Reasoning About Vectors
using an SMT Theory of Sequences”

Ying Sheng!, Andres Notzli', Andrew Reynolds?, Yoni Zohar?, David Dill*,
Wolfgang Grieskamp*, Junkil Park*, Shaz Qadeer*, Clark Barrett', and Cesare Tinelli’

'Stanford University >The University of Towa *Bar-Ilan University *Meta Novi

Abstract. Dynamic arrays, also referred to as vectors, are fundamental data
structures used in many programs. Modeling their semantics efficiently is crucial
when reasoning about such programs. The theory of arrays is widely supported
but is not ideal, because the number of elements is fixed (determined by its index
sort) and cannot be adjusted, which is a problem, given that the length of vectors
often plays an important role when reasoning about vector programs. In this paper,
we propose reasoning about vectors using a theory of sequences. We introduce
the theory, propose a basic calculus adapted from one for the theory of strings,
and extend it to efficiently handle common vector operations. We prove that our
calculus is sound and show how to construct a model when it terminates with a
saturated configuration. Finally, we describe an implementation of the calculus in
cveS and demonstrate its efficacy by evaluating it on verification conditions for
smart contracts and benchmarks derived from existing array benchmarks.

1 Introduction

Generic vectors are used in many programming languages. For example, in C++’s stan-
dard library, they are provided by std: : vect or. Automated verification of software
systems that manipulate vectors requires an efficient and automated way of reasoning
about them. Desirable characteristics of any approach for reasoning about vectors in-
clude: (i) expressiveness—operations that are commonly performed on vectors should
be supported; (i7) generality—vectors are always “vectors of”” some type (e.g., vectors of
integers), and so it is desirable that vector reasoning be integrated within a more general
framework; solvers for satisfiability modulo theories (SMT) provide such a framework
and are widely used in verification tools (see [5] for a recent survey); (iii) efficiency—
fast and efficient reasoning is essential for usability, especially as verification tools are
increasingly used by non-experts and in continuous integration.

Despite the ubiquity of vectors in software on the one hand and the effectiveness of
SMT solvers for software verification on the other hand, there is not currently a clean
way to represent vectors using operators from the SMT-LIB standard [3]. While the theory
of arrays can be used, it is not a great fit because arrays have a fixed size determined
by their index type. Representing a dynamic array thus requires additional modeling
work. Moreover, to reach an acceptable level of expressivity, quantifiers are needed,
which often makes the reasoning engine less efficient and robust. Indeed, part of the
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motivation for this work was frustration with array-based modeling in the Move Prover,
a verification framework for smart contracts [24] (see Section 6 for more information
about the Move Prover and its use of vectors). The current paper bridges this gap by
studying and implementing a native theory of sequences in the SMT framework, which
satisfies the desirable properties for vector reasoning listed above.

We present two SMT-based calculi for determining satisfiability in the theory of
sequences. Since the decidability of even weaker theories is unknown (see, e.g., [9, 15]),
we do not aim for a decision procedure. Rather, we prove model and solution soundness
(that is, when our procedure terminates, the answer is correct). Our first calculus leverages
techniques for the theory of strings. We generalize these techniques, lifting rules specific
to string characters to more general rules for arbitrary element types. By itself, this base
calculus is already quite effective. However, it misses opportunities to perform high-level
vector-based reasoning. For example, both reading from and updating a vector are very
common operations in programming, and reasoning efficiently about the corresponding
sequence operators is thus crucial. Our second calculus addresses this gap by integrating
reasoning methods from array solvers (which handle reads and updates efficiently) into
the first procedure. Notice, however, that this integration is not trivial, as it must handle
novel combinations of operators (such as the combination of update and read operators
with concatenation) as well as out-of-bounds cases that do not occur with ordinary arrays.
We have implemented both variants of our calculus in the cve5 SMT solver [2] and
evaluated them on benchmarks originating from the Move prover, as well as benchmarks
that were translated from SMT-LIB array benchmarks.

As is typical, both of our calculi are agnostic to the sort of the elements in the
sequence. Reasoning about sequences of elements from a particular theory can then be
done via theory combination methods such as Nelson-Oppen [18] or polite combination
[16, 20]. The former can be done for stably infinite theories (and the theory of sequences
that we present here is stably infinite), while the latter requires investigating the politeness
of the theory, which we expect to do in future work.

The rest of the paper is organized as follows. Section 2 includes basic notions from
first-order logic. Section 3 introduces the theory of sequences and shows how it can
be used to model vectors. Section 4 presents calculi for this theory and discusses their
correctness. Section 5 describes the implementation of these calculi in cvc5. Section 6
presents an evaluation comparing several variations of the sequence solver in cvc5 and
Z3. We conclude in Section 7 with directions for further research.

Related work: Our work crucially builds on a proposal by Bjgrner et al. [8], but extends
it in several key ways. First, their implementation (for a logic they call QF_BVRE)
restricts the generality of the theory by allowing only bit-vector elements (representing
characters) and assuming that sequences are bounded. In contrast, our calculus maintains
full generality, allowing unbounded sequences and elements of arbitrary types. Second,
while our core calculus focuses only on a subset of the operators in [8], our implementa-
tion supports the remaining operators by reducing them to the core operators, and also
adds native support for the update operator, which is not included in [8].

The base calculus that we present for sequences builds on similar work for the theory
of strings [6, 17]. We extend our base calculus to support array-like reasoning based on
the weak-equivalence approach [10]. Though there exists some prior work on extending



the theory of arrays with more operators and reasoning about length [1, 12, 14], this
work does not include support for most of the of the sequence operators we consider
here.

The SMT-solver Z3 [11] also provides a solver for sequences. However, its documen-
tation is limited [7], it does not support update directly, and its internal algorithms are
not described in the literature. Furthermore, as we show in Section 6, the performance of
the Z3 implementation is generally inferior to our implementation in cvc5.

2 Preliminaries

We assume the usual notions and terminology of many-sorted first-order logic with
equality (see, e.g., [13] for a complete presentation). We consider many-sorted signatures
27, each containing a set of sort symbols (including a Boolean sort Bool), a family of
logical symbols ~ for equality, with sort o x o — Bool for all sorts ¢ in X' and interpreted
as the identity relation, and a set of interpreted (and sorted) function symbols. We assume
the usual definitions of well-sorted terms, literals, and formulas as terms of sort Bool.
A literal is flat if it has the form L, p(x1,...,2,), =p(z1,...,2s), T = y, ~x ~ ¥,
orz ~ f(r1,...,T,), where p and f are function symbols and z, y, and =1, ..., z,
are variables. A Y-interpretation M is defined as usual, satisfying M(L) = false
and assigns: a set M (o) to every sort o of X, a function M(f) : M(o1) x ... x
M(o,,) — M(o) to any function symbol f of X' with arity o3 x ... x o, — o, and an
element M(z) € M(0o) to any variable x of sort o. The satisfaction relation between
interpretations and formulas is defined as usual and is denoted by |=.

A theory is a pair T = (X, I), in which X is a signature and I is a class of X-
interpretations, closed under variable reassignment. The models of T' are the inter-
pretations in I without any variable assignments. A Y-formula ¢ is satisfiable (resp.,
unsatisfiable) in T if it is satisfied by some (resp., no) interpretation in I. Given a (set of)
terms S, we write 7 (.5) to denote the set of all subterms of S. For a theory T = (X, 1),
a set S of Y-formulas and a X'-formula ¢, we write S }=r1 ¢ if every interpretation
M e I that satisfies .S also satisfies ¢. By convention and unless otherwise stated, we
use letters w, x, y, z to denote variables and s, t, u, v to denote terms.

The theory T ja = (XLia, Iy, ) of linear integer arithmetic is based on the signature
XLia that includes a single sort Int, all natural numbers as constant symbols, the unary
— symbol, the binary + symbol and the binary < relation. When k£ € N, we use the
notation k - z, inductively defined by 0 - 2 = O and (m + 1) - © =  + m - z. In turn,
I, consists of all structures M for X in which the domain M (Int) of Int is the set
of integer numbers, for every constant symbol n € N, M(n) = n, and +, —, and < are
interpreted as usual. We use standard notation for integer intervals (e.g., [a, b] for the set
of integers 4, where a < 7 < b and [a, b) for the set where a < i < b).

3 A Theory of Sequences

We define the theory Tseq of sequences. Its signature Yseq is given in Figure 1. It includes
the sorts Seq, Elem, Int, and Bool, intuitively denoting sequences, elements, integers, and
Booleans, respectively. The first four lines include symbols of Y| |a. We write £1 i to,



Symbol Arity SMT-LIB Description

n Int n All constants n € N
+ Int X Int — Int + Integer addition
Int — Int - Unary Integer minus
< Int x Int — Bool <= Integer inequality
€ Seq seq.empty The empty sequence
unit Elem — Seq seq.unit Sequence constructor
|| Seq — Int seq.len Sequence length
nth Seq X Int — Elem seqg.nth Element access
update Seq x Int x Elem — Seq seg.update  Element update
extract Seq x Int x Int — Seq seqg.extract Extraction (subsequence)

_++---++_ Seqx---xSeq— Seq seg.concat Concatenation

Fig. 1: Signature for the theory of sequences.

with b € {>, <, <}, as syntactic sugar for the equivalent literal expressed using < (and
possibly —). The sequence symbols are given on the remaining lines. Their arities are
also given in Figure 1. Notice that _ ++ - - - +4 _1is a variadic function symbol.

Interpretations M of Ts.q interpret: Int as the set of integers; Elem as some set; Seq
as the set of finite sequences whose elements are from Elem; € as the empty sequence;
unit as a function that takes an element from M (Elem) and returns the sequence that
contains only that element; nth as a function that takes an element s from M (Seq) and
an integer ¢ and returns the ith element of s, in case ¢ is non-negative and is smaller than
the length of s (we take the first element of a sequence to have index 0). Otherwise, the
function has no restrictions; update as a function that takes an element s from M (Seq),
an integer ¢, and an element @ from M (Elem) and returns the sequence obtained from s
by replacing its ith element by a, in case ¢ is non-negative and smaller than the length of
s. Otherwise, the returned value is s itself; extract as a function that takes a sequence
s and integers ¢ and j, and returns the maximal sub-sequence of s that starts at index ¢
and has length at most 7, in case both ¢ and j are non-negative and ¢ is smaller than the
length of s. Otherwise, the returned value is the empty sequence;' |_| as a function that
takes a sequence and returns its length; and _ ++ - - - ++ _ as a function that takes some
number of sequences (at least 2) and returns their concatenation.

Notice that the interpretations of Elem and nth are not completely fixed by the theory:
Elem can be set arbitrarily, and nth is only defined by the theory for some values of its
second argument. For the rest, it can be set arbitrarily.

3.1 Vectors as Sequences

We show the applicability of Ts.q by using it for a simple verification task. Consider
the C++ function swap at the top of Figure 2. This function swaps two elements in a

"' In [8], the second argument j denotes the end index, while here it denotes the length of the
sub-sequence, in order to be consistent with the theory of strings in the SMT-LIB standard.



vector. The comments above the function include a partial specification for it: if both
indexes are in-bounds and the indexed elements are equal, then the function should not
change the vector (this is expressed by s_out==s). We now consider how to encode the
verification condition induced by the code and the specification. The function variables
a, b, 1, and j can be encoded as variables of sort Int with the same names. We include
two copies of s: s for its value at the beginning, and s, for its value at the end. But
what should be the sorts of s and s,,,;? In Figure 2 we consider two options: one is based
on arrays and the other on sequences.

Example 1 (Arrays). The theory of arrays includes three sorts: index, element (in this
case, both are Int), and an array sort Arr, as well as two operators: x[¢], interpreted as
the ith element of x; and x[i < a], interpreted as the array obtained from z by setting
the element at index ¢ to a. We declare s and s,,,; as variables of an uninterpreted sort V'
and declare two functions ¢ and c, which, given v of sort V, return its length (of sort Int)
and content (of sort Arr), respectively.”

Next, we introduce functions to model vector operations: ~ 5 for comparing vectors,
ntha for reading from them, and update, for updating them. These functions need
to be axiomatized. We include two axioms (bottom of Figure 2): Az states that two
vectors are equal iff they have the same length and the same contents. Azs axiomatizes
the update operator; the result has the same length, and if the updated index is in bounds,
then the corresponding element is updated. These axioms are not meant to be complete,
but are rather just strong enough for the example.

The first two lines of the swap function are encoded as equalities using ntha,
and the last two lines are combined into one nested constraint that involves update, .
The precondition of the specification is naturally modeled using nth, and the post-
condition is negated, so that the unsatisfiability of the formula entails the correctness
of the function w.r.t. the specification. Indeed, the conjunction of all formulas in this
encoding is unsatisfiable in the combined theories of arrays, integers, and uninterpreted
functions.

The above encoding has two main shortcomings: It introduces auxiliary symbols, and
it uses quantifiers, thus reducing clarity and efficiency. In the next example, we see how
using the theory of sequences allows for a much more natural and succinct encoding.

Example 2 (Sequences). In the sequences encoding, s and s, have sort Seq. No auxil-
iary sorts or functions are needed, as the theory symbols can be used directly. Further,
these symbols do not need to be axiomatized as their semantics is fixed by the theory.
The resulting formula, much shorter than in Example 2 and with no quantifiers, is
unsatisfiable in Tseq.

4 Calculi

After introducing some definitions and assumptions, we describe a basic calculus for the
theory of sequences, which adapts techniques from previous procedures for the theory

% It is possible to obtain a similar encoding using the theory of datatypes; however, here we use
uninterpreted functions which are simpler and better supported by SMT solvers.



// @pre: 0 <=i,j < s.size() and s[i] == s[j]

// @post: s_out == s
void swap(std::vector<int>& s, int i, int j) {
int a = s[i];
int b = s[j];
s[i] = b;
slil = a;
}
Sequences Arrays
Problem Variables a,b,i,7 :Int S, Sout : Seq a,b,i,7 :Int S, Sout : V.
Auxiliary Variables £:V —Int c:V — Arr
~a:V x V — Bool
ntha : V x Int — Int
updatey : V x Int x Int - V
Axioms Axi A Axs
Program a =~ nth(s,7) A b ~ nth(s, ) a ~ ntha(s,7) A b~ ntha(s,j)
Sout & update(update(s,i,b), j,a) Sout A update, (updatey (s,14,b), 7, a)
Spec. 0 <1i,j < |s| A nth(s,4) ~ nth(s, 5) 0<1i,j <{(s) Antha(s,i) ~ ntha(s,j)
—Sout X § —Sout XA S

Az :=Va,yx ~a y < (U(x) = l(y) AV 0 <i<L(x).clz)[i] ~ c(y)i])

Azo :=Vx,y,1,a.y ~a update, (x,i,a) — (U(x) =~ £(y) A (0 <i < Ll(z) — c(y) ~ c(z)[i < a]))

Fig.2: An example using Tseq.

of strings. In particular, the basic calculus reduces the operators nth and update by
introducing concatenation terms. We then show how to extend the basic calculus by
introducing additional rules inspired by solvers for the theory of arrays; the modified
calculus can often reason about nth and update terms directly, avoiding the introduction
of concatenation terms (which are typically expensive to reason about).

Given a vector of sequence terms £ = (t1,...,tn), we use t to denote the term
corresponding to the concatenation of ¢1,...,t,. If n = 0, t denotes ¢, and if n = 1, ¢
denotes t;; otherwise (when n > 1), t denotes a concatenation term having n children.
In our calculi, we distinguish between sequence and arithmetic constraints.

Definition 1. A Ys.q-formula ¢ is a sequence constraint if it has the form s ~ t or
s % t, it is an arithmetic constraint if it has the form s ~ t, s > t, s % t, or s < t where
s, t are terms of sort Int, or if it is a disjunction c1 v cs of two arithmetic constraints.

Notice that sequence constraints do not have to contain sequence terms (e.g., * ~ y
where z, y are Elem-variables). Also, equalities and disequalities between terms of sort
Int are both sequence and arithmetic constraints. In this paper we focus on sequence
constraints and arithmetic constraints. This is justified by the following lemma. (Proofs
of this lemma and later results can be found in an extended version of this paper [23].)

Lemma 1. For every quantifier-free Xseq-formula , there are sets Sy, ..., S, of se-
quence constraints and sets Ay, ..., A, of arithmetic constraints such that ¢ is Tseq-
satisfiable iff S; U A; is Tseq-satisfiable for some i € [1,n].
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Fig. 3: Rewrite rules for the reduced form ¢| of a term ¢, obtained from ¢ by applying
these rules to completion.

Throughout the presentation of the calculi, we will make a few simplifying assumptions.

Assumption 1. Whenever we refer to a set S of sequence constraints, we assume:
1. for every non-variable term t € T (S), there exists a variable x such that x ~ t € S;
2. for every Seq-variable x, there exists a variable {, such that {, ~ |x| € S;
3. all literals in S are flat.

Whenever we refer to a set of arithmetic constraints, we assume all its literals are flat.

These assumptions are without loss of generality as any set can easily be transformed
into an equisatisfiable set satisfying the assumptions by the addition of fresh variables
and equalities. Note that some rules below introduce non-flat literals. In such cases, we
assume that similar transformations are done immediately after applying the rule to
maintain the invariant that all literals in S U A are flat. Rules may also introduce fresh
variables k of sort Seq. We further assume that in such cases, a corresponding constraint
4, ~ |k| is added to S with a fresh variable ¢.

Definition 2. Let C be a set of constraints. We write C = ¢ to denote that C entails
Sformula ¢ in the empty theory, and write =c to denote the binary relation over T (C)
such that s =c tiff C=s~t.

Lemma 2. For all set S of sequence constraints, =s is an equivalence relation; further-
more, every equivalence class of =s contains at least one variable.

We denote the equivalence class of a term s according to =s by [s]=, and drop the =g
subscript when it is clear from the context.

In the presentation of the calculus, it will often be useful to normalize terms to what
will be called a reduced form.

Definition 3. Let t be a Yseq-term. The reduced form of t, denoted by t|, is the term
obtained by applying the rewrite rules listed in Figure 3 to completion.

Observe that ¢| is well defined because the given rewrite rules form a terminating rewrite
system. This can be seen by noting that each rule reduces the number of applications of
sequence operators in the left-hand side term or keeps that number the same but reduces
the size of the term. It is not difficult to show that =7, ¢ ~ t].

We now introduce some basic definitions related to concatenation terms.

Definition 4. A concatenation term is a term of the form s ++ - - - ++ s, withn = 2.
If each s; is a variable, it is a variable concatenation term. For a set S of sequence
constraints, a variable concatenation term x1 + - - - ++ x,, is singular in Sif S ¥ x; ~ €



for at most one variable x; with i € [1,n]. A sequence variable x is atomic in S if
S ¥ x ~ € and for all variable concatenation terms s € T (S) such thatS = x ~ s, s is
singular in S.

We lift the concept of atomic variables to atomic representatives of equivalence classes.

Definition 5. Let S be a set of sequence constraints. Assume a choice function o :
T(S)/=s — T(S) that chooses a variable from each equivalence class of =s. A
sequence variable x is an atomic representative in S if it is atomic in S and © = o([z]=,).

Finally, we introduce a relation that is the foundation for reasoning about concatenations.

Definition 6. Let S be a set of sequence constraints. We inductively define a relation
S =4+ & ~ s, where x is a sequence variable in S and s is a sequence term whose
variables are in T (S), as follows:
1. S =4 x ~ x for all sequence variables x € T (S).
2. S =4+ @ ~ t for all sequence variables x € T (S) and variable concatenation terms
t, where x ~ t €S.
3 IfSEq e~ (WH y++Z)|, andS = y ~ t and t is € or a variable concatena-
tion term in S that is not singular in S, then S =4, © ~ (W +t ++ 2)|.
Let « be a choice function for S as defined in Definition 5. We additionally define the
entailment relation S =% x ~ 7y, where 3 is of length n > 0, to hold if each element of
Y is an atomic representative in S and there exists Z of length n such thatS =4, © ~ Z
and S |= y; & z; fori € [1,n].

In other words, S )=j‘+ x ~ t holds when ¢ is a concatenation of atomic representatives
and is entailed to be equal to = by S. In practice, ¢ is determined by recursively expanding
concatenations using equalities in S until a fixpoint is reached.

Example 3. Suppose S = {z ~ y ++ 2,y ~ w ++ u,u ~ v} (we omit the additional
constraints required by Assumption 1, part 2 for brevity). It is easy to see that u, v,
w, and z are atomic in S, but z and y are not. Furthermore, w and z (and one of u or
v) must also be atomic representatives. Clearly, S =4+ ¢ ~ x and S = = ~ y ++ 2.
Moreover, y ++ z is a variable concatenation term that is not singular in S. Hence, we
have S =4y ¢ ~ (y++2)|,and so S =4 = ~ y ++ z (by using either Item 2 or
Item 3 of Definition 6, as in fact z ~ y ++ z € S. ). Now, since S =4 = ~ y ++ z,
S & y ~ w + u, and w ++ w is a variable concatenation term not singular in S, we get
that S =4 = ~ ((w + u) ++ 2)},andso S =4 © ~ w ++ u ++ z. Now, assume that
v =a([v]zs) = a({v,u}). Then, S =%, z ~ w + v ++ 2.

Our calculi can be understood as modeling abstractly a cooperation between an arithmetic
subsolver and a sequence subsolver. Many of the derivation rules lift those in the string
calculus of Liang et al. [17] to sequences of elements of an arbitrary type. We describe
them similarly as rules that modify configurations.

Definition 7. A configuration is either the distinguished configuration unsat or a pair
(S, A) of a set S of sequence constraints and a set A of arithmetic constraints.



The rules are given in guarded assignment form, where the rule premises describe the
conditions on the current configuration under which the rule can be applied, and the
conclusion is either unsat, or otherwise describes the resulting modifications to the
configuration. A rule may have multiple conclusions separated by ||. In the rules, some
of the premises have the form S = s & t (see Definition 2). Such entailments can be
checked with standard algorithms for congruence closure. Similarly, premises of the
form S |=||a s & ¢ can be checked by solvers for linear integer arithmetic.

An application of a rule is redundant if it has a conclusion where each component
in the derived configuration is a subset of the corresponding component in the premise
configuration. We assume that for rules that introduce fresh variables, the introduced
variables are identical whenever the premises triggering the rule are the same (i.e., we
cannot generate an infinite sequence of rule applications by continuously using the same
premises to introduce fresh variables).> A configuration other than unsat is saturated
with respect to a set R of derivation rules if every possible application of a rule in R
to it is redundant. A derivation tree is a tree where each node is a configuration whose
children, if any, are obtained by a non-redundant application of a rule of the calculus.
A derivation tree is closed if all of its leaves are unsat. As we show later, a closed
derivation tree with root node (S, A) is a proof that A U S is unsatisfiable in Tseq. In
contrast, a derivation tree with root node (S, A) and a saturated leaf with respect to all
the rules of the calculus is a witness that A U S is satisfiable in Tseq.

4.1 Basic Calculus
Definition 8. The calculus BASE consists of the derivation rules in Figures 4 and 5.

Some of the rules are adapted from previous work on string solvers [17, 22]. Com-
pared to that work, our presentation of the rules is noticeably simpler, due to our use of
the relation =%, from Definition 6. In particular, our configurations consist only of pairs
of sets of formulas, without any auxiliary data-structures.

Note that judgments of the form S =%, x ~ t are used in premises of the calculus.
It is possible to compute whether such a premise holds thanks to the following lemma.

Lemma 3. Let S be a set of sequence constraints and A a set of arithmetic constraints. If
(S, A) is saturated w.r.t. S-Prop, L-Intro and L-Valid, the problem of determining whether
S 4, x ~ s for given x and s is decidable.

Lemma 3 assumes saturation with respect to certain rules. Accordingly, our proof
strategy, described in Section 5, will ensure such saturation before attempting to apply
rules relying on =% . The relation =%, induces a normal form for each equivalence
class of =s.

Lemma 4. Let S be a set of sequence constraints and A a set of arithmetic constraints.
Suppose (S, A) is saturated w.r.t. A-Conf, S-Prop, L-Intro, L-Valid, and C-Split. Then, for
every equivalence class e of =s whose terms are of sort Seq, there exists a unique
(possibly empty) S such that whenever S |=*%_ x ~ s’ for x € e, then s’ = 5. In this case,
we call's the normal form of e (and of x).

3 In practice, this is implemented by associating each introduced variable with a witness term as
described in [21].



A il A ~t t S
A-Confi A-Prop Fua s s,t€T(S)
sa S:=S,s~t
S-Conf SEL S-Prop SkEs~t  steT(S) s tare Xia-terms
unsat A:=As~t
SA z,y € T(S)nT(A) z,y : Int
A=Az~y | A=Azxy
5 S 5: S z S r:S
|_.|r|troé€7,()—gsecl L-Valid ‘LET( ) x €q
S:=S, sl ~ (Ish! S:=S,zx~e | A:=A(>0
U_EqSI:unit(x)munit(y) C_EqSI:*_,_,_zzE SE*Y y~z
S:=Sz~y S:=S,z~y
cspit SEH TN @yl SEL o~ @y +2)]
p A:=ALly,>1, S=S,y~y +k I
A=Al <ty S:=S,y ~y+k I
A:=A,fy%€y, S:=S,y%y'
z S z,y: S
Deg-Ext TEYE T,y 2 5eq

=AUl # Ll ||
A=Al ~0,,0<i<{, S:=S,w ~nth(z,i),ws ~ nth(y,i), w1 # w2
Fig. 4: Core derivation rules. The rules use k and ¢ to denote fresh variables of sequence
and integer sort, respectively, and w; and w- for fresh element variables.

We now turn to the description of the rules in Figure 4, which form the core of the
calculus. For greater clarity, some of the conclusions of the rules include terms before
they are flattened. First, either subsolver can report that the current set of constraints is
unsatisfiable by using the rules A-Conf or S-Conf. For the former, the entailment =
(which abbreviates |=7,,,) can be checked by a standard procedure for linear integer
arithmetic, and the latter corresponds to a situation where congruence closure detects
a conflict between an equality and a disequality. The rules A-Prop, S-Prop, and S-A
correspond to a form of Nelson-Oppen-style theory combination between the two sub-
solvers. The first two communicate equalities between the sub-solvers, while the third
guesses arrangements for shared variables of sort Int. L-Intro ensures that the length
term |s| for each sequence term s is equal to its reduced form (|s|)]. L-Valid restricts
sequence lengths to be non-negative, splitting on whether each sequence is empty or
has a length greater than 0. The unit operator is injective, which is captured by U-Eq.
C-Eq concludes that two sequence terms are equal if they have the same normal form. If
two sequence variables have different normal forms, then C-Split takes the first differing
components y and y’ from the two normal forms and splits on their length relationship.
Note that C-Split is the source for non-termination of the calculus (see, e.g., [17, 22]).
Finally, Deg-Ext handles disequalities between sequences x and y by either asserting
that their lengths are different or by choosing an index ¢ at which they differ.

Figure 5 includes a set of reduction rules for handling operators that are not directly
handled by the core rules. These reduction rules capture the semantics of these operators
by reduction to concatenation. R-Extract splits into two cases: Either the extraction uses
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x ~ extract(y,i,j) €S
A=Ai<0viz={l,vj<O0 S:=S,z~e¢ |
A=A 0<i<ly,j>0,0~ily ~min(j,¢, — 1)

S:=S,y~k+z+k

R-Extract

x ~ nth(y,i) €S
A=Ai<Ovizt, |
A=A0<i<lylp~i S:=S,y ~ k ++ unit(z) ++ k'

R-Nth

x ~ update(y,i,2) €S
A:=Ai<0viz={, S:=S,z~y |
A=A0<i<lyly~ily~1
S:=S,y~k+k +HE z~k++unit(z) ++ &

R-Update

Fig. 5: Reduction rules for extract, nth, and update. The rules use &, &, and k” to denote
fresh sequence variables. We write s ~ min(¢, u) as an abbreviation for s ~ t v s &
u,s <t,s < u.

an out-of-bounds index or a non-positive length, in which case the result is the empty
sequence, or the original sequence can be described as a concatenation that includes
the extracted sub-sequence. R-Nth creates an equation between y and a concatenation
term with unit(x) as one of its components, as long as 4 is not out of bounds. R-Update
considers two cases. If 7 is out of bounds, then the update term is equal to y. Otherwise,
y is equal to a concatenation, with the middle component (k') representing the part of y
that is updated. In the update term, &’ is replaced by unit(z).

Example 4. Consider a configuration (S, A), where S contains the formulas x ~ y ++ z,
z ~ v+ 2+ w,and v ~ unit(u), and A is empty. Hence, S = |z| ~ |y ++ z|.
By L-Intro, we have S = |y ++ z| & |y| + |z|. Together with Assumption 1, we have
S E ¢, ~ ¢, + (£, and then with S-Prop, we have ¢, ~ ¢, + £, € A. Similarly, we can
derive 0, ~ £, +{y + £y, 4y, ~ 1 €S, and so (%) A =pja £, ~ 1+ 4, + ¢, + {,,. Notice
that for any variable k of sort Seq, we can apply L-Valid, L-Intro, and S-Prop to add to A
either £, > 0 or £, = 0. Applying this to y, z, w, we have that A |= |5 L in each branch
thanks to (*), and so A-Conf applies and we get unsat.

4.2 Extended Calculus

Definition 9. The calculus EXT is comprised of the derivation rules in Figures 4 and 6,
with the addition of rule R-Extract from Figure 5.

Our extended calculus combines array reasoning, based on [10] and expressed by the
rules in Figure 6, with the core rules of Figure 4 and the R-Extract rule. Unlike in BASE,
those rules do not reduce nth and update. Instead, they reason about those operators
directly and handle their combination with concatenation. Nth-Concat identifies the ith
element of sequence y with the corresponding element selected from its normal form (see
Lemma 4). Update-Concat operates similarly, applying update to all the components.
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Update-Concat-Inv operates similarly on the updated sequence rather than on the original
sequence. Nth-Unit captures the semantics of nth when applied to a unit term. Update-
Unit is similar and distinguishes an update on an out-of-bounds index (different from 0)
from an update within the bound. Nth-Intro is meant to ensure that Nth-Update (explained
below) and Nth-Unit (explained above) are applicable whenever an update term exists in
the constraints. Nth-Update captures the read-over-write axioms of arrays, adapted to
consider their lengths (see, e.g., [10]). It distinguishes three cases: In the first, the update
index is out of bounds. In the second, it is not out of bounds, and the corresponding nth
term accesses the same index that was updated. In the third case, the index used in the
nth term is different from the updated index. Update-Bound considers two cases: either
the update changes the sequence, or the sequence remains the same. Finally, Nth-Split
introduces a case split on the equality between two sequence variables z and x’ whenever
they appear as arguments to nth with equivalent second arguments. This is needed to
ensure that we detect all cases where the arguments of two nth terms must be equal.

4.3 Correctness
In this section we prove the following theorem:

Theorem 1. Ler X € {BASE,EXT} and (So,Ao) be a configuration, and assume
without loss of generality that Ag contains only arithmetic constraints that are not
sequence constraints. Let T be a derivation tree obtained by applying the rules of X
with (So, Ao) as the initial configuration.
1. If T is closed, then So U Ay is Tseq-unsatisfiable.
2. If T contains a saturated configuration (S, A) w.rt. X, then (S, A) is Tseq-satisfiable,
and so is (Sg, Ao).

The theorem states that the calculi are correct in the following sense: if a closed derivation
tree is obtained for the constraints Sg U A then those constraints are unsatisfiable in
Tseq; if a tree with a saturated leaf is obtained, then they are satisfiable. It is possible,
however, that neither kind of tree can be derived by the calculi, making them neither
refutation-complete nor terminating. This is not surprising since, as mentioned in the
introduction, the decidability of even weaker theories is still unknown.

Proving the first claim in Theorem 1 reduces to a local soundness argument for each
of the rules. For the second claim, we sketch below how to construct a satisfying model
M from a saturated configuration for the case of EXT. The case for BASE is similar
and simpler.

Model construction steps The full model construction and its correctness are described
in a longer version of this paper [23] together with a proof of the theorem above. Here is
a summary of the steps needed for the model construction.
1. Sorts: M(Elem) is interpreted as some arbitrary countably infinite set. M (Seq) and
M(Int) are then determined by the theory.
2. Yseq-symbols: Ts.q enforces the interpretation of almost all Yseq-symbols, except
for nth when the second input is out of bounds. We cover this case below.
3. Integer variables: based on the saturation of A-Conf, we know there is some T} |a-
model satisfying A. We set M to interpret integer variables according to this model.
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x ~ nth(y,i) €S SENL yr~w H - Hwy
A=Ai<0vi={, |
A:=A0<1i <ty S:=S,z ~nth(w,4) || ... |
wj
J

Nth-Concat

—1 n—1

A::A,ZZ <i<i£wj S::S,z:znth(wn,i—Zij)
j=1 j=1

=1 j=

x ~ update(y,i,v) €S SEY y~wi - Hw,

Update-Concat
P S:=S,z~x 21+ -+ zn,

n—1
z1 ~ update(wi,4,v), ..., 2z, ~ update(wn,i — 2 Ly, 0)
j=1

z ~ update(y,i,v) €S SEX: x~w H o ws
S:=S,y~z +H -+ zn,

Update-Concat-Inv

n—1
w1 ~ update(z1,4,v),...,w, ~ update(zn,i — 2 Ly, v)
j=1

x ~ nth(y,7) €S S E y ~ unit(u)
A=Ai<0vi>0 || A:=Ai~0 S:=S,z~u

Nth-Unit

z ~ update(y,i,v) €S S E y ~ unit(u)
A=Ai<0vi>0 S:=S,z ~ unit(u) ||
A:=Ai~0 S:=S,z ~ unit(v)

Update-Unit

s’ ~ update(s,i,t) € S

Nth-Intro — —
S:=S,e ~ nth(s,i),e ~ nth(s',4)

nth(z,j) € T(S) y ~ update(z,i,v) €
A=A j<Ovj>
A=Airj0<)<l, S:=
A=Ai%50<j</l, S:=

S SEz~yorSkEz~z
be |

Snth(y. )~ |

S, nth(y, j) ~ nth(z, 5)

Nth-Update

x ~ update(y,i,v) €S
Update-Bound A @ ~ update(y, i, v)

=A0<i<{ S:=S,nth(y,i) v | S:=S,z~ry
_nth(z,i),nth(z",i) e T(S) i~i €A
Nth-Split -
P S:=S,x~a | S:=Szxa
Fig. 6: Extended derivation rules. The rules use z1, ..., 2z, to denote fresh sequence

variables and e, €’ to denote fresh element variables.

4. Element variables: these are partitioned into their =g equivalence classes. Each class
is assigned a distinct element from M (Elem), which is possible since it is infinite.
5. Atomic sequence variables: these are assigned interpretations in several sub-steps:
(a) length: we first use the assignments to variables ¢, to set the length of M (z),
without assigning its actual value.
(b) unit variables: for variables z with =g unit(z), we set M(z) to be [M(z)].
(c) non-unit variables: All other sequence variables are assigned values according
to a weak equivalence graph we construct in a manner similar to [10]. This
construction takes into account constraints that involve update and nth.
6. Non-atomic sequence variables: these are first transformed to their unique normal
form (see Lemma 4), consisting of concatenations of atomic variables. Then, the
values assigned to these variables are concatenated.
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7. nth-terms: for out-of-bounds indices in nth-terms, we rely on =g to make sure that
the assignment is consistent.
We conclude this section with an example of the construction of M.

Example 5. Consider a signature in which Elem is Int, and a saturated configuration

(S*, A*) w.r.t. EXT that includes the following formulas: y ~ y; + yo2, © &~ x1 ++ 2,

Y2 ~ T2, y1 ~ update(z1,4, a), [y1| = [z1], [y2| = [22], nth(y, i) ~ a, nth(y1,7) ~ a.

Following the above construction, a satisfying interpretation M can be built as follows:

Step 1 Set both M (Int) and M (Elem) to be the set of integer numbers. M (Seq) is
fixed by the theory.

Step 3, Step 4 First, find an arithmetic model, M(¢,) = M(¢,) = 4, M(¢,,) =
M(y,) =2, M(L,,) = M(l,,) = 2, M(i) = 0. Further, set M(a) = 0.

Step 5a Start assigning values to sequences. First, set the lengths of M(z) and M (y)
to be 4, and the lengths of M(z1), M(z2), M(y1), M(y2) to be 2.

Step 5b is skipped as there are no unit terms.

Step 5c¢ Set the Oth element of M (y;) to 0 to satisfy nth(y1,¢) = a (y; is atomic, y is
not). Assign fresh values to the remaining indices of atomic variables. The result
can be, e.g., M(y1) = [0,2], M(z1) = [1,2], M(y2) = M(z2) = [3,4].

Step 6 Assign non-atomic sequence variables based on equivalent concatenations:
M(y) = [0,2,3,4], M(z) = [1,2,3,4].

Step 7 No integer variable in the formula was assigned an out-of-bound value, and so
the interpretation of nth on out-of-bounds cases is set arbitrarily.

5 Implementation

We implemented our procedure for sequences as an extension of a previous theory solver
for strings [17, 22]. This solver is integrated in cvc5, and has been generalized to reason
about both strings and sequences. In this section, we describe how the rules of the
calculus are implemented and the overall strategy for when they are applied.

Like most SMT solvers, cvc5 is based on the CDCL(T") architecture [19] which
combines several subsolvers, each specialized on a specific theory, with a solver for
propositional satisfiability (SAT). Following that architecture, cvc5 maintains an evolving
set of formulas F. When F starts with quantifier-free formulas over the theory Tseq,
the case targeted by this work, the SAT solver searches for a satisfying assignment
for F, represented as the set M of literals it satisfies. If none exists, the problem is
unsatisfiable at the propositional level and hence Tseq-unsatisfiable. Otherwise, M is
partitioned into the arithmetic constraints A and the sequence constraints S and checked
for Tseq-satisfiability using the rules of the EXT calculus. Many of those rules, including
all those with multiple conclusions, are implemented by adding new formulas to F
(following the splitting-on-demand approach [4]). This causes the SAT solver to try to
extend its assignment to those formulas, which results in the addition of new literals to
M (and thereby also to A and S).

In this setting, the rules of the two calculi are implemented as follows. The effect
of rule A-Conf is achieved by invoking cvc5’s theory solver for linear integer arithmetic.
Rule S-Conf is implemented by the congruence closure submodule of the theory solver
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for sequences. Rules A-Prop and S-Prop are implemented by the standard mechanism
for theory combination. Note that each of these four rules may be applied eagerly, that
is, before constructing a complete satisfying assignment M for F.

The remaining rules are implemented in the theory solver for sequences. Each time
M is checked for satisfiability, cvc5 follows a strategy to determine which rule to apply
next. If none of the rules apply and the configuration is different from unsat, then it is
saturated, and the solver returns sat. The strategy for EXT prioritizes rules as follows.
Only the first applicable rule is applied (and then control goes back to the SAT solver).

1. (Add length constraints) For each sequence term in S, apply L-Intro or L-Valid, if not
already done. We apply L-Intro for non-variables, and L-Valid for variables.

2. (Mark congruent terms) For each set of update (resp. nth) terms that are congruent

to one another in the current configuration, mark all but one term and ignore the

marked terms in the subsequent steps.

(Reduce extract) For extract(y, 7, j) in S, apply R-Extract if not already done.

4. (Construct normal forms) Apply U-Eq or C-Split. We choose how to apply the
latter rule based on constructing normal forms for equivalence classes in a bottom-
up fashion, where the equivalence classes of z and y are considered before the
equivalence class of « + y. We do this until we find an equivalence class such that
SEY z~wupand S =%, 2z ~ uy for distinct uy, us.

5. (Normal forms) Apply C-Eq if two equivalence classes have the same normal form.

(Extensionality) For each disequality in S, apply Deg-Ext, if not already done.

7. (Distribute update and nth) For each term update(z, 4, t) (resp. nth(z, j)) such that
the normal form of z is a concatenation term, apply Update-Concat and Update-
Concat-Inv (resp. Nth-Concat) if not already done. Alternatively, if the normal form
of the equivalence class of x is a unit term, apply Update-Unit (resp. Nth-Unit).

8. (Array reasoning on atomic sequences) Apply Nth-Intro and Update-Bound to update
terms. For each update term, find the matching nth terms and apply Nth-Update.
Apply Nth-Split to pairs of nth terms with equivalent indices.

9. (Theory combination) Apply S-A for all arithmetic terms occurring in both S and A.

»

*

Whenever a rule is applied, the strategy will restart from the beginning in the next
iteration. The strategy is designed to apply with higher priority steps that are easy to
compute and are likely to lead to conflicts. Some steps are ordered based on dependencies
from other steps. For instance, Steps 5 and 7 use normal forms, which are computed in
Step 4. The strategy for the BASE calculus is the same, except that Steps 7 and 8 are
replaced by one that applies R-Update and R-Nth to all update and nth terms in S.

We point out that the C-Split rule may cause non-termination of the proof strategy
described above in the presence of cyclic sequence constraints, for instance, constraints
where sequence variables appear on both sides of an equality. The solver uses methods
for detecting some of these cycles, to restrict when C-Split is applied. In particular, when
SEY o~ (u++s+Hw)l,S Y v~ (u+t++0)], and s occurs in T, then
C-Split is not applied. Instead, other heuristics are used, and in some cases the solver
terminates with a response of “unknown” (see e.g., [17] for details). In addition to the
version shown here, we also use another variation of the C-Split rule where the normal
forms are matched in reverse (starting from the last terms in the concatenations). The
implementation also uses fast entailment tests for length inequalities. These tests may
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allow us to conclude which branch of C-Split, if any, is feasible, without having to branch
on cases explicitly.

Although not shown here, the calculus can also accommodate certain extended
sequence constraints, that is, constraints using a signature with additional functions. For
example, our implementation supports sequence containment, replacement, and reverse.
It also supports an extended variant of the update operator, in which the third argument
is a sequence that overrides the sequence being updated starting from the index given
in the second argument. Constraints involving these functions are handled by reduction
rules, similar to those shown in Figure 5. The implementation is further optimized by
using context-dependent simplifications, which may eagerly infer when certain sequence
terms can be simplified to constants based on the current set of assertions [22].

6 Evaluation

We evaluate the performance of our approach, as implemented in cvc5. The evaluation
investigates: (i) whether the use of sequences is a viable option for reasoning about
vectors in programs, (ii) how our approach compares with other sequence solvers, and
(ii1) what is the performance impact of our array-style extended rules. As a baseline,
we use Version 4.8.14 of the Z3 SMT solver, which supports a theory of sequences
without updates. For cvce5, we evaluate implementations of both the basic calculus
(denoted cveS) and the extended array-based calculus (denoted cveS-a). The benchmarks,
solver configurations, and logs from our runs are available for download.* We ran all
experiments on a cluster equipped with Intel Xeon E5-2620 v4 CPUs. We allocated one
physical CPU core and 8GB of RAM for each solver-benchmark pair and used a time
limit of 300 seconds. We use the following two sets of benchmarks:

Array Benchmarks (ARRAYS) The first set of benchmarks is derived from the QF _AX
benchmarks in SMT-LIB [3]. To generate these benchmarks, we (i) replace declarations
of arrays with declarations of sequences of uninterpreted sorts, (ii) change the sort of
index terms to integers, and (iii) replace store with update and select with nth. The
resulting benchmarks are quantifier-free and do not contain concatenations. Note that
the original and the derived benchmarks are not equisatisfiable, because sequences take
into account out-of-bounds cases that do not occur in arrays. For the Z3 runs, we add to
the benchmarks a definition of update in terms of extraction and concatenation.

Smart Contract Verification (DIEM) The second set of benchmarks consists of verifi-
cation conditions generated by running the Move Prover [24] on smart contracts written
for the Diem framework. By default, the encoding does not use the sequence update
operation, and so Z3 can be used directly. However, we also modified the Move Prover
encoding to generate benchmarks that do use the update operator, and ran cvc5 on them.
In addition to using the sequence theory, the benchmarks make heavy use of quantifiers
and the SMT-LIB theory of datatypes.

Figure 7a summarizes the results in terms of number of solved benchmarks and total
time in seconds on commonly solved benchmarks. The configuration that solves the

4http://dx.doi.org/10.5281/zenodo. 6146565
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DIEM Slvd 542 547 443 ﬁ
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(a) (b) ARRAYS (c) DIEM

Fig. 7: Figure 7a lists the number of solved benchmarks and total time on commonly
solved benchmarks. The scatter plots compare the base solver (cveS) and the extended
solver (cveS-a) on ARRAY (Figure 7b) and DIEM (Figure 7c) benchmarks.

largest number of benchmarks is the implementation of the extended calculus (cveS-a).
This approach also successfully solves most of the DIEM benchmarks, which suggests
that sequences are a promising option for encoding vectors in programs. The results
further show that the sequences solver of cvc5 significantly outperforms Z3 on both the
number of solved benchmarks and the solving time on commonly solved benchmarks.

Figures 7b and 7c show scatter plots comparing c¢veS and cveS-a on the two bench-
mark sets. We can see a clear trend towards better performance when using the extended
solver. In particular, the table shows that in addition to solving the most benchmarks,
cvceS-a is also fastest on the commonly solved instances from the DIEM benchmark set.

For the ARRAYS set, we can see that some benchmarks are slower with the extended
solver. This is also reflected in the table, where cveS-a is slower on the commonly solved
instances. This is not too surprising, as the extra machinery of the extended solver can
sometimes slow down easy problems. As problems get harder, however, the benefit of
the extended solver becomes clear. For example, if we drop Z3 and consider just the
commonly solved instances between cveS and cveS-a (of which there are 242), cveS-a is
about 2.47 x faster (426 vs 1053 seconds). Of course, further improving the performance
of cveS-a is something we plan to explore in future work.

7 Conclusion

We introduced calculi for checking satisfiability in the theory of sequences, which can
be used to model the vector data type. We described our implementation in cvc5 and pro-
vided an evaluation, showing that the proposed theory is rich enough to naturally express
verification conditions without introducing quantifiers, and that our implementation is
efficient. We believe that verification tools can benefit by changing their encoding of ver-
ification conditions that involve vectors to use the proposed theory and implementation.

We plan to propose the incorporation of this theory in the SMT-LIB standard and
contribute our benchmarks to SMT-LIB. As future research, we plan to integrate other
approaches for array solving into our basic solver. We also plan to study the polite-
ness [16, 20] and decidability of various fragments of the theory of sequences.
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