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Abstract
Significant gaps remain in understanding the response of plant reproduction to envi-
ronmental change. This is partly because measuring reproduction in long-lived plants 
requires direct observation over many years and such datasets have rarely been made 
publicly available. Here we introduce MASTREE+, a data set that collates reproduc-
tive time-series data from across the globe and makes these data freely available to 
the community. MASTREE+ includes 73,828 georeferenced observations of annual 
reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. 
These observations consist of 5971 population-level time-series from 974 species in 
66 countries. The mean and median time-series length is 12.4 and 10 years respec-
tively, and the data set includes 1122 series that extend over at least two decades 
(≥20 years of observations). For a subset of well-studied species, MASTREE+ includes 
extensive replication of time-series across geographical and climatic gradients. Here 
we describe the open-access data set, available as a.csv file, and we introduce an as-
sociated web-based app for data exploration. MASTREE+ will provide the basis for 
improved understanding of the response of long-lived plant reproduction to environ-
mental change. Additionally, MASTREE+ will enable investigation of the ecology and 
evolution of reproductive strategies in perennial plants, and the role of plant repro-
duction as a driver of ecosystem dynamics.

K E Y W O R D S
demography, flowering, general flowering, masting, plant reproduction, recruitment, 
regeneration

Resumen
Aún existen importantes vacíos en la comprensión de la respuesta reproductiva de 
las plantas al cambio medioambiental, en parte, porque su monitoreo en especies de 

mailto:andrew.hacket-pain@liverpool.ac.uk
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1  |  INTRODUC TION

Climate change and other anthropogenic drivers are altering plant 
demographics, with reported changes in plant mortality, growth 
and reproduction (Allen et al., 2010; McDowell et al., 2020; Pearse 
et al., 2017; Senf et al., 2018). These demographic shifts are 
changing the composition and structure of vegetation, with far-
reaching effects on ecosystem functioning and services, includ-
ing complex effects on biodiversity and terrestrial carbon sinks 
(Carnicer et al., 2011; Chen et al., 2019; Clark et al., 2016; Ruiz-
Benito et al., 2017). In most plant species, seed production is a key 
process limiting sexual reproduction. However, our understanding 
of climate-driven changes in seed production lags behind other 
key demographic processes such as growth and mortality (Clark 
et al., 2021), where inventory data, tree-ring networks and remote 
sensing have transformed understanding of responses to environ-
mental change (Buras et al., 2020; Changenet et al., 2021; Klesse 
et al., 2020). Reproduction and other processes associated with 
plant recruitment require direct and intensive field-based obser-
vation over many years. However, there have been few previous 
attempts to collate, archive and make available original data from 
long-term monitoring studies across taxa and wide geographic 
areas (Ascoli, Maringer, et al., 2017; Koenig & Knops, 2000; Pearse 
et al., 2020). Consequently, the response of plant reproduction to 
ongoing environmental change remains poorly understood, and 
paucity of data compromises the parameterisation of reproduc-
tion in models used to predict future vegetation dynamics (Fisher 
et al., 2018; Vacchiano et al., 2018).

Recent analysis of long-term data sets indicates that seed pro-
duction may be sensitive to climate change. Where increases in 
temperature favour reproduction, warming is linked to increased 
seed production (Bogdziewicz et al., 2020; Buechling et al., 2016; 
Caignard et al., 2017), whereas in drought-limited populations seed 
production has declined in association with warming (Redmond et al., 
2012). Additionally, environmental change may alter the interannual 
variability and spatial synchrony of reproduction (Hacket-Pain & 
Bogdziewicz, 2021; Pearse et al., 2017). These shifts in reproduction 
have consequences for recruitment and wider ecosystem dynamics 
(Pau et al., 2018; Redmond et al., 2012; Schupp et al., 2019). For 
example, long-term reductions in tropical rainforest fruit production 
have been linked with declining vitality of herbivorous megafauna 
(Bush et al., 2020), and low seed availability can limit forest recovery 
after large-scale mortality events (Redmond et al., 2018). Beyond 
changes in mean seed and fruit production, shifts in the spatiotem-
poral variability of flowering and fruiting (i.e. masting) will also have 
impacts on key ecosystem services and habitat management (Pearse 
et al., 2021) including commercial and subsistence food crops 
(Calama et al., 2011; Ladio & Lozada, 2004; Shelef et al., 2017), seed-
eating animal population dynamics (Touzot et al., 2020), and human 
health through the trophic interactions that drive vector-borne zoo-
notic disease dynamics (Bennett et al., 2010; Bregnard et al., 2020). 
However, the direction and magnitude of reported changes in mast-
ing are inconsistent, and this variability in response remains poorly 
understood (Hacket-Pain & Bogdziewicz, 2021).

As the magnitude of plant reproduction is highly variable 
across time and space (Figure 1), multi-decadal time-series of plant 

plantas longevas requiere una observación directa durante muchos años, y estos con-
juntos de datos rara vez han estado disponibles. Aquí presentamos a MASTREE +, 
una base de datos que recopila series de tiempo de la reproducción de las plantas de 
todo el planeta, poniendo a disposición estos datos de libre acceso para la comuni-
dad científica. MASTREE + incluye 73.828 puntos de observación de la reproducción 
anual georreferenciados (ej. conteos de semillas y frutos) en poblaciones de plantas 
perennes en todo el mundo. Estas observaciones consisten en 5971 series temporales 
a nivel de población provenientes de 974 especies en 66 países. La mediana de la 
duración de las series de tiempo es de 10 años (media = 12.4 años) y el conjunto de 
datos incluye 1.122 series de al menos dos décadas (≥20 años de observaciones). Para 
un subconjunto de especies bien estudiadas, MASTREE +incluye un amplio conjunto 
de series temporales replicadas en gradientes geográficos y climáticos. Describimos 
el conjunto de datos de acceso abierto disponible como un archivo.csv y presentamos 
una aplicación web asociada para la exploración de datos. MASTREE+ proporcion-
ará la base para mejorar la comprensión sobre la respuesta reproductiva de plantas 
longevas al cambio medioambiental. Además, MASTREE+ facilitará los avances en la 
investigación de la ecología y la evolución de las estrategias reproductivas en plantas 
perennes y el papel de la reproducción vegetal como determinante de la dinámica de 
ecosistemas.
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reproductive effort with high replication and sampling across en-
vironmental gradients are needed to derive meaningful inferences 
and predictions from modelling efforts (Clark et al., 2021; Pearse 
et al., 2021; Pennekamp et al., 2019; Vacchiano et al., 2018). The 
availability of such data will enable robust estimates of the re-
sponse of plant reproduction to recent environmental change, 
and through identification of the underlying drivers, prediction 
of future trends. MASTREE+ provides these time-series of plant 
reproductive effort, and will enable testing of changes in masting 
patterns associated with recent environmental change across mul-
tiple species and geographical regions (Hacket-Pain & Bogdziewicz, 
2021; LaMontagne et al., 2021; Pearse et al., 2017). Such data sets 
will also enable new insights into the ecology and evolution of pe-
rennial plant reproduction (Dale et al., 2021), and the role of plant 
reproduction as a driver of other ecological processes including 
plant recruitment and animal population dynamics (Brumme et al., 
2021; Connell & Green, 2000; Curran & Leighton, 2000; Schupp 
et al., 2019).

2  |  MA STREE+

Here we introduce a project to collate data of perennial plant re-
productive time-series. Time-series originate from diverse sources, 
including 17th century European forestry records of seed produc-
tion (‘mast years’) (Ascoli, Vacchiano, et al., 2017), data from ongoing 
plant reproductive biology and phenology monitoring programmes 
(e.g. RENECOFOR, LTER, California Acorn Survey), and projects 
studying the dynamics of ecosystems including the relationships 
between seed production and animal demographics (Boutin et al., 
2006). Many of these data sets record the number or mass of flow-
ers, seeds, fruits or cones per individual or unit area on a continuous 

scale. We also include ordinal time-series, which record annual re-
production output according to an ordered categorical scale (e.g. fail-
ure/partial/full crop) which can be successfully used to investigate 
the variability and synchrony of plant reproduction (Bogdziewicz 
et al., 2021).

The current version of MASTREE+ currently includes 5971 
species-specific and georeferenced time-series representing 73,828 
annual observations of reproductive effort in perennial plant pop-
ulations, and the project is designed to continue to assemble and 
update records (see Sections 4 and 5). Mean and median time-series 
length are 12.6 and 10 years respectively. 2846 series are based on 
continuous measures of reproductive effort, and 3125 are ordinal 
series. Ordinal series originate mainly from Europe. Importantly, 
MASTREE+ contains 1122 time-series ⋝20  years, of which 187 
time-series exceed 40 years of observations. Such records will en-
able quantification of recent changes in plant reproduction, includ-
ing mean reproductive effort and spatiotemporal variability, and the 
identification of key drivers of change.

In total, 974 species are represented, drawn from 136 families 
across the plant Tree of Life. This increases species representation 
by 168% compared with the largest previously available compila-
tion (Pearse et al., 2020), which is incorporated into MASTREE+. 
This expands the potential to quantify reproductive traits that de-
scribe the spatiotemporal variability of reproduction (i.e. masting) 
with other life-history traits to better understand the evolution 
of plant reproductive strategies (Dale et al., 2021; Fernandez-
Martinez et al., 2019; Pesendorfer et al., 2021). For example, we 
have 67 species overlap with the plant demographic database 
COMPADRE (Salguero-Gomez et al., 2015), 442 species overlap 
with seed mass data from the Kew Seed Information Database 
(Royal Botanic Gardens Kew, 2021) and 82 species overlap with 
the seed germination database SylvanSeeds (Fernandez-Pascual, 

F I G U R E  1  Examples of population-level time-series of reproductive effort from MASTREE+. For five diverse plant species, data from 
several local populations are plotted to illustrate the range of spatiotemporal variation in reproduction that is typical in long-lived plants. 
Note that axis scales and units vary between plots
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2021). Reflecting a bias in sampling to temperate forests, woody 
species from the genera Quercus (60 species), Nothofagus (10), 
Pinus (25), Abies (13), Acer (13) and Eucalyptus (15) are highly rep-
resented, but other well-represented genera include Acacia (11), 
Shorea (9) and Chionochloa (11). We include data from 66 coun-
tries, six continents (Figure 2), and from all the major vegetated 
biomes (Figure 3). Importantly, we increase data representation 
from regions that have been unrepresented in previous data sets 
(Ascoli, Maringer, et al., 2017; Pearse et al., 2020), including south 
and central America, Africa, and Asia, although these regions re-
main strongly under-represented.

Sampling intensity varies between species. For example, 71% of 
species are represented by a single time-series, but other species 
have high replication, often covering large parts of their geograph-
ical distribution. 51 species are represented by at least 10 location-
specific time-series. The most replicated species are Fagus sylvatica 
(913 site-specific time-series), Picea abies (844), Pinus sylvestris (419), 
Larix decidua (395), Abies alba (393), Quercus robur (188), Quercus pet-
raea (161), Pinus cembra (135) and Picea glauca (108). These and other 
well-replicated species include data spanning large climatic gradi-
ents (Figure 3). These records will enable investigation of intraspe-
cific variation in plant reproduction across climate, space, and time, 
including trends in the spatiotemporal variability of reproduction. 
It will also enable comprehensive assessments of intraspecific vari-
ability of masting characteristics (i.e. interannual variability, autocor-
relation), including variation with environmental conditions that are 
predicted by theory but have rarely been tested (Pearse et al., 2020; 
Pesendorfer et al., 2021), and analysis of interspecific variation in 
spatial synchrony of reproduction (Dale et al., 2021), in functionally 
diverse plant species.

3  |  APPLIC ATIONS OF MA STREE+

MASTREE+ provides the data sets to establish how fecundity, and 
specifically seed masting, responds to environmental change. It in-
cludes the high replication of long time-series required to isolate 
climate change effects on plant reproductive effort (Hacket-Pain & 
Bogdziewicz, 2021; Mundo et al., 2021) (Figure 4), while high spatial 
replication across environmental gradients (e.g. Figure 3b) provides 
the opportunity for a complementary space-for-time substitution ap-
proach (Wion et al., 2020). The expected response of masting to cli-
mate change remains unresolved, and MASTREE+ will enable testing 
of contrasting predictions that masting will be unresponsive to trends 
in mean temperature (Kelly et al., 2013), or will shift predictably based 
on climate-driven changes in resource limitation (Bogdziewicz, 2021). 
Resolving this uncertainty is a priority because changes in seed mast-
ing will impact plant reproductive success, and more widely affect 
ecosystem services and habitat management (Ida, 2021; Pearse et al., 
2021; Touzot et al., 2020).

In systems where seed production limits recruitment, MASTREE+ 
can be utilised to understand the drivers of plant reproduction and 
regeneration (Abraham et al., 2018; Manríquez et al., 2016; Oliva 
et al., 2013). Intraspecific differences in fecundity and masting in-
fluence regeneration success, determining species composition and 
vegetation structure, including during the colonisation of new hab-
itats (Joubert et al., 2013), and after natural and anthropogenic dis-
turbance (Martin-DeMoor et al., 2010; Mokake et al., 2018; Peters 
et al., 2005). Masting characteristics of hundreds of species can be 
investigated using MASTREE+, and integration with plant trait and 
demographic databases will enable deeper integration of masting and 
reproductive strategies within life history theory (Salguero-Gomez 

F I G U R E  2  The geographical distribution of time-series within MASTREE+. The (a) spatial and (b) latitudinal distribution of species-specific 
time-series. For (b), series are stacked and coloured according to the variable type (Continuous, Ordinal). Plotting of counts for ordinal data 
in the northern mid-latitudes are truncated due to high sampling intensity in central Europe. Unprojected map, datum = WGS84
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et al., 2016). Many ecologically and economically important species 
show highly variable investment in reproduction between years, 
and the ability to accurately forecast occasional years of high seed 
production is a priority for habitat management, with wide ranging 
applications (Chiavetta & Marzini, 2021; Pearse et al., 2021; Pukkala 
et al., 2010). Predictive models of masting developed and tested 
using MASTREE+ data may enable more effective seed collection 
for afforestation and restoration schemes (Fargione et al., 2021; 
Kettle et al., 2010), inform wildlife and conservation management 
(Choquenot & Ruscoe, 2000; Fujiki, 2018; Ida, 2021; O'Donnell & 
Hoare, 2012), and enable forecasting of periods of elevated infec-
tion risk from tick-borne disease, which predictably follow years 
of high seed production in many forest ecosystems (Brugger et al., 
2018; Cunze et al., 2018; Heyman et al., 2012; Ostfeld et al., 1996).

The availability of seed and fruit production data sets in 
MASTREE+ will be broadly relevant when paired with existing an-
imal population data sets. The pulses of resources associated with 
large reproductive events are key drivers of the population dynamics 
of seed-eating insects, mammals and birds, with cascading impacts 
through ecosystems (Bouchard et al., 2018; Kanamori et al., 2017; 
Selonen et al., 2016). Time-series in MASTREE+ can be combined 
with existing long time-series of animal populations and behaviour to 

identify the drivers of population dynamics, both in seed-dependent 
species and further down the trophic cascade (Kleef & Wijsman, 
2015; Lithner & Jönsson, 2002). Where species are well replicated in 
MASTREE+, the spatial synchrony of masting can also be quantified, 
allowing researchers to determine where regional estimates of mast-
ing can be appropriately used as indicators of local variability in seed 
or fruit availability. The scale of spatial synchrony of masting appears 
to be highly variable between species (Bogdziewicz et al., 2019), but 
this has only been quantified of a handful of species so far (Koenig & 
Knops, 2013; LaMontagne et al., 2020).

In masting species, highly variable allocation to reproduction 
has wider effects on plant resource allocation, and carbon and nu-
trient cycling through ecosystems, but this remains poorly explored 
(Brumme et al., 2021; Khanna et al., 2009; Muller-Haubold et al., 
2015). Data in MASTREE+ can be combined with existing field and 
remote-sensing data sets of plant growth or productivity, and with 
data sets of whole-ecosystem or soil carbon and nutrient fluxes to 
understand how variable allocation to reproduction influences car-
bon sequestration above and belowground, and how this varies be-
tween species and across environmental gradients (Bajocco et al., 
2021; Nussbaumer et al., 2021; Oddou-Muratorio et al., 2021; Zhang 
et al., 2022). Related work can use MASTREE+ data combined with 

F I G U R E  3  Distribution of time-series in MASTREE+ according to local climate (Worldclim v2.1, 30 arcsecond resolution, Mosier et al., 
2014). Only time-series representing reproduction at the stand or patch scale are plotted (regional records are excluded, as local climate data 
based on coordinates may not be representative). (a) Series plotted according to Whittaker biomes (Whittaker, 1970) and (b) Species with 
high replication (≥20 species-specific time-series), plotted according to local mean annual temperature. Species are labelled according to 
the first three characters of the genus followed by the first three characters of the species name, and species are ordered according to the 
sample site with the lowest mean annual temperature. Unfilled points represent ordinal time-series and filled points represent continuous 
time-series
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existing or retrospective sampling (e.g. tree-rings) to address out-
standing question regarding resource allocation between growth, 
reproduction, and defence, particularly how this varies interspecifi-
cally and with environmental stress, and how this may shape species 
and community responses to environmental change (Lauder et al., 
2019; Redmond et al., 2019).

4  |  DATA SOURCES,  ACQUISITION AND 
COMPIL ATION

We collected species-specific time-series of annual reproductive 
effort for terrestrial perennial plant populations, including trees, 
shrubs, herbs and grasses. We included data from unmanaged 
and managed populations, but excluded agricultural crop species 
subject to selective breeding. Where reproduction was monitored 
under experimentally manipulated conditions (e.g. fertilisation, 
warming, rainfall exclusion), we only included data from control 
plots.

Data were collected for reproductive effort at different stages 
of the reproductive cycle (e.g. flowers or inflorescences, pollen 
abundance, number of fruits, cones or seeds), but 90% of data were 

mature seed, fruit, or cone production. We did not set a minimum 
time-series length but prioritised compiling effort on time-series 
≥4 years. All time-series represent reproductive effort at the pop-
ulation level, ranging from local populations with <10 individuals to 
regional estimates of reproduction, and we recorded information on 
the number of monitored individuals in each population and the spa-
tial scale represented by the time-series (Table 1). We also included 
information on the original data collection methods, which included 
litter traps (19.3% of all records), seed, cone and fruit counts (18.3%), 
other methods including estimates of cone production using cone or 
fruit scars and categorical classification of seed and fruit crops by 
wildlife managers or foresters.

Data were collected from several sources. We harmonised data 
from previously published compilations of plant reproductive ef-
fort displaying differences in data architecture (Ascoli et al., 2020; 
Ascoli, Maringer, et al., 2017; Pearse et al., 2020). To identify other 
time-series, we searched Google Scholar and Scopus with multi-
ple combinations of search terms (see Appendix 2). Spanish- and 
French-language searches was used to increase data representa-
tion from South America and Africa. An initial screen was based on 
the title and abstract to exclude irrelevant sources. Then, potential 
sources were classified based on the inclusion of useful time-series 
data of reproductive effort, available as either data tables, figures, 
descriptions in the text or in supplementary data files or in online 
data repositories. Finally, we solicited contributions of previously 
unpublished data sets from our research networks. Time-series were 
extracted from the original sources. In the case of values published 
in tables, in the text, or in online data repositories or supplemen-
tary data files, we extracted values directly from the source. In cases 
where data were contained in figures, we used the WebPlotDigitizer 
tool (Rohatgi, 2020). Metadata associated with each time-series was 
also extracted from the sources, or directly from data set contribu-
tors, and copies of original sources were archived.

4.1  |  Data set variables

For each monitored population we recorded annual observations 
of reproductive effort, the units of measurement, the method used 
to assess reproductive output and the number of monitored indi-
viduals (Table 1). Where multiple measures of reproductive output 
were recorded for the same population (e.g. where seeds and cones 
were recorded separately), this was recorded to enable filtering of 
the data set for pseudoreplicates (Table 1). For ordinal series, we 
maintained the original number of classes, but we rescaled to integer 
scales starting at 1 (lowest reproductive output). For continuous se-
ries, where possible we converted data into a common unit (e.g. we 
converted ‘seeds/ha’ to ‘seeds/m2’). Years with missing observations 
are not recorded, and time-series that would otherwise have gaps 
consist of a set of segments. The Start and End year corresponds to 
the first and last observation year for each time-series, respectively, 
including all segments. Length is the number of observations within 
each time-series, and can therefore be lower than the number of 

F I G U R E  4  Timespans covered by species-specific time-series 
in MASTREE+, coloured by data class. Inset plot shows continuous 
data since 1950 when time-series replication is highest
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TA B L E  1  Overview of the data variables in the MASTREE+ data set. A more detailed description of the variables is included in Appendix 5

Variable Description

Alpha_Number Unique code associated with each original source of data, that is, the publication, report or thesis containing extracted data, or 
the previously unpublished data set included in MASTREE+

Segment Temporal segment of a time-series containing gaps (note that years with no observations are not recorded). Individual time-
series can consist of multiple segments

Site_number Code to differentiate multiple sites from the same original source (Alpha_Number/Study_ID)

Variable_
number

Code to differentiate multiple measures of reproductive output from the same species-site combination (e.g. where seeds and 
cones were recorded separately)

Year Year of observation

Species Species identifier, standardised to The Plant List nomenclature. ‘spp.’ is used to indicate a record identified to the genus level 
only. ‘MIXED’ indicates a non-species-specific community-level estimate of annual reproductive effort

Species_code Six-character species identifier

Mono_Poly Monocarpic (semelparous) or Polycarpic (iteroparous) species

Value The measured value of annual reproductive output

VarType Continuous or ordinal data. Continuous time-series are recorded on a continuous scale. Ordinal series are recorded on an 
ordered categorical scale. All ordinal series are rescaled to start at 1 (lowest reproductive effort) and to contain only integer 
values

Unit The unit of measurement, where VarType is continuous

Max_Value The maximum value in a time-series

Variable Categorical classification of the measured variable. Options limited to: cone, flower, fruit, seed, pollen, total reproduction 
organs

Collection_
method

Classification of the method used to measure reproductive effort. Options are limited to: cone count, cone scar count, flower 
count, fruit count, fruit scar sound, seed count, seed trap, pollen count, lake sediment pollen count, harvest record, visual 
crop assessment, other quantification, dendrochronological reconstruction

Latitude Latitude of the record, in decimal degrees

Longitude Longitude of the record, in decimal degrees

Coordinate_flag A flag to indicate the precision of the latitude and longitude.
A = coordinates provided in the original source
B = coordinates estimated by the compiler based on a map or other location information provided in the original source
C = coordinates estimated by the compiler as the approximate centre point of the smallest clearly defined geographical unit 

provided in the original source (e.g. county, state, island), and potentially of low precision

Site A site name or description, based on information in the original source

Country The country where the observation was recorded

Elevation The elevation of the sample site in metres above sea level, where provided in the original source

Spatial_unit Categorical classification of spatial scale represented by the record, estimated by the compiler based on information provided 
in the original source.

stand = <100 ha
patch = 100–10,000 ha
region = 10,000–1,000,000 ha
super-region = >1,000,000 ha

No_individuals Either the number of monitored individual plants, or the number of litter traps. NA indicates no information in the original 
source, and 9999 indicates that while the number of monitored individuals was not specified, the source indicated to the 
compiler that the sample size was likely ≥10 individuals or litter traps

Start The first year of observations for the complete time-series, including all segments

End The final year of observations for the complete time-series, including all segments

Length The number of years of observations. Note that may not be equal to the number of years between the Start and End of the 
time-series, due to gaps in the time-series.

Reference Identification for the original source of the data, see Appendix 4 for the complete list of references

Record_type Categorisation of the original source.
Peer-reviewed = extracted from peer reviewed literature
Grey = extracted from grey literature
Unpublished = unpublished data

(Continues)
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years between the Start and End. The location (decimal degrees), site 
name, elevation and country of each time-series were recorded. The 
spatial scale represented by the time-series was estimated on a four-
point scale, from individual stand to region, based on information 
contained in the original source. Information on the nature of the 
source, and reference information was also recorded. Full details of 
data variables are listed in Table 1. Each time-series can be uniquely 
defined by combining Alpha_Number, Site_number, Variable_number 
and Species_code.

4.2  |  Technical validation and quality control

A two-stage approach was adopted to validate time-series data. 
Initially, we standardised attribute data and checked for errors and 
inconsistencies within time-series. Species names were checked and 
standardised to The Plant List nomenclature, using the ‘Taxonstand’ 
package for R (v. 2.3) (Cayuela et al., 2021). Country names were 
converted to the English short name (ISO3166-1) using the ‘country-
code’ package for R (v. 1.2.0) (Arel-Bundock et al., 2018). Automatic 
checks were performed to ensure that each time-series was uniquely 
identified by the identification variables and that time-series' obser-
vations were uniquely identified by Year. Species_code was assigned 
by automatically combining the first three characters from the TPL-
standardised genus and species names. Where separate species 
shared a Species_code, a unique combination was manually created. 
The final character of Species_code for populations of a hybrid ori-
gin was changed to ‘X’. We ran various automatic checks to ensure 
all observations in a time-series had uniform attribute data where 
such uniformity was expected (i.e. within a time-series, there was 
only a single value for variables such as Unit). Interrelated variables 
were checked to ensure consistency, for example that time-series 
spatial data (Latitude, Longitude) fell within the boundaries of the in-
dicated Country. Time-series duration variables (i.e. Segment, Start, 
End, Length) were directly calculated from time-series.

The second stage involved the detection and removal of du-
plication problems between time-series, that is, series added 
multiple times, including with partial overlap, usually when data 
were published in more than one source. First, we created ‘po-
tential duplication groups’ that contained sets of time-series that 

shared the same study species and approximate location (using a 
±0.1 decimal degree buffer between pairs of time-series). PDGs 
containing time-series from multiple sources (Alpha_Number) were 
then inspected further. Suspect pairs of time-series within PDGs 
were initially identified based on a correlation test (Spearman's 
ρ >  0.97), and we then inspected manually for duplication using 
information including location, units, and collection methods to 
identify possible duplication. To supplement the semi-automated 
detection of duplicates, we performed a further manual check, ex-
amining groups of time-series that shared the same country and 
species. Suspect pairs of series might, for example, share match-
ing spatial references, matching site descriptions and/or matching 
author names.

Where duplicated series were identified, or where independence 
could not be confirmed, we selected a single time-series for inclu-
sion in MASTREE+. Generally, the longest time-series was priori-
tised, unless there were clear signs that a shorter time-series was of 
higher quality (e.g. the data were directly shared by the author and 
not extracted from a graph).

5  |  DATA SET AVAIL ABILIT Y AND 
MA STREE+  DATA E XPLORER

The data set is provided as a csv file in the online supporting in-
formation (Appendix 1) and is distributed under a CC-BY-4.0 li-
cence so that it can be freely used, shared and modified so long 
as appropriate credit is given. The data set will be expanded and 
updated over time, so users are encouraged to check for the lat-
est version of the data set on GitHub (https://github.com/JJFoe​
st/MASTR​EEplus) and via associated updates to the MASTREE+ 
Data Explorer. The MASTREE+ Data Explorer allows users to 
explore the MASTREE+ data set and provides an alternative for 
downloading the data set, including user-defined subsets thereof. 
The MASTREE+ Data Explorer was created using the shiny pack-
age in R (Chang et al., 2021) and can be accessed at https://mastr​
eeplus.shiny​apps.io/mastr​eeplu​s/. Time-series are plotted on a 
zoomable world map, with updating summary plots showing the 
time-series lengths and species/genera for the selected region, as 
well as scaled time-series for initial visualisation of the data within 

Variable Description

ID_enterer Identification of the original compiler of the data.
AHP, Andrew Hacket-Pain; ES, Eliane Schermer; JVM, Jose Moris; XTT, Tingting Xue; TC, Thomas Caignard; DV, Davide 

Vecchio; DA, Davide Ascoli; IP, Ian Pearse; JL, Jalene LaMontagne; JVD, Joep van Dormolen

Date_entry Date of data entry into MASTREE+ in the format yyyy-mm-dd

Note on data 
location

Notes on the location of the data within the original source, such as page or figure number

Comments Additional comments

Study_ID Unique code associated with each source of data. M_ = series extracted from published literature; A_ = series incorporated 
from Ascoli et al. (2020), Ascoli, Maringer, et al. (2017) and Ascoli, Vacchiano, et al. (2017); PLK_ = series incorporated from 
Pearse et al. (2017); D_ = unpublished data sets

TA B L E  1  (Continued)

https://github.com/JJFoest/MASTREEplus
https://github.com/JJFoest/MASTREEplus
https://mastreeplus.shinyapps.io/mastreeplus/
https://mastreeplus.shinyapps.io/mastreeplus/
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the selected region of interest (Figure 5). Individual time-series 
can be selected on the map to reveal associated meta-data, includ-
ing the location, species and original source. Various filter options 

allow the user to subset the full data set. An R script is provided in 
Appendix 6 that illustrates how to load, manipulate and visualise 
the data set.

F I G U R E  5  Example of the MASTREE+ Shiny Data Explorer, showing data from the South Island of New Zealand. The Data Explorer 
allows the user to explore data availability within MASTREE+, and download the full or user-defined subsets of the data set
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6  |  C ALL FOR DATA

We have increased taxonomic and geographic representation in 
MASTREE+, but many gaps remain in the coverage of our data set. 
Our goal is to provide a global platform for sharing data on long-lived 
plant reproduction, and we encourage scientists to submit time-
series of annual reproductive effort in perennial plant populations 
for inclusion in MASTREE+ (Table 2). We will consider all species-
specific time-series of four or more years, including continuous and 
ordinal observations. We include time-series data on flower, seed, 
fruit and cone production, which are associated with geographical 
coordinates. We can include data that represent small local popu-
lations through to large regional-scale assessments of reproductive 
effort. Note that we only record annual reproductive effort. Where 
data are collected at sub-annual timesteps, this means that repro-
duction must be aggregated to annual units (e.g. April–March).

Potential contributors of data are encouraged to search the lat-
est version of the data set to check whether the data are already in-
cluded in MASTREE+, either by downloading the latest version from 
GitHub, Dryad (Section 5) or via the MASTREE+ Data Explorer. If 
the data are not already included, potential contributors are encour-
aged to contact the corresponding author to discuss arrangements 
for sharing data. The minimum data requirements are included in 
Table 2.

6.1  |  Data licence

MASTREE+ is published under a CC-BY-4.0 licence, which ena-
bles users to copy and redistribute, adapt and modify the data set 
in any medium or format and for any purpose, including commer-
cial. You must give appropriate credit by citing this publication, 
provide a link to the license and indicate if changes were made 
(see https://creat​iveco​mmons.org/licen​ses/by/4.0/ for further de-
tails). Data can be accessed via Github: https://github.com/JJFoe​
st/MASTR​EEplus, Dryad: https://doi.org/10.5061/dryad.18931​
zd02, or via the MASTREE+ Siny App. Publications using the 
RENECOFOR data (Reference = RENECOFOR_2020) are requested 
to acknowledge the RENECOFOR network, and send copies of 

publications to manuel.nicolas@onf.fr. Publications using the Lopé 
data (Reference = Bush_2021) are requested to cite the original data 
set (http://hdl.handle.net/11667/​152), acknowledge The National 
Parks Agency of Gabon (ANPN) and the University of Stirling, and 
send copies of any resulting publications to science@parcsgabon.ga 
and k.a.abernethy@stir.ac.uk.
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TA B L E  2  Minimum data requirements for submissions to 
MASTREE+. For further details see Table 1

Minimum data requirements and metadata

Minimum of four consecutive measurements of annual reproductive 
output

Measurement at the population level (local population through 
regional scale estimates acceptable)

Species name according to The Plant List. Records identified to the 
genus level are acceptable, and measurements of non-species-
specific community reproductive effort may be included.

Spatial coordinates of the monitored population

Details of the method used to measure reproductive effort (e.g. 
litter traps, seed counts, visual crop estimate, see Table 1)
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