algorithm 1

y using v and v′, respectively, as the base nodes.

roposition 2. Let w be any walk from v′ to v in G⃗. Then, q′ = Rwq.

roof. We establish the proposition by showing that for 1 ≤

≤ n, we have q′i = Rwqi. Let wi be a walk from node v to vi
(if vi = v, then wi can be the empty walk), and w′

i be the walk
from node v′ to vi obtained by concatenating the given w and wi.
hen, Rw′

i
= RwRwi . From Algorithm 1, we know that qi = Rwi and

′

i = Rw′
i
, so q′i = Rwqi as desired. □

.2. A common left-eigenvector

This subsection is devoted to first showing that the vector p
f Theorem 2 is in fact a left-eigenvector of all local stochastic
atrices Aij for G, associated with the eigenvalue 1, provided that

hese matrices are holonomic for G. This result is the first step in
he proof of Theorem 1. We also show here that if the holonomic
onstraint is not met, the vector p is not well-defined.

roposition 3. There is a probability vector p such that p⊤Aij = p⊤
or all (vi, vj) ∈ E if and only if the set of Aij is holonomic for G.
oreover, if such p exists, then it is unique.

To prove Proposition 3, we use the following lemmas:

emma 1. Let r̄ij := [1; rij] ∈ R2. Then, r̄ij is the unique
eft-eigenvector (up to scaling) of Āij corresponding to eigenvalue 1.

roof. Recall that rij = aij/aji. It follows that

¯⊤
ij r̄ij =

[
1− aij aji
aij 1− aji

][
1
rij

]
=

[
(1− aij)+ ajirij
aij + (1− aji)rij

]
=

[
(1− aij)+ aij

ajirij + (1− aji)rij

]
=

[
1
rij

]
= r̄ij,

so r̄ij is a left-eigenvector of Āij corresponding to eigenvalue 1.
The uniqueness follows from the fact that Āij is an irreducible
stochastic matrix (with all entries being positive). □

We next have the following fact:

Lemma 2. If there exists a vector p ̸= 0 such that p⊤Aij = p⊤ for
any (vi, vj) ∈ E, then for any walk w in G⃗ from node vℓ to node vk,
it holds that pk = Rwpℓ.

Proof. Since p⊤Aij = p⊤, the vector [pi; pj], with i < j, is a left-
eigenvector of Āij corresponding to eigenvalue 1. From Lemma 1,
[pi; pj] is necessarily proportional to r̄ij and thus pj = rijpi. Thus,
we can apply this relation repeatedly along the sequence of the
edges in w and obtain that pk = Rwpℓ. □

With Lemmas 1 and 2 above, we prove Proposition 3:

Proof of Proposition 3. We first assume that the set of Aij is
holonomic for G. Let q and p be given as in Algorithm 1. Since
q and p differ by a multiplicative factor, it suffices to show that
q⊤Aij = q⊤. By construction (see Eq. (2)), the matrix Aij is equal
to the identity matrix save for the 2 × 2 principal submatrix at
columns/rows i and j, Āij. Without loss of generality, we assume
that i < j, and let q̄ij := [qi; qj]. It is enough to show that for
any pair i < j, q̄ is a left-eigenvector of Ā with eigenvalue 1.
ij ij

5

Since (vi, vj) is an edge of G, qj = rijqi by Algorithm 1. Thus, q̄ij is
proportional to r̄ij introduced in Lemma 1 and, hence, q̄⊤ij Āij = q̄⊤ij .

We now show that p is the only probability vector that sat-
isfies p⊤Aij = p⊤ for all (vi, vj) ∈ E. Let p′ be another such
probability vector. To every Aij, the equality p′⊤Aij = p′⊤ implies
that the two entries p′i and p′j satisfy p′j = rijp′i by Lemma 1. By
Lemma 2, if we fix a base node, say v1, of G, and let w be a
walk from v1 to vi (since G is connected), then p′i = Rwp′1 for
all i = 2, . . . , n. From Step 2 in Algorithm 1, we see that p′ is
proportional to p and, hence, p′ = p.

It remains to show that if the set of Aij’s is not holonomic
for G, then no p such that p⊤Aij = p, for all (vi, vj) ∈ E, exists.
We proceed by contradiction and assume that there exists such a
vector p. Then, for any walk w starting at vi and ending at vj, we
have from Lemma 2 that pj = Rwpi.

Because Rw is always positive and because G⃗ is strongly con-
nected, every entry of p is nonzero (otherwise, p has to be the
zero vector). But, since the set of Aij is not holonomic, there exists
a closed walk w in G⃗ such that Rw ̸= 1. Pick a node, say vi, in w;
then, pi = Rwpi ̸= pi, which is a contradiction. This completes the
proof. □

Let A ∈ SG. To any spanning tree G′
= (V , E ′) of G, the

corresponding subset of local stochastic matrices Aij, for (vi, vj) ∈
E ′, is always holonomic for G′.

Thus, the follow result is an immediate consequence of Propo-
sition 3:

Corollary 3. To every spanning tree G′
= (V , E ′) of G we can assign

a unique probability vector p′ such that

p′⊤Aij = p′⊤ for all (vi, vj) ∈ E ′. (9)

Note, in particular, that if the local stochastic matrices are
holonomic for G, then for any two spanning trees G′ and G′′

of G, their associated probability vectors p′ and p′′ are equal.
Conversely, we have the following:

Proposition 4. Suppose that the set of Aij is not holonomic for
G; then, there exist two distinct spanning trees G′ and G′′ of G with
distinct probability vectors p′ and p′′ satisfying Eq. (9).

Proof. Because the set of Aij is not holonomic for G, there exists at
least one cycle C = v1v2 · · · vkv1 of G⃗ such that RC ̸= 1. Let G′ and
G′′ be two spanning trees such that G′ contains edges (vℓ, vℓ+1),
for all ℓ = 1, . . . , k−1 and G′′ contains the edge (v1, vk). It should
be clear that such G′ and G′′ exist and are distinct because G′

cannot contain the edge (v1, vk). By Corollary 3, we can uniquely
assign the probability vectors p′ and p′′ to G′ and G′′, respectively.
We claim that p′ and p′′ are distinct. To establish the claim, we let
w := v1 · · · vk be the unique path in G⃗′ from v1 to vk. Then, since
p′ satisfies Eq. (9), by Lemma 2, we have that p′k = Rwp′1. Similarly,
for G⃗′′, since v1vk is a directed edge, we have that p′′k = r1kp′′1 . But,
RC = Rwrk1 = Rw/r1k ̸= 1, which implies that the two ratios p′k/p

′

1
and p′′k/p

′′

1 are different. This completes the proof. □

3.3. Uniform lower bound for nonzero entries of Pγ

For a given vector z ∈ Rn
≥0, recall that supp(z) is the support

of z. Let γ be a walk in G and zγ := Pγ z. If γ is an empty walk,
then Pγ = I and zγ = z.

We also recall that min zγ the smallest non-zero entry of zγ ,
i.e., min zγ = min{zγ ,i | i ∈ supp(zγ )}. Note that if P is an arbitrary
n × n nonnegative matrix with positive diagonal entries, then
supp(z) ⊆ supp(Pz); indeed, if zi > 0, then (Pz)i ≥ Piizi > 0.
As a consequence, we have the following fact:

γ is a string of γ ⇒ supp(z ) ⊆ supp(z ). (10)
1 2 γ1 γ2
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When we consider a nested family of edge strings γ1 ⊆ γ2 ⊆

· · for which the supports of the corresponding zγi are the same,
he smallest non-zero entry over the support is non-decreasing
s shown below:

emma 3. Let γ be a string of edges and e be an edge of G. Let
′
:= γ ∨ e. If supp(zγ ′ ) = supp(zγ ), then min zγ ′ ≥ min zγ .

Proof. For convenience, but without loss of generality, we as-
sume that e = (v1, v2), so A12 = diag(Ā12, In−2), where Ā12 was
defined in Eq. (1).

The matrix Pγ ′ differs from Pγ in its first two rows only;
we denote by zγ ,1 and zγ ,2 the first two entries of zγ . Since
supp(zγ ′ ) = supp(zγ ) and since all entries of Ā12 are positive, we
have that zγ ,1 is 0 if and only if zγ ,2 is 0; indeed, say zγ ,1 = 0 and
zγ ,2 > 0, then, after multiplication, the first entry of zγ ′ will be
positive, contradicting the fact that supp(zγ ′ ) = supp(zγ ). Now,
consider the following two cases:

Case 1. If zγ ,1 = zγ ,2 = 0, then zγ = zγ ′ and, hence, min zγ =

min zγ ′ .

Case 2. If zγ ,1 ̸= 0 (and, hence, zγ ,2 ̸= 0), then the first and second
entries of zγ ′ are given by[
zγ ′,1
zγ ′,2

]
= Ā12

[
zγ ,1
zγ ,2

]
.

Because Ā12 is a stochastic matrix, both zγ ′,1 and zγ ′,2 are convex
combinations of zγ ,1 and zγ ,2. Thus,

min
[
zγ ′,1
zγ ′,2

]
≥ min

[
zγ ,1
zγ ,2

]
≥ min zγ .

In either case, we conclude that min zγ ′ ≥ min zγ . □

With Lemma 3, we can now establish a lower bound on
min Pγ :

Proposition 5. Let A ∈ SG and a be defined as in (4). Then, for
ny sequence γ of edges,

in Pγ > an−1
= ϵ.

roof. Let {ei}ni=1 be the standard basis of Rn. Then, the ith
olumn of Pγ , denoted by Pγ ,i, is given by Pγ ei. It should be
lear that min Pγ = minn

i=1 Pγ ,i. Thus, it suffices to show that
in Pγ ,i ≥ an−1 for all i = 1, . . . , n.
To establish the fact, we fix an arbitrary i ∈ {1, . . . , n}, and let

Nγ ,i be the cardinality of supp Pγ ,i. We will show below that

min Pγ ,i ≥ aNγ ,i−1. (11)

Note that if (11) holds, then the proof is done because Nγ ,i is
bounded above by n and, hence, min Pγ ,i ≥ an−1.

The proof of (11) is by induction on Nγ ,i. For the base case
γ ,i = 1, the sequence γ can only comprise edges (vj, vk) that are
ot incident to node vi. To see this, note that by the definition
f the local stochastic matrices, if γ does not contain any edge
ncident to node vi, then Pγ ,i = ei and, hence, Nγ ,i = 1. Next,
e assume that γ contains an edge incident to vi, and let γt =

vi, vj) be the first such edge in γ . Then, by the above arguments,
γ ,i(t − 1 : 0) = ei. Moreover, using the same arguments as in
he proof of Lemma 3, we have that both the ith and jth entries
f Pγ ,i(t : 0) are nonzero. Further, since the support of Pγ ,i is
onotonic by (10), we have Nγ ,i ≥ 2. We have thus shown that

f Nγ ,i = 1, then Pγ ,i = ei and min Pγ ,i = 1.
For the inductive step, we assume that the statement holds for

ny γ with Nγ ,i = k (for 1 ≤ k ≤ n− 1), and prove that it holds
or any γ with N = k+ 1.
γ ,i

6

For any given γ with Nγ ,i = k + 1, we let t ≥ 1 be chosen
uch that the two strings γ ′

:= γ (t : 0) and γ ′′
:= γ (t + 1 : 0)

atisfy the condition that Nγ ′,i = k and Nγ ′′,i = k+1. Such t exists
ecause Nγ (t:0),i is a monotonically non-decreasing function in t
ue to Eq. (10) and supp ei = 1.
Let Aij be the local stochastic matrix corresponding to the last

dge in γ ′′. It is so that Pγ ′′ = AijPγ ′ . By the induction hypothesis,
in Pγ ′,i ≥ ak−1, we have that

min Pγ ′′,i ≥ min Aij min Pγ ′,i ≥ ak.

Finally, note that the sequence γ is obtained from γ ′′ by adding
edges to the end of γ ′′. One can thus iteratively apply Lemma 3
to obtain that min Pγ ,i ≥ min Pγ ′′,i. This completes the proof. □

3.4. Proofs of Theorems 1 and 2

For a stochastic matrix A ∈ Rn×n, its coefficient of ergodic-
ity (Seneta, 2006) is defined as

µ(A) =
1
2
max
i,j

n∑
k=1

|aik − ajk|.

We always have that µ(A) ≤ 1. It has been shown in Hajnal and
Bartlett (1958, Lemma 3) that for any two stochastic matrices P
and Q ,

∥PQ∥S ≤ µ(P)∥Q∥S . (12)

A stochastic matrix A is called a scrambling matrix if no pair of
rows of A is orthogonal. The following result is well known (see,
e.g., Eq. (25) in Cao, Morse, and Anderson (2008b)):

Lemma 4. For any scrambling matrix A,

µ(A) ≤ 1−min A.

Let γ be a finite spanning sequence of edges of G. Then,
by (10), the graph of Pγ is strongly connected with self-arcs
(more precisely, the graph contains a bi-directional spanning
tree). It then follows that Pγ is irreducible (Horn & Johnson, 1985,
Theorem 6.2.24). We also need the following lemma:

Lemma 5. The product of any set of ℓ ≥ ⌊
n
2⌋ irreducible n × n

tochastic matrices with positive diagonal entries is a scrambling
atrix.

roof. We will use a graphical approach. We call a digraph
eighbor-shared if any two distinct nodes share a common in-
eighbor.
Let Gp and Gq be two directed graphs with the same node

et V . The composition of Gp with Gq, denoted by Gq ◦ Gp, is a
digraph with node set V and edge set defined as follows: vivj is
an edge of Gq ◦ Gp whenever there is a node vk such that vivk

is an edge of Gp and vkvj is an edge of Gq. Since composition is
an associative binary operation, it extends unambiguously to any
finite sequence of digraphs with the same node set. LetM1 andM2

be two nonnegative n×n matrices, and G , G be their respective
1 2
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raphs. Then, by construction, the graph of M2M1 is G2 ◦ G1.
From Cao et al. (2008a, Prop. 9), we have that the composition

f any set of ℓ ≥ ⌊
n
2⌋ strongly connected graphs with self-arcs

with the same node set is neighbor-shared. It has been shown
in Cao et al. (2008b) that a stochastic matrix is scrambling if and
only if its graph is neighbor-shared. This concludes the proof. □

With the preliminaries above, we will now prove Theorems 1
and 2.

Proof of Theorems 1 and 2. We first assume that the Aij are
holonomic for G and prove the two theorems. Let γ be an infinite
spanning sequence. Since ∥Pγ (t : 0)∥S is monotonically non-
ncreasing by (12), the limit exists as t goes to∞. We show below
that the limit is 0. Let 0 =: t0 < t1 < t2 · · · be a monotonically
increasing sequence such that every string γ (tk+1 : tk), for k ≥

0, has ⌊
n
2⌋ disjoint spanning sub-strings. From Lemma 5, every

roduct Pγ (tk+1 : tk), for k ≥ 0, is a scrambling matrix. By
roposition 5 and Lemma 4, µ(Pγ (tk+1, tk)) < (1 − ϵ). It follows
rom the inequality (12) and ∥I∥S = 1 that

lim
→∞

∥Pγ (tk : 0)∥S ≤ lim
k→∞

(1− ϵ)∥Pγ (tk−1 : 0)∥S

≤ lim
k→∞

(1− ϵ)k = 0,

hich implies that limt→∞ ∥Pγ (t : 0)∥S = 0. It is known (Chat-
erjee & Seneta, 1977) that the semi-norm ∥Pγ (t : 0)∥S converges
o 0 if and only if Pγ (t : 0) converges to a rank-one matrix. This
stablishes asymptotic convergence.
If γ is, furthermore, m-spanning, then the sequence {tk}k≥0 can

e chosen such that tk+1 − tk ≤ m⌊
n
2⌋ =: T . Let t be an arbitrary

ime index and choose k with tk ≤ t < tk+1. Then,

Pγ (t : 0)∥S ≤ ∥Pγ (tk : 0)∥S ≤ (1− ϵ)k = (1− ϵ)⌊
t
T ⌋

≤ (1− ϵ)
t
T −1,

hich establishes exponential convergence and Eq. (5) in Theo-
em 1.

To show that the vector p is the one given in Algorithm 1, we
irst note that from Proposition 3, p⊤Aij = p⊤ for all (vi, vj) ∈ E.
hus, p⊤Pγ (t : 0) = p⊤ for all t ≥ 1. Because Pγ (t : 0) converges
o a rank-one matrix as t → ∞, it must converge to 1p⊤.

Finally, we assume that the Aij are not holonomic and show
that there does not exist a probability vector p such that Pγ =

p⊤ for any infinite spanning sequence γ . Under the assumption
on Aij, owing to Proposition 4, there exist at least two distinct
spanning trees G′ and G′′ of G for which the associated probability
vectors p′ and p′′ are distinct. Let γ ′ and γ ′′ be two infinite
spanning sequences for G, with the property that edges in γ ′

(resp. γ ′′) belong to G′ (resp. G′′). Because G′ and G′′ are trees,
the associated (Aij)(vi,vj)∈E′ and (Aij)(vi,vj)∈E′′ are holonomic for G′

and G′′, respectively. Thus, by the above arguments Pγ ′ = 1p′ and
Pγ ′′ = 1p′′. Since p′ ̸= p′′, Pγ ′ ̸= Pγ ′′ . This completes the proof. □

3.5. Proof of Theorem 3

Recall that a local stochastic matrix Aij assigned to an undi-
rected edge (vi, vj) ∈ E gives rise to two ratios rij =

aij
aji

and

ji =
aji
aij
, which are inverse of each other, as defined in Section 2.1.

he set of all such ratios is thus the |E|-dimensional subset of R2|E|

efined as follows:

:=

{
(yij)vivj∈E⃗ ∈ R2|E|

+ | yijyji = 1 ∀vivj ∈ E⃗
}

.

t is easy to see that Y is diffeomorphic to R|E|.
+

7

Also, recall that SG is the set of all |E|-tuples of local stochastic
matrices for G. We now introduce the map φ : SG → Y defined
s follows:

: SG → Y : (Aij)(vi,vj)∈E ↦→

(
aij
aji

)
vivj∈E⃗

. (13)

oreover, we have the following result:

roposition 6. The map φ defined in (13) is surjective and for
ny y ∈ Y , the pre-image φ−1(y) is an |E|-dimensional open box
mbedded in R2|E|.

roof. The map φ can be realized as a Cartesian product of maps
ij : (0, 1)×(0, 1) → R2

+
, for (vi, vj) ∈ E with i < j, where each φij

is defined by sending the matrix Aij to a pair of reciprocal ratios
(aij/aji, aji/aij), i.e., we have that

φ
(
(Aij)(vi,vj)∈E

)
=

∏
(vi,vj)∈E

φij(Aij)

=

(
(aij/aji, aji/aij)

)
(vi,vj)∈E

.

Thus, taking inverses, we obtain that

φ−1
(
(aij/aji)vivj∈E⃗

)
=

∏
(vi,vj)∈E

φ−1
ij (aij/aji, aji/aij).

Now, let (rij)vivj∈E⃗ , with rij > 0 and rijrji = 1, be an arbitrary point
in the codomain of φ. We claim that φ−1

ij (rij, r−1
ij ) is nonempty

and, moreover, it is an open bounded segment in R2. If the
claim holds, then the proof is complete: Indeed, if φ−1

ij (rij, r−1
ij )

is nonempty, then φij is surjective. Owing to the Cartesian prod-
uct structure exhibited above, φ is also surjective. By the same
arguments, if φ−1

ij (rij, r−1
ij ) is an open bounded segment, then

φ−1((rij)vivj∈E⃗) is an open box.
We will now establish the claim stated above. For ease of

presentation, we will represent the matrix Aij by the pair of
entries (aij, aji) (recall that all the other entries of Aij are uniquely
determined by this pair). This representation can be viewed as
a bijective linear map. With this representation, it follows from
computation that

φ−1
ij (rij, r−1

ij ) =
{
{(rijx, x) | 0 < x < 1} if rij ≤ 1,
{(x, r−1

ij x) | 0 < x < 1} if rij > 1.

Thus, the preimage is an open segment parameterized by x ∈

(0, 1) as is claimed. □

The map φ relates the local stochastic matrices to the ratios
rij, for vivj ∈ E⃗. We next construct a map that relates these ratios
to the probability vector p. To this end, let θ : int∆n−1

→ R2|E|
+

defined as follows:

θ : p = [p1 · · · pn]⊤ ↦→ (pj/pi)vivj∈E⃗ . (14)

We will show that the map θ is one-to-one, and thus admits
a well-defined inverse. To this end, we describe the image of
θ explicitly, as an algebraic subset of R2|E|. For a given positive
vector y = (yij)vivj∈E⃗ ∈ Y and for a given walk w = v1 · · · vk in G⃗,
we let Yw :=

∏k−1
ℓ=1 yℓ,ℓ+1. Define a subset of Y as follows:

YH :=

{
y ∈ Y | Yw = 1 for every closed walk w of G⃗

}
. (15)

Note that if A ∈ SG is holonomic for G, then the correspond-
ing vector of ratios r = (rij)vivj∈E⃗ belongs to the set YH by
construction.
We have the following result:
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roposition 7. The map θ is one-to-one and onto YH.

Proof. First, if y = θ (p) for some p ∈ int∆n−1, it follows from (14)
that Yw = 1 for any closed walk w = v1 · · · vkv1, so the image of
θ is contained in YH.

Next, we show that the map θ is one-to-one. Let p and p′ be
two distinct vectors in int∆n−1. Then, there exists at least a pair
of distinct indices (i, j) such that pj/pi ̸= p′j/p

′

i . Indeed, if no such
pair exists, then p′ is proportional to p which, since both p and
p′ belong to ∆n−1, contradicts the fact that they are distinct. This
shows that θ is one-to-one.

Finally, we show that for any y ∈ YH, there exists a p ∈

int∆n−1 such that θ (p) = y. One can obtain such a vector p
by using Algorithm 1, but with rij and Rw replaced by yij and

w , respectively. The choice of the base node and the choices
f walks from the base node to the other nodes do not matter
ince Yw = 1 for all closed walks w—the same arguments used in
ropositions 1 and 2, and Corollary 2 can be applied to establish
he fact. Then, by construction, the vector p indeed satisfies
(p) = y. To see this, we let vivj be an arbitrary edge in G⃗ and
how that pj/pi = yij. Let vi be a base node chosen in Step 1 of
lgorithm 1. Since vivj is an edge, by Step 2 of Algorithm 1, we
ave that pj = yijpi, i.e., pj/pi = yij. □

With the propositions above, we prove Theorem 3:

roof of Theorem 3. By Proposition 7, the map θ is a bijection.
oreover, by Definition 2 of holonomic local stochastic matrices,

HG = φ−1(YH). We can thus write the map π : HG → int∆n−1

as π (·) = θ−1(φ(·)) by restricting the domain of φ to the subset
HG. Thus, for a given p ∈ int∆n−1, since π−1(p) = φ−1(θ (p)) and
since θ (p) ∈ YH ⊂ Y , we conclude from Proposition 6 that π−1(p)
is an |E|-dimensional open box. □

4. Conclusions

In this paper, we have investigated convergence of weighted
gossip processes and characterized their limits. Mathematically, a
weighted gossip process can be expressed as an infinite product
of local stochastic matrices, which are not required to be doubly
stochastic. Using the notion of holonomy, we have provided a
necessary and sufficient condition for the product to converge to a
unique rank-one matrix, independent of the order of the appear-
ance of the stochastic matrices in the product. We characterized
explicitly both the limit and the sets of holonomic stochastic
matrices that can give rise to a desired limit. Amongst the fu-
ture directions in which the present work can be extended, we
mention generalization of the results to local stochastic matrices
with zeros in the 2 × 2 principal submatrices. This case, though
seemingly close to the one studied here, in fact exhibits a very
different asymptotic behavior. We will also aim to generalize
the results to vector-valued gossip processes, and to establish a
unified framework that accommodate the results of the paper and
the results of the previous work (Belabbas & Chen, 2021).
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