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Cancer cells can be killed
mechanically or with
combinations of cytoskeletal
Inhibitors

Ajay Tijore'*, Bo Yang? and Michael Sheetz**

Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India,
2Mechanobiology Institute, National University of Singapore, Singapore, Singapore, *Department of
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For over two centuries, clinicians have hypothesized that cancer developed
preferentially at the sites of repeated damage, indicating that cancer is basically
“continued healing.” Tumor cells can develop over time into other more
malignant types in different environments. Interestingly, indefinite growth
correlates with the depletion of a modular, early rigidity sensor, whereas
restoring these sensors in tumor cells blocks tumor growth on soft surfaces
and metastases. Importantly, normal and tumor cells from many different
tissues exhibit transformed growth without the early rigidity sensor. When
sensors are restored in tumor cells by replenishing depleted
mechanosensory proteins that are often cytoskeletal, cells revert to normal
rigidity-dependent growth. Surprisingly, transformed growth cells are sensitive
to mechanical stretching or ultrasound which will cause apoptosis of
transformed growth cells (Mechanoptosis). Mechanoptosis is driven by
calcium entry through mechanosensitive Piezol channels that activate a
calcium-induced calpain response commonly found in tumor cells. Since
tumor cells from many different tissues are in a transformed growth state
that is, characterized by increased growth, an altered cytoskeleton and
mechanoptosis, it is possible to inhibit growth of many different tumors by
mechanical activity and potentially by cytoskeletal inhibitors.

KEYWORDS

mechanobiology, cancer, mechanosensitivity, transformed growth, cytoskeleton,
ultrasound, apoptosis

Introduction

Tumors are well known for their heterogeneity (Dagogo-Jack and Shaw, 2018). This
phenomenon generally occurs both within tumors (intra-tumor) or between tumors
(inter-tumor) and thus makes it difficult to find common features of different tumor types
that would enable common treatments. In early studies of tumor cells, they grew on soft
agar, while normal cells required rigid surfaces to proliferate (Hamburger and Salmon,
1977). As a property of many if not most tumor cells, growth on soft agar or “transformed
growth” can be a feature that could potentially be exploited in treating different tumor
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types. For example, recent studies show that transformed growth
correlates with mechanically induced apoptosis (mechanoptosis).
Mechanical forces from stretch, shear, or ultrasound can induce
tumor cell mechanoptosis (Regmi et al., 2017; Tijore et al., 2020;
Singh et al,, 2021; Tijore et al,, 2021). Thus, in the context of
physiological relevance, mechanoptosis could explain the
benefits of exercise for cancer patients with a wide diversity of
cancers (Wang and Zhou, 2021). Although the basis of
mechanoptosis is still not fully understood, it is a common
feature of tumor cells that can possibly be exploited in
treatments of cancers.

Tumor cells show altered rigidity sensing
due to absence of rigidity sensors

An important question is whether or not growth on soft agar
represents a phenotypic change of the state of tumor cells that
correlates with mechanoptosis. From a number of studies, it is
interesting that the loss of early rigidity sensing correlates with
growth on soft agar (Raval et al., 2003; Bharadwaj et al.,, 2005;
Wolfenson et al., 2016; Yang et al., 2020). It is important to note
that substrate rigidity will affect a variety of different cell
pathways particularly over longer periods (Paszek et al., 2005;
Doss et al., 2020) and that early rigidity sensing refers to a specific
sensing complex. The early rigidity sensor has been defined as a
sarcomeric unit of about 2 um in length that has a myosin bipolar
filament in the middle with antiparallel actin filaments anchored
to integrins and the extracellular matrix through alpha actinin
(Meacci et al., 2016; Wolfenson et al., 2016; Saxena et al., 2017a).
During early cell spreading on fibronectin, the sarcomeric unit
assembles rapidly and contracts matrix a total of about 100 nm
before relaxing (total time 40-60 s) (Lohner et al., 2019). If the
force at the peak displacement exceeds 25 pN, then the surface is
considered rigid; and if less than 25 pN, the surface is soft and
anoikis through DAPKI is initiated (Qin et al., 2018a). In the
cases of tumor cells early rigidity sensing is lost since they are
deficient in one or more mechanosensory cytoskeletal protein(s)
that are part of the early rigidity sensor, restoration of normal
levels of the missing protein(s) typically results in rigidity-
dependent growth (Yang et al, 2020). Conversely, in normal
cells when single mechanosensory cytoskeletal proteins of the
rigidity sensor are depleted, cells exhibit rigidity-independent
transformed growth on soft agar. These behaviors have proven
true for a number of tumor and normal cells across different
tissues (Yang et al., 2020; Tijore et al., 2021). For example, in a
screen of 36 ovarian tumor cell lines ranging from epithelial to
mesenchymal, they all appear to lack early rigidity sensing, with
most cell lines missing known components of the rigidity sensor
(half of the cell lines are depleted in tropomyosin 2.1) (Simpson
et al., 2022).

Since many of the proteins that are part of the early rigidity
sensor are cytoskeletal proteins, it is logical to ask if their

Frontiers in Pharmacology

02

10.3389/fphar.2022.955595

depletion or replenishment alters other protein levels in the
cells or only involves the proteins in question. Interestingly,
RNAseq comparisons of the cells with versus those without the
cytoskeletal protein, tropomyosin 2.1 (Tpm2.1), show that the
levels of 700-1000 mRNAs are significantly altered (Yang et al.,
2020). Thus, it seems that the loss of the early rigidity sensor
causes a major change in cell composition that is, indicative of a
change in phenotype. Another question is how the changes in
cytoskeletal properties result from the change in the cell state.
Depletion of cytoskeletal proteins such as tropomyosin 2.1,
Filamin A and myosin ITA can result in major changes in the
organization of the cytoskeleton throughout the cytoplasm and
not just in cortical regions (Luo et al.,, 2013). Although relatively
less is known about how this portion of the cytoskeleton
influences the organization of cytoplasmic organelles, it is
clear that the transformed cell state involves changes in the
ER-mitochondrial stress pathway that could increase the
mechanoptosis of the cells (Doghman-Bouguerra and Lalli,
2019; Kim et al., 2020).

Tumor cells are sensitive to
mechanoptosis and killed by mechanical
forces

Over the last few decades, numerous studies have focused on
understanding the role of biochemical cues in tumor
development and progression. However, in recent years, it has
been documented that tumor growth and progression can be
influenced by external mechanical stresses (Yuan et al., 2016;
Emon et al, 2018; Riehl et al, 2021). Recent literature has
suggested that tumor cells are vulnerable to damage by
external mechanical stresses. For instance, physiologically
relevant shear forces were found to kill adherent tumor cells
via an apoptotic pathway triggered by bone morphogenetic
protein receptor, Smadl/5 and p38 MAPK (Lien et al., 2013).
Another study observed that fluid shear stresses sensitize cancer
cells to TRAIL-induced apoptosis via caspase activation (Mitchell
and King, 2013). Similarly, circulating tumor cells were killed at
high shear forces via an oxidative stress-induced mitochondrial
apoptotic pathway (Regmi et al., 2017). Further, it was reported
that exercise or mechanical stretching of tumors caused tumor
regression in a mouse model (Betof et al., 2015; Berrueta et al.,
2018). All these studies indicated that mechanical stresses could
inhibit cancer growth.

If we look at these findings in a broader context, they might
be relevant since physically active muscle tissue shows a low risk
of tumor formation. In fact, muscle-associated tumors are rare
and don’t even make it to the list of 36 commonly occurring
tumors worldwide (Bray et al., 2018). In support of these facts,
several clinical studies have found that there is a strong
correlation between exercise and tumor growth inhibition. For
instance, recent studies reported that resistance exercise, a form
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FIGURE 1

Bar graph showing the percentage of apoptotic cells with or
without 24 h of 5% mechanical stretch for MDA-MB-231 breast
cancer cells with or without expressed tropomyosin 2.1 (Tpm2,1)
and mouse embryo fibroblasts before or after

Tpm?2.1 knockdown. Adapted from (Tijore et al., 2021).

of exercise to improve muscle tone and endurance was associated
with a 33% lower risk of all causes of mortality in cancer survivors
(Hardee et al, 2014).

summarized the positive impact of exercise on cancer

Another excellent review article
mortality, recurrence and treatment-related side-effects
(Cormie et al, 2017). In fact, an article from the NCI
reported that 13 cancer types including breast cancer were
inhibited by exercise (Moore et al., 2016). Although there is
no exact explanation of the basis for the correlation between
exercise and tumor growth inhibition, there is a definite
possibility that periodic mechanical stresses generated during
exercise cause selective tumor cell killing. In further support of
the idea that tumor cells are sensitive to exercise-induced strains,
we found tumor cell mechanoptosis was caused by 5% strains as
shown in Figure 1 (Tijore et al., 2021) and such strains are easily
attained with normal exercise. Both tumor cells and normal cells
depleted of early rigidity sensors showed the same behavior.
Again, the tissue of cell origin did not appear to affect the
Thus, the with
transformed growth include increased mechanoptosis.

mechanoptosis. phenotypic  changes

Mechanical forces cause intracellular
calcium uptake to induce mitochondria-
mediated apoptosis

In terms of the mechanism of mechanically-induced tumor
cell apoptosis, there is a logical pathway that involves the
susceptibility of tumor cells to damage from activation of an
ER-mitochondrial stress pathway. In both the cases of stretch-
and ultrasound-activated apoptosis, an early step is dependent on
mechanosensitive Piezol channels. Since tumor cells are sensitive
to phospholipase C activation (Halder et al., 2014), calcium entry
through Piezol or other mechanochannels at the plasma
membrane could activate phospholipase C hydrolysis of
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PIP2 to release inositol triphosphate, IP3; however, the direct
activation of IP3 release by Piezol action has not been seen,
which implicates a secondary mechanism in transformed growth
cells (Kuriyama et al., 2022). Binding of IP3 to the IP3 receptor in
the ER causes calcium loading of mitochondria through the
VDACI channel in the mitochondria that is, physically linked
to IP3R (Doghman-Bouguerra and Lalli, 2019; Simoes et al.,
2020). Many anticancer compounds cause apoptosis through
calpain activation as a result of an increase in intracellular
calcium downstream of PLC dependent IP3 release (Wu et al.,
2010; Lu et al., 2012; Huang et al., 2014; Cho et al., 2015; Kerkhofs
et al., 2018; Bae et al, 2021). This is similar to other systems
where Piezol activation is linked to apoptosis through
mitochondrial malfunction in the ER-mitochondrial stress
pathway (Hope et al, 2019). It is important to note that
Piezol is implicated in many mechanical cell processes
through a variety of different models (see reviews (De Felice
and Alaimo, 2020; Dombroski et al, 2021)). The particular
factors that activate mechanoptosis including the prolonged
periodic mechanical stimulation make it somewhat different
What has
struck us is that many different cell lines in the transformed

than those other models for Piezol functions.
growth state regardless of origin and EMT state are sensitive to
mechanoptosis. All these findings are summarized in Figure 2
and the ER-mitochondrial stress model comes from recent
reviews (Simoes et al., 2020; Kerkhofs et al., 2018; Doghman-
Bouguerra and Lalli, 2019).

Genes associated with ER-mitochondrial
stress pathway are upregulated in the
transformed cell state

The detailed analyses of changes in cellular mRNA
composition (RNAseq) with rigidity-independent growth
versus rigidity-dependent growth indicate that a number of
genes associated with the ER-mitochondria stress pathway are
upregulated in the transformed growth state (Yang et al,
2020). Upon comparison of which genes are increased in
the transformed growth state of both human foreskin
fibroblasts without Tpm2.1 (HFF) and MDA-MB-231 tumor
cells that normally lack Tpm2.1, there are 86 genes in common
(Table 1). When MDA-MB-231 cells exhibit rigidity-
dependent growth upon tropomyosin 2.1 expression, there
are 13 upregulated genes that are also upregulated in
normal HFFs (Table 1). In recent papers, a number of
common genes that are highly expressed in the transformed
growth state are featured and several of them are involved with
mitochondrial stress and ROS (green highlighting), cancer
functions (blue highlighting) as well as mitochondrial DNA
repair (orange highlighting) (Doghman-Bouguerra and Lalli,
2019; Simoes et al, 2020; Wu et al., 2021). Perhaps most
surprising is that thirteen of the identified proteins are
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FIGURE 2
Diagrams of a working model for Mechanoptosis of transformed growth cells. In (A) the Piezol channel is shown in complex with cytoplasmic
proteins that are linked to an actomyosin network that needs to be active for mechanoptosis. In the lower panel the hydrolysis of PIP2 is shown to
produce IP3 although the mechanism of activation of phosphatidy!l inositol phospholipase C (PI-PLC) is not understood nor is the link to
Piezol activity. In (B) the rise in IP3 level activates the release of ER calcium by the IP3 receptor that is linked to the VDAC channel, causing a rise
in mitochondrial calcium levels leading to apoptosis. The ER calcium pump, SERCA is shown in complex with p53 at these sites.

TABLE 1 RNAseq data showing the thirteen genes that are elevated in expression (co-expressed) in normal human foreskin fibroblasts (HFF) and
MDAMB-231 cells expressing Tom2.1. In the HFF cells after Tom2.1 knockdown and the MDA-MB-231 cells, there were 86 genes that were
elevated in expression (inversely co-expressed).

Co-expressed (n = 13)

Inverserly Co-expressed (n = 86)

CDCA7
CDK19

CREB3L4
FAM102B
GJA1
ITGA10

KISS1

MARCKSL1
NTM

PTPRQ

RGCC
TMEM191C

TPM2

APOBEC3G
APOL1

ASPHD2
ATF3
BAMBI
BATF2

CD24
CDK18

CFB
CH25H

CMPK2
CPEB3

CTSS
CXCL10
CXCL11

CXCL16

CYP1B1
DDX58

DDX60
DDX60L
DHX58
EPSTI1

FAM46A

GBP4
GBP5

GCH1

GIMAP2
GNAO1

GRIP2
HERC5

HERC6

HLA-B

HLA-F

IDO1

1F127
1F144

IF144L
IFI6
IFIH1
IFIT1

IFIT2

IFIT3
IFITM10

L23A

1L411
ISG15

1SG20
KIF26B

LAMP3

LMO2

MX1

MX2

NCOA7
OAS1

OAS2
OAS3
OASL
PARP12

PARP14

PATL2
PCDH1

PIK3AP1

PLEKHA4
PLEKHF1

PRRG4
RARRES3

RRAD
RSAD2
RTP4

SAMD9

SAMD9L
SECTM1

SLC22A23
SSTR2
STX11
THEMIS2

TMEM229B

TRANK1

TYMP
USP18

ZNF467
ZNFX1

interferon inducible (IFI and OAS proteins) and many are
involved in anti-viral activities. Since these pathways are
commonly activated in tumor cells and are upregulated

Frontiers in Pharmacology

04

during the transformed growth of fibroblasts, it is logical to

consider them as possible contributors to the mechanoptosis

sensitivity of the transformed growth state.
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Based upon common changes in gene levels in both
fibroblasts and breast tumor cells with transformed growth, it
is logical to argue that the genes involved are responsible for
changes in cytoskeletal organization of tumor cells. For example,
transformed cells produce high traction forces on matrices (Indra
et al., 2011; Alcoser et al., 2015) (Yang et al., 2020), whereas the
cytoplasm of transformed cells is softer which helps them to
efficiently metastasize to different tissues (Lv et al., 2021). The
organization of cell cytoplasm involves a cohesive actin network
that can bridge between adhesions (Cai et al., 2010; Rossier et al.,
2010). Further, nodes in the network are throughout cytoplasm
and can consequently contribute to the stiffness of the cell upon
indentation (Luo et al., 2013; Luo et al., 2016). What is currently
unclear is which proteins are involved in the changes in
cytoskeletal organization of tumor cells as well as how those
changes might be related to changes in ER-mitochondrial
organization that would enable mechanoptosis.

In vitro testing using combinations of
cytoskeletal drugs

Combination therapy, the use of two or multiple drugs at the
same time for treatment has become one of the fastest growing
therapeutic areas for cancer treatment (Mokhtari et al., 2021). On
the other hand, cytoskeleton targeting drugs, especially drugs
targeting microtubules and actin filaments, are used as
chemotherapeutic drugs in the clinics (Kubiak et al., 2020).
However, many of the approved cytoskeletal drugs, for
example, Paclitaxel (Taxol), mainly work through preventing
mitosis possibly by stabilizing microtubules (Gallego-Jara et al.,
2020). Other cytoskeleton components that are part of the
rigidity sensing modules and cell growth are still largely
overlooked.

Our recent findings have defined a number of components of
the rigidity sensors including DAPK1, PTPN12, AXL, EGFR,
Calpain 2, Src, and the cytoskeletal proteins such as myosin IIA,
tropomyosin 2.1, alpha actinin, filamin A, tropomodulin, and
a,P; integrin (Meacci et al., 2016; Wolfenson et al.,, 2016; Yang
et al., 2016; Saxena et al., 2017a; Saxena et al., 2017b; Qin et al,,
2018b) (Ghassemi et al., 2012). Of these components, DAPK1,
PTPN12, AXL, EGFR, tropomyosin 2.1 and alpha actinin have
roles as tumor suppressors in some cases. In the case of DAPKI,
it localizes with the rigidity sensors at the sites of integrin-ECM
On  soft
PTPNI12 phosphatase and rapidly leaves the pillars to

attachment. pillars, it is activated by
potentially activate apoptosis if enough adhesions are soft
(Qin et al,, 2018b). On stiff pillars, its density increases along
with other adhesion proteins potentially due to greater tyrosine
kinase activity. Although we expect that a similar set of events
takes place in transformed cells at adhesions, the details have not
been worked out. Once we understand the important changes in

the transformed growth state that enable unregulated growth, it
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would be possible to consider targeted drugs as well as
mechanical perturbations to inhibit tumor cell growth.

Thus, these findings raise a question of whether or not
cytoskeleton which rigidity
components, should be part of cancer combination therapy.
The the best
combination of drugs but also deciding the best concentration
of each drug. Fortunately, with the help of Artificial Intelligence

drugs targeting sensing

challenges include not only selecting

(AI) and high throughput preclinical screening systems,
researchers can effectively design the combination therapy for
different diseases or even individual patients in a remarkably
short time (Rashid et al., 2018). It is logical to screen for different
combination of drugs that will inhibit transformed cell growth
but not normal cell growth. Altogether, the combination of
various cytoskeleton drugs along with checkpoint inhibitors,
chemotherapeutic drugs, or mechanical therapies could serve
as a new avenue for cancer treatment in the future.

Tumor cell mechanoptosis: Mechanism
and future therapeutic directions

What are the requirements for tumor cell mechanoptosis?
The model in Figure 2 highlights the fact that myosin
contractility is needed for ultrasound-induced mechanoptosis
(Singh et al., 2021). This is not easy to interpret, since myosin
inhibition dramatically decreases actin polymerization and
causes the loss of the cytoplasmic actin networks that provide
cytoplasmic coherence (Cai et al., 2010; Rossier et al., 2010; Luo
et al, 2013). Many conditions including soft matrices cause
reduced myosin contractility in normal and transformed
growth cells and could thereby decrease mechanoptosis.
Alternatively, there are many drugs that activate tumor cell
apoptosis through a similar ER-mitochondrial stress pathway
to the one that is, activated by mechanical forces and may be
synergistic with mechanoptosis (Kumar et al., 2012; Lin et al,,
2014; Lu et al., 2019).

When tumor cells are able to grow for long periods, tumor
cells can differentiate to better grow in their microenvironment.
For example, propagating tumors in mice and serially selecting
tumor cells from specific tissues established tumor lines that
target specific tissues (Kang et al., 2003). When the growth of
those tumor cells was tested on matrices of different stiffness,
better growth was found on surfaces that mimicked the stiffness
of the tissues that they targeted (Kostic et al., 2009). The
differentiation potential of tumor cells indicates that it will be
difficult to find a common property of tumor cells. Further, there
are studies that show phenotypic changes of tumor cells with
different matrix environments (Paszek et al, 2005) or with
modifications of integrin function (Weaver et al., 1997).

Looking back to the basis of the transformed growth state and
the relation to regeneration and inflammation (Sheetz, 2019),
could be

transformed  growth stimulated by normal
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inflammatory processes. The increased expression of miR-21
downregulates Tpm2.1 expression and causes the loss of early
rigidity sensing, which occurs in many tumor cells (An et al,
2018; Yan et al,, 2018; Wang et al., 2019). Thus, there are many
factors like TGF-f8 that cause an increase in miR21 expression,
which will promote transformed growth (Qian et al., 2009; Dai
et al, 2017; Despotovic et al., 2021). These conditions are
reversible and can be related to the microenvironment as well
as circulating growth factors related to inflammation. For these
reasons, tumor growth can be episodic and respond to general
trauma or acute inflammation but will be slowed in non-
inflammatory conditions with depletion of miR-21. In this
example, tumor growth is still related to the loss of rigidity
sensing and the transformed growth state, which means that
treatments targeting the transformed growth state may still be
effective.

Conclusion

As we have noted, the transformed growth state is a general
property of tumor cells irrespective of tissue origin and thus, a
treatment that targets the transformed state can be effective
against different tumor types. Characterization of tumor cells
shows that they have altered cytoskeleton functions and can
undergo mechanoptosis. In early cancer studies, tumor cells were
described as being in a transformed growth state and the
transformed growth state has been shown recently to depend
upon depletion of the early rigidity sensor module that is,
activated in normal cells as they spread on matrices
(Wolfenson et al., 2016; Yang et al., 2020). Normal cells can
assume the transformed state upon depletion of single
cytoskeletal proteins involved in the rigidity sensing module
and conversely tumor cells will assume a rigidity-dependent
state upon restoration of normal levels of the depleted proteins
that then enable rigidity sensing (Yang et al., 2020). The most
common protein that is depleted in many cancers is
tropomyosin 2.1 and this can be the effect of miR21 causing
depletion of the tropomyosin 2.1 mRNA because miR21 is
upregulated in cancer development, wound repair and
inflammation (Qian et al., 2009; Dai et al., 2017; An et al,
2018). An important point is that the transformed state is
common to most tumor cells; therefore, treatments that
target the transformed state might be effective against many
tumor types.
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