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Adults are frequently inundated with statistics in the 
form of rational numbers, such as fractions (e.g., 1/4), 
percentages (e.g., 25%), decimals (e.g., 0.25), and 
whole-number frequencies (e.g., 25 out of 100). For 
instance, a woman may be presented with the statistic 
that one in eight women experience breast cancer in 
their lifetime and may rely on this information when 
deciding whether to schedule diagnostic screenings. 
How does she interpret this statistic? What numerical 
factors might influence her understanding of this breast-
cancer risk? If she were to compare this risk to that of 

heart disease, which affects one in four people in the 
United States, would she consider this to be a lower or 
higher health risk? Perhaps she, like many other people, 
would overestimate her risk of cancer relative to heart 
disease (Scheideler et al., 2017).
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Abstract
Rational numbers (i.e., fractions, percentages, decimals, and whole-number frequencies) are notoriously difficult 
mathematical constructs. Yet correctly interpreting rational numbers is imperative for understanding health statistics, 
such as gauging the likelihood of side effects from a medication. Several pernicious biases affect health decision-
making involving rational numbers. In our novel developmental framework, the natural-number bias—a tendency to 
misapply knowledge about natural numbers to all numbers—is the mechanism underlying other biases that shape 
health decision-making. Natural-number bias occurs when people automatically process natural-number magnitudes 
and disregard ratio magnitudes. Math-cognition researchers have identified individual differences and environmental 
factors underlying natural-number bias and devised ways to teach people how to avoid these biases. Although effective 
interventions from other areas of research can help adults evaluate numerical health information, they circumvent the 
core issue: people’s penchant to automatically process natural-number magnitudes and disregard ratio magnitudes. 
We describe the origins of natural-number bias and how researchers may harness the bias to improve rational-number 
understanding and ameliorate innumeracy in real-world contexts, including health. We recommend modifications to 
formal math education to help children learn the connections among natural and rational numbers. We also call on 
researchers to consider individual differences people bring to health decision-making contexts and how measures 
from math cognition might identify those who would benefit most from support when interpreting health statistics. 
Investigating innumeracy with an interdisciplinary lens could advance understanding of innumeracy in theoretically 
meaningful and practical ways.
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A myriad of factors influence the decisions people 
make about their own or others’ health. In this article, 
we focus on one critical aspect of many health decisions— 
(mis)interpretation of numerical health statistics that 
results from knowledge about, and experiences with, 
rational numbers. This is an important focus because 
this (mis)interpretation is malleable and can be improved 
via intervention. We outline the pernicious biases that 
affect people’s ability to reason with numerical health 
information. For example, people often neglect denomi-
nators and attend only to numerators when comparing 
health statistics such as 4 in 10,000 versus 3 in 1,000, 
and, in doing so, reach the mistaken conclusion that 4 
in 10,000 is the larger of the two risks, although it is 
smaller in magnitude than 3 in 1,000. In one real-world 
example, consumers believed they were getting less 
value for their money for A&W’s third-pound burger 
than McDonald’s Quarter Pounder because 3 is smaller 
than 4 (Conradt, 2016). This phenomenon, in which 
people attend only to one of two quantities in a ratio 
(a:b), or only to the numerator or denominator in a 
fraction in isolation, is known by different terms: ratio 
bias (Bourdin et al., 2022), the 1-in-x phenomenon, or 
denominator neglect in the health-cognition literature 
and natural-number bias or whole-number bias in the 
domain of math cognition (see Table 1).

Researchers in the field of decision-making have 
developed communication strategies to help adults rea-
son with numerical health information (e.g., Bonner 
et al., 2021; Lipkus, 2007; Nelson et al., 2008; Waters 
et al., 2016; Waters, Foust, et al., 2021; Waters, Maki, 
et  al., 2021; Zikmund-Fisher, 2011). However, these 
strategies do not necessarily address the root of the 
numerical biases that impede informed decision- 
making. Moreover, these biases are not limited to the 
health domain; they also occur in scholastic (e.g., Ni & 
Zhou, 2005), financial (Peters et al., 2019; Sobkow et al., 
2019), and presumably other contexts in which rational 
numbers are involved. These biases are all instances of 
a more general cognitive bias that results from the 
tendency to misapply knowledge about natural numbers 
to all other numbers (e.g., although 4 > 3, 3/1,000 > 
4/10,000; Siegler et  al., 2011). As mentioned above, 
this tendency is known as the natural-number bias in 
the domain of math cognition, and it arises from con-
straints on the human perceptual system, statistical 
regularities in the environment (i.e., prevalence of natu-
ral numbers in everyday life), and difficulties with 
rational-number understanding that stem from formal 
classroom lessons (Moss & Case, 1999). Figure 1 illus-
trates our novel developmental framework, which we 
describe in subsequent sections, including the anteced-
ents of natural-number bias and its downstream 

consequences. The two thick gray arrows in Figure 1 
are expanded in Figure 2 and illustrate the inflection 
points at which interventions can occur (i.e., in child-
hood or during adulthood) to dampen the effects of 
the natural-number bias.

In the current article, we explicate the benefits of 
integrating theoretical and methodological insights from 
the fields of both math cognition and health decision-
making. Prior reviews of numeracy in the domain of 
health decision-making have emphasized different the-
oretical perspectives that may account for innumeracy, 
including some from cognitive perspectives (Lipkus & 
Peters, 2010; Peters, 2020; Peters & Bjalkebring, 2015; 
Reyna, 2008; Reyna & Brainerd, 2007). In her book 
Innumeracy in the Wild, Ellen Peters (2020) described 
various mathematical and nonmathematical factors 
that affect health and financial decision-making. She 
asserted:

Our grasp of numbers and uncertainty is one of 
humankind’s most distinctive and important traits. 
It is pivotal to our exceptional ability to control 
the world around us as we make short-term 
choices and forecast far into the future. However, 
even very smart people can struggle with numbers 
in ways that pose negative consequences for their 
decision-making. Numeric ability equips individu-
als with vital tools that allow them to take charge 
of various aspects of their life. The more numerate 
enjoy superior health, wealth, and employment 
outcomes, whereas the innumerate remain more 
vulnerable (inside cover).

One overarching goal within the domain of numer-
acy and decision-making is to find ways to make the 
innumerate less vulnerable to adverse health outcomes. 
We propose that this can be done, at least in part, 
through developing and implementing interventions 
that help individuals think more deeply about the mag-
nitude of rational numbers, which should in turn 
decrease the likelihood of automatically processing 
ratios in a biased way. This article is intended to inform 
efforts to advance this overarching goal of promoting 
positive health outcomes.

In addition, we propose that our own recent cross-
disciplinary efforts have shown promise in integrating 
theoretical and methodological insights from both math 
cognition and health decision-making (Choi et al., 2020; 
Fitzsimmons, Woodbury, et al., in press; Mielicki, 
Fitzsimmons, Schiller et al., 2022; Scheibe et al., 2022; 
Thompson et al., 2021; Thompson, Taber, Sidney, et al., 
2020). We believe that interdisciplinary, collaborative 
science that bridges domains has the potential to make 
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Table 1.  Glossary of Terms

Domain-general process

Relational reasoning Domain-general reasoning about the relations among concepts instead of the concepts in 
isolation. For example, a dog running behind a cat represents the “chasing” relation, and 
3/7 represents the relation between components of the ratio: the whole (7 of 7) and the 
parts (3 of 7).

Cross-species number systems and capacity with numbers

Approximate number system Early emerging system that allows people and animals to perceive the approximate numeric 
value of sets without counting (e.g., 16 dots is more than 8 dots). Some researchers 
suggest that it is a system that allows people and animals to perceive magnitude instead of 
number because number covaries with other continuous aspects of stimuli, such as surface 
area and density, which might instead be what people and animals are perceiving.

Magnitude processing system The ability to process numerical magnitudes may be made possible by a general system that 
facilitates processing of magnitudes of any kind (e.g., length, brightness, weight, space).

Ratio processing system Early emerging system that allows people and animals to perceive approximate ratios 
without calculating (e.g., 16 blue dots for every 8 yellow dots is the same ratio as 2 
blue dots for every 1 yellow dot). The extent to which this system is distinct from the 
approximate number system is debated.

Number sense Basic ability that allows people and animals to reason with nonsymbolic numerical 
magnitudes

Numeric ability (or lack thereof) and preferences

Numeracy Math ability or “understanding and use of mathematical concepts” (Peters, 2020); can be 
assessed with subjective (i.e., perceptions) or objective (i.e., calculations) measures. OECD 
(2016) defines it as “the ability to access, use, interpret, and communicate mathematical 
information and ideas, in order to engage in and manage the mathematical demands of a 
range of situations in adult life” (p. 48).

Innumeracy Lack of, or deficit in, numeracy

Types of numbers

Natural numbers Positive integers beginning with 1
Whole numbers Positive integers and 0
Rational numbers Fractions, percentages, decimals, and whole-number frequencies. In symbolic form, a rational 

number can take the fraction form a/b, where a and b are typically integers, and b is not 
allowed to be equal to 0. This symbolic form of a rational number explains why integers 
and decimals are instances of rational numbers (e.g., the integer 2 can be expressed as 
2/1 and the decimal .75 can be expressed as 3/4).

Ratio Relationship between two quantities (e.g., three roses:five daisies) or a part related to a 
whole (e.g., three roses:eight flowers). The rational-number magnitude associated with 
a ratio a:b, is a/b, where b is not equal to 0 (e.g., the ratio of 3 cups of flour to 4 cups 
of sugar means there is 3/4 cup of flour for each cup of sugar, or $50 for 5 sandwiches 
means a rate of $10 per sandwich. In this article, a ratio a:b and its fraction or magnitude 
representation a/b are used interchangeably, which also means that the two quantities a 
and b are sometimes referred to as the numerator and the denominator.

Unit fraction Fraction with a numerator of one (e.g., 1/3 or 1/12). From a measurement or number-line 
perspective, a unit fraction takes the form 1/b, where b is a positive integer. They are 
called unit fractions because they represent the units that are iterated or copied in the 
fraction a/b; i.e., a/b means copies or iterations of a 1/b unit (e.g., 3/5 means 3 copies or 
iterations of a 1/5 unit).

Symbolic numbers Refers to presenting numeric information with Arabic or Roman numerals (e.g., 1, 1/2, III)
Nonsymbolic numbers or ratios Refers to presenting number or ratio information with continuous line segments (e.g., one 

line segment is twice as long as the other), or discrete, countable objects, sounds, or 
events (e.g., ↑↑↑↑ to represent 4).

Small-component equivalent 
fractions

Fractions that often have single-digit numerators and denominators yet are defined relative to 
a large-component equivalent fraction that has the same magnitude but larger numerator 
and denominator components (e.g., 1/2, a small-component fraction, is equivalent to 
15/30, a large-component fraction).

(continued)
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the greatest real-world impact (Klein et al., 2017). Psy-
chology is a “hub science” with strong connections to 
many other disciplines (Cacioppo, 2007). Similar to 
other “calls to action” that have urged researchers to 
clarify terminology and measurement tools to move 
fields forward (Norton & Nurnberger-Haag, 2018; 

Rittle-Johnson, 2017), a collaborative approach among 
scientists who identify as cognitive, developmental, 
social, and health psychologists; math-education 
researchers; and judgment and decision-making 
researchers is critical to meeting the goal of helping 
adults appropriately interpret the numerical information 

Large-component equivalent 
fractions

Fractions that often have double-digit numerators and denominators yet are defined relative 
to a small-component equivalent fraction that has the same magnitude but smaller 
numerator and denominator components (e.g., 15/30, a large-component fraction, is 
equivalent to 1/2, a small-component fraction).

Types of biases

Natural-number bias Also known as the whole-number bias. An overgeneralization of natural-number knowledge 
to all rational numbers. One example is attending to only the numerators or denominators 
of a fraction in isolation rather than considering the magnitude, or size, of the fraction. 
People may also judge fractions with larger numerators and denominators (e.g., 15/30) as 
larger than an equivalent fraction with smaller components (e.g., 1/2).

Ratio bias/denominator neglect Only considering the numerator, and not the denominator, when reasoning with a fraction or 
ratio.

1-in-x phenomenon Refers to presenting risk information as 1 over a denominator, which often causes people 
to overestimate personal risk compared with presenting risk information as an equivalent 
ratio with a larger numerator and denominator.

Outcomes of Innumeracy in
Adulthood

• Avoidance of STEM Careers

• Lower Earning Potential

• Negative Impacts on Health
and Financial Decision-
Making or Any Other
Context in Which 
Rational Numbers 
Must Be Interpreted

Constraints
on the

Perceptual System

(Weber-Fechner)

Approximate 
Number System

(ANS)

Ratio
Processing

System
(RPS)

Formal (Classroom)
and Informal (Home)

Experiences with
Numbers

Curriculum Sequence

Statistical Regularities
in Environment 

Gender Differences in
Performance and

Confidence

Math Anxiety

Math Attitudes

Natural-
Number Bias

Ratio Bias

Denominator
Neglect 

1-in-x
Phenomenon

Perceptual Constraints
Natural Numbers

Are Common

Individual
Differences

Natural-Number Bias 
Is the Overarching 

Phenomenon
Downstream 
Consequences

Approximate 
Magnitude System 

(AMS)

Fig. 1.  A novel developmental framework for identifying the antecedents and downstream consequences of the natural-number bias. Each 
section of the figure is discussed in detail in the text. The thick gray arrows are inflection points at which interventions can occur (i.e., in 
childhood or during adulthood) to dampen the effects of the natural-number bias. Note that there are downstream consequences of the 
natural-number bias in any situation in which people must interpret rational numbers.

Table 1.  (continued)
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inherent in health statistics. It is very difficult for any 
one researcher to stay completely abreast of nuances 
in multiple fields of research, especially when the same 
constructs are referred to with different terminology 
(see Table 1). By taking a “team-science” approach 
(Hall et al., 2018; National Research Council, 2015) in 
which we examine the research problem through vari-
ous research lenses, we can create and test multifaceted 
solutions that may be more impactful than those pro-
duced from any one discipline alone.

In the next sections, we provide an overview of (a) 
the far-reaching negative consequences of innumeracy, 
or a lack of math literacy, in real-world contexts; (b) a 
mechanistic explanation of the origins of natural-number 
bias; (c) differing goals across disciplines for circumvent-
ing numerical biases via interventions; and (d) recom-
mendations for ways to improve math education in the 
service of battling innumeracy.

Innumeracy’s Far Reach

Many people struggle with numeracy, “the ability to 
access, use, interpret, and communicate mathematical 
information and ideas, in order to engage in and manage 
the mathematical demands of a range of situations in 

adult life” (Organisation for Economic Cooperation and 
Development [OECD], 2016, p. 48). Strikingly, results from 
the Programme for International Student Assessment 
(OECD, 2019) show that U.S. 15-year-olds perform 
below the international average on math literacy, which 
emphasizes the ability to use math in real-world con-
texts. This is troubling because low numeracy earlier 
in life relates to poorer math performance in later child-
hood (Siegler et al., 2012) and has health and financial 
implications for outcomes in adulthood (National Math-
ematics Advisory Panel [NMAP], 2008; Peters et al., 2019).1

Misunderstanding the ways in which numerical mag-
nitudes relate to one another is one source of innu-
meracy. Difficulties with ratios are due in part to ratios 
being relational constructs (Siegler et al., 2011; Sidney 
& Thompson, 2019)—the first quantity must be inter-
preted in relation to the other quantity (e.g., three of 
seven parts for the ratio 3:7, or its fraction form 3/7; Paik 
& Mix, 2003), and both of these units must be interpreted 
relative to the whole unit (e.g., seven of seven parts is 
the whole). It is for this reason that ratios can be thought 
of as analogous to Piaget’s class-inclusion problem used 
to assess children’s relational reasoning (see also Reyna, 
1991; Wolfe & Reyna, 2009). For example, when pre-
sented with an array of three red roses and four daisies, 
young children often respond that there are more daisies 
than flowers. This is likely because children focus on the 
two distinct subsets (three red roses vs. four daisies) 
rather than the subset of four daisies relative to the 
whole set of seven flowers.

Failure to engage in relational reasoning underlies 
people’s difficulty understanding rational numbers and 
contributes to natural-number bias (Alibali & Sidney, 
2015; Braithwaite & Siegler, 2018b; Fitzsimmons et al., 
2020b; Lamon, 2020; Ni & Zhou, 2005; Sidney &  
Thompson, 2019; Siegler et al., 2013). This bias likely 
arises because of people’s extensive experience  
with, and confidence in, dealing with natural numbers 
(Dehaene & Mehler, 1992; Fitzsimmons et al., 2020a). 
From a young age, people have extensive experience 
reasoning with natural numbers. However, these experi-
ences are narrowly constrained to reasoning about 
absolute magnitudes (e.g., three red roses). Experiences 
that focus on reasoning about relative magnitudes (e.g., 
how the number of roses relates to the total number of 
flowers) are less common and tend to occur later in 
development. Natural-number bias arises when the 
parts are dissociated from the whole for quantities that 
mathematically exist in relation to one another. Further-
more, natural-number bias is not relegated just to those 
individuals who are low in numeracy. Rather, it is a per-
vasive problem that affects people of all ages (Alibali 
& Sidney, 2015; Braithwaite & Siegler, 2018b; Fazio 
et al., 2017; Ni & Zhou, 2005; Opfer & DeVries, 2008), 
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Fig. 2.  Inflection points for interventions to override the natural-
number bias. If we intervene on adults, they could help children 
combat natural-number bias as caregivers and teachers. If we inter-
vene on children, they will become adults who are less likely to fall 
prey to the natural-number bias.
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cultures (Alonso-Diaz et al., 2019; DeWolf & Vosniadou, 
2015; Gómez et al., 2015; Van Hoof et al., 2020), and 
levels of expertise (Obersteiner et  al., 2013; Reyna, 
2004). This suggests that decision-making biases do not 
suddenly occur in adulthood and thus may be amenable 
to earlier intervention.

Innumeracy exerts downstream consequences in 
educational, health, and financial contexts (Nelson 
et al., 2008; NMAP, 2008; Peters et al., 2019; Trevena 
et al., 2021). Natural-number bias can lead directly to 
innumeracy in the health domain (Fig. 1, rightmost 
box). Innumeracy, in turn, is also associated with avoid-
ance of higher-level math courses and STEM careers 
(Ashcraft & Kirk, 2001), which can affect access to 
higher education and earning potential (NMAP, 2008). 
Innumeracy is also related to negative outcomes in 
financial contexts (Peters et al., 2019) and arguably any 
context in which rational numbers must be accurately 
interpreted.

Identifying a Common Driver of 
Innumeracy: Natural-Number Bias

Natural-number bias is a broad phenomenon that 
accounts for a myriad of findings, including the over-
generalization of whole-number arithmetic strategies 
when solving fraction arithmetic problems (Siegler 
et  al., 2011), consideration of only natural numbers 
when evaluating possible values of variables (Van Hoof 
et al., 2015), and failure to recognize that between any 
two fractions there are an infinite number of other pos-
sible fractions (Vamvakoussi & Vosniadou, 2010). For 
example, when presented with rational numbers such 
as 1/8 and 1/4, people may fail to attend to the numera-
tors because they are the same (Bonato et  al., 2007; 
Opfer & DeVries, 2008; Schneider & Siegler, 2010; 
Thompson & Opfer, 2008). Said another way, in the 
breast-cancer versus heart-disease example above (one 
in eight vs. one in four), people are more likely to only 
attend to the denominator rather than considering the 
fraction’s magnitude because the denominators differ 
from one another and the numerators do not. Knowing 
that eight is greater than four, people may mistakenly 
decide that 1/8 > 1/4. This is an example of natural-
number bias because this error demonstrates an over-
generalization of knowledge about natural numbers 
(that eight is greater than four) and a failure to com-
prehend the magnitude of the ratio formed by the rela-
tion between the numerator and denominator: 1/8 = 
12.5%, which is less than 1/4 = 25%. Not only do chil-
dren and adults sometimes fail to understand which 
fraction is larger, but natural-number knowledge also 
interferes in estimating just how large (or small) frac-
tions are, for example, considering 1/60 to be closer to 

1/1 than 1/1,440 because 60 is closer to 1 than 1,440 
(Opfer & DeVries, 2008; Thompson & Opfer, 2008).

In Figure 1, we propose a novel developmental trajec-
tory, drawing on research specifically from math cogni-
tion and education, that likely contributes to innumeracy. 
In this trajectory, we describe (a) the limitations of the 
perceptual system; (b) the processing systems capable 
of representing large approximate numbers, ratios, and 
magnitudes more generally that are shared across ages, 
cultures, expertise levels, and species; (c) the statistical 
regularities in the environment and formal classroom 
instruction on rational numbers that could predispose 
people to the natural-number bias; (d) critical individual 
differences that affect performance on pure numerical 
tasks and health decision-making tasks; and (e) the real-
world consequences of natural-number bias on innu-
meracy. The developmental trajectory identifies two 
critical inflection points for intervention—one in child-
hood and one in adulthood—that are represented with 
the large gray arrows in the figure. First, we briefly 
describe the subcomponents of our novel developmental 
framework. We then provide more details about our 
claim that natural-number bias is the overarching phe-
nomenon that encompasses ratio bias, denominator 
neglect, and the 1-in-x phenomenon. Last, we describe 
how natural-number bias may be adaptive in some con-
texts, how individual differences influence decision-
making involving rational numbers, and some educational 
interventions that improve natural-number bias.

What Underlies the Natural-Number Bias?

Perceptual constraints2

From a historical perspective, research from as early as 
the 1800s has shown that the human perceptual system 
is limited in systematic ways. Consider the Weber-
Fechner law: For a person to notice a change in the inten-
sity of a stimulus (e.g., the number of additional candles 
beyond just one that must be lit for one to notice a 
difference in the brightness of a large, dark room), the 
difference must reach a specific threshold proportional 
to the intensity of the original stimulus. In the case of 
the visual perception of nonsymbolic numbers (Fig. 3), 
a person decides that four objects is greater in magni-
tude than two more quickly and accurately than decid-
ing that 104 objects is greater than 102 (i.e., size effect) 
because the ratio of the first pair is considerably larger 
than the ratio of the second. Furthermore, the more 
distant two numbers, the easier they are to discriminate 
from one another (i.e., distance effect; Dehaene, 2011; 
Dehaene et  al., 1998) and remember (Thompson & 
Opfer, 2016; Thompson & Siegler, 2010). Humans of all 
ages (McCrink & Wynn, 2007; Xu & Spelke, 2000), even 
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those who lack a complex formal counting system (Pica 
et  al., 2004), as well as nonhumans (e.g., Dehaene, 
2011; Dehaene et  al., 1998; Rugani et  al., 2016), can 
differentiate approximate magnitudes when they differ 
by a just-noticeable difference (i.e., that individual’s 
threshold). Specifically, humans possess an early emerg-
ing system (or systems) to process numerical and/or 
spatial information. However, the exact nature and 
developmental trajectory of this system (or systems) 
and what exactly is processed have been debated. Some 
have proposed that the approximate number system is 
used to process large approximate numbers3 (Feigenson 
et al., 2004; Halberda et al., 2012), whereas others assert 
that separate core knowledge systems process number 
and space (Spelke & Kinzler, 2007). Some argue that a 
dedicated ratio-processing system processes rational 
numbers ( Jacob et  al., 2012; Matthews et  al., 2015), 
whereas others argue that the approximate magnitude 
system processes magnitudes of any kind (Leibovich 

et al., 2017; Newcombe et al., 2015). Constraints of the 
human perceptual system have implications for how 
humans reason about natural and other rational 
numbers.

Natural numbers are extremely 
prevalent in the environment

Although humans are equipped with an early emerging 
system that allows them to automatically process rational-
number information, the environment plays a key role 
in how humans process symbolic numbers (e.g., Braith-
waite & Siegler, 2018b; Ni & Zhou, 2005). Across many 
cultures, humans have substantially more experience 
with symbolic (i.e., Arabic numerals) natural numbers 
than other symbolic rational numbers. Given the struc-
ture of symbolic fractions, any experience with symbolic 
ratios, fractions, decimals, percentages, or whole-number 
frequencies is necessarily also an experience with sym-
bolic natural numbers that compose the ratio. For 
instance, every time that a person encounters the fraction 
1/2, they also encounter the natural numbers 1 and 2. 
This is one likely reason4 that the fraction 1/2 is rated 
as highly familiar—and more familiar than the equivalent 
fraction 15/30 (Fitzsimmons et al., 2020a; Fitzsimmons 
& Thompson, in press). Because 1/2 is composed of the 
numerator 1 and the denominator 2, natural numbers 
more familiar than 15 and 30 (Dehaene & Mehler, 1992), 
this may contribute to the overall impression of greater 
familiarity of 1/2 relative to 15/30.

Symbolic and nonsymbolic natural numbers (mag-
nitudes, such as a collection of objects or partitioned 
lengths; Begolli et  al., 2020; Boyer et  al., 2008) are 
prevalent in formal classroom environments as well as 
informal out-of-school environments (Bustamante et al., 
2020; Carraher et al., 1985). People are acutely attuned 
to this numeric information, possibly because of the 
early emerging numerical knowledge described above 
as well as humans’ sensitivity to patterns in the environ-
ment. In fact, even young children have a propensity 
to spontaneously focus on numeric information in their 
environments (Chan & Mazzocco, 2016; Hannula et al., 
2010), and before their first birthday, infants learn to 
recognize new patterns (e.g., ABB) that diverge from 
previously encountered statistical regularities in their 
environment (Marcus et al., 1999; Saffran et al., 1996).

The type and quantity of linguistic input about num-
bers that children receive at home can support their 
later math development (Eason & Ramani, 2020; Levine 
et al., 2010; Pruden et al., 2011). However, children’s 
environmental input is biased because small natural 
numbers (e.g., 1, 2, 3) are more prevalent in the early 
linguistic environment relative to large natural numbers 
(e.g., 231, 232, 233; Dehaene & Mehler, 1992).

Fig. 3.  A nonsymbolic array of dots in which overall surface area is 
controlled. Dot arrays such as this one are accessible for research via 
https://panamath.org. These arrays can be interpreted in many ways. 
For example, people may be asked to decide which color is more 
numerous than the other. The correct answer is that there are more 
yellow than blue dots (16 > 12). Or, people may also be given a cover 
story that asks them to think about the dots like pieces of candy in 
a jar and that they should try to maximize their likelihood of choos-
ing a yellow piece of candy because they taste the best (Fazio et al., 
2014). In this jar, the ratio of yellow to blue is 16:12 or 4:3. This also 
means that the person has 16 out of 28 or a 57% chance of picking 
out a yellow piece of candy from this jar. If there were eight yellow 
and six blue, the ratio would be the same but expressed with different 
natural-number components. There are an infinite number of ways to 
symbolically express this ratio. As indicated in the text, every example 
of a symbolic or a nonsymbolic ratio is also an additional experience 
with natural numbers. Thus, natural numbers are necessarily more 
prevalent in environmental input than rational numbers. Note that the 
surface area is controlled for the dots in this figure; there are more 
yellow than blue dots, but some of the yellow dots are substantially 
smaller than some of the blue dots. This type of experimental control 
is crucial to show that infants and nonhuman animals have a specific, 
early emerging capacity for numbers, as opposed to other stimuli 
characteristics that covary with number (e.g., surface area, density).

https://panamath.org
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The prevalence of natural numbers in the environ-
ment likely contributes to natural-number bias. For 
example, children’s experiences that illustrate how natu-
ral numbers such as 15 and 30 are larger than 1 and 2 
may contribute to their tendency to overestimate large-
component (e.g., 15/30) relative to small-component 
(e.g., 1/2) equivalent fractions (Braithwaite & Siegler, 
2018b). In addition, not only are children and adults 
more familiar with fractions containing small relative to 
large natural-number components, but they are also 
more accurate when estimating equivalent fractions with 
smaller relative to larger natural-number components 
(Fitzsimmons et al., 2020a; Fitzsimmons & Thompson, 
in press). Furthermore, environmental input can lead to 
the types of math errors that children make. When the 
various fraction arithmetic problems found in popular 
elementary math textbooks were entered into a compu-
tational model as input, the model’s errors resembled 
those made by children (Braithwaite & Siegler, 2018a). 
One common error involved the overapplication of 
whole-number arithmetic procedures to fraction arith-
metic problems. For example, adding across numerators 
and denominators leads to an incorrect answer on a 
fraction addition problem. Natural-number bias errors 
are not limited to children in educational contexts but 
are also observed for adults in a prisoner’s-dilemma 
decision-making scenario. Adults were more likely to 
cooperate rather than defect when they were offered 
300 cents compared with $3 (Furlong & Opfer, 2009) 
because 300 > 3, although the monetary incentives were 
equivalent (i.e., 300 cents = $3).

Modifying the environment can have dramatic educa-
tional implications. Moss and Case (1999) tested an 
experimental curriculum that changed the order in which 
rational-number types were introduced to leverage chil-
dren’s understanding of percentages toward understand-
ing decimals and fractions. This intervention improved 
children’s understanding of rational numbers and 
reduced natural-number bias relative to a control group 
of children who learned about rational-number types in 
the typical order (fractions first, followed by decimals). 
Moss and Case’s intervention was effective but was 
implemented over the course of several months. Impor-
tantly, however, even small modifications can minimize 
common mathematical misconceptions, as has been 
shown with a different misconception relating to chil-
dren’s understanding of the equal sign (McNeil, 2008; 
McNeil et al., 2015). Young children have extensive prac-
tice with “right-blank” addition problems (i.e., 2 + 3 = —)  
and subsequently develop a misconception that the 
equals sign means “find the answer” rather than an 
indication that the quantities on both sides should be 
the same. By simply practicing problems in a workbook 
with the blanks on the left (i.e., — = 2 + 3), children  

developed a more conceptual understanding of equiva-
lence (i.e., what is on the left of the equation must be 
equal to what is on the right) that persisted across 5 to 
6 months. These studies suggest that the nature of chil-
dren’s experiences in classrooms affects their reasoning. 
Given that people have substantially more experience 
with natural numbers compared with other rational num-
bers, these common experiences may influence their 
reasoning when they encounter numerical information 
in everyday life.

Individual differences affect rational-
number understanding

There are important individual differences (e.g., objec-
tive and subjective numeracy, magnitude understand-
ing, math attitudes, math anxiety, confidence) that may 
affect how accurately people interpret numerical risk 
information. As we describe later, it is imperative to 
consider a variety of individual differences when evalu-
ating how people reason about rational numbers during 
health decision-making.

Natural and rational numbers are 
not coherently integrated in formal 
instruction

In the United States, the Common Core State Standards 
in Math (National Governors Association Center for Best 
Practices & Council of Chief State School Officers, 2010) 
recommends that symbolic fractions (e.g., 3/7) should 
not be formally introduced in math classrooms until the 
third grade. However, by this point in the curriculum, 
children have had nearly a decade of formal and infor-
mal experiences with natural numbers that can help or 
hinder them as they reason about fractions in formal 
and informal math contexts.

The disconnect between natural numbers and frac-
tions is exacerbated because U.S. teachers receive little 
guidance on how to emphasize the shared mathemati-
cal structure of natural numbers and fractions to their 
students (for suggestions on using number lines to illus-
trate connections between natural numbers and frac-
tions, however, see Siegler et  al., 2010). In fact, the 
Common Core State Standards exclusively focus on 
children’s ability to understand absolute magnitudes of 
whole numbers prior to third grade. The standards 
focus on fractions as relational magnitudes over a pro-
tracted period, from third through fifth grade, and then 
address ratios and proportions in sixth grade. Thus, it 
is likely that children are learning about different 
aspects of rational numbers from different teachers 
across several years of formal schooling. Even after 
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years of fraction instruction, middle school students 
(Siegler et  al., 2011), community college students 
(Schneider & Siegler, 2010), and even college students 
at selective universities (Fazio et al., 2017) succumb to 
fraction errors that arise from their misapplication of 
natural-number knowledge to all other numbers 
(Siegler, 2016).

Natural-Number Bias is the 
Overarching Phenomenon

Several phenomena identified in the field of decision-
making—ratio bias, denominator neglect, and the 1-in-x 
phenomenon (described below)—are the result of  
natural-number bias (i.e., the tendency to focus on natu-
ral numbers and natural-number strategies when reason-
ing about ratios). Our innovative interpretation is that 
natural-number bias is the overarching construct that 
subsumes these phenomena identified in the decision-
making literature.

At its core, the natural-number bias is a failure to 
engage in relational reasoning (Gentner, 1983) by con-
sidering concepts in isolation rather than in relation to 
one another.5 Rational numbers and natural numbers 
share many common features that can be adaptively 
leveraged when people attempt to apply their knowl-
edge about natural numbers when reasoning with ratio-
nal numbers (Sidney, Thalluri, et  al., 2019; Yu et  al., 
2020, 2022). However, as our many examples have illus-
trated, overgeneralizing and misapplying the properties 
of natural numbers to rational numbers can lead to 
inaccurate estimates of rational-number magnitude. In 
general, this is problematic and can lead to several 
biases in decision-making, including ratio bias, denomi-
nator neglect, and the 1-in-x phenomenon (described 
below). These biases, which are just different instances 
of failure to engage in relational reasoning to process 
rational-number magnitudes, can hinder accurate esti-
mates of health statistics presented as rational numbers, 
which may have adverse consequences for health 
decision-making.

Ratio bias and denominator neglect

Ratio bias, also known as denominator neglect, occurs 
when people focus on the natural-number components 
of a ratio. This bias has been shown in probability 
scenarios, such as giving people a choice between two 
bowls of jellybeans, one containing 1 red and 9 white 
and another containing 9 red and 90 white and asking 
them to choose which bowl would optimize their likeli-
hood of choosing a red jellybean. In these scenarios, 
people will often choose from the bowl with a larger 
absolute number of red jellybeans (9 vs. 1), even when 

the proportion of red to white jellybeans is lower in 
that container (9/100 = 9% vs. 1/10 = 10%; Denes-Raj 
& Epstein, 1994; Peters et al., 2006).

Critically, it is also an example of natural-number bias, 
a failure to attend to the relation between two numbers 
while instead focusing on each quantity in isolation. 
Studies in math cognition have conducted analyses of 
the open-ended strategy reports in which children and 
adults describe how they estimated and compared frac-
tion magnitudes. It is common for people to explicitly 
mention in their strategy reports that they focused on 
numerators in isolation (Fazio et  al., 2017; Sidney, 
Thalluri, et  al., 2019; Siegler et  al., 2011; Siegler & 
Thompson, 2014; Thompson et al., 2021). People also 
focused on just numerators early in the COVID-19 pan-
demic when the news media and politicians claimed that 
the seasonal flu was more common than COVID-19 
because the absolute number of flu deaths was greater 
than the absolute number of COVID-19 deaths (Mielicki, 
Fitzsimmons, Schiller, et al., 2022; Netburn, 2020; Scheibe 
et al., 2022; Thompson, Taber, Sidney, & Coifman, 2020; 
Thompson et al. 2021). This misunderstanding of case-
fatality rates likely influenced people’s beliefs that 
COVID-19 was less of a threat than the seasonal flu. 
Therefore, given that natural-number bias involves either 
a focus on numerators or denominators in isolation, we 
argue that it is the overarching phenomenon that encom-
passes ratio bias and denominator neglect.

1-in-x phenomenon

According to research on the 1-in-x phenomenon, people 
overestimate risks represented with one as the numerator 
(e.g., 1 in 5) relative to equivalent risks with a larger 
numerator (e.g., 15 in 75; Pighin et al., 2011; Sirota et al., 
2018; Zikmund-Fisher, 2011). It is important to note that 
the phenomenon in which people overestimate the mag-
nitude of ratios with smaller relative to larger numerator 
and denominator components is not specific to ratios 
with a numerator of one. For example, some adults dem-
onstrated a reverse bias when they estimated the location 
of equivalent ratios on number lines (Fitzsimmons et al., 
2020b), or when they were more accurate at comparing 
fractions that were incongruent relative to congruent with 
the order of natural numbers (e.g., 11/19 > 23/52, 
although 11 and 19 are smaller natural numbers than 23 
and 52; (Obersteiner et al., 2020; Reinhold et al., 2020). 
Their responses suggested that they used the heuristic 
that smaller components = larger magnitudes. This heu-
ristic may develop based on their experiences that, in 
general, ratios with larger denominators have smaller 
magnitudes. Thus, the 1-in-x phenomenon, in which 1 
in 5 is overestimated relative to 15 in 75, is similar to 
biases for ratios with numerators other than one.
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Children and adults are influenced by the size of the 
independent natural-number components of ratios in 
complex ways. It is important for future research to 
investigate the conditions under which people demon-
strate the larger components = larger magnitude or the 
smaller components = larger magnitude bias.

Adaptive Strategy Choice: Is Natural-
Number Bias Always Bad?

Is natural-number bias always a bad thing, or in some 
contexts is the automatic processing of the natural-
number components of a ratio a more efficient strategy 
than computing the ratio’s magnitude? According to the 
adaptive strategy choice account (Alibali & Sidney, 2015; 
Fazio et  al., 2017; Fitzsimmons et  al., 2020b; Siegler, 
1996), people adaptively choose which strategy to 
deploy depending on interactions among characteristics 
of the task at hand, the specific natural numbers involved 
in the stimuli, recent experiences, and individual differ-
ences, such as objective math ability (Alibali & Sidney, 
2015; Fazio et al., 2017). Even when people encounter 
the same problem a second time, they may use a differ-
ent strategy to solve it (cf. strategy variability: Siegler, 
1994). That is, strategy variability can be viewed as 
advantageous, adaptive, and predictable under some 
circumstances (Fazio et  al., 2017; Fitzsimmons et  al., 
2020b; Sidney, Thalluri, et al., 2019).

One case in which attending to only the numerators 
or denominators in isolation may result in efficient strat-
egies is when people are asked to compare two unit 
fractions in a pure numerical context (1/2, 1/3, 1/4, 1/5, 
1/6, 1/7, 1/8, and 1/9) to choose the larger magnitude. 
In this case, it is more adaptive and efficient to use 
natural-number strategies (e.g., 8 is less than 9, so 
based on the smaller components = larger magnitudes 
heuristic, 8 is a bigger share of the whole) than to pre-
cisely calculate the ratio’s magnitude (Bonato et  al., 
2007; Schneider & Siegler, 2010). By relying on the 
heuristic that larger denominators typically result in unit 
fractions that have smaller magnitudes relative to the 
same whole unit, people can ignore the numerators 
altogether in their unit-fraction comparisons. Based on 
the adaptive strategy choice account, strategy variability 
in people’s approach to rational numbers is not only 
meaningful (i.e., not random) and predictable (Fazio 
et al., 2017; Sidney, Thalluri, et al., 2019) but also pro-
vides opportunities to shape people’s thinking by subtle 
manipulation of the problem-solving context (e.g., ask-
ing people to compare unit fractions to each other 
instead of other types of fractions).

It is an open empirical question whether cognitive 
biases, such as natural-number bias, have the potential 
to lead to positive health intentions and behaviors. For 

example, if the woman who is trying to make sense of 
the 1-in-8 risk of breast cancer in her lifetime mistakenly 
thinks about just the denominator and reasons that 8 is 
a pretty big number, at least relative to 4 (i.e., heart-
disease denominator), she might perceive her lifetime 
risk for breast cancer as greater. Even if her risk estimate 
is not objectively accurate, her heightened risk estimate, 
in part resulting from the risk being presented in 1-in-x 
format, might still prompt her to adhere to recom-
mended health behaviors, such as yearly mammograms 
after the age of 50 and monthly breast self-exams.

Some health decision-making researchers have sug-
gested that the 1-in-x format be adopted to communi-
cate health risks in a more personally meaningful way, 
on the premise that one possible reason why small-
probability risks might be overestimated is that the 
format encourages people to think more about them-
selves or another individual as the “1” in the numerator 
(Pighin et al., 2011). However, others (Cuite et al., 2008; 
Waters et al., 2016; Zikmund-Fisher, 2011, 2013a) have 
warned that the 1-in-x format should be avoided when 
communicating health risks because this format is likely 
to result in misunderstanding—typically, overestima-
tion—of personal health risks. The 1-in-x format does 
persist in health communications, such as the breast-
cancer and heart-disease statistics the woman was con-
sidering above (see https://www.cancer.org/cancer/
cancer-basics/lifetime-probability-of-developing-or-
dying-from-cancer.html).

Instead, we suggest that percentages might be con-
sidered easier to comprehend than the 1-in-x format. 
Mathematically, percentages involve the use of a com-
mon unit—“by the 100,” from the definition of percent 
as per (by) cent (100). This facilitates the process of 
comparing relative quantities. Although percentages are 
a relational construct, they perceptually look like whole 
numbers (Sidney et al., 2021; Thompson et al., 2021) 
because they convey “multiples” of a common unit (i.e., 
100 iterations of the unit 1/100). This feature of percent-
ages enables individuals to effectively apply their 
knowledge about natural numbers when processing 
ratios. In fact, people can just disregard the percentage 
sign in 75% and think about it like 75 because they are 
so familiar with the fact that 75 is a big number relative 
to 100 (Siegler & Opfer, 2003).

There are several lines of work that support commu-
nicating health risks as percentages.6 Math educators 
(Moss & Case, 1999) have proposed that percentages may 
function as a conceptual bridge between more familiar 
natural numbers and less familiar fractions. In addition, 
people endorse more positive attitudes toward percent-
ages than fractions (Mielicki, Fitzsimmons, Schiller,  
et al., 2021; Sidney et al., 2021). Thinking about per-
centages can engage knowledge about natural-number 

https://www.cancer.org/cancer/cancer-basics/lifetime-probability-of-developing-or-dying-from-cancer.html
https://www.cancer.org/cancer/cancer-basics/lifetime-probability-of-developing-or-dying-from-cancer.html
https://www.cancer.org/cancer/cancer-basics/lifetime-probability-of-developing-or-dying-from-cancer.html
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magnitudes. Reasoning about percentages between 0 and 
100 as natural numbers may cause natural-number bias 
to exert fewer negative effects, but only in some cases 
(e.g., when comparing magnitudes but not in multiplica-
tive contexts). For example, it is not mathematically accu-
rate to add percentages in the same way that one adds 
together natural numbers. That is, 20% off an original 
price plus another 10% off is not the same as 30% off the 
original price (see Cuite et al., 2008 for empirical evi-
dence in the health decision-making domain).

In summary, the natural-number bias encompasses 
other cognitive biases studied in the field of decision-
making. According to the adaptive strategy choice 
approach, natural-number bias is maladaptive in most 
contexts but can sometimes be adaptive. Future work 
could explore ways for health communicators to adapt 
materials to leverage the natural-number bias such as 
using percentages to communicate about ratio informa-
tion in some contexts.

Consistency in Measurement and 
Accounting for Individual Differences

Not only do math-cognition and decision-making 
researchers use different terminology, they also rely on 
different validated and reliable measures to assess peo-
ple’s objective and subjective math skills. In the decision- 
making literature, measures of objective numeracy, such 
as the Rasch-based numeracy scale (Weller et al., 2013) 
and the Berlin numeracy scale (Cokely et  al., 2012), 
require people to calculate to solve math problems. As 
it turns out, many people have more negative attitudes 
about math involving fractions and percentages than 
about math involving natural numbers (Sidney et  al., 
2021) and prefer to avoid doing math. Furthermore, 
objective numeracy scales are often presented as word 
problems, which are notoriously difficult to parse 
(Koedinger & Nathan, 2004) and may result in impulsive 
calculation (Schiller, 2020). Impulsive calculation (i.e., 
“plug and chug”) occurs when people read a math prob-
lem and immediately begin solving it before trying to 
make sense of the underlying structure of the problem 
(Chi et al., 1981).

Health decision-making researchers also rely on the 
subjective numeracy scale (Fagerlin et al., 2007) to mea-
sure self-reported math ability without the need for 
participants to calculate their answers, which avoids 
the issues mentioned above pertaining to objective 
measures. The subjective numeracy scale is correlated 
with objective measures of numeracy but is considered 
a distinct construct (Peters et al., 2019; Waters et al., 
2018). The scale is preferable to objective measures 
because it is quicker to administer.

Our team has observed that objective and subjective 
numeracy scales are predictive of health decision- 
making precisely because these scales tap into under-
standing of ratios: Objective measures are composed 
of items that assess the ability to calculate with ratios, 
and the subjective scale entails self-assessments about 
one’s ability to work with fractions and percentages. 
Given that health statistics inherently involve rational 
numbers and require people to judge the magnitude of 
their own or others’ risks, it is crucial that measures of 
math skills incorporate knowledge of ratios.

There are several objective measures of math skills 
validated in the field of math cognition that could be 
administered by decision-making researchers. One 
promising candidate is the number-line estimation task, 
in which participants are asked to estimate the location 
of numbers on a number line. Decision-making research-
ers have used number-line estimation tasks to measure 
adults’ symbolic number mappings (Peters & Bjalkebring, 
2015), but they have used a number-line estimation task 
in the 0 to 1,000 range. By second grade, children make 
precise estimates in this numerical range (Siegler & 
Opfer, 2003; Siegler et al., 2009); therefore, this measure 
may not be sensitive to individual differences in  
adults’ rational-number understanding. Instead, research-
ers should specifically consider number-line estimation 
tasks with fractions because rational-number under-
standing is crucial for interpreting health statistics. In 
research on numerical cognition, performance on frac-
tion number-line estimation tasks has been shown to 
be correlated with (Fazio et al., 2014; Siegler et al., 2011; 
Siegler & Thompson, 2014), and predictive of (Siegler 
et al., 2012), future overall math achievement. Further, 
fraction number-line estimation tasks are quick to 
administer and avoid the shortcomings of word prob-
lems (Thompson et al., 2021). Recent evidence suggests 
that math cognition measures, including fraction number-
line estimation tasks, predict health decision-making 
performance when entered simultaneously into models 
with objective and subjective measures commonly used 
in the decision-making literature (Thompson et  al., 
2021). That is, measures from math cognition are not 
redundant with measures from decision-making but 
rather explain unique variance in decision-making 
performance.

Another important individual difference that may 
affect people’s ability to reason with health statistics is 
math anxiety, or an apprehension about math that 
occurs in the mere presence or anticipation of numbers 
and numerical information. Decision-making research-
ers should always consider the effects of math anxiety 
on health decision-making performance that involves 
participants attempting to interpret numerical health 
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statistics. Math anxiety can be reliably assessed with 
one item (see Ashcraft, 2002; Núñez-Peña et al., 2014). 
Recent research has indicated that adults are more anx-
ious about fractions and very large natural numbers 
than percentages and small natural numbers (Mielicki, 
Wilkey, et al., 2021). If higher levels of math anxiety 
are linked to failure to reason deeply about numerical 
risk information or avoidance of numbers altogether 
(Thompson et al., 2021), then this could have implica-
tions for health decision-making scenarios, which often 
involve ratios. Choi et al. (2020) indicated that math 
anxiety, but not induced stress, was associated with 
performance on objective and subjective numeracy 
measures. Crucially, girls and women of different ages 
are less precise than boys and men when estimating 
the magnitude of numbers in pure numerical contexts 
as well as health contexts (Fitzsimmons, Woodbury,  
et al., in press; Geary et al., 2021; Hutchison et al., 2019; 
Rivers et al., 2021; Thompson & Opfer, 2008). Girls and 
women are also less confident in their estimation per-
formance even when controlling for overall estimation 
skills (Rivers et al., 2021; Thompson & Opfer, 2008). In 
summary, individual differences, such as preexisting 
math ability, confidence (Fitzsimmons et  al., 2020a; 
Rivers et al., 2021), math anxiety, and gender should 
always be taken into consideration to fully understand 
how people (mis)interpret numerical information as 
they make decisions about their health.

Educational Interventions to Improve 
Risk Interpretation

Decision-making researchers have devised ways to help 
people effectively evaluate health statistics in the 
moment (e.g., Wolfe & Reyna, 2009). In a common 
approach, researchers present the numerical health 
information via visualizations, such as icon arrays and 
risk ladders (Waters et  al., 2021). A primary goal of 
these decision-making approaches is to help people 
extract the gist of the numerical information (Reyna, 
2008) and better evaluate the presented statistics (Bon-
ner et al., 2021; Trevena et al., 2021). In this way, the 
visuals remove the burden of computing ratios by pre-
senting statistics as percentages, which can be easily 
“read off” the visual (e.g., 8 out of 10 rows of an icon 
array containing 10 ovals per row are shaded in, and 
the y-axis indicates 80%).

Although these types of approaches can be effective 
at helping people evaluate numerical health informa-
tion in isolated instances, they typically do not provide 
people with the tools to effectively evaluate numerical 
health information in the absence of visuals or other 
such cognitive supports (e.g., activating relevant prior 
knowledge: Sidney et al., 2022; Sidney, Thompson, & 
Rivera, 2019). In contrast, we consider two inflection 

points (see thick gray arrows in Fig. 1, which are 
expanded in Fig. 2) during which the natural-number 
bias can be inhibited or bypassed in childhood and 
adulthood. That is, we can teach children or adults how 
to understand ratios and subsequently transfer this 
learning to new contexts via the use of instructional 
interventions grounded in cognitive-science principles, 
such as the use of analogies to familiar contexts and 
worked examples.

To summarize, there is a philosophical difference in 
how decision-making and math-cognition researchers 
approach the problem of helping people make more 
mathematically accurate risk assessments. The health 
decision-making literature recognizes that clinicians do 
not have time to teach patients about math. Instead, 
health decision-making researchers rely on either struc-
turing health communications in ways to (a) prevent 
activation of numerical biases, such as the natural-
number bias, or (b) promote the use of noncognitive 
processes, such as visual perception, that bypass com-
putations entirely (e.g., an icon array in which a per-
centage risk can be read off without counting). Teaching 
people how to do the math is a long-term strategy for 
addressing problems such as the natural-number bias; 
it is worth the extra effort because people might then 
be able to translate what they learned in one situation 
to future situations rather than having to depend on 
always encountering a well-designed visual display (cf. 
Zikmund-Fisher, 2013b).

Before discussing our recent work implementing 
interventions with adults and addressing educational 
interventions with children, we describe some research 
from math cognition that informs natural-number bias 
interventions.

Magnitudes are the gist of rational 
numbers

Numerical magnitudes are the building blocks of all of 
mathematics (Siegler, 2016) and a common feature of all 
rational numbers (Siegler et al., 2011). This perspective 
aligns with the fuzzy-trace theory (Brainerd & Gordon, 
1994; Reyna, 2008). According to this theory, people can 
rely on the gist of numerical information (approximate 
or estimated magnitudes) or verbatim (exact) numerical 
information when making decisions. There is a develop-
mental shift in relying more on gist with age (Reyna, 
2012); “intuitive gist-based processing is considered 
more advanced in fuzzy trace theory” (Reyna & Brainerd, 
2008, p. 97) than relying on verbatim information. In 
accounting for gist and verbatim recall of numerical 
information, fuzzy-trace theory is a dual-processing 
model, and such models have been proposed by math-
cognition researchers to explain mechanisms underlying 
natural-number bias. For instance, when reasoning with 
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fractions, people must first inhibit their prepotent, auto-
matic whole-number response to later engage in more 
effortful, strategic reasoning and processing of the ratio’s 
magnitude (Vamvakoussi & Vosniadou, 2004; Van Hoof 
et al., 2020). The development of rational-number under-
standing may follow a trajectory like that described by 
the fuzzy-trace theory. If we consider the gist, or essence, 
of rational numbers to be their approximate magnitudes, 
then learners typically move from reasoning with exact 
information (i.e., the size of the natural-number compo-
nents of a fraction) to applying more intuitive gist-based 
reasoning by considering approximate rational-number 
magnitudes. People may be more likely to rely on the 
gist, or magnitude, of numbers when they have more 
robustly activated, or precise, mental representations of 
the magnitudes of those numbers (Alibali & Sidney, 
2015). If we can prompt or teach people to consider the 
gist of rational-number magnitudes, for instance when 
estimating the magnitude of a health risk, this may help 
them avoid the pitfalls of the natural-number bias and 
optimize decision-making.

Number lines clearly illustrate 
numerical magnitudes

Teaching about the magnitudes of ratios using number 
lines—horizontal visual displays in which smaller num-
bers are located on the left side of the line and larger 
numbers are located on the right side of the line (see 

Fig. 4)—capitalizes on prior natural-number knowledge 
to build accurate fraction understanding in the middle 
grades of elementary school (Sidney et  al., 2017; Yu 
et  al., 2020, 2022) and in adulthood (Sidney et  al., 
2022). Number lines are often present in classrooms 
because they are a critical part of training children how 
to reason about the magnitude of numbers and com-
pare those magnitudes to one another (see Common 
Core State Standards Writing Team, 2011; National Gov-
ernors Association Center for Best Practices & Council 
of Chief State School Officers, 2010). Number lines have 
helped people of all ages more accurately interpret the 
magnitude of numbers relative to one another and to 
the endpoints of the line (Fitzsimmons, Woodbury, et al., 
in press; Mielicki, Fitzsimmons, Schiller, et al. 2022; 
Siegler, 2016; Thompson et al., 2021).7 According to the 
integrated theory of whole number and fractions devel-
opment (Siegler et al., 2011), number lines are a useful 
tool to show what whole numbers and fractions have 
in common: magnitudes whose values can be placed 
on number lines.

Yu and colleagues (2020, 2022) aligned a number 
line ranging from 0 on the left to 8 on the right with a 
number line ranging from 0 on the left to 1 on the right. 
Children then marked the location for 3 on the 0 to 8 
number line and were then more accurate when placing 
3/8 on the 0 to 1 number line because this fraction is 
located at the very same point on the number line: 38% 
of the way across the number line from left to right. 

Fig. 4.  Bootstrapping whole-number knowledge to improve fraction estimation performance. Iterating the unit 
of 1 three times shows the location of 3 on the 0 to 8 number line on the left. Iterating the unit of 1/8 three 
times shows the location of 3/8 on the 0 to 1 number line on the right. In this way, knowledge about natural 
numbers can be bootstrapped to better understand fractions.
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Children can observe how the partitions for 1, 2, and 
3 out of 8 units are the same as 1/8, 2/8, and 3/8 out 
of 8/8 units (Steffe & Olive, 2009). In Figure 4, we 
visualize the way in which 3/8 equals 3 copies of a 
length of 1/8 from 0 and how this line segment is 
analogous to creating 3 equal copies of a length of 1 
whole unit from 0.

Number lines also capitalize on spatial-numeric rela-
tions to help people easily visualize numerical magni-
tudes (Dehaene, 2011; Opfer et al., 2010). In cultures 
with left-to-right orthographies, the mental number line 
is oriented with smaller numbers located on the left 
and larger numbers located on the right just like the 
number-line visual display. Number-line visual displays 
are thought to be a central conceptual structure (Griffin 
et al., 1994) to help children and adults map their men-
tal magnitudes onto physical space.

Finally, number lines may make it much easier to 
identify and relationally reason about the part versus the 
whole to help people successfully solve class-inclusion 
problems (Reyna, 1991). The red line that stretches from 
the left of the number line to the vertical arrow in Fig-
ure 5b indicates the magnitude, or the part; the end of 
the number line represents the whole. Conversely, 
because the icon arrays commonly used to present 
health statistics include discrete, compared with con-
tinuous, magnitudes, it is possible that these icon arrays 
may bias people to count and compare subsets of icons 
(red vs. gray ovals) rather than compare the magnitudes 
of each subset relative to the whole (red vs. all ovals), 
as has been found in prior research comparing discrete 
and continuous formats of ratios (Begolli et al., 2020; 
Boyer et al., 2008). The extent to which discrete icon 
array formats encourage counting strategies in health 
contexts is an empirical question for future research 
(e.g., Stone et al., 2003).

Interventions to address decision-
making biases in adults

Our team has successfully implemented interventions 
aimed at reducing natural-number bias in adults. One 
such intervention, used by Thompson and colleagues 
(2021), is described in more detail in Figure 5a. This 
intervention featured several components informed by 
cognitive-science research, including worked examples, 
analogies to familiar contexts, and using number lines 
to represent rational numbers. Of note, this educational 
intervention (Figs. 5a and 6) incorporated procedural 
instruction (i.e., step-by-step procedure for translating 
from a decimal to a percentage) as well as conceptual 
instruction (i.e., deaths must be considered relative to 
total infections; flu case-fatality rate is a very small 

number less than 1% and much closer to 0% than 5%). 
Procedural and conceptual knowledge develop in tan-
dem with one another (Rittle-Johnson, 2017). We trained 
participants on how to carry out the correct calculation 
procedures in case some adults lacked the relevant prior 
knowledge to reason about rates. We also included con-
ceptual training to explain why the procedures work the 
way that they do. Conveying the conceptual information 
allowed us to highlight the numerical magnitudes of the 
death-to-infection ratios to help participants override 
their bias to consider the numerators or denominators in 
isolation. Of course, it is an open question whether these 
“light-touch” interventions help adults continue to bypass 
their cognitive biases as they attempt to interpret health 
statistics in future contexts. Research inside (Thompson 
& Siegler, 2010) and outside (Shtulman & Valcarcel, 2012) 
the domain of mathematics has shown that naive under-
standing involving biases can be suppressed, but not 
necessarily eliminated, through instruction.

Helping adults translate among equivalent rational-
number types more effectively may also help them to 
bypass the natural-number bias. Adults may be unaware 
that there are an infinite number of numbers between 
any two fractions, and any given fraction can be rep-
resented in an infinite number of ways as equivalent 
fractions, decimals, and percentages (e.g., 1/4, 0.25, 
25%, and 25 of 100 all represent the same magnitude). 
Alerting adults that the natural-number bias exists 
may prompt them to slow down and “make sense” of 
a fraction-related math problem (i.e., rely on relational 
reasoning). This may encourage people to use more 
effective strategies to translate rational-number informa-
tion into an easier-to-interpret format (Alibali & Sidney, 
2015; Fazio et  al., 2017; Fitzsimmons et  al., 2020b; 
Mielicki, Fitzsimmons, Schiller, et al., 2022; Moss & 
Case, 1999; Sidney, Thalluri, et al., 2019; Siegler et al., 
2011; Siegler & Thompson, 2014; Thompson et  al., 
2021) rather than impulsively calculating (Schiller, 2020) 
and overapplying natural-number knowledge to fraction 
problems. Such interventions would help adults with low 
numeracy overcome their misunderstanding of rational 
numbers to engage strategically with rational-number 
magnitudes (see Alibali & Sidney, 2015; Fitzsimmons 
et al., 2020b; Schiller et al., 2022; see Fig. 7). This is 
important because adult caregivers and teachers can pass 
their correct or incorrect understanding of rational num-
bers along to children.

Interventions to head off health 
decision-making biases in childhood

If children learn how to avoid natural-number bias—by 
being taught about the integrated nature of natural 
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As of early September, University A in the United States had tested 1,154 total students for COVID-19. At University A, 125 students
had lab-confirmed cases of COVID-19 or tests that came back “positive.” University B in another part of the United States had

tested 22,470 total students for COVID-19. At University B, 249 students had lab confirmed cases of COVID-19
or tests that came back “positive.”

Pretest
Objective and Subjective Math Measures

Health-Related Math Problem
(Disease A vs. Disease B)

No
Intervention

Intervention Including:
•  Worked Example
•  Analogy to Familiar Context
•  Number Line Visual Display

The table below indicates the number of deaths as well as
the total number of people infected by the flu and COVID-19,
as of March 19, 2020.

Health-Related Math Problems

Posttest

Objective and Subjective Math Measures

Which is more deadly: COVID-19 or the flu?

Number of
Deaths 

Total Number
of Infected

People

Flu 22,000 36,000,000

COVID-19 9,318 227,743

Universities Problem

Number Line Risk Ladder Icon Array

University A

University A University B

557 in 1,154

433 in 1,154

289 in 1,154

144 in 1,154

Less than
1 in 1,154 

11,235 in 22,470

8,426 in 22,470

5,618 in 22,470

2,809 in 22,470

Less than
1 in 22,470

0

0

1,154

22,470
University B

249

125
University BUniversity A

= about 100 people

a

b

Fig. 5. (continued on next page)
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Fig. 5.  (a) Survey flow for Thompson et al. (2021). At pretest, a national panel of adults completed objective and subjective math measures 
and a health-related math problem in which they compared the number of people who died from unnamed Disease A versus Disease B and 
the total number of people who were infected with Disease A versus Disease B. Half of the participants were then randomly assigned to 
complete a brief, online educational intervention that included an analogy to a familiar, nonhealth context (i.e., decay rate of fruit in two 
orchards), a step-by-step worked example to calculate and compare case-fatality rates for COVID-19 and the flu, and number-line visual 
displays that compared the case-fatality rates for COVID-19 relative to the flu. The other half of the participants did not receive the educa-
tional intervention. Both groups completed problems that included 2 × 2 contingency tables such as the one shown here (see also Wolfe 
& Reyna, 2009). Those participants who engaged with the educational intervention were more accurate on postintervention health-related 
math problems pertaining to COVID-19 case-fatality rates than were participants who did not engage with the intervention. Furthermore, in a 
daily diary follow up across 10 days after the intervention, those participants who engaged with the educational intervention reported higher 
COVID-19 worry and risk perceptions for themselves and others across portions of the diary relative to participants who did not engage with 
the intervention. This suggests that the intervention taught participants about the magnitude of the COVID-19 severity relative to the flu. (b) 
Example visual displays from Mielicki, Fitzsimmons, Schiller, et al. (2022). Number lines, risk ladders, and icon arrays are shown from left 
to right. A sample of college undergraduates were randomly assigned to solve health-related math problems accompanied by one of three 
visual displays or no visual display at all. Number lines are not commonly used to convey risk information. However, participants who were 
randomly assigned to the number-line visual display condition were more accurate when solving COVID-19-related math problems than 
were participants in the risk-ladder or icon-array visual-display conditions, which did not differ from the no-visual-display-at-all condition. In 
addition, higher performance on the health-related math problems was associated with higher COVID-19 worry for oneself and others, higher 
perceptions of COVID-19 severity, and higher endorsement of intentions to engage in preventive health behaviors, even when controlling for 
baseline math skills. The number lines emphasized the size of the components of the ratio and allowed people to visualize the proportion 
of positive COVID-19 cases in University A versus University B and directly compare these proportions—as a distance from the left endpoint 
of the number line—to one another to decide which university had the highest positivity rate. Future research should also assess whether 
number lines help people make mathematically accurate health decisions in real-world, personalized risk contexts.

numbers, fractions, ratios, decimals, and percentages 
early in their formal math curriculum—then, according 
to our developmental framework (see Fig. 2), they 
should be more likely to develop into adults who do 
not easily fall prey to numerical biases, thus ameliorat-
ing innumeracy in adulthood. Thus, to address natural-
number bias at this inflection point, math curricula can 
be restructured such that more productive connections 
are made between natural-number knowledge and 
knowledge about rational numbers (e.g., Yu et  al., 
2020, 2022). Evidence from an international assessment 
of students’ math understanding (OECD, 2018) consis-
tently indicates that students in the United States are 
below average in their mathematical literacy. These 
deficits in mathematical literacy have the potential for 
far-reaching implications for adults in daily life. There 
are also differences in teachers’ pedagogical content 
knowledge pertaining to fractions in the United States 
relative to other countries with higher math achieve-
ment (e.g., Ma, 1999), and these differences may con-
tribute to U.S. students’ struggles with fractions. 
Addressing natural-number bias during the childhood 
inflection point would be beneficial for young learners 
and could obviate the need to intervene with adults.

Implementing effective interventions at the child-
hood inflection point requires drawing on research 
findings about how rational-number understanding 
progresses across development.8 Even 6-month-old 
infants have a rudimentary understanding of ratios 
(McCrink & Wynn, 2007), and by preschool, children 
can reason about continuous magnitudes in match-to-
sample scaling tasks (i.e., a stuffed animal likes only 
drinks that have a certain juice-to-water ratio, and 

children have to identify a scaled-down match for this 
ratio; Boyer et al., 2008). Building on this early emerg-
ing understanding of nonsymbolic ratios, fractions are 
introduced in the first grade in the context of partition-
ing shapes (see the Common Core State Standards in 
Mathematics (CCSSM) Geometry standard: 1.G.A.3). 
However, fractions are not introduced in their symbolic 
form (i.e., n/m) until the third grade and are not defined 
in terms of division of relative quantities (i.e., n/m = n 
divided by m; CCSSM 5.NF.B.3. The standard is shown 
at this website: http://www.corestandards.org/Math/
Content/5/NF/B/3/) until the fifth grade. Interestingly, 
despite this protracted instructional sequence for ratio-
nal numbers, sixth and eighth graders with years of 
formal fraction instruction still make notable errors as 
they estimate the location of fractions on number lines 
(Siegler et al., 2011). Even college students make pre-
dictable mistakes as they reason about rational-number 
magnitudes (Fazio et  al., 2017; Schneider & Siegler, 
2010; Sidney, Thalluri, et al., 2019).

Addressing the natural-number bias in math educa-
tion requires a different solution than is currently used 
in U.S. math curricula. Note that the sequence in which 
the Common Core State Standards in Mathematics 
(CCSSM) was initially ordered was not informed by 
rigorous, empirical research in all cases (Common Core 
Standards Writing Team, 2011; cf. Confrey and col-
leagues’ (2014) concerns pertaining to mathematical 
progressions). In addition, sometimes the standards 
were underspecified, and educators received little guid-
ance on how to implement the standards in classrooms 
(Nurnberger-Haag & Thompson, 2022; Sidney, Thompson, 
& Rivera, 2019).

http://www.corestandards.org/Math/Content/5/NF/B/3/
http://www.corestandards.org/Math/Content/5/NF/B/3/
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Fig. 6.  Excerpt from the worked example used in Thompson et al. (2021). Procedural knowledge about how to 
calculate and compare case-fatality rates was conveyed in a step-by-step worked example (a) by Thompson and 
colleagues (2021). Conceptual knowledge was conveyed by describing how the magnitude of the case-fatality rate 
for the flu was less than 1% and much smaller than 5%. Thompson and colleagues’ (2021) worked example also 
included number lines (b) to help people easily compare case-fatality rates relative to one another.
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Fig. 7.  Translating among fractions, decimals, and percentages can help people accurately inter-
pret the magnitude of rational numbers. College students, who engaged with a playful educational 
intervention about monsters racing along a number line, demonstrated improvements in their ability 
to translate among fractions, percentages, and decimals (Schiller et al., 2022). Translation skills are 
helpful to adults as they attempt to reason about the magnitude of health risks or statistics in difficult-
to-handle formats, such as the 1-in-x format.

An unintended consequence of delaying the intro-
duction of fractions as relational concepts and empha-
sizing natural-number operations in early instruction is 
the tendency for students to think about quantities in 
absolute terms instead of relative to one another. One 
proposed solution is to emphasize ratios as relational 
concepts much earlier in instruction (see Ni & Zhou, 
2005). To help learners make the connection between 
natural numbers and fractions, teachers could empha-
size the multiplicative, or measurement (Steffe & Olive, 
2009), aspect of fractions (see Fig. 4). Another promis-
ing solution is scaffolding learners’ understanding of 

rational numbers by helping them make connections 
across percentages, decimals, and fractions (Moss & 
Case, 1999; Schiller, 2020; Schiller et al., 2022; see Fig. 
5) rather than introducing these concepts separately 
across several grade levels. For example, students are 
not expected to translate a fraction into a percentage 
until the sixth grade, and this translation is only 
expected for fractions with 100 as the denominator 
(CCSSI, 2010). More research is needed to assess 
whether introducing all rational-number notations 
together in earlier grades would improve rational-number 
understanding.
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Conclusions

Our novel developmental framework provides an 
approach for thinking about the underlying mecha-
nisms of innumeracy in adulthood. Innumeracy is not 
just a problem for some adults. People of various ages 
and expertise levels experience numerical biases, which 
likely stem from perceptual constraints, statistical regu-
larities in the environment, and missed opportunities 
for drawing connections across natural-number and 
ratio instruction in classrooms.

Further, our novel developmental framework takes 
into consideration that people know and use various 
strategies as they attempt to solve rational-number 
problems. Some of these strategies lead to correct 
responses, whereas others do not. We have devised 
interventions that prompt people to stop and consider 
other strategies beyond the prepotent natural-number 
bias response in which they focus on numerators or 
denominators in isolation rather than on how numera-
tors relative to denominators express the magnitude of 
a ratio. Using number lines in our educational interven-
tions makes the underlying magnitudes of the ratios 
more transparent (i.e., as a percentage of the total num-
ber line from left to right) to bypass the natural-number 
bias. Number lines capitalize on what is similar across 
natural numbers and rational numbers to integrate 
numerical understanding across these number types.

An interdisciplinary approach to identifying and 
intervening on the precursors that contribute to the 
natural-number bias can have unprecedented influence 
on decision-making outcomes in health, finance, and 
any other context involving rational numbers. Unbe-
knownst to researchers across diverse fields of inquiry, 
they may be attempting to answer similar research 
questions through the lenses of their own disciplines. 
However, collaboration can result in scientific break-
throughs with broader impact. In this call to action, we 
see significant merit in fostering collaborations across 
psychology, math education, health decision-making, 
and health communication. Bringing together relevant 
expertise from these disparate domains can provide 
novel insights into adults’ misconceptions pertaining to 
numerical health information.
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Notes

1. On the one hand, some research has shown that socioeco-
nomic status and low numeracy are linked (Ramani & Siegler, 
2009). Low-income children have different numerical experi-
ences before formal schooling than do their middle-income 
age mates, and numerical board-game interventions have been 
shown to close the gap in numerical magnitude understand-
ing between these two groups of children (Ramani & Siegler, 
2008, 2009, 2008; Siegler & Ramani, 2008). However, the same 
researchers have reached different conclusions when analyz-
ing other nationally representative data sets. That is, a host 
of demographic factors, including elementary-aged children’s 
general intellectual ability and parental income and education 
level, did not predict algebra performance 5 or 6 years later 
(Siegler et al., 2012). The causes and effects of low numeracy 
are important topics for continued research.
2. A detailed overview of the Weber-Fechner law, approximate-
magnitude system, approximate-number system, ratio-processing 
system, and perceptual constraints more generally are beyond 
the scope of this article. However, for overviews, see Clarke and 
Beck (2021), Feigenson et al. (2004), Leibovich et al. (2017), 
Matthews et al. (2015), and Newcombe et al. (2015).
3. Some researchers have recently proposed that the approximate- 
number system processes both natural numbers and rational 
numbers, subsuming the ratio-processing system (Clarke & Beck, 
2021).
4. Half is likely a special case that is a very familiar fraction 
in its own right. This fraction occurs often in math textbooks 
(Braithwaite & Siegler, 2018a), children are asked to parti-
tion shapes into halves in the first-grade geometry strand of 
the Common Core State Standards in Mathematics, and half 
is a benchmark fraction that children in the fourth grade are 
encouraged to compare to other fractions to assess their mag-
nitudes (CCSSI, 2010; Siegler & Thompson, 2014; Siegler et al., 
2011).
5. Some researchers would argue that to reason about similar-
ity one would need to notice what is distinctive, or different 
(Hunt, 2013). In this way, people may be considering alignable 
differences across stimuli as they compare them (Markman & 
Gentner, 2000). More research is needed to assess the “structure- 
seeking” tendencies (Sidney & Thompson, 2019; cf. Wall et al., 
2015) of people as they reason about rational numbers in pure 
numerical and applied contexts.
6. According to some decision-making researchers (Gigerenzer 
& Hoffrage, 1995), natural-number frequencies (e.g., 12 in 100) 
are preferred over percentages because percentages can lead 
to inaccurate calculations in some contexts. For an alternative 
view, see Sloman et al. (2003).

https://orcid.org/0000-0001-8758-3218
https://orcid.org/0000-0001-8758-3218
https://orcid.org/0000-0003-3719-8543
https://orcid.org/0000-0001-7402-0133
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7. The Common Core State Standards Writing Team (2011) cre-
ated some draft resources to help teachers use number lines as 
they represent ratio relationships in their lessons (see https://
commoncoretools.files.wordpress.com/2012/02/ccss_progres 
sion_rp_67_2011_11_12_corrected.pdf).
8. It is beyond the scope of this article to provide a compre-
hensive overview of this literature; however, interested readers 
can consult Campbell (2005) and Sidney, Thompson, and Opfer 
(2019).
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