
cvc5: A Versatile and Industrial-Strength

SMT Solver⋆

Haniel Barbosa3 , Clark Barrett1 , Martin Brain4 , Gereon Kremer1 ,
Hanna Lachnitt1 , Makai Mann1 , Abdalrhman Mohamed2 , Mudathir
Mohamed2 , Aina Niemetz1(B) , Andres Nötzli1 , Alex Ozdemir1 ,
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1 Introduction

SMT solvers are widely recognized as crucial back-end reasoning engines for
a variety of applications, including software and hardware verification [19, 52,
60, 68, 82, 86], model checking [41, 42, 98], type checking, static analysis, secu-
rity [10,62], automated test-case generation [40,135], synthesis [2,65], planning,
scheduling, and optimization [127]. Notable SMT solvers include Bitwuzla [92],
Boolector [98], CVC4 [21], MathSAT [46], OpenSMT2 [72], SMTInterpol [44],
SMT-RAT [50], STP [61], veriT [35], Yices2 [55], and Z3 [90].

Among these, the family of cooperating validity checker (CVC) tools [21,26,
27, 132] have played an important role, both in research and in practice [11, 48,
70,137,138]. The most recent incarnation, CVC4, was a from-scratch rewrite of
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CVC3, written with the aim of creating a flexible and performant architecture
that could last far into the future. The fact that CVC4 has integrated over a
decade’s worth of SMT research and development while becoming increasingly
robust and performance-competitive attests to the success of that endeavor.

In this paper, we introduce cvc5, the next solver in the series. cvc5 is not
a rewrite of CVC4 and indeed builds on its successful code base and architec-
ture. Compared to other SMT solvers, cvc5 supports a diverse set of theories
(all standard SMT-LIB theories, and many non-standard theories) and features
beyond regular SMT solving such as higher-order reasoning and syntax-guided
synthesis (SyGuS) [3]. The name-change6 rather acknowledges both a (mostly)
new team of developers as well as the significant evolution the tool has under-
gone since CVC4 was described in a tool paper published in 2011 [21]. Moreover,
cvc5 comes with updated documentation, new and improved APIs, and more
user-friendly installation. Most importantly, it introduces several significant new
features. Like its predecessors, cvc5 is available under the 3-clause BSD open
source license and runs on all major platforms (Linux, macOS, and Windows).

We make the following contributions:

– An in-depth description of the architectural design of cvc5 and how its pieces
and modules work together.

– A comprehensive summary of all features that have been added to the solver
since CVC4 was introduced in [21].

– A description of major features introduced since CVC4 1.8, the final version
of CVC4, including:
• a new C++ API, and new Python and Java APIs that build on top of it;
• a new theory solver for the theory of fixed-size bit-vectors;
• a new and extensive proof-production module;
• a new procedure for non-linear arithmetic; and
• a syntax-guided quantifier-instantiation procedure [96].

– Evidence, based on experimental evaluation and industrial use cases, that
cvc5 is in fact both versatile and industrial-strength.

2 Architecture and Core Components

cvc5 supports reasoning about quantifier-free and quantified formulas in a wide
range of background theories and their combinations, including all theories stan-
dardized in SMT-LIB [22]. It further natively supports several non-standard the-
ories and theory extensions. These include, among others, separation logic, the
theory of sequences, the theory of finite sets and relations, and the extension of
the theory of reals with transcendental functions.

In this section, we start with a brief overview of the core components of cvc5,
and then discuss them in more detail in the following subsections. A high-level
overview of the system architecture is given in Figure 1.

6 Whereas the convention for previous solvers in the CVC family was to use capital let-
ters, here we introduce a new convention of using lower-case letters (or alternatively
small capitals, as in this paper, which we find to be more visually appealing).
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Fig. 1: High-level overview of cvc5’s system architecture.

The central engine of cvc5 is the SMT Solver module, which is based on
the CDCL(T ) framework [99] and relies on a customized version of the MiniSat
propositional solver [57] at its core. The SMT Solver consists of several compo-
nents: the Rewriter and the Preprocessor modules, which apply simplifications
locally (at the term level) and globally (on the whole input formula), respec-
tively; the Propositional Engine, which serves as a manager for the CDCL(T )
SAT solver; and the Theory Engine, which manages theory combination and all
theory-specific and quantified reasoning procedures.

Besides standard satisfiability checking, cvc5 provides additional function-
ality such as abduction, interpolation, syntax-guided synthesis (SyGuS) [3], and
quantifier elimination. Each of these features is implemented as an additional
solver built on top of the SMT Solver. The SyGuS Solver is the main entry point
for synthesis queries, which encode SyGuS problems as (higher-order) satisfiabil-
ity problems with both semantic and syntactic constraints [114]. The Quantifier
Elimination Solver performs quantifier elimination based on tracking the quan-
tifier instantiations of the SMT Solver [116]. The Abduction Solver and the
Interpolation Solver are both SyGuS-based [110] and thus are built as layers on
top of the SyGuS Solver.

cvc5 provides a C++ API as the main interface, not just for external client
software, but also for its own parser and for additional language bindings in Java
and Python. cvc5 also provides a textual command-line interface (CLI), built on
top of the parser, which supports SMT-LIBv2 [25], SyGuS2 [104] and TPTP [134]
as input languages. The Proof Module can output formal unsatisfiability proofs
in three proof formats: Alethe [128], Lean 4 [88], and LFSC [133].

2.1 The SMT Solver Module

The SMT Solver module is the centerpiece of cvc5 and is responsible for han-
dling all SMT queries. Its functionality includes, in addition to satisfiability
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checking, constructing models for satisfiable input formulas and extracting as-
sumptions, cores, and proof objects for unsatisfiable formulas. The main com-
ponents of the SMT Solver module are described below.

Preprocessor. Before any satisfiability check, cvc5 applies to each formula
from an input problem a sequence of satisfiability-preserving transformations.
We distinguish between (i) required normalization passes, e.g., removal of ite
terms; (ii) optional simplification passes aimed at making the formula easier to
solve, e.g., finding entailed theory literals; and (iii) optional reduction passes that
transform the formula from one logic to another, e.g., from non-linear integer
arithmetic to a bit-vector problem with configurable bit-width. Currently, cvc5
implements 34 passes, executed in a fixed order. Optional passes can be enabled
and disabled via configuration options. Preprocessing passes are self-contained,
and adding or modifying passes does not require knowledge of the internals of
the SMT solver engine.

Propositional Engine. The Propositional Engine serves as the core CDCL(T )
engine [99], which takes the Boolean abstraction of the input formula (together
with any lemmas produced during solving) and produces a satisfying assignment
for that abstraction. Its main components are the Clausifier and the propositional
satisfiability (SAT) solver. The Clausifier converts the Boolean abstraction into
Conjunctive Normal Form (CNF), which then serves as input for the SAT solver.
In cvc5, as in CVC4, we use a customized version of MiniSat [57] as the core
SAT solver. Extensions we have added to MiniSat include: the production of
resolution proofs; native support for pushing and popping assertions; and a De-
cision Engine [12], which can be used to create customized decision heuristics
for MiniSat.

During its search, the Propositional Engine asserts a theory literal (¬)p to
the Theory Engine as soon as the SAT solver assigns a truth value to the propo-
sitional variable abstracting the atom p. We refer to the set of all such literals
as the currently asserted literals. When checking the consistency of the set L

of currently asserted literals in the overall background theory T , we distinguish
between two levels of effort: standard and full, depending on whether the SAT
solver has a partial or full model, respectively, for the Boolean abstraction. At
standard effort, a theory solver may optionally perform some lightweight con-
sistency checking. At full effort, the theory solver must either produce a lemma
(following the splitting-on-demand approach [23]) or determine whether L is sat-
isfiable or not and, in the latter case, produce a conflict clause, a clause that is
valid in the theory T but is inconsistent with L.

Rewriter. The Rewriter module is responsible for converting terms via a set
of rewrite rules into semantically equivalent normal forms. In contrast to pre-
processing, rewriting is done during solving. In fact, all major components of
cvc5 invoke the Rewriter to ensure that the terms they work with are normal-
ized, thereby simplifying their implementation. Rewrite rules are applied locally,
i.e., independent of the currently asserted literals, and are divided into required
and optional rules, of which the latter can be enabled or disabled by the user.
The Rewriter maintains a cache to avoid processing any term more than once.
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Examples of rewrites include simplifications such as x + 0 ; x, normalizations
that sort the operands of associative and commutative operators, and operator
eliminations such as x ≤ y ; y + 1 > x (when x and y have integer sort). In
certain contexts, e.g., enumerative SyGuS approaches, aggressive rewriting rules,
which would be detrimental to SMT solving, can be beneficial. Such rules are
implemented in an Extended Rewriter, which is enabled when needed.

To help automate improvements to the Rewriter, we developed a work-
flow that detects and enumerates new rewrite rule candidates using the SyGuS
solver [101]. It works by detecting and suggesting critical pairs, i.e., pairs of
equivalent terms that are not rewritten to the same term by the current rules.

Theory Engine. The Theory Engine is the main entry point for checking the
theory consistency of the theory literals asserted by the Propositional Engine. It
dispatches each of these literals to the appropriate theory solvers and is further
responsible for dispatching any propagated literals or lemmas generated by the
theory solvers back to the Propositional Engine.

When multiple theory solvers are enabled, the Combination Engine sub-
module is responsible for coordinating between them. Like CVC4, cvc5 uses
the polite theory combination mechanism [74,108,130]. This includes propagat-
ing or performing case splits on equalities and disequalities between shared terms
(terms appearing in the literals of more than one theory solver). As in CVC4,
the algorithm for computing these splits is based on care graphs [75].

The Combination Engine controls the Model Manager, which is responsible
for combining models from multiple theories and constructs a model for the input
formula. The Model Manager also maintains an equivalence relation E over all
the terms in the input formula, induced by all of the currently asserted literals
that are equalities. When invoked, the Model Manager has the responsibility
of assigning concrete values to each equivalence class of E with the assistance
of the individual theory solvers, which provide values for terms in their theory.
Typically, the Model Manager is invoked only when the theory solvers have
reached a saturation point that allows the Theory Engine to conclude that the
input problem is satisfiable (and thus, a model can be constructed successfully).

As in CVC4, each sub-formula of the input that starts with a quantifier is
abstracted by a propositional variable. When any such variable or its negation
is asserted, the Theory Engine dispatches the corresponding quantified formula
to the Quantifiers Module, which generates suitable quantifier instantiations.
Since certain techniques for handling quantified formulas, e.g., E-matching [89],
require knowledge of the state and terms known by the other theory solvers, this
module has access to all equality information from all theory solvers.

Theory Solvers. cvc5 supports a wide range of theories, including all theo-
ries standardized in SMT-LIB. Each theory solver relies on an Equality Engine
Module, which implements congruence closure over a configurable set of oper-
ators, typically those that belong to the solver’s theory. The Equality Engine
is responsible for quickly detecting conflicts due to equality reasoning. In addi-
tion, all theories communicate reasoning steps to the rest of the system via the
Theory Inference Manager. Every theory solver emits lemmas, conflict clauses,
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and propagated literals through this interface. The Theory Inference Manager
implements or simplifies common usage pattern like caching and rewriting lem-
mas, proof construction, and collection of statistics. Every lemma or conflict sent
from a theory is associated with a unique identifier for its kind, the inference
identifier, which is a crucial debugging aid. Below, we briefly survey the theory
solvers in cvc5, along with their main implementation techniques.

Linear Arithmetic. The linear arithmetic solver [78] extends the simplex pro-
cedure adapted for SMT by Dutertre and de Moura [56]. It implements a sum-
of-infeasibilities-based heuristic [79], an integration with the external GLPK LP
solver [80], and certain heuristics proposed by Griggio [63]. Integer problems are
handled by solving their real relaxation before using branching [64] and cutting
planes [54] to find integer solutions. The branch-and-bound method optionally
generates lemmas consisting of ternary clauses inspired by unit-cube tests [39].

Non-linear Arithmetic. For non-linear arithmetic problems, cvc5 resorts to
linear abstraction and refinement. It uses a combination of independent sub-
solvers integrated with the linear arithmetic solver and invoked only when the
linear abstraction is satisfiable. One sub-solver implements cylindrical algebraic
coverings [1], while the other sub-solvers are based on incremental lineariza-
tion [45]. A variety of lemma schemas are used to assert properties of non-linear
functions (e.g., multiplication and trigonometric functions) in a counterexample-
guided fashion [123]. Non-linear integer problems are solved by incremental lin-
earization and incomplete techniques based on reductions to bit-vectors.

Arrays. As in CVC4, the array solver is based on a decision procedure by
de Moura and Bjørner [91] but following the more detailed description by Jo-
vanović and Barrett [75]. An alternative experimental implementation based on
an approach by Christ and Hoenicke [43] is also available.

Bit-Vectors. For the theory of fixed-size bit-vectors, cvc5’s main approach
is bit-blasting, which refers to the process of translating bit-vector problems into
equisatisfiable SAT problems, and is applied after preprocessing. In cvc5, we
distinguish two modes for bit-blasting: lazy and eager. Lazy bit-blasting seam-
lessly integrates with the CDCL(T ) infrastructure of cvc5 and fully supports
the combination of bit-vectors with any theory supported by cvc5. It further
leverages the full power of cvc5’s Equality Engine for reasoning about equali-
ties over bit-vector terms and also uses the solve-under-assumptions feature [57]
supported by many state-of-the-art SAT solvers. For problems that can be fully
reduced to bit-vectors, cvc5 can also be used in eager mode. This mode does
not rely on solving under assumptions, but instead directly asserts all of the
bit-blasted constraints to the SAT solver, which usually enables more simplifica-
tions. Additionally, cvc5 supports the Ackermannization and eager bit-blasting
of constraints involving uninterpreted functions and sorts [66].

Datatypes. For quantifier-free constraints over datatypes, we use a rule-based
procedure that follows calculi already implemented in CVC4 [24, 112] and that
optimizes the sharing of selectors over multiple constructors [125].
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Floating-Point Arithmetic. Formulas in the theory of floating-point arith-
metic are translated to equisatisfiable formulas in the theory of bit-vectors, in a
process referred to as word-blasting. For this, cvc5 integrates the SymFPU [37]
library, which was first used in CVC4 and has also been integrated in the Bitwu-
zla SMT solver [92]. This approach admits several optimizations compared to
earlier solvers, which translate directly to the bit-level, e.g., CNF or AIGs. An-
other difference from older approaches [38] is that translation is done at the for-
mula level instead of the term level. Conversions between real and floating-point
terms are treated as uninterpreted functions and refined if the models of the real
arithmetic and the floating-point solver do not agree. The refinement lemmas
use the monotonicity of the conversion functions to constrain the floating-point
and real arithmetic terms to matching intervals that exclude the current model.

Sets and Relations. cvc5 implements a solver for the parametric theory of
finite sets, i.e., sets whose elements are of any sort supported by cvc5. The
core decision procedure for sets is extended with support for cardinality con-
straints [13]. The set theory solver is extended with a sub-module that specializes
in relational constraints [87], where relations are modeled as sets of tuples.

Separation Logic. In separation logic, the semantics of constraints assume
a location and data type for specifying the model of the heap. cvc5 supports
an extension of the SMT-LIB language for separation logic [73], in which the
location and data types of the heap can be any sort supported by cvc5. The
classical separation logic connectives are treated as theory predicates which are
lazily reduced to constraints over sets and uninterpreted functions [115].

Strings and Sequences. For strings and sequences, cvc5 implements a solver
consisting of multiple layered components. At its core, the solver reasons about
length constraints and word equations [84], supplemented with reasoning about
code points to handle conversions between strings and integers efficiently [119].
Extended functions such as string replacement are lazily reduced to word equa-
tions after context-dependent simplifications [126]. When necessary, the regular
expressions in input problems are unfolded and derivatives are computed [85].
The string theory solver further incorporates aggressive simplification rules that
rely on abstractions to derive facts about string terms [118]. Finally, conflicts
are detected eagerly on partial assignments from the SAT solver by computing
the congruence closure and constant prefixes and suffixes of string terms.

Uninterpreted Functions. The theory of uninterpreted functions is handled
in largely the same way as in CVC4. It follows Simplify’s approach [53] ex-
tended with support for fixed finite cardinality constraints [121]. This extension
is used in combination with finite-model-finding techniques for finding finite
models based on minimal interpretations of uninterpreted sorts.

Quantifiers. Quantified formulas are all handled by the Quantifiers Mod-
ule, which resembles a theory solver. The module contains many sub-solvers, all
based on some form of quantifier instantiation, and each specializing in solving
specific classes of quantified formulas. The Quantifiers Module relies on heuris-
tic E-matching when uninterpreted functions are present [89]. This technique
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is supplemented by conflict-based instantiation for detecting when an instanti-
ation is in conflict with the currently asserted literals [16, 124]. The Quantifiers
Module additionally incorporates finite-model-finding techniques, which are use-
ful for detecting satisfiable input problems [122]. It also relies on enumerative
approaches when other techniques are incomplete [109]. For quantifiers over lin-
ear arithmetic, it uses a specialized counterexample-guided based approach for
quantifier instantiation [116]. An extension of this technique is used for quanti-
fied bit-vector logics [95]. For other quantified logics in pure background theories,
e.g., over floating-point or non-linear arithmetic, cvc5 relies on syntax-guided
quantifier instantiation [96]. The Quantifiers Module also contains sub-solvers
implementing more advanced solving paradigms, including: a module for doing
Skolemization with inductive strengthening and enumeration of sub-goals for
inductive theorem proving problems [117], a finite-model-finding technique for
recursive functions [113], and a solver for syntax-guided synthesis [114].

2.2 Proof Module

The Proof Module of cvc5 was built from scratch and replaces the proof system
of CVC4 [67, 77], which was incomplete and suffered from a number of archi-
tectural shortcomings. The design of cvc5’s proof module was guided by the
following principles. First, the overhead incurred by proof production should be
at most linear in the solving time. Second, the emitted proofs should be de-
tailed enough to enable efficient (i.e., polynomial) checking, ensuring that proof
checking is inherently simpler than solving. Third, disabling a system compo-
nent when in proof production mode because it lacks adequate proof generation
capabilities should be done rarely and only if the component is not crucial for
performance. Finally, given the different needs of users and the trade-offs offered
by different proof systems, proof production should be flexible enough to allow
the emission of proofs in different formats.

Following these design principles, the Proof Module in cvc5 produces de-
tailed proofs for nearly all of its theories, rewrite rules, preprocessing passes,
internal SAT solvers, and theory combination engines. It further supports eager
and lazy proof production with built-in proof reconstruction. This enables proof
production for some notoriously challenging functionalities, such as substitution
and rewriting (common, for example, in simplification under global assumptions
and in string solving [126]). Furthermore, although it maintains internally a
single proof representation, cvc5 is able to emit proofs in multiple formats, in-
cluding those supported by the LFSC [133] proof checker and the Lean 4 [88],
Isabelle/HOL [100] and Coq [30] proof assistants.

2.3 Node Manager

Formulas and terms are represented uniformly in cvc5 as nodes in a directed
acyclic graph, reference-counted and managed by the Node Manager. The Node
Manager further maintains a Skolem Manager, which is responsible for tracking
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Skolem symbols introduced during solving. All cvc5 instances in the same thread
share the same Node Manager instance.

Nodes are immutable and are aggressively shared using hash consing : when-
ever a new node is about to be created, the Node Manager checks whether a
node with the same structure already exists, and if it does, it returns a reference
to the existing node instead. Besides saving memory, this ensures that syntactic
equality checks can be performed in constant time (by comparing the unique ids
assigned to each node). Reference counting allows the Node Manager to deter-
mine when to dispose of nodes. Weak references are used whenever possible to
limit the overhead of reference counting.

Nodes store 96 bits of metadata (id, reference count, kind, and number of
children) and a variable number of pointers to child nodes. The kind of a node
can be an operator kind, e.g., addition, or a leaf kind, e.g., a variable. Optional
additional static information associated with nodes can be stored separately in
hash maps referred to as node attributes. Since node attributes are managed by
the Node Manager, which may be shared by multiple solver instances, attributes
must only be used to capture inherent node properties (i.e., properties that are
independent of run-time options).

Many theory solvers, including those for quantifiers, strings, arrays, non-
linear arithmetic, and sets, introduce terms with Skolem (i.e., fresh) constants
during solving. Such constants are centrally generated by the Skolem Manager,
which also associates with each of them a term of the same sort, the constant’s
witness form. If the computed witness form for a constant matches that of a
previously used constant, the previous constant can be reused. This not only
provides a deterministic way of generating fresh constants during solving but
also allows the system to minimize the number of introduced constants. This
reuse is crucial for performance in some theory solvers [120].

2.4 Context-Dependent Data Structures

Certain applications of SMT solvers require multiple satisfiability checks with
similar assertions. To support such applications, the SMT-LIB standard includes
commands to save (with a push command) the current set of user-level assertions
and restore (with a pop command) a previous set. This allows the solver to reuse
parts of the work from earlier satisfiability checks and amortizes startup cost.
Most of the state of cvc5 depends directly or indirectly on the current set of
assertions. So whenever the user pushes or pops, cvc5 has to save or restore
the corresponding state. Similarly, whenever the SAT solver makes a decision or
backtracks to a previous decision point, each theory solver has to save or restore
the corresponding information.

To support these operations, cvc5 defines a notion of context level, which
increases with each push and decreases with each pop operation, and imple-
ments context-dependent data structures. These data structures behave similarly
to corresponding mutable data structures provided in the C++ standard library,
except that they are associated with a context level and automatically save and
restore their state as the context increases or decreases. For efficiency reasons,
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s = Solver ()
i = s.getIntegerSort ()
x = s.mkConst(i, "x")
s.assertFormula(

s.mkTerm(kinds.Equal ,
s.mkTerm(kinds.Mult ,

x, s.mkInteger (2)),
s.mkInteger (4)))

s.checkSat ()

(a) The base cvc5 Python API

solve (2 * Int("x") == 4)

(b) The “pythonic” API

Fig. 2: Example of using the Python APIs of cvc5.

this state data is stored using a region-based custom allocator that allocates one
region per context level, allowing all state data associated with a level to be
freed simultaneously by simply freeing the corresponding region.

3 Highlighted Features

In this section, we discuss features that are new in cvc5 as well as some of the
more prominent user- and developer-facing features. We compare them to their
counterparts in CVC4 when applicable.

Application Programming Interfaces (APIs). cvc5 provides a lean, com-
prehensive, and feature-complete C++ API, which also serves as the main inter-
face for the parser module and the basis for all other language bindings. The
parser module uses the same API as external users, without any special priv-
ileges. cvc5’s C++ API has been designed and written from scratch and thus
is not backwards compatible with CVC4’s C++ API. It is centered around the
Solver class, which represents a cvc5 instance and implements methods for
tasks such as creating terms, asserting formulas, and issuing checks.

cvc5’s Python API is built on top of cvc5’s C++ API using Cython [29] and
makes all of cvc5’s features accessible to Python users. It is a straightforward
translation of the C++ API without added syntactic sugar such as operator over-
loading. Additionally, however, cvc5 provides a higher-level layer on top of its
Python API, which is more user-friendly and pythonic. This layer provides au-
tomatic solver management, allows SMT terms to be constructed using Python
infix operators, and converts Python objects to SMT terms of the appropriate
sort. This leads to much more succinct code, as shown in Figure 2, which com-
pares using the high- and low-level Python APIs to solve the integer equation
2 · x = 4. The higher-level Python API is based on and designed to work as a
drop-in replacement for Z3py, the Python API of Z3 [90].

cvc5’s Java API is implemented via the Java Native Interface (JNI), which
allows Java applications to invoke native code and vice versa [83]. In contrast,
CVC4 uses SWIG [28] to semi-automatically generate bindings. One of the chal-
lenges of developing a Java API, and the main motivation for implementing it
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manually instead of using SWIG, is the interaction between Java’s garbage col-
lector and cvc5’s reference-counting mechanism for terms and sorts. The new
API implements the AutoCloseable interface to destroy the underlying C++ ob-
jects in the expected order. It mostly mirrors the C++ API and supports operator
overloading, iterators, and exceptions. There are a few differences from the C++

API, such as using arbitrary-precision integer pairs, specifically, pairs of Java
BigInteger objects, to represent rational numbers. In contrast to the old Java
API, the new API puts greater emphasis on using Java-native types such as
List<T> instead of wrapper classes for C++ types such as std::vector<T>.

Documentation. We provide comprehensive documentation for both cvc5

users [8] and developers [6]. User documentation contains instructions for build-
ing and installing cvc5 and its dependencies, extensive documentation and ex-
amples of common uses cases for all available APIs, and a thorough description
of all supported non-standard theories with examples. Developer documentation
provides details of cvc5 internals and instructions for contributions, including
guidelines for coding and testing, and a recommended development workflow.

Proofs. As mentioned above, cvc5 has a new proof system. Proofs are stored
internally using a new custom intermediate representation. Multiple output proof
formats are supported via target-specific post-processing transformations on
this internal representation. The final proof object can then be pretty-printed
and saved in a text file. The currently supported output proof formats include
LFSC [133], Alethe [128], and the language of the Lean 4 [88] proof assistant.

CVC4 proofs exclusively used the LFSC format. cvc5 continues support for
LFSC but with a new, more user-friendly syntax. LFSC is a logical framework,
based on Edinburgh LF [69], which was explicitly designed to facilitate the pro-
duction and checking of fine-grained proofs in SMT. It comes with a small and
high-performance proof checker, which is generic in the sense that it takes as
input both a proof term p and a proof signature, a definition of the data types
and proof rules used to construct p. The checker verifies that p is well-formed
with respect to the provided signature. We have defined proof signatures for all
the individual theories supported by cvc5. These definitions can be combined
together as needed to define a proof system for any combination of those theo-
ries. When emitting proofs in LFSC, cvc5 includes all the relevant signatures
as a preamble to the proof term.

The Alethe proof format is a flexible proof format for SMT solvers based on
SMT-LIB. It includes both coarse- and fine-grained steps and was first imple-
mented in the veriT solver [34]. Alethe proofs can be checked via reconstruction
within Isabelle/HOL [15,129] as well as within Coq, the latter via the SMTCoq
plugin [5, 58]. Our main motivation for producing Alethe proofs is to leverage
these proof reconstruction infrastructures, thus enabling the trustworthy inte-
gration of cvc5 in Isabelle/HOL and Coq. Users of these tools can leverage the
integration to dispatch selected goals to cvc5 for proving, thereby increasing the
level of automation available to them without requiring a larger trusted core.
These integrations represent ongoing work in cvc5 and are being carried out in
close collaboration with both Isabelle/HOL and Coq experts.
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Although we aim to have a similar full integration in the Lean 4 [88] proof
assistant in the future, cvc5 currently only supports the use of Lean 4 as an
external checker; i.e., cvc5 can emit proofs as Lean terms (for a subset of the
theories supported by cvc5), and Lean 4 can then check these proofs. Since the
underlying logic of Lean 4 is an extension of that of LFSC, this functionality
follows an approach similar to that used for LFSC by modeling cvc5 proof rules
as Lean types and reducing proof checking to type checking.

Syntax-Guided Synthesis. cvc5 has native support for syntax-guided syn-
thesis (SyGuS) problems [3]. As mentioned, the cvc5 core has a dedicated mod-
ule for encoding SyGuS problems into (higher-order) SMT formulas, annotated
with syntactic restrictions. These restrictions are represented via a deep embed-
ding into the theory of datatypes. Internally, after encoding the SyGuS problem,
a sub-module of the quantifiers theory, called the synthesis engine, is the main
entry point for solving. Based on the shape of the input, it uses one of three
approaches. If the input problem has no syntactic restrictions, and is in single
invocation form [114], that is, all functions to synthesize are applied to the same
argument list, then it uses a quantifier-instantiation based approach. Otherwise,
it uses one of two enumerative approaches, depending on the properties of the
input [111]. The SyGuS solver also implements further refinements and exten-
sions of the enumerative approaches, including algorithms for decision-tree learn-
ing [4] for programming-by-example problems, extended rewriting for enumera-
tion [101], piecewise-independent unification [17], and static grammar-reduction
techniques. Furthermore, the SyGuS solver contains specialized procedures to
support an efficient implementation of interpolation and abduction.

Interpolation and Abduction. cvc5 computes abducts and Craig inter-
polants [51] using solvers built on top of the SyGuS solver. The solver for in-
terpolation translates an interpolation query into a SyGuS conjecture whose
solutions are interpolants. Specifically, given quantifier-free formulas A and C

over any combination of the theories supported by cvc5, the interpolation solver
solves for B in the SyGuS conjecture A → B ∧ B → C, with the syntactic
restriction that B’s free symbols range over the symbols shared by A and C. Any
synthesized solution for B is, by construction, a Craig interpolant for A and C.

Abduction is the process of constructing a formula B that is enough to add
to a formula A to prove some goal formula C (equivalently, to make the formula
F = A∧B∧¬C unsatisfiable). cvc5’s abduction solver reduces this problem to a
SyGuS one where C is the formula to be synthesized and F is the semantic con-
straint. Optionally, the user can also impose syntactic restrictions on the abduct
B. The SyGuS solver implements specific optimizations for abduction queries,
such as using unsat cores to prune classes of invalid candidate solutions [110].

Non-Linear Arithmetic. The new sub-solver for non-linear arithmetic is
based on cylindrical algebraic coverings and closely follows [1], with some notable
extensions. The implementation uses the libpoly library [76], which provides
polynomial arithmetic and most algebraic routines required for the computation
of cylindrical algebraic decompositions and coverings. Infeasible subsets are com-
puted by tracking all contributing assertions for every covering. The infeasible
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subset is then obtained from the union of assertions from the top-level covering.
The sub-solver implements several different variable orderings, as these can have
a significant impact on run-times in practice. Apart from classical variable order-
ings used for cylindrical algebraic decomposition, some experimental orderings
based on machine learning have been implemented, roughly following ideas from
England et al. [59]. (Mixed real-) integer problems are supported by dynamically
injecting intervals into coverings to cover gaps that do not contain integers.

Higher-Order Logic. cvc5 has been extended with partial support for higher-
order logic [18]. The extension is based on a pragmatic approach in which λ-
abstractions are eliminated eagerly via lambda lifting [71]. This approach is used
with the theory solver for the quantifier-free fragment of the theory of equality
with uninterpreted functions (EUF) and with the quantifier-instantiation tech-
nique based on E-matching with triggers [53,89]. For the EUF solver, we added
support for (dis)equality constraints between functions, via an extensionality
inference rule, and for partial applications of (Curried) functions. For quan-
tifier instantiation, we modified several of the data structures for E-matching
to incorporate matching in the presence of equalities between function values,
function variables, and partial function applications. The extension also uses
custom axioms, such as an axiom simulating how functions are updated, to im-
prove the generation of new λ-abstractions, since cvc5 does not yet perform
HO-unification, which would allow it to synthesize arbitrary λ-abstractions.

New Bit-Vector Solver. cvc5 features a new bit-blasting solver, which sup-
ports the use of off-the-shelf SAT solvers such as CaDiCaL [31] or CryptoMin-
iSat [131] as SAT back-ends for both the eager and lazy bit-blasting approaches.
In contrast, CVC4’s lazy bit-blasting solver relied on a customized version of
MiniSat and did not allow the use of more recent state-of-the-art SAT solvers.

Int-Blasting. In addition to bit-blasting, cvc5 implements int-blasting tech-
niques, which reduce bit-vector problems to equisatisfiable non-linear integer
arithmetic problems [97, 138]. These techniques are orthogonal to bit-blasting
and especially effective on unsatisfiable formulas over large bit-widths.

Syntax-Guided Quantifier Instantiation. cvc5 features a new theory-ag-
nostic enumerative quantifier-instantiation technique we call syntax-guided quan-
tifier instantiation [96]. This technique leverages cvc5’s SyGuS solver to syn-
thesize terms for quantifier instantiation in a counterexample-guided manner.

Unsatisfiable Cores. In cvc5, unsat (short for unsatisfiable) core extraction
has been completely overhauled. It now uses the new proof infrastructure for
tracking preprocessing transformations, which, differently from CVC4’s, sup-
ports most of the preprocessing passes. Unsat cores can be extracted based on
the constructed proof or via the tracked preprocessing and assumption-based un-
sat core extraction [47]. For the latter, cvc5 uses the solve-under-assumptions
feature available in the MiniSat-based SAT engine. This is a lightweight solution
that does not require the generation of proofs in the SAT solver and full prepro-
cessing proofs. However, if a user requests both unsat cores and proofs, cvc5
switches to proof-based unsat core extraction using the new proof infrastructure.
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Distributed and Central Policies for Equality Reasoning. As mentioned
in Section 2, the Combination Engine manages theory combination, and theory
solvers manage their interactions with the rest of the system via their Equality
Engine. In contrast to CVC4, the policy for assigning an Equalitiy Engine to a
theory solver in cvc5 is configurable. In the distributed policy, a new Equality
Engine is generated and assigned for each theory solver. These theory solvers
perform congruence closure and their theory-specific reasoning locally. The ad-
vantage of this approach is that the constraints are local to the theory and thus
do not lead to overhead when combined with other theories. In the central policy,
a single, shared Equality Engine is assigned to all theory solvers. The advantage
of this approach is that communication of facts between theory solvers happens
automatically, which in turn can trigger theory propagations more eagerly. Both
policies use the same core Equality Engine Module. Each theory solver has been
refactored to be agnostic with respect to the equality policy.

Decision Heuristic. For Boolean reasoning, in addition to MiniSat’s decision
heuristic, cvc5 implements a separate decision heuristic which uses the original
Boolean structure of the input to keep track of the justified parts of the input
constraints, i.e., the parts where it can infer the value of terms based on a
(partial) assignment to sub-terms. To make decisions, this new heuristic traverses
assertions not satisfied by the currently asserted literals, computing the desired
values (starting with true as the desired value for the root) for each term until it
finds an unasserted literal that would contribute towards a desired value. This
heuristic is a reimplementation and extension of a heuristic [12] implemented
in CVC4. The heuristic optionally prioritizes assertions that most frequently
contributed to conflicts in the past using a dynamic ordering scheme.

Additional Features. Many more aspects and features have been improved
and implemented with the goal of providing useful information to users and de-
velopers. Notable examples include: a complete overhaul of CVC4’s mechanism
for collecting statistics; improved bookkeeping for information about theory lem-
mas; and a general mechanism for communicating additional information to users
such as quantifier instantiations and terms enumerated by the SyGuS solver.

4 Evaluation

We evaluate cvc5’s overall performance (commit 5f998504) by comparing it
against Z3 4.8.12 [90] and CVC4 1.8.7 Z3 is a widely used, high-performance
SMT solver which, like cvc5, supports a wide range of theories. We compare
against CVC4 to illustrate some of the performance improvements implemented
as part of the move to cvc5. To run CVC4 optimally, we use the same command-
line options as those in CVC4’s competition script for SMT-COMP 2020 [9].
Similarly, for cvc5, we use a (slightly updated) version of the competition script
from SMT-COMP 2021 [7]. For some logics, e.g., quantified logics, these scripts
try multiple options in a sequential portfolio.

7 The artifact of this evaluation is archived in the Zenodo open-access repository [14].
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Division cvc5 CVC4 Z3

Arith (7104) 6593 6498 6844
Bitvec (6045) 5741 5690 5664
Equality (12159) 6677 6681 4688
Equality+LinearArith (55948) 49395 48487 49503
Equality+MachineArith (4712) 2065 1832 1804
Equality+NonLinearArith (17260) 11088 10906 9341
FPArith (3170) 2625 2113 2593
QF Bitvec (42450) 41569 41448 40582
QF Equality (16254) 16124 16121 16115
QF Equality+Bitvec (16518) 16274 16333 16318
QF Equality+LinearArith (3924) 3778 3782 3822
QF Equality+NonLinearArith (673) 598 610 616
QF FPArith (76084) 75998 75965 75816
QF LinearIntArith (9765) 8619 8778 8464
QF LinearRealArith (2008) 1849 1881 1864
QF NonLinearIntArith (24261) 17525 16860 18357
QF NonLinearRealArith (11552) 10889 9207 10354
QF Strings (69863) 69231 69367 68074

Total (379750) 346638 342559 340819

Table 1: Benchmarks solved by cvc5, CVC4, and Z3 with a 20 minute time limit.

We ran all experiments on a cluster equipped with Intel Xeon E5-2620 v4
CPUs. We allocated one CPU core and 8GB of RAM for each solver and bench-
mark pair and ran each benchmark with a 20 minute time limit, the same
time limit used at SMT-COMP 2021 [102]. We used all non-incremental SMT-
LIB [22] benchmarks for our evaluation, with the exception of 45 (misclassified)
benchmarks that have quantifiers in quantifier-free logics and 1128 (misclassi-
fied) benchmarks that have non-linear literals in linear arithmetic logics. These
are known misclassifications in the current release of SMT-LIB. Note that many
benchmarks in SMT-LIB come from industrial applications.

Table 1 shows the number of solved benchmarks for each solver using the
same divisions as those used for SMT-COMP 2021. There were no disagreements
among the solvers on the satisfiability of benchmarks. Overall, cvc5 solves the
largest number of benchmarks. Compared to CVC4, cvc5 solves fewer bench-
marks in the quantifier-free linear integer arithmetic division due to refactorings
related to adding proof support. In the quantifier-free equality and bit-vector
division, cvc5 also solves fewer benchmarks, which we attribute to the fact that
the new bit-vector solver has not yet been optimized for theory combination.
Finally, for quantifier-free string benchmarks, there have been bug fixes since
CVC4 that affected performance.

In addition to regularly participating in SMT-COMP, cvc5 and CVC4 also
participate in the CADE ATP System Competition (CASC) and in SyGuS-
Comp [103]. In CASC, cvc5 tends to perform in the middle of the pack on
untyped theorem divisions (unsatisfiable quantified UF in SMT-LIB parlance),
and towards the top of the pack on theorems with arithmetic. The last time
SyGuS-Comp was held was in 2019, when CVC4 won four out of five tracks.
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CVC4 is used extensively in industry, and our users are in the process of
updating to cvc5. Examples of its use include: a back-end for Zelkova, a
tool developed at Amazon to reason about AWS Access Policies [10, 11, 33]; a
back-end for Boogie [20], which is used in many projects including Dafny [81]
and the Move Prover [137], a tool used to formally verify smart contracts; a
back-end at Certora, another company engaged in formal verification of smart
contracts [138]; a back-end for Sledgehammer [32], a tool for discharging proof
obligations in Isabelle used by Isabelle’s own industrial users; and a back-end
for SPARK [70], a development environment for safety-critical Ada programs.

5 Future Work

We briefly highlight a few current development directions for cvc5.
Optimization Solver. Optimization modulo theories (OMT) [136] is an exten-

sion of SMT, which requires a solver not only to determine satisfiability but also
to return a satisfying assignment (if any) that optimizes one or more objectives.
OMT is already supported by several solvers including MathSAT [46] and Z3.
cvc5 already has internal infrastructure for supporting OMT queries. We aim
to improve and expose (through the APIs) this capability in the near future.

Theory of Bags. cvc5 has preliminary support for a theory of multisets (or
bags) that can be implemented via a reduction to linear integer arithmetic [107].
We plan to extend this theory with higher-order combinators such as map and
fold. With these combinators, and encoding relational tables as bags of tuples,
cvc5 will be able to support several commonly-used table operations, with the
goal of facilitating reasoning about SQL queries and database applications.

Floating-Point Arithmetic. In addition to word-blasting, we plan to leverage
our work on invertibility conditions [36] to lift the local search approach for
bit-vectors from [93,94] to floating-point arithmetic.

Internal Portfolio. Due to the computational complexity of SMT, there is
often no single strategy that works best for all problems. As a result, users of
SMT solvers often rely on portfolio approaches to try different sets of options,
either in parallel or sequentially, as we did in Section 4. Implementing portfolio
approaches that use the solver as a black box is sub-optimal because some work,
such as parsing, has to be duplicated. The cvc5 roadmap includes plans to
support portfolio solving internally, thereby avoiding that additional overhead.
We further plan to provide predefined portfolios tuned for specific use cases. As
one example of the different needs of different use cases, some applications prefer
the solver to always return quickly (even if the answer is “unknown”) whereas
others expect the solver to try as hard as possible to solve a given problem.

New Parser. cvc5’s current parser is inherited from CVC4 and is based on
the ANTLR 3 parser generator [105]. In addition to relying on a now deprecated
version of ANTLR, the parser is unacceptably slow on large inputs and provides
no API for user applications to interact with. A new parser using Flex [106] and
Bison [49] is in development. The new parser will also provide an API allowing
users to parse whole files or individual terms.
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118. Reynolds, A., Nötzli, A., Barrett, C.W., Tinelli, C.: High-level abstractions for
simplifying extended string constraints in SMT. In: CAV (2). Lecture Notes in
Computer Science, vol. 11562, pp. 23–42. Springer (2019)
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