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Multiregional Coverage Path Planning for Multiple
Energy Constrained UAVs

Junfei Xie

Abstract—In recent years, we have witnessed a growing
use of unmanned aerial vehicles (UAVs) in a variety of civil,
commercial and military applications. Among these applications,
many require the UAVs to scan or survey one or more regions,
such as land monitoring, disaster assessment, search and rescue.
To realize such applications, path planning is a key step. Although
the coverage path planning (CPP) problem for a single region
has been extensively studied in the literature, CPP for multiple
regions has gained much less attention. This multi-regional CPP
problem can be considered as a variant of the (multiple) traveling
salesman problem (TSP) enhanced with CPP. Previously, we have
studied the case of a single UAV. In this paper, we extend
our previous studies to further consider multiple UAVs with
energy constraints. To solve this new path planning problem,
we develop two approaches: 1) a branch-and-bound (BnB)
based approach that can find (near) optimal tours and 2) a
genetic algorithm (GA) based approach that can solve large-scale
problems efficiently under different objectives. Comprehensive
theoretical analyses and computational experiments demonstrate
the promising performance of the proposed approaches in terms
of optimality and efficiency.

Index Terms— Coverage path planning, traveling salesman
problem, branch and bound, genetic algorithm, multiple regions,
multiple unmanned aerial vehicles.

I. INTRODUCTION

N the past few years, unmanned aerial vehicles (UAVs)

have experienced an unprecedented level of growth. Many
of their applications, such as search and rescue [1], land sur-
veying [2], precision agriculture [3], disaster assessment [4],
to name a few, involve the task of planning the path for the
UAVs to scan a region completely. This task can be formulated
as the coverage path planning (CPP) problem [5] that seeks
the optimal path with the minimum cost to cover an area.

Despite the abundant studies on CPP for a single region [5],
the problem of how to plan the path to cover multiple disjoint
regions has not been well studied. This problem arises in
many real applications such as emergency response, pasture
management and land monitoring, in which the areas to be
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inspected, assessed or monitored often range over multiple
spatially separated regions. This multi-regional CPP problem
can be considered as a variant of the traveling salesman
problem (TSP) [6], [7] enhanced with CPP, where the determi-
nation of the region visiting order is a TSP and the coverage
for each region is a CPP. We hence name it TSP-CPP. Despite
the existence of many approaches for TSP and CPP, TSP-CPP
cannot be solved by a direct extension to any of these TSP or
CPP approaches. This is because solving TSP-CPP requires the
determination of the entrance and exit locations in each region,
which impact both the region visiting order and intra-regional
coverage paths and are not considered in either TSP or CPP.
To solve TSP-CPP, the region visiting order, the path to cover
each region, and the entrance and exit locations in each region
should be jointly optimized.

A related problem, called the tour polygon problem
(TPP) [8], [9] also considers multiple regions, but it does not
require each region to be covered. In particular, the TPP seeks
the optimal path to merely visit multiple regions. In cases
when the UAV is only allowed to visit the edge of each region
without entering the region, the TPP is also known as the
zookeeper problem [10]. Otherwise, if the UAV can freely
cross the regions, the TPP is often referred to as the Safari
problem [11].

In this paper, we consider a more complicated problem
where multiple UAVs cooperate to fully cover multiple spa-
tially distributed regions. Moreover, as UAVs have limited
power supplies and thus bounded flight ranges, we also take
this realistic energy constraint into the consideration. The
resulting problem is named as the Energy constrained Multiple
TSP-CPP (EMTSP-CPP). To the best of our knowledge,
this problem hasn’t been systematically investigated in the
literature.

The idea of using multiple agents to share the workload
so as to reduce the task completion time is not new. The
multi-robot CPP and the multiple TSP (MTSP) are a direct
extension of the CPP and TSP to multiple agents, respectively,
both of which have been extensively studied [5], [12], [13].
The vehicle routing problem (VRP) is a generalization of
MTSP that also considers various constraints to solve real-life
delivery problems [14]-[21]. Depending on the constraints
considered, VRP has many variants, such as the VRP with
time window (VRPTW), capacitated VRP (CVRP), multi-
ple depots VRP (MDVRP), and distance-constrained VRP
(DVRP), to name a few. Among these variants, DVRP is the
most relevant to this study, which aims to find the optimal
tours for a set of vehicles to visit a set of target locations,
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with the length of each tour not exceeding a maximum tour
length. This problem can be considered as a special case
of the EMTSP-CPP if all regions are small enough so that
they can be fully covered by merely visiting a single location
within the region. Nevertheless, the general EMTSP-CPP is
much more challenging than DVRP and other variants of
VRP, due to the involvement of CPP. Particularly, in VRP
and its variants, the distance between any two target locations
is known and fixed. However, in EMTSP-CPP, the distance
from one region to another is unknown and varies with the
change of the region visiting order and intra-regional coverage
paths. Such interactions among inter-regional distances, region
visiting order and intra-regional coverage paths significantly
complicate the problem.

In this paper, we conduct a systematic investigation on
EMTSP-CPP, and develop two approaches to solve this new
problem. The main contributions are summarized as follows:

e A Novel Branch-and-Bound Method that Finds (Near)
Optimal Solutions to Small-Scale EMTSP-CPP. The pro-
posed branch-and-bound (BnB) method builds a binary
tree to search for the best region visiting order that
leads to the shortest tour, where tours are constructed
progressively using a heuristic. This approach is proved
to be able to find (near) optimal tours under certain
assumptions.

o A New Genetic Algorithm that Solves Large-scale
EMTSP-CPP Efficiently. The proposed GA is featured
by a new sets-based chromosome design that speeds up
the convergence, as well as new crossover and muta-
tion operators, and a constraint-aware fitness function.
By adjusting the fitness function, the proposed GA can be
used to achieve different objectives, such as minimizing
the total cost and balancing the workload among UAVs.

o Comprehensive Theoretical Studies and Computational
Experiments. Through theoretical studies, we prove the
validity of the lower-bound calculation in the proposed
BnB method and also prove the optimality of the derived
solution. We also conduct comprehensive computational
experiments to evaluate the optimality and efficiency of
the proposed two approaches. The results demonstrate
their promising performances.

The rest of the paper is organized as follows. Section II
reviews existing work relevant to our study. In Section III,
we provide a possible mathematical formulation for EMTSP-
CPP. Section IV briefly reviews a CPP method and an efficient
heuristic approach for TSP-CPP. Based on these methods,
we then solve EMTSP-CPP. In particular, the BnB method
is described in Section V, along with the theoretical results
on its performance. The GA is introduced in Section VI
In Section VII, we conduct computational experiments to
evaluate the performance of the proposed two approaches.
Section VIII concludes the paper with a brief discussion on
future works.

II. RELATED WORK

In this section, we review existing works relevant to
EMTSP-CPP considered in this study.
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EMTSP-CPP has been rarely studied. A simpler problem
without energy constraint is considered in [22], which intro-
duces a heuristic procedure that first assigns a subset of regions
to each UAV and then optimizes the region visiting order.
This study, however, oversimplifies the coverage problem.
How to enter or exit each region and what is the path to
fully cover each region are not addressed. Another related
work is presented in [23], which considers the distributed
motion planning problem for multiple robots to cover multiple
rectangular regions. In this study, each robot determines its
next motion based on a set of rules.

TSP-CPP is a special case of EMTSP-CPP with a sin-
gle UAV. In our previous studies [24]-[26], we developed
multiple approaches for TSP-CPP including a dynamic pro-
gramming (DP) based approach, a grid-based approach and a
nearest neighbor (NN) and 2-Opt based heuristic approach,
called Fast NN-20pt. The DP- and grid-based approaches
are proved to be able to find optimal solutions under some
mild assumptions and the Fast NN-2O0pt achieves a good
tradeoff between optimality and efficiency. In [27], a two steps
path planning (TSPP) approach was introduced, which first
determines the region visiting order using regions’ centroids
and then plans the path to cover each region. Although
simple, this heuristic approach produces longer tours, com-
pared with our methods [26], as it ignores the interaction
between the region visiting order and intra-regional cover-
age paths. It is also less efficient than the Fast NN-20pt
algorithm.

In the special case when all regions are sufficiently small
so that they can be fully covered by UAV’s camera foot-
print at their centroids, the EMTSP-CPP is reduced to a
DVRP. The most frequently used exact approach for DVRP
is the branch-and-bound method [28], [29]. An integer linear
programming algorithm is introduced in [30] to solve VRP
with both distance and capacity constraints. In [31], the
DVRP is transformed into a MTSP with time windows and
solved using a column generation method. Different integer
linear programming formulations of DVRP are presented in
[32]-[35]. Other exact approaches for DVRP include the cut-
ting planes algorithm [36] and the lexisearch algorithm [37].
There are also some approximate and heuristic approaches for
DVRP, such as the 2-approximation algorithm [38], constant-
factor differential approximation algorithm [39] and variable
neighborhood search [40]. Also of relevance, a generalization
of DVRP that further considers multiple fuel stations to allow
a vehicle to refuel was investigated in [41]-[43].

Multi-robot CPP is a special case of EMTSP-CPP with a
single region. Most existing approaches for this problem are
extended from the methods for single-robot CPP by using a
strategy to divide the workload. For instance, in [44], a greedy
auction heuristic is used to allocate workload among the robots
and the Boustrophedon single-robot coverage algorithm is used
to plan the paths for each robot. In [45], a task scheduler is
first used to partition the target area into non-overlapping sub-
areas and the wavefront algorithm is then applied to cover each
sub-area. In [46], the spanning tree coverage algorithm for a
single robot is extended to multiple robots. There are also
approaches that directly solve the multi-robot CPP without
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relying on any single-robot algorithms, such as the bio-inspired
coverage algorithms introduced in [47], [48].

Other problems that are related to EMTSP-CPP include
CPP, TSP, MTSP, VRP and their variants. For a complete
review of existing algorithms for these problems, interested
readers are referred to the survey papers [5], [7], [12]-[17],
[49]-[53].

III. PROBLEM FORMULATION

In this section, we first describe the EMTSP-CPP to be
solved. For the sake of clarity, we then provide a mathematical
formulation for this problem.

A. Problem Description and Assumptions

Consider the scenario where M € Z* multirotor UAVs of
the same type are assigned to scan or assess N € Z* convex
polygonal regions distributed over the space without overlap.
The location, size and shape of each region i, i € [N], are
known, which are captured by its vertices P; € R" x2  where
the jth row of P; stores the location of the jth vertex of
region i, v; € Z* is region i’s total number of vertices, and
[n] denotes the set {1,2,...,n} for any n € Z*. All UAVs
depart from the same depot and return to this depot after the
mission is completed. The location of the depot is known and
denoted as pg € R!*2 where number 0 is the label of the
depot.

Each UAV carries a sensor (e.g., camera) with a sensing
range of | x w, where [,w > 0 are known constants. For
simplicity, we assume that each UAV flies at a constant
altitude, so that the path planning problem can be formulated
in the 2-dimensional (2-D) space. We also assume each UAV
flies at a constant speed V and can turn with an arbitrary radius
of curvature at speed V. In addition, we assume the maximum
distance each UAV can travel at speed V, due to limited power
supply, is Dpq,. We also assume each region is scanned by a
single UAV and D,,,, is sufficiently large for covering each
region individually. The EMTSP-CPP is then concerned with
finding the optimal tours! for the M UAVs to fully cover all
regions, while satisfying the energy constraints of the UAVs.

B. Decision Variables and Constraints

To describe the visiting order for the regions, we introduce
a binary decision variable x;;, i, j € [N] U {0}, which equals
1 if a UAV visits region (or depot) j after region (or depot) i,
and equals O otherwise. The following constraints then ensure
each UAV departs from and returns to the same depot and
each region is scanned only once.

z Xoi=M (1)

i€[N]
z Xo=M (2)
i€[N]
> xij=1, Vje[N] A3)
i€[N]

A tour is a feasible and complete path for an UAV to cover all regions
assigned to it.
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> xij=1, VielN] 4)
jelN]
2.2 <ISI-1, VSCIN, S#0 (5
ie§ je§
xij € {0,1}, Vi, j € [N]U{0} (6)

In particular, constraints (1)-(2) ensure that exactly M UAVs
depart from the depot as mission starts and return to the
same depot after the mission is completed. Constraints (3)-(4)
ensure that each region is scanned once. Constraint (5) pre-
vents sub-tours, where |S| represents the cardinality of set S.
Constraint (6) specifies the possible values x;; can take.

Furthermore, to describe the coverage path for each region,
we introduce variable b; = (!J,-;C)E‘;l € B; to denote a coverage
path for region i € [N] such that, by following this path,
the UAV will cover the region completely. Here b;; is the
kth waypoint in the path, n; € Z* is the total number of
waypoints, and B; is the full set of possible coverage paths
for region i. b;j; and b;,; then capture the entrance and exit
locations at region i, respectively. A feasible set of M tours
that fully cover all regions can then be generated by connecting
the coverage paths b;, Vi € [N], and the depot pp, according
to the order specified by x;;, Vi, j € [N]U {0}. Particularly,
denote T € T as a tour, where T is the full set of tours and
|T| = M. The set of regions covered by each tour =, denoted
as S;, satisfies the following condition

DD xij =18 — 1,8 CINLIS| > 1
iceS; jes;

Xjj, Vi, j € S¢, then capture the visiting order for regions S;.

As the maximum distance each UAV can travel is Dqx.
the length of each tour = should not exceed this upper bound.
The following constraint should thus be satisfied:

Dy < Dpax, VT €T (7
where D, is the length of the tour 7. It can be computed by:
D; = > [x0id(po, bi1) + Xiod(bin;, o)]

ieS;
+ D > xijAlbin, bj1) + Y a(bi)
i8S, jeS; i8S,

where d(a, b) is the Euclidean distance to travel from location
a to location b, and g(b;) = 22;_1] d(bik, bi(k+1)) computes
the length of the coverage path b;.

C. Mathematical Formulation

In this study, we consider the EMTSP-CPP with different
objectives. The first objective is to minimize the total travel
distance, given the number of UAVs M, which can be formu-
lated as:

P By = 2, P
b;€B; Vie[N] tel
subject to: Constraints (1)-(7) (8)

The second objective is to balance the workload among the
UAVs, given the number of UAVs M, which can be achieved
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Fig. 1. A BFP (red line) that covers a pentagonal region.

by minimizing the length of the longest tour. The mathematical
formulation of this problem is given by:

P> : minimize J, = max D,

xij,¥i, je[N]U{0} el
bieB; Vie[N]
subject to: Constraints (1)-(7) 9)

Note that both P; and 7P, cannot be directly solved,
e.g., using mixed-integer linear programming (MILP) solvers,
as the coverage paths b; are unknown variables that need
to be determined and there are infinite number of possible
coverage paths for each region, i.e., B; is an infinite set.
In this study, we introduce two approximate approaches to
solve the EMTSP-CPP with different scales. Both approaches
sample the search space and limit the search for optimal
b; to a finite set, denoted as f?,-. In the following sections,
we first introduce a back-and-forth coverage path planning
(BF-CPP) algorithm developed in our previous studies [26]
to determine B;. Based on this algorithm, we then solve the
EMTSP-CPP.

IV. PRELIMINARIES

In this section, we first briefly review the BF-CPP algo-
rithm [26]. We then describe the Fast NN-20pt algorithm [26],
which was developed in our previous study for TSP-CPP and
will be used in the proposed GA to solve EMTSP-CPP.

A. BF-CPP

To determine f?,- for each region i € [N], we apply the
BF-CPP algorithm [26], which generates a set of paths with
back-and-forth patterns. Each path has a line sweep direction
perpendicular to one of the region’s edges (see Fig. 1). The
procedure of BF-CPP is briefly summarized in Algorithm 1.
In particular, for each edge of a region, the region is first
decomposed into a set of sub-regions (Lines 2-7). The shortest
line segment that fully covers each sub-region is then found
for each sub-region (Lines 8-9). Finally, the line segments in
adjacent sub-regions are connected to generate the back-and-
forth paths (BFPs). These BFPs have nice properties in terms
of full coverage guarantee, optimality, and complexity. For
more details about BF-CPP, Please refer to [26].

Note that if we pre-store B; generated by BF-CPP for each
region i € [N], we may then formulate the search for the
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Algorithm 1 BF-CPP(F;, [, w)

1 foreach edge e; of region i do
2 | W < span of edge ¢;;

3 | if [W/w] > 1 then
4

W— .
| d < T
5 | else
6| | d<o0;

7 | Apply cellular decomposition to decompose region i
into a set of sub-regions along the line sweep
direction perpendicular to edge e;, where the width of
the first and last sub-regions is w and the width of
intermediate sub-regions is “’T”;

8 | foreach sub-region k do

9 Find the shortest line segment that leads to full
coverage of sub-region k and is d distance away
from the segments in adjacent sub-regions if any;

10 | Connect line segments in adjacent sub-regions to
generate all possible BFPs;

1 | B; < {B;, BFPs};

12 return B;.

optimal tours as a MILP problem, e.g., by introducing a binary
decision variable for each coverage path b; < f?,-, i € [N],
that takes value 1 when b; is selected and equals O otherwise,
as well as adding constraints to limit the number of coverage
paths for each region to one. However, the resulting problem
is too complex to be solved using solvers like CPLEX [54]
and Gurobi [55] within a reasonable time, considering the
large number of decision variables, which is N2+ 3"V | B;|.2
Furthermore, the distance matrix that stores the distances
between the end points of each pair of coverage paths from
different regions can be huge, whose size is O(N? Hfil |f?,' D.
Therefore, in this study, we explore other approaches to solve
EMTSP-CPP efficiently.

B. Fast NN-20pt

The Fast NN-20pt [26] is a simple and efficient heuristic
approach for TSP-CPP, which finds high-quality solutions by
performing two phases as summarized in Algorithm 2. In the
first phase, the tour is initialized using a nearest neighbor (NN)
based algorithm. The key idea is to first determine the region
visiting order using the NN algorithm based on the regions’
centroids (Line 4), and then find the complete tour that fully
covers all regions using function FINDTOUR() in Line 5,
where the pseudocode for function FINDTOUR() is provided
in Algorithm 3. In this function, the tour is generated by
connecting the best BFP for each region, which minimizes
the length of the path constructed so far, one by one in the
region visiting order (Line 8).

In the second phase, the tour is improved iteratively until
convergence by using a 2-Opt based algorithm (function
IMPROVETOUR() in Line 6). The pseudocode for function

2The number of coverage paths | B;| generated by BF-CPP is up to 4v; (see
ref. [6]).
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Algorithm 2 Fast NN-20pt Algorithm for TSP-CPP
Input: po, {P;}). [, w

Output: tour t*, cost J*

1fori < 1to N do
B; < BF-CPP(P,, I, w):

L ¢; <— centroid of region i;

(]

/* Initialize the tour */
4 Apply NN algorithm to find the region visiting order o
using regions’ centroids;
5 7 < FINDTOUR(o, po, {¢;}, {B:});
/* Improve the tour */
6 % < IMPROVETOUR(7, 0, po, {ci}, {fi',-});
7 J* <« g(r%);
8 return t*, J*

Algorithm 3 FINDTOUR(o, po, {ci}, {f?,'})
1 T < {po};
2forf < 1to N do

3 | i < o();

4 | if t < N then

| j<o(+1)

else

L Jj<0;

8 | b; < coverage path for region i that minimizes
g(b;) + d(z(end), b;j1) + A(bin;, c;), where 7(end) is
the last location in path T, ¢ = po and b; € f?,';

9 T < {1, b;};

-1 &=

10 7 < {7, pok
11 return

IMPROVETOUR() is provided in Algorithm 4. In this function,
a 2-Opt move is performed in each iteration to update the
region visiting order, if the cost of the resulting tour is reduced.

V. BRANCH-AND-BOUND METHOD FOR SOLVING P

In this section, we introduce a branch-and-bound (BnB)
method for solving EMTSP-CPP with the objective of min-
imizing the total distance (i.e., Pp).

BnB [56] is a popular exact method for solving integer
programming problems and has been widely used to solve
TSP, MTSP and VRP. It searches for the optimal solution by
constructing a search tree, with the root node representing
the original problem and all other nodes representing the
subproblems. Each node in the tree is tagged with a lower
bound (LB) of the solution value to the associated problem,
which is usually obtained by relaxing some constraints. The
tree also maintains an upper bound (UB) of the solution
value to the original problem, which is updated when a better
feasible solution is found. The algorithm selects a node for
branching at each iteration and stops iterating when no better
feasible solutions can be found. The key ingredients of BnB
thus include [57]:

Algorithm 4 IMPROVETOUR(z, 0, po, {c}, {fi’,-})

1 cost < o<;

2 while g(7) < cost do

3 | cost < g(t);

4 | fori < 0OtoN—1do
5 for j <—i+2to N+1do

6 if d(Co(,'}, Co(i4+1)) = d(Co(,'}, Co(j)) then

7 o' < o with links (e(i), o(i + 1)) and
(0(j), 0(j + 1)) replaced with (0(i), 0(j))
and (o(i + 1), 0(j + 1)), respectively;

8 t’ < FINDTOUR(0', v, {ci}, {Bi});
9 if g(z’) < g(t) then

10 L T <1}

11 return

o The branching rule that specifies how to partition the
current problem into subproblems.

o The lower bounding strategy that finds the lower bound
of the solution value to any (sub)problem.

o The upper bounding strategy that describes how to find
a feasible solution to the original problem.

o The search strategy that determines which subproblem
should be expanded next.

In the following subsections, we describe how each of the
ingredients of BnB is designed to solve P.

A. Branching Rule

In EMTSP-CPP, the distance between any two regions is an
unknown variable that is impacted by multiple factors includ-
ing the region visiting order and the entrance and exit locations
in the two regions. Because of this, the existing BnB methods
for TSP, MTSP or VRP [28], [29], [36], [56], [58], which are
developed based on the distance matrix, cannot be directly
applied to solve EMTSP-CPP. To address this challenge, we
first adopt the procedure introduced in [29], [59] to transform
the EMTSP-CPP into a TSP-CPP by adding M — 1 “virtual”
copies of the depot located at py, but with depot-to-depot
distances set to infinity for preventing such travels. These
additional M —1 “virtual” depots are treated as “regions” to be
visited and labeled as N +1, N +2,..., N+ M — 1. Solving
any EMTSP-CPP is then equivalent to solving a TSP-CPP
on the transformed graph with energy constraints applied on
paths that start and end at the depots. After transformation,
we then construct a binary search tree to find the best region
visiting order and use the idea of function FINDTOUR() to
construct the tour progressively. The energy constraints are
checked during the search to ensure feasibility of the derived
solution.

The binary search tree partitions the original problem into
many subproblems by including or excluding certain region-
to-region links. As illustrated in Fig. 2, the original problem
(node 1) has a solution space that includes all tours, and is
first partitioned into two subproblems. Particularly, the solution
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Fig. 2. Tllustration of the BnB binary search tree.

space of subproblem 2 (node 2 with (0, i1)) includes all tours
that contain region-to-region link (0,i1), and the solution
space of subproblem 3 (node 3 with (0, i1)) includes all tours
that do not contain link (0, i{), where i1,i» € [N+ M —1] are
the labels of the regions. Then, in this example, subproblem 2
is further partitioned into two subproblems. Particularly, the
solution space of subproblem 4 (node 4 with (i, i2)) includes
all tours that contain both links (0,i;) and (i1, i7), and the
solution space of subproblem 5 (node 5 with (i, i2)) includes
all tours that contain link (0,i;) but not (i1, i2). When this
partition (or branching) process is carried far enough, some
subproblem will eventually have a single solution. In Fig. 2,
the information stored in each node is also shown next to the
node, which will be explained shortly.

To denote the set of region-to-region links included into and
excluded from the solution to subproblem k, we use symbol
I; and Ej, respectively. Then subproblem k can be defined by
conditions:

xij = [1’ G0 el (10)

0, (i,Jj)e Ex

The set I} is constructed in a way such that it also indicates the
visiting order for the regions included so far starting from
the depot, i.e., Ir = {(0,i1), (i1,i2), (i2,i3), ..., (in—1,in)},
where i, € [N + M — 1], Vr € [h], iy # i5, ¥r # s, and
h = |Ii|. The links in set I; are ordered, with the newly
inserted link placed at the end.

At each iteration, a subproblem is selected for expansion
and two successors are generated. Specifically, if subproblem
k is selected for expansion, and node k + 1 and k + 2 are its
two successors, then,

Iyt = L U{@in, ing1)}

Ery1 = Ex (1D
and

leyr = I

Ejy2 = Ex U {(in, ins1)} (12)

where ip41 € [N + M — 1]\ {i1, i2, ..., i} is the next region
to be examined. Inspired by the branching rule described
in [56], we choose ip41 such that excluding link (ip, ins+1)
will cause the lower bound of subproblem k to increase the
most. We leave the discussion on how to compute the lower
bound to the next subsection. If multiple regions are found,
we select one from these regions randomly.
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As set [; provides information about the region visiting
order, it can be utilized to construct a partial tour, denoted
as Ty, that covers all regions appeared in I;, by following a
similar procedure shown in Algorithm 3. In particular, starting
from the root node, the path stored at this node is just 1 = po,
indicating that all feasible tours start from the depot. The left
child of the root node with I, = {(0,i;)} then has 77 =
(pu,bjl), which is the shortest path to travel from po and
fully cover region i1, where

b;I = argnlin d(po, bi;1) +a(biy) (13)
b;‘l EB.‘I
The right child of the root node with /3 = @ has 3 = po.

Next, suppose node 4 is the left child of node 2 and Iy =
I U {(i1, i2)}, indicating that all solutions to this subproblem
must start from depot pp and then cover regions i1 and i,
we then construct the path based on I4 and 7, at the parent

node. In particular, 74 = (po, b:"l s bu) where
b:'kl = argmm d(po, bi;1) +g(bi)) + d(bnﬂ., ,Cih)  (14)
b EB
b}, = argmin a3, , biy1) + 9(biy) (15)
b; EB

and ¢; denotes the centroid of region i. Note that the coverage
path for region i; is updated with information about the
next region to visit. Since which region to visit after region
ip is unknown, we only base on its previous region i; to
approximate the best coverage path for region iy.

In general, suppose 7 = (po, b} rees b;';' " h{,) is the path
stored at node k and node k+1 is its left child with I, = ;U
{(Gn, in+1)}, then path T411 = (po, b:'kl ey b:: " b::, ;h+1) is
stored at this node, where

b:‘ = afgmlnd(b bi_x,l)"i_g(b!';.)"'d(bx},n;h 3 CJ}H_l)

ih—1ni_
b, EB
(16)
b, = argmin Q@ bi.1) +9bi,,) (17)
b‘h+IEB‘h+1

The right child, node k 4 2 with I}H_QA: I, has 1412 = 74
In the special case wheni > N, b; € B; = {po}, i.e, n; =1,
bi1 = ¢; = po and g(b;) = 0. In addition, if ;1 includes all
regions, i.e., {i1, 12, ..., ip4+1} = [N +M — 1], which indicates
that (441, po) is a complete tour, we let
blh+| b:;1+1
= argmin d(b%m biy 1) + a(biy,,)
bijyy EB‘:a+|

+d(bm+1mﬁ+1 » Po) (18)

B. Bounding Strategies

The objective of bounding is to prune the nodes in the
search tree as many as possible. A node can be pruned if
its lower bound exceeds the value of the best solution found
so far. The tighter the lower bound is, the faster the optimal
solution can be found. To find the lower bound for EMTSP-
CPP, we construct a matrix D € RW+M)x(N+M) whose

Authonzed licensed use limited to: San Diego State University. Downloaded on December 27,2022 at 22:49:16 UTC from IEEE Xplore. Restrictions apply.



17372

Algorithm 5 REDUCEMATRIX(D)
1 D' <« D;
2fori <~ 1to N+ M do

2
3| <« ER'TM] @

4 for;<—1t0N—|—Md0
s | | DG, j) < DG j)—r

6 for j <~ 1to N+ M do

7| ¢j E{HTM]D,(I 7

g8 | fori < 1to N+ M do
9 L D', j) < D'(, j)—ci
10 R <N 4 Z:E]M cj;
11 return R, D'

(i +1, j + 1)-th entry is the minimum distance to travel from
the exit of region (or depot) i to the exit of region (or depot) j.
Here i, j € {0} U[N + M — 1]. Of note, this region-to-region
distance D(i 4+ 1, j + 1) includes the length of the path that
fully covers region (or depot) j, and it equals to:

Di+1,j+1)

00, ifi =jori,
je{oju
{N+1, ..., N+M—1}
_ ) min d(po, bj1) + g(b;), ifi=0o0ri>N
- bJ:EBj
min d(bin;» Po), if j=0orj>N
bicB;
min _ d(bin;, bj1) + g(bj), else
| bicBbjcB;

(19)

With this distance matrix, the lower bounding strategy
introduced in [56] can be applied to find a lower bound for the
original problem (see Algorithm 5). In particular, we reduce
each row of D by subtracting the smallest value in the row
from each element of the row (Lines 2-5). Similarly, we also
reduce each column of D by subtracting the smallest value
in the column from each element of the column (Lines 6-9).
The sum of the reductions constitutes a lower bound and the
resulting matrix D’ is called the reduced matrix. We place
this reduced matrix D’ and associated lower bound at the root
node k = 1, and re-denote them as D’l and L B, respectively.
The lower bounds for subproblems can then be calculated in
a similar way. In particular, if the lower bound of subproblem
k is LBy and its reduced matrix is Dfp the lower bounds and
reduced matrices of its successors defined in Eqgs. (11)-(12)
are then given by

LBiy1 = LBy + Dp(in + 1, int1 + 1) + Rip

(20)

LBii2 = LBi + Riq2 (21)
(Ri+1, Diyq) = REDUCEMATRIX(Dj41) (22)
(Ri+2, Diy5) = REDUCEMATRIX(Dj42) (23)
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where
o0 ifi=ip+1lorj=ipy1+1
Dry1(i, j) = oo ifi=ipp+1land j=ip+1
| DG, j) else
R P ifi =ip+1and j =ipy + 1
Deali, ) =10 J=
DG, j) else

Of note, as link (i, ip4+1) is added to Iry1, Dry1(i, j) is set
to oo wheni =i, +1 or j =ip41+ 1 in order to prevent all
outgoing links from region i and all incoming links to region
ih4+1. Moreover, wheni =ip+1and j = ipy1+1, Diya (G, j)
is also set to oo in order to prevent link (ij41, ). This step
ensures that no sub-tours will be constructed.

Nevertheless, the quality of the aforementioned lower bound
is not high, as the distance matrix does not reflect the
actual region-to-region distances. As we can derive the actual
distances between certain pairs of regions from the partial
tour 7 stored at each node, they can be utilized to improve
the lower bound. In particular, starting from the root node,
as no information about region-to-region distance can be
inferred from 71, its lower bound cannot be improved, and
hence LB{" = LBi. Now consider the left child of the root
node with path 72 = (pg,bEI). According to Eq. (19) and
Eq. (13), g(z2) = D(1, i1+ 1), hence there is no update to the
distance matrix and LBy = LBy = LBf + D/ (1,i1+1)+Ra.
Straightforwardly, LBf = LB3 = LBf + Rj.

Let’s next consider the left child of node 2, i.e., node 4 with
74 = (po, b} " JZ) Note that this path updates two region-to-
region distances, depot pg to region iy and region i; to region
ip. Taking these changes into the account, we then have

LBI = LB;? + DE(II + ],iZ + 1) +R4+‘§Di| +5i1i2 (24)
where

‘50!1 - [d(po'!bx|l)+g(b )] - [d(P0= r11)+g(bx|)] (25)
Siviy = [d(b”m , £21)+g(b£2)] — DG +1,ia+1)  (26)

Generally, given the improved lower bound L B} for node k,
the improved lower bounds for its successors, node k + 1 and
k + 2, can be derived as

LB{.; = LB{ + Di(in + 1,int1 + 1) + Req1

+51';|_|J}, + 51'“},—{—]
LBi ) = LB + Riy2

(27)
(28)

where
61},_1!';' = I:d(b*b 1My, ;_,,1) +g(b ]
S A ,-h,)+g(b,-h)] (29)

6£.Pr£h+1 = I:d(b”’n‘h, J;,_Hl) +g(blb+| ]

—D(ip + 1,ipg1 + 1) (30)

In the special case when (741, po) constitutes a complete
tour, we have

5*5*-'f+1 - [d(buam 4 ::h+l l) + g(bEHI) + d(bgrmmbﬂ ’ Pu)]
— [PGr + Linyr + 1) + Dnr +1, 1] 3D
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If this tour is feasible and its length is smaller than the current
upper bound, the upper bound is updated.

Having explained the bounding strategy, the branching rule
can be described mathematically. In particular, suppose sub-
problem £ is selected for expansion. To generate its successors,
we choose ij41 that causes the greatest increase in the lower
bound of subproblem k, i.e.,

ipa) = arg max R (32)
SE[N+M—1]\{i},i2,...in)
where
(Rs, D) = REDUCEMATRIX(D;)
L o0 ifi=ip+1land j =541
D, j) = 33
(0, ) [P}c(f,f) else (33)

C. Search Strategy

In our BnB method for EMTSP-CPP, we use the depth first
search (DFS) as the search strategy, which selects the most
recently generated subproblem to be expanded next. Compared
with the best first search (BFS), another widely used search
strategy that selects the most promising subproblem to be
expanded next, the DFS is advantageous in that it requires
less storage space for constructing the search tree and can
find feasible solutions more quickly. As we will show in
the experimental studies, due to these advantages, using DFS
significantly reduces the computation time, compared with
BFS.

D. BnB Method for EMTSP-CPP

In this subsection, we summarize the key steps of our BnB
method to solve problem P (see Algorithm 6). The algorithm
starts from finding the set of candidate coverage paths for each
region (Lines 1-4) and initializing the search tree (Lines 5-9).
It then repeats the following steps until no better feasible
solutions can be found:

« DFS (Line 11): This step performs depth first search
to select the most recently generated subproblem k for
expansion.

« Branching (Lines 12-14): This step chooses region ij41
that causes the lower bound of subproblem k to increase
the most for branching. If more than one region are found,
select one at random. With i, found, the successors of
node k are then generated.

« Feasibility check (Lines 15-16): This step checks the
feasibility of the constructed path at each newly created
node to ensure it meets the energy constraint D,,,,. If the
path is feasible and traverses all regions, the upper bound
is updated if necessary.

« Update (Lines 17-19): This step updates the list of active
subproblems, L.

E. Theoretical Analysis

In this subsection, we perform theoretical analysis on the
validity of the lower bound calculation and optimality of the
final result.
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Algorithm 6 BnB Algorithm for EMTSP-CPP P
Input: po, {P;}, I, w, Dpax, M
Output: tour ¥, cost UB

1fori < 1to N do

| Bi <-BF-CPP(P,, I, w); ¢; < centroid of region i;

sfori <~ N+1toN+M—1do

4 LBH—P{);C:' < Ppo;

sUB «— M x Dyax;

6 Construct distance matrix D using Eq. (19);

7 Create the search tree with a root node 1;

8 Calculate and store the lower bound LB’I", reduced matrix
D}, and path 71 in node 1;

9o L < {1};

10 while L £ @ do

11 | DFS: Select the most recently generated subproblem

kel;

12 | Branching: Choose i1 using Egs. (32)-(33). If

multiple regions are found, choose one at random;

13 | Generate successors, node Kk + 1 and k + 2;

(]

14 | Calculate and store the lower bounds LB} 1 LB 2
using Egs. (27)-(31), reduced matrices D,’H_], Dy

using Eqgs. (22)-(23), and paths 741, Ti42 using Eqgs.
(16)-(18) in node k 4 1 and node k + 2, respectively;
15 | Feasibility check: Check the feasibility of paths 7j44
and tpyo. If any of the paths is infeasible, set the
corresponding lower bound to infinity;

16 | If (tx+1, po) constitutes a complete and feasible tour
and its length is smaller than U B, update UB by
UB « LB}:H and set t* < (tg+1, Po);

17 | Update: Remove k from L;

18 | Add k+ 1 into L, if LB,’C"Jrl < UB;

19 | Add k+ 2 into L, if LB}C"+2 < UB;

20 return ¥, UB

1) Validity of Lower Bound Calculation: The calculation
of the lower bound is based on the concept of reduction
and the partially constructed tour tj. Let’s first prove in
Lemma 5.1 that the lower bounds given in Eqgs. (20)-(21)
are valid. We then show in Theorem 5.2 that the lower
bounds given in Egs. (27)-(31) are also valid. Finally,
we show in Theorem 5.3 the convergence of the lower
bound.

Lemma 5.1: Let tour f; € T be a feasible solution to
subproblem k with I = {(0,i), (i1,i2), ..., (in—1, i)} and
g(fx) be its length. Ty is the full set of feasible solutions to
subproblem k. Then LBy < g(tx) for all ¢, € T, where LBy
is obtained using Eqgs. (20)-(21).

Proof: Suppose C(f;) is an estimate of the length of tour
¢} calculated using distance matrix D in Eq. (19), i.e., C(fx) =
D(1,i1+1)+D(ingm—1+1, 1)+Zfi1M_ D(ij+1,ij41+1).
We then have g(fx) > C(tx) for all ¢; € Tk, as each entry of
D, DG + 1, j + 1), is the minimum distance to travel from
the exit of region i to the exit of region j.

Now consider an asymmetric TSP with distance matrix D.
LBy derived using Egs. (20)-(21) is then a lower bound for
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subproblem k, according to Theorems 2-4 in [56]. Therefore,
LB < C(ty) for all ¢ € Ty. Since C(f;) < g(t;), we then
have LBy < g(tx) for all £y € Ti. The proof is now
complete. [ ]

Theorem 5.2: Let tour £} < T;c be a feasible solution to
subproblem k with I} = {(0,i), (i1, i2), ..., (in—1,ir)} and
g(fx) be its length. T’ is the full set of feasible solutions to
subproblem k with b7, bf‘z, ..., b} | as the coverage paths for
regions i1, i2, ..., h—1, respectlvely, where b}“{, relh—1]is
defined by Eq. (16). Then LB} < g(fy) for all #; € T, where
LBy is obtained using Egs. (27)-(31).

Proof: Recall that LB/ is obtained by correcting region-
to-region distances used for computing the lower bound L By.
When k = 1, 2, 3, it is straightforward that LB,’C" < g(ty) for
all tp € Ty, as LB,’(" = LBy < g(ty) for all ¢, € T according
to Lemma 5.1. When k = 4, according to Egs. (24)-(26),
LBy = LB4 + doi, + Ji,i, Where dp;, corrects the distance
to travel from the depot to the exit of region iy, using the
coverage path b* As all tours in 77 adopt b"‘ as the coverage
path for region 11, the exit locatlon in i must be b;"m With
this information, &;,;, further improves the estimate for the
minimum distance to travel from the exit of region i; to the
exit of region i;. Note that dp;, > 0 and d;);, > 0, which can
be easily derived according to Egs. (13)-(15) and Eq. (19).
Therefore, essentially, LB} is a lower bound obtained using
distance matrix D but with entry D(1, i1 + 1) replaced by the
actual distance to travel from the depot to the exit of region
i1, i.e.,, D(1,i1 + 1) = d(po, bul) —|—g(b ), and with entry
D(iy —|— 1,i2+1) replaced by a better estimate of the minimum
distance to travel from the exit of region i; to the exit of region
in, ie, D@1+ 1,ir+1) = d(b”n »b1) +g(b;,). According
to Lemma 5.1, we thus have LB"‘ < g(tg) for all t4 € T.

Similarly, we can derive that in general LB} is essentially
a lower bound obtained using distance matrix D but with
entries D(1,i1+1), D(i1+1,i2+1),...,D(p_2+1,ip_1+1)
replaced with the actual distance values and D(ij_1+1, ip+1)
replaced with an improved estimate of the minimum distance
value. Therefore, LB} < g(#;) for all #; € T}, according to
Lemma 5.1. The proof is now complete. [ ]

Theorem 5.3: If I; includes all regions to be covered and
T = (7%, po) is the resulting single tour, then g(r) = LB;.

Pmof From Eqgs. (16)-(18), we know that T =
(po, b} o {2, .. .,b;"N 41 » P0)- From Egs. (27)-(31), we can
derive that LB} is essenﬂally a lower bound obtained using
distance matrix D but with entries D(1,i; + 1), D(i; +
Lio+1),...,Dinym—2+ 1, inem—1+1), Diingm—1+1,1)
all replaced with the actual distance values. According to
Theorem 4 in [56], we then have g(t) = LB}’C". [ |

2) Optimality of Final Result: In our BnB method,
an approximation is applied to construct the tour progressively
where the best coverage path for the current region, given in
Eq. (16), is the one that minimizes the distance for traveling
from the exit of the previous region, then covering the current
region completely and finally arriving at the centroid of the
next region. Although our BnB method cannot guarantee of
finding a global optima, because of this approximation, it has
some nice properties in terms of optimality as shown in the
following lemmas and theories.
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Lemma 5.4: Suppose T = (tk, po) at the leaf node k
constitutes a complete tour. Then this tour is same as the one
derived by applying the FINDTOUR() function, with region

visiting order o specified by I, i.e.,, 0 = {iy,i2,...,iNt+M—1}-
Pmof According to Egs. (16)-(18), = =
(pu's i? ;21-"1br‘N+M I,po)s where br:.': ir S [N+M - 1]5

is same as the coverage path found by applying Line 8 in
Algorithm 3. Therefore, T is same as the tour generated by
the FINDTOUR() function. [ |

Lemma 5.5: Assume that the UAV can only choose
from the BFPs generated by the BF-CPP algorithm (Algo-
ritm 1) to cover each region. Given the region vis-
iting order o = [{i1,i2,...,iNyM—1)}, the tour T =
(po, b* o {2, .. .,b;"N y_» o) found by the FINDTOUR()
function is optimal 1f foreachr e [N+ M — 2],

bj, = argmin g(b;,) + A} _,,, . bi1) + Abi,n;,, bi 1)
bi,
(34)
is satisfied for any b; _, € B;_,,, where b:;—'"ir—u = po when

r=1

Proof: The optimality of tour t can be proved by
inspecting each region in the order specified by o. In particular,
starting from depot po, condition (34) tells that b}“l is the
optimal path to cover region i; as it leads to the shortest
distance to travel from pp to region iy, fully cover this
region i{; and then reach the next region i, no matter
from where to exit region ip. With b}"l determined as the
optimal coverage path for region i;, we then regard the exit

location bf‘ml as the start location and prove the optimality
of partial tour (bIIM 2bhs ... by, » PO)- By repeating the

above procedure, we can prove the optimality of each coverage
path b:,’ and thus the optimality of the complete tour z. W

Theorem 5.6: Let t* be the optimal solution to problem
Py and o* be the corresponding region visiting order. Assume
that the UAV can only choose from the BFPs generated by
the BF-CPP algorithm (Algorithm 1) to cover each region.
If given o*, the tour found by applying function FINDTOUR()
is optimal, then the solution returned by the BnB method in
Algorithm 6 is optimal.

Proof: Suppose o* = {if,i3,...,
node k has I = {(0,i}), (if,i3) .,(ii,+M_2,iR,+M_l)},
then (7, po) constitutes a complete tour and 7p =
(po, b;* , b;“*, .. b:‘},.{r ) According to Lemma 5.5, our BnB
method ﬁnds the same tour as the one obtained by FIND-
TouRr(), given a region visiting order. In addition, if the
tour found by FINDTOUR() is optimal, then the coverage
path found for each region must also be optimal. Therefore,
bf‘* is optlmal for each r € [N + M — 1], and hence
(tk, po) = ©*

Next we prove that our BnB method will generate such leaf
node k and return the optimal tour =*. This can be proved
by showing that for each node s with I; € Iy, LB} < UB,
which ensures that node s will be expanded in certain iteration
and thus the leaf node k will be finally generated. To prove
this, let Iy = {(0,iY), (i, 13), ..., (if_y,i})}, where h € [N+
M — 1] and i;_l = 0 if h = 1. According to Theorem 5.2,
LB} < g(t;) for all t; € T, where T is the full set of

i§im_1) If a leaf
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Fig. 3. Sets-based chromosome representation.

feasible solutions to subproblem s with the coverage paths for
regions iy, i3, ...,i;_, being b}"l., b;’%, et b}} o respectively.
As t € T, we have LB} < g(t*). Furthermore, since 7*
is the optimal solution, we have g(z*) < UB. Therefore,
LB} < UB holds for all s with I; C Ij. [ |

Remark 1: In Lemma 5.4, Eq. (34) is a sufficient condition
for the optimality of the tour generated by the FINDTOUR()
function and it can be satisfied when the size of the next region
i,41 is small or region i, is far away from the current region
i,. However, it is not a necessary condition. Actually, as we
will show in the experimental results, our BnB method that
essentially applies the FINDTOUR() function to construct tours
generates optimal solutions to all problems we have tested and
can verify.

VI. GENETIC ALGORITHM FOR SOLVING P} AND P>

The BnB method introduced in the previous section is
able to solve problem P; with high accuracy. Nevertheless,
it cannot solve problem P, that aims to balance the workload
among UAVSs, and the problem scale it can handle is limited.
To address these limitations, in this section, we introduce a
genetic algorithm (GA) that can solve large-scale EMTSP-
CPP, both P; and P, efficiently.

The key of our GA for EMTSP-CPP is to properly assign
regions to each UAV. Based on a region assignment, the
original EMTSP-CPP can be decomposed into a group of
energy constrained TSP-CPP with a single UAV. Each energy
constrained TSP-CPP can be solved by applying the Fast NN-
20pt algorithm first, and penalizing the violation of energy
constraint later in the fitness function. The main features of
our GA for EMTSP-CPP are described as follows.

A. Chromosome Design

The chromosome design is the key to the performance
of a GA. A good chromosome design should have nearly
no redundancy in representing the solutions, which means a
solution should avoid having multiple representations. Inspired
by the grouping GA introduced in [60] for MTSP, we pro-
pose a sets-based chromosome representation, where each
chromosome consists of M sets of regions and each set is
assigned to a UAV. There is no ordering among the regions
in each set as well as among the sets. An illustration of
the sets-based chromosome representation is shown in Fig. 3,
which represents an assignment of N = 9 regions to M =3
UAVs. Note that the depot is not included in the chromosome,
as each tour starts and ends at the depot by default.

Our sets-based chromosome design brings two advan-
tages over the traditional chromosome designs for MTSP
[60]-[63], which specify both the target location assignment
and the visiting order. First, our sets-based design only rep-
resents the region assignment, which leads to a much smaller
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search space, and thus the algorithm is expected to converge
much faster. Second, our design avoids having redundancy in
representing the tours, which are inherent in the traditional
designs for MTSP. Meanwhile, there is an inherent drawback
in such a sets-based chromosome design. With less control
information represented by the chromosome, it increases the
computation burden for following steps. In particular, to com-
pute the fitness of a chromosome, we need to first generate
tours based on the region assignment specified by the chro-
mosome, which makes the evolution of each generation to be
costly. However, as we will show in the experimental results,
the advantages of this sets-based chromosome outweigh its
disadvantage.

B. Fitness

As our sets-based chromosomes only specify region assign-
ments, in order to evaluate the fitness of a chromosome,
we first apply the Fast NN-2Opt algorithm introduced in
Section I'V-B to generate tours based on the chromosome. The
cost of the derived tours is then measured as the fitness of
the chromosome, using J; if P is considered or J; if P; is
considered. However, due to energy constraints, some tours
may be infeasible. To address this issue, instead of directly
removing infeasible solutions, which may cause the search to
“stagnate” when the number of feasible solutions is small [64],
we here employ a penalty factor to penalize infeasible tours.
The fitness of a chromosome is then defined as the sum of the
cost of the resulting tours and the penalty factor 4 > 0, i.e.,

Fitness = J; + 4 (35)

where i € {1, 2}.

Different types of penalties have been developed to handle
constraints in evolutionary algorithms [65]. We here adopt the
following dynamic penalty function [65], which increases over
time as the generation number ¢ grows:

m
A= (Cty* D" (max{0, di(r) — Dpax})”
i=1
In the above equation, C, a, and /8 are constants. d; (t), i € [m]
is the cost of the ith tour obtained at the fth generation. Note
that A = 0 when the chromosome results in M feasible tours.

C. Crossover

Given the parents, a proper crossover operator is required
to produce off-springs. Considering the unique features of the
sets-based chromosomes, we design a new crossover operator
based on the idea of ordered crossover [66] and the one
introduced in [60]. In particular, given two parents, labeled
as A and B, our crossover operator first selects the most
promising set from parent A and copies this set to the child.
It then deletes all regions belonging to this set from the sets of
parent B. After that, the operator examines the remaining sets
of parent B. If there are exactly M — 1 nonempty sets, these
sets are directly copied to the child. Otherwise, the operator
adjusts the regions in the sets to produce M — 1 nonempty sets
and then copies these sets to the child. Specifically, if there
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are fewer than M — 1 nonempty sets, the operator picks a
region from the largest set uniformly at random and moves
this region to an empty set. This step is repeated until there
are exactly M — 1 nonempty sets. On the other hand, if there
are M nonempty sets, the operator picks the smallest set
and moves all regions from this set to the other sets one
by one, and at each move, a region is moved to the second
smallest set. Finally, by switching the role of parent A and
parent B, the second child can be generated using the same
procedure.

In the above procedure, the most promising set is defined
in different ways for solving EMTSP-CPP with different
objectives. For problem P; that aims to minimize the total
travel distance, the most promising set is the one that leads
to a feasible tour with the smallest ratio of tour length to the
number of regions in the tour. If all sets result in infeasible
tours, the most promising set is selected solely based on the
ratio. For problem P, that aims to minimize the longest tour,
the most promising set is the one that leads to the shortest
tour.

D. Mutation

The mutation is often applied with a low probability,
which helps introduce randomness within the chromosomes
to increase the coverage of the search space. For a specific
chromosome, two regions are randomly picked separately from
two randomly selected sets, then they are interchanged.

E. Inifial Population Generation

The initial population is generated using simple greedy
heuristics inspired by the approach introduced in [63], and
each set in a chromosome is generated with the region visiting
order considered at the same time. For EMTSP-CPP with
different objectives, we use different heuristics to generate the
initial population. In particular, for problem P; that aims to
minimize the total travel distance, we first initialize the M
sets by inserting a randomly selected region to each set, which
ensures that no sets will be empty. After that, for the remaining
N —M unassigned regions, we find the region that is the closest
to the last region in any of the M sets and insert this region to
the end of the set closest to it, where the distance between two
regions is approximated using regions’ centroids. To reduce the
chance of generating infeasible tours, after inserting a region
into a set, we approximate the length of the resulting tour,
and stop assigning more regions into the set if the tour is long
enough. This process is repeated until there are no unassigned
regions.

For problem P, that aims to minimize the longest tour,
the regions are assigned to the sets in a round-robin fash-
ion. In particular, after initializing each set with a randomly
selected region, we insert an unassigned region to the end of
each set in turn, where the selected region is the one that is the
closest to the last region in the set. Similarly, we examine the
updated set at each iteration to reduce the chance of generating
infeasible tours and continue this process until all regions are
assigned.
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TABLE I

ToTAL TRAVEL DISTANCE OF ALL UAVS AND MEAN COMPUTATIONAL
TIME FOR BNB AND DP ON DIFFERENT TEST PROBLEMS

Instance Cost (J71) Time (s)
num N BnB DP error BnB DP

1 2 836.7 836.7 0 0.0272  0.0443
2 3 929.9 929.9 0 0.0327  0.0532
3 4 1119.1 11191 0 0.0399  0.1254
4 5 13733 13737 0 0.0502 0.3521
5 6 1208.5 12085 0 0.0824  1.3292
6 7 1484.0 1484.0 0 0.1387  4.4375
T 8 1693.5 1693.5 0 0.2337  21.236
8 9 1805.6  1805.6 0 1.1937 93.746
9 10 | 19548 1954.8 0 2.1056 472.54
10 11 19333 19333 0 1.9154 27754
11 12 | 22360 2236.0 0 19.597 11458

F. Other Features

In our GA, the parents are selected using the typical rank
selection method [67], which first ranks the individuals in a
population based on their fitness and then picks two parents
based on the ranks. We also employ Elitism when updating the
population, which propagates a small set of fittest members of
the current population to the next generation. This ensures that
the quality of the solution derived by the GA does not degrade
from one generation to the next.

VII. COMPUTATIONAL EXPERIMENTS

In this section, we conduct computational experiments to
evaluate the performance of the proposed approaches for
EMTSP-CPP under different objectives. All approaches are
implemented in MATLAB and experiments are run on a
MacBook Pro with a 2.6GHz 6-Core Intel Core i7 processor
and 16GB memory.

A. Performance of the BnB Method

In this study, we investigate the performance of the proposed
BnB method in terms of optimality and efficiency. The impact
of the search strategy is also exploited.

1) Optimality Study: In Section V-E.2, we have analyzed the
optimality of the final result derived by our BnB method from
the theoretical point of view. Here, we conduct computational
experiments to demonstrate its optimality. As there are no
exact approaches available in the literature that can be directly
used to solve EMTSP-CPP within reasonable time, we run
the dynamic programming (DP)-based approach for TSP-CPP
as the benchmark, which is proved to generate optimal solu-
tions [26]. As EMTSP-CPP is a generalization of TSP-CPP,
our BnB method can be directly used to solve TSP-CPP.

Table I summarizes the solutions obtained by the two
methods to different TSP-CPP with the number of UAVs set
to M = 1 and the maximum distance each UAV can travel set
to Dpgy = 00. The regions are randomly generated convex
polygons with a random shape and size, and are randomly
distributed over the space without overlap. The sensing range
of the UAV is set to 1.5 x 3. To reduce experimental uncertain-
ties, each experiment is repeated for 10 times and the mean
values are recorded.
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TABLE II

ToOTAL TRAVEL DISTANCE OF ALL UAVS AND MEAN COMPUTATIONAL
TIME FOR BNB WITH DFS OR BFS ON DIFFERENT TEST PROBLEMS
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TABLE III

ToTAL TRAVEL DISTANCE OF ALL UAVS AND THE COMPUTATIONAL
TIME EVALUATED FOR BNB, GASC AND GA2PC ON DIFFERENT TEST
PROBLEMS, WHEN THE TWO GAS ADOPT THE FIRST

Instance Cost (J1) Time (s) TERMINATION CRITERIA
num N M Donaz DFS BFS DFS BFS
1 5 1 o 13737 13737 | 0.0502 0.0532 Instance Cost (J1) Time (s)
2 5 2 oo 1431.6 14316 | 0.1244  0.1324 mm N M Dmas | BuB  GASC  GAZPC
3 5 2 1200 1458.5 14585 | 0.1207 0.1314 1 6 2 00 12608 12608 1275.1 0.3042
4 5 2 1000 1459.0  1459.0 | 0.1154 0.1245 2 6 2 1000 12751 12751 1275.1 0.3692
5 5 2 800 1545.8 15458 | 0.1240 0.1712 3 6 3 s3] 1346.6  1346.6 1346.6 0.8308
6 5 3 oo 15164 15164 | 02052 02396 4 6 3 600 1418.8 1418.8 1418.8 3.4603
7 5 3 800 15547 1554.7 | 02627 03372 5 6 l 0o 14489 14489 1448.9 3.5806
8 8 1 oo 1693.5 1693.5 | 02337 02708 6 6 4 600 1478.1  1478.1 1478.1 3.8872
9 8 2 oo 17343 17343 | 2.7541 11815 7 6 4 500 15187 15187 15187 | 5.1808
10 8 2 1200 1830.0  1830.0 | 53925 42.905 8 8 2 o0 17343 17343 1734.3 27541
11 8 2 1000 1840.6  1840.6 | 3.5176 15933 9 8 2 1200 1830.0 1830.0  1830.0 5.3925
12 8 3 oo 1802.6 1802.6 | 13.574 464.23 10 8 2 1000 1840.6  1840.6 18406 | 3.5176
13 8 3 1200 1849.6  1849.6 | 22.527 2797.0 11 8 3 00 1802.6  1802.6 1802.6 13.574
14 8 3 800 1870.8  1870.8 | 18.002 846.93 12 8 3 1200 1849.6 18496  1849.6 22.527
15 10 1 o 1954.8 1954.8 | 2.1056 7.2192 13 8 3 800 1870.8 1870.8  1870.8 | 18.002
16 10 2 oo 20054 20054 | 24362 12273 14 8 4 00 1917.9 19179 1917.9 74.2718
17 10 2 1400 2053.3 20533 | 90481 51785 15 8 1 800 1939.1  1939.1 1939.1 91.2427
18 10 2 1200 | 2057.7 2057.7 | 55406 4445.6 16 10 2 o 20054 20054 20533 | 24362
19 10 3 oo 2067.8 Not 159.89 Not 17 10 2 1400 20533 20583 20719 90.481
20 10 3 1000 2108.3 Not 197.03 Not 18 10 2 1200 2057.7 20577 20577 55.407
19 10 3 o 2067.8 2067.8 21127 | 159.89
20 10 3 1000 21083 21083  2108.3 197.03
As we can see, our BnB finds optimal solutions to all the
test problems, even though its optimality can only be proved TABLE IV

theoretically under certain assumptions.

2) Efficiency Study: Table I also shows the mean compu-
tational times of the two methods, both of which increase
exponentially with the increase of the number of regions N,
as TSP-CPP is an NP-hard problem. Nevertheless, we can see
that BnB is much more efficient than DP.

3) Impact of Search Strategy: BFS is another popular search
strategy that has been frequently used in BnB for solving
TSP/MTSP. Here, we investigate the impact of search strategy
on the performance of the proposed BnB method for solving
EMTSP-CPP. Table II shows the performance of different
search strategies in solving different test problems. Each
value in the table is obtained by averaging the results from
10 repeated experiments. The time limit for both algorithms is
set to 10,800 seconds (i.e., 3 hours). When no feasible solution
is found, we report ‘Not’.

The results show the efficiency of the DFS strategy in
solving EMTSP-CPP (7). We also note that the parameters
N, M and D,,,, have the same impact on the efficiency of
the two methods. Among them, N and M control the problem
scale and increasing any of them will cause more computa-
tional time. D,,,, controls the size of the feasible solution
space. Interestingly, decreasing D,,,, sometimes increases the
computational time, but sometimes reduces the computational
time. This is because, on one hand, smaller D,,,, reduces the
feasible solution space, thus making it harder to find feasible
solutions. On the other hand, a tighter constraint causes many
nodes to fail the feasibility check and thus be pruned early.

B. Performance of the GA

In this section, we conduct experiments to evaluate the
performance of the proposed GA for EMTSP-CPP. We first

ToTAL TRAVEL DISTANCE OF ALL UAVS AND COMPUTATIONAL TIME
EVALUATED FOR BNB, GASC AND GA2PC ON DIFFERENT TEST
PROBLEMS, WHEN THE TWO GAS ADOPT THE SECOND
TERMINATION CRITERIA

Instance Cost (J1) Time (s)

num N M Dpez | BnB GASC GAZPC| BunB A

1 6 2 o 1260.8 1275.1 12751 | 0.3042 0.2271 0.1833
2 6 2 1000 |1275.1 12751 12751 | 03692 0.3413 0.2699
3 6 3 o 1346.6 1346.6 1346.6 | 0.8308 03702 0.2750
4 6 3 600 1418.8 1418.8 14188 | 3.4603 0.3697 0.1699
5 6 4 o 14489 14489 14489 | 3.5806 0.3508 0.2770
6 6 4 600 1478.1 1478.1 1478.1 | 3.8872 0.2064 0.2966
7 6 4 500 1518.7 1518.7 1518.7 | 5.1808 0.3646 0.1988
8 8 2 o= 17343 17343 17343 | 2.7541 0.2711 0.2073
9 8 2 1200 |1830.0 1830.0 1830.0 | 53925 03135 0.2545
10 8 2 1000 |1840.6 1840.6 1840.6 | 3.5176 0.2665 0.2050
11 8 3 oo 1802.6 1802.6 1802.6 | 13.574 0.2658 0.2102
12 8 3 1200 |1849.6 18496 1849.6 | 22.527 0.2931 0.2295
13 8 3 800 1870.8 1870.8 1870.8 | 18.002 0.2370 0.2076
14 8 4 oo 1917.9 1917.9 19179 |74.2718 0.2557 0.1946
15 & 4 800 1939.1 1939.1 1939.1 |91.2427 0.2663 03262
16 10 2 oo 2005.4 20054 2060.2 | 24.362 0.3906 02234
17 10 2 1400 |[2053.3 2058.3 2066.0 | 90.481 0.3251 0.2280
18 10 2 1200 |2057.7 2057.7 2057.7 | 55407 03164 0.2426
19 10 3 oo 2067.8 2108.3 2108.3 | 159.89 0.3203 0.2345
20 10 3 1000 |2108.3 21083 2110.8 | 197.03 0.3760 0.2653

introduce the benchmark methods implemented in this study
for comparison. We then show the experimental results.

1) Benchmark Methods: To evaluate the performance of
the proposed GA, we choose two methods as the bench-
marks. One is the proposed BnB, which can find (near)
optimal solutions to small-scale EMTSP-CPP. Another one
is a two-part chromosome based GA that adopts the two-part
chromosome representation proposed in [63]. This method can
help us understand the performance of the proposed GA in
solving large-scale problems, as well as the effectiveness of
the proposed new GA features.
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TABLE V

TOTAL TRAVEL DISTANCE OF ALL UAVS AND THE NUMBER OF
GENERATIONS EVALUATED FOR GASC AND GA2PC
ON DIFFERENT TEST PROBLEMS

Instance Cost (J1) # generations
num N M  Dgaz | GASC  GA2PC | GASC GA2PC
1 20 5 [£) 37782 37805 281 1476
2 20 5 1000 3909.0 3962.1 302 1465
3 20 5 900 3926.5 3971.2 284 1445
4 20 8 [a's] 41123 4209.5 290 1378
5 20 8 1000 41379 42095 322 1368
6 20 8 800 4260.6 43321 314 1415
7 20 10 oo 44452 44573 349 1318
8 20 10 1000 44224 44832 412 1319
9 20 10 800 44922 45245 348 1434
10 50 5 oo 2671.7 3023.8 23 695
11 50 5 900 3046.1 3204.8 23 695
12 50 5 700 3073.2 Not 38 727
13 50 8 0o 31244 34956 35 754
14 50 8 550 3821.0 Not 58 726
15 50 10 oo 3489.3 3717.1 45 720
16 50 10 700 3778.5 4286.4 58 706
17 50 10 500 4296.8 Not 60 708
18 50 20 o 53629 54735 65 497
19 50 20 800 54002  5766.5 1 562
20 50 20 600 55769  5939.7 77 591
21 100 5 ) 8715.0 11746 5 320
22 100 5 2200 9640.0 Not 12 373
23 100 8 ) 9445.7 12938 10 365
24 100 8 2000 10824 Not 13 352
25 100 10 oo 10403 13468 8 359
26 100 10 2000 11484 Not 13 326
27 100 10 1400 12320 Not 23 326
28 100 20 oo 14452 17380 10 348
29 100 20 2000 14895 18596 21 314
30 100 20 1200 16175 Not 28 301

In the two-part chromosome based GA, the chromosome
specifies not only the region assignment, but also the region
visiting order for each assignment. In particular, each chro-
mosome consists of two parts, with the first part of length
N being a permutation of the N regions and the second part
of length M specifying the number of cities to be visited by
each UAV. Combining these two parts, we can derive the set
of regions to be visited by each UAV as well as the associated
region visiting order. Given this information, we can then
apply the FINDTOUR() function in Algorithm 3 to generate
the tour. To produce new offspring, this two-part chromosome
based GA adopts the same crossover operators used in [63].
Specifically, the ordered crossover is used for the first part
of the chromosome and the single point asexual crossover is
used for the second part. The mutation is achieved using the
swap mutation method and the other steps are the same as the
proposed GA.

2) Computational Results for Solving Py: In this subsection,
we consider the objective of minimizing the total travel dis-
tance (i.e., Pp). Two studies of different scales are conducted.

Small-Scale Study: In the small-scale study, we consider
problems with the number of regions N < 10, and compare the
proposed GA with both benchmark methods. The population
size, mutation probability and elitism rate of the two GAs are
set to 10, 0.05 and 0.1, respectively. The parameters of the
dynamic penalty function are set to C = 0.5, a = 1 and
p = 2. All these parameter values are chosen empirically.
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Fig. 4. Visualization of the tours found by a) GASC and b) GA2PC with
the objective to minimize the total travel cost, when N = 50, M = 6 and
Dypax = 1000. Shaded grey areas and the red triangle represent regions and
the depot, respectively. Tours assigned to different UAVs are highlighted by
different colors.

Regarding the termination criteria, to better understand the
performance of the proposed GA, we consider two termination
criteria. The first one makes the GAs terminate after they have
run approximately the same amount time as required by the
BnB method, the results of which are shown in Table III. The
second one makes the GAs terminate when the best fitness
score is unchanged for 10 successive generations, the results of
which are shown in Table IV. Each experiment is repeated for
10 times and the best solution is recorded. In the tables, GASC
refers to the proposed GA that uses the sets-based chromosome
and GA2PC refers to the benchmark GA that employs the
two-part chromosome. To facilitate analysis, cost values are
highlighted in bold when the solutions generated by the three
methods have different costs.

As shown in Table III, which presents the results obtained
by running each algorithm for roughly the same amount of
time, both GAs can find optimal solutions when the problem
size is small, but they cannot guarantee it. Moreover, the
proposed GA generates equally good or better solutions than
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TABLE VI

LENGTH OF THE LONGEST TOUR AND THE NUMBER OF GENERATIONS
EVALUATED FOR GASC AND GA2PC ON DIFFERENT TEST PROBLEMS

Instance Cost (J2) # generations
num N M D | GA

1 20 5 oo 852.7 852.7 295 1621
2 20 5 1000 852.7 866.5 295 1541
3 20 5 900 848.0 848.0 339 1579
4 20 8 o0 610.9 610.9 348 1505
5 20 8 1000 6109 6109 338 1497
6 20 8 800 6109 610.9 328 1453
7 20 10 [o%s) 5927 5927 355 1375
8 20 10 1000 592.7 592.7 354 1388
9 20 10 800 5927 592.7 342 1362
10 50 5 00 652.0 702.7 43 751
11 50 5 900 650.5 733.1 75 744
12 50 5 700 648.5 Not 50 745
13 50 8 [o%s) 534.6 559.3 62 742
14 50 8 550 530.7 Not 69 713
15 50 10 [o%s) 499.0 496.0 102 711
16 50 10 700 490.2 503.3 89 705
17 50 10 500 493.3 490.5 66 560
18 50 20 oo 428.4 428.4 131 594
19 50 20 800 428.4 428.4 147 609
20 50 20 600 428.4 428.4 141 626
21 100 5 00 19794  2631.7 9 364
22 100 5 2200 2082.1 Not 11 348
23 100 8 00 14849  2024.0 16 388
24 100 8 2000 1494 .4 Not 17 380
25 100 10 oo 1328.3 1592.4 19 358
26 100 10 2000 1338.5 1620.3 16 332
27 100 10 1400 1348.5 Not 23 280
28 100 20 oo 1043.2 1102.1 41 321
29 100 20 2000 1045.7 1091.1 42 316
30 100 20 1200 1041.5 1098.8 4 365

the benchmark GA in all test problems. Now let’s analyze
Table IV, which shows the results obtained when the GAs
cannot find better solutions in 10 consecutive generations.
Under this termination criteria, both GAs stop running after a
short amount of time, and the proposed GA takes more time to
terminate, as it requires more time to evaluate each generation.
In addition, we can observe that both GAs can find optimal
solutions when the problem size is small, but their perfor-
mance degrades when the problem size increases and such
degradation is obvious for the benchmark GA. Furthermore,
by comparing Table IV and Table III, we can observe that,
although the running time is significantly reduced, the quality
of the solution found by the proposed GA does not decline in
most cases.

Large-Scale Study: In the large-scale study, we consider
problems with the number of regions N > 20. The proposed
GA is only compared with the two-parts chromosome based
GA, as BnB cannot solve these problems within tolerable time
limits. In this experiment, we set the population size of both
GAs to 100. The other parameters are kept the same. For fair
comparison, each algorithm runs for 1 minute to solve each test
problem and the best solution obtained from 10 experimental
runs is recorded. The results are summarized in Table V, which
also shows the number of generations each algorithm evaluated
within 1 minute. For illustration purpose, we also visualize in
Fig. 4 the tours generated by the two GAs when N = 50,
M =6 and D,,,, = 1000.

As shown in Table V, the proposed GA generates shorter
tours than the benchmark GA in all test problems, despite the
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Fig. 5. Visualization of the tours found by a) GASC and b) GA2PC with
the objective to minimize the longest tour, when N = 50, M = 6, and
Dpax = 1000.

fact that it takes much more time to generate and examine one
generation, as indicated by the smaller number of generations
it is able to evaluate within 1 minute. For some test problems,
the benchmark GA even fails to generate feasible solutions,
such as the test problem 12.

We can also observe from Table V that the total travel
distance increases with the increase of the number of UAVs
M, when N and D,,,, are fixed. This is because the inclusion
of each additional UAV increases the number of depot-region
links by two, as each UAV has to depart from and return
to the same depot. Another observation we can obtain from
the table is that the total travel distance generally increases
with the decrease of Dy, when N and M are fixed. This
is because smaller D,,,, reduces the feasible solution space,
causing some solutions that are feasible at larger Dy, to
become infeasible.

C. Computational Results for Solving >

In this subsection, we consider the objective of minimizing
the longest tour (i.e., P2). In this experiment, the proposed GA
is compared only with the two-part chromosome based GA,
as the BnB method cannot solve P,. The same experimental
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setting for the large-scale study described in the previous
subsection is adopted here to configure the parameters of
the two GAs. The results are summarized in Table VI. To
facilitate analysis, cost values are highlighted in bold when
the benchmark GA outperforms the proposed GA. As an
illustration, Fig. 5 visualizes the tours generated by the two
GAs when N =50, M =6, and Dy, = 1000.

As shown in Table VI, the proposed GA still outperforms
the benchmark GA in most test problems, and its advantage
becomes more obvious when the problem scale increases.
Of interest, the length of the longest tour decreases with the
increase of the number of UAVs M, when N and D,,,, are
fixed. This is because with more UAVs to share the workload,
fewer regions are assigned to each UAV, thus leading to shorter
tours. Moreover, we can observe that the value of D,,,, does
not impact the length of the longest tour much, when N and
M are fixed. This is because D4, just restricts the maximum
distance a UAV can fly. When the objective is to balance the
workload, Dy,,, does not help in searching for shorter tours,
as long as the tours meet the energy constraints.

VIII. CONCLUSION

This paper addresses a new multi-UAV path planning prob-
lem, called EMTSP-CPP, which aims to find the optimal
tours for a set of UAVs with limited power supply to fully
cover multiple non-overlapping convex polygonal regions.
To solve this problem, a BnB method was first developed.
This method adopts the DFS strategy and creates a binary
search tree to find the best region visiting order, with tours
constructed progressively during the search. Theoretical analy-
ses reveal the optimality of this method. In order to solve
large-scale EMTSP-CPP efficiently, we further developed a
new GA, which is featured by a new sets-based chromosome
representation, new crossover and mutation operators, and
a constraint-aware fitness function. Comprehensive computa-
tional studies demonstrated the promising performance of the
proposed approaches from different aspects. Particularly, the
proposed BnB method can generate (near) optimal solutions
and is more efficient than the DP-based method. The studies on
the impact of search strategy demonstrated the efficiency of the
DFS strategy compared with the BFS strategy. Moreover, the
proposed GA achieves a good tradeoff between optimality and
efficiency, compared with the BnB method. It also outperforms
the two-part chromosome based GA in both optimality and
efficiency. In the future, we will conduct sensitivity study to
understand the impact of the parameters in GA. We will also
explore efficient MILP formulations for EMTSP-CPP and its
real applications.
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