Computers and Chemical Engineering 156 (2022) 107567

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

Contents lists available at ScienceDirect

Computers
& Chemical
Engineering

A unifying modeling abstraction for infinite-dimensional optimization)

Joshua L. Pulsipher, Weiqi Zhang, Tyler]J. Hongisto, Victor M. Zavala*

Check for
updates

Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI 53706, USA

ARTICLE INFO

Article history:

Received 21 June 2021

Revised 23 September 2021
Accepted 2 October 2021
Available online 6 October 2021

Keywords:
Infinite-dimensional
Optimization
Measures
Space-time

Random

ABSTRACT

Infinite-dimensional optimization (InfiniteOpt) problems involve modeling components (variables, objec-
tives, and constraints) that are functions defined over infinite-dimensional domains. Examples include
continuous-time dynamic optimization (time is an infinite domain and components are functions of
time), PDE optimization problems (space and time are infinite domains and components are functions
of space-time), as well as stochastic and semi-infinite optimization (random space is an infinite domain
and components are a function of such random space). InfiniteOpt problems also arise from combinations
of these problem classes (e.g., stochastic PDE optimization). Given the infinite-dimensional nature of ob-
jectives and constraints, one often needs to define appropriate quantities (measures) to properly pose the
problem. Moreover, InfiniteOpt problems often need to be transformed into a finite dimensional repre-
sentation so that they can be solved numerically. In this work, we present a unifying abstraction that
facilitates the modeling, analysis, and solution of InfiniteOpt problems. The proposed abstraction enables
a general treatment of infinite-dimensional domains and provides a measure-centric paradigm to handle
associated variables, objectives, and constraints. This abstraction allows us to transfer techniques across
disciplines and with this identify new, interesting, and useful modeling paradigms (e.g., event constraints
and risk measures defined over time domains). Our abstraction serves as the backbone of an intuitive
Julia-based modeling package that we call InfiniteOpt.j1l. We demonstrate the developments us-

ing diverse case studies arising in engineering.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Infinite-dimensional optimization (InfiniteOpt) problems con-
tain parameters that live in infinite-dimensional domains (e.g.,
time, space, random) (Devolder et al, 2010); the components of
these problems (variables, objectives, and constraints) are param-
eterized over these domains and thus are functions with infinite-
dimensional domains (they form manifolds and surfaces). A clas-
sical example of an InfiniteOpt problem is continuous-time dy-
namic optimization (Bertsekas et al., 1995); here, the control tra-
jectory is a function of time and time is a parameter that lives
in an infinite-dimensional (continuous) domain. This formulation
contrasts with that of a discrete-time dynamic optimization prob-
lem, in which the control trajectory is a collection of values de-
fined over a finite set of times (domains are finite). Given the
infinite-dimensional nature of variables, objectives, and constraints,
one requires specialized techniques to define an InfiniteOpt prob-
lem properly. This is done by using measures, which are opera-
tors that summarize/collapse an infinite-dimensional object into a

* Corresponding author.
E-mail address: victor.zavala@wisc.edu (V.M. Zavala).

https://doi.org/10.1016/j.compchemeng.2021.107567
0098-1354/© 2021 Elsevier Ltd. All rights reserved.

scalar quantity. For instance, in dynamic optimization, one often
minimizes the integral of the cost over the time domain and, in
stochastic optimization, one often minimizes the expected value or
variance of the cost. Measures are thus a key modeling element
of InfiniteOpt problems that help manipulate the shape of infinite-
dimensional objects to achieve desired outcomes (e.g., minimize
peak/extreme costs or satisfy constraints with high probability).
InfiniteOpt problems also often contain differential operators that
dictate how components evolve over their corresponding domains;
these operators often appear in problems that include differential
and algebraic equations (DAEs) and partial differential equations
(PDEs).

InfiniteOpt problems encompass a wide range of classical
fields such as dynamic optimization (Biegler, 2007), PDE optimiza-
tion (Hinze et al., 2008), stochastic optimization (Birge and Lou-
veaux, 2011), and semi-infinite optimization (Stein and Still, 2003).
One also often encounters InfiniteOpt problems that are obtained
by combining infinite-dimensional domains (e.g., space, time, and
random domains). This situation arises, for instance, in stochas-
tic dynamic optimization (e.g., stochastic optimal control) prob-
lems and in optimization problems with stochastic PDEs. In these
problems, one needs to define measures that summarize model-
ing objects that are defined over the multiple domains (e.g., mini-

https://doi.org/10.1016/j.compchemeng.2021.107567
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2021.107567&domain=pdf
mailto:victor.zavala@wisc.edu
https://doi.org/10.1016/j.compchemeng.2021.107567

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

mize the space-time integral of the cost or minimize the expected
value of the time integral of the cost). InfiniteOpt problems appear
in applications such as continuous-time model predictive control
and moving horizon estimation (Rawlings, 2000; Qin and Badgwell,
2003), design under uncertainty (Stankiewicz et al., 2000; Straub
and Grossmann, 1993), portfolio planning (Cakmak and Ozekici,
2006; Dentcheva and Ruszczynski, 2006), parameter estimation for
differential equations (Shin et al., 2019; Biegler et al., 2003), relia-
bility analysis (Pulsipher and Zavala, 2020; Suksuwan and Spence,
2018), optimal power flow (Roald et al., 2015; Lan et al., 2018), and
dynamic design of experiments (Georgakis, 2013; Asprey and Mac-
chietto, 2002).

The infinite-dimensional nature of modeling objects make In-
finiteOpt problems challenging to solve (Nicholson et al., 2018;
Vanderbei, 2020; Nocedal and Wright, 2006). Specifically, these
problems often need to be transcribed/transformed into a finite di-
mensional representation via discretization. For instance, differen-
tial equations and associated domains are often discretized using
finite difference and quadrature schemes (Biegler, 2007), while ex-
pectation operators and associated random domains are often dis-
cretized using Monte Carlo (MC) sampling and quadrature schemes
(Chen et al., 2015; Kleywegt et al., 2002). The finite-dimensional
representation of the problem can be handled using standard opti-
mization solvers (e.g., Ipopt and Gurobi). Sophisticated trans-
formation techniques are used in different scientific disciplines;
for example, projection onto orthogonal basis functions is a tech-
nique that is commonly used in PDE and stochastic optimization
(Devolder et al., 2010; Koivu and Pennanen, 2010).

Although common mathematical elements of InfiniteOpt prob-
lems are found across disciplines, there are limited tools available
to model and solve these problems in a unified manner. Power-
ful, domain-specific software implementations are currently avail-
able for tackling dynamic and PDE optimization problems; ex-
amples include Gekko, ACADO, and gPROMS (Beal et al., 2018;
Houska et al., 2011; Asteasuain et al., 2001). A key limitation of
these tools is that the modeling abstraction used is specialized
to specific problem classes and are not that easy to extend. On
the other hand, there are powerful algebraic modeling languages
such as JuMP, CasADi, PETSc, and Pyomo that offer high mod-
eling flexibility to tackle different problem classes; however, these
tools require the user to transform InfiniteOpt problems manually
(which is tedious and prone to error). These limitations have re-
cently motivated the development of modeling frameworks such
as Pyomo . dae (Nicholson et al., 2018); this framework unifies the
notion of variables, objectives, and constraints defined over con-
tinuous, infinite-dimensional domains (sets). This abstraction facil-
itates the modeling and transformation (via automatic discretiza-
tion techniques) of optimization problems with embedded DAEs
and PDEs. A limitation of this abstraction is that the notion of con-
tinuous sets is limited to space and time and this hinders general-
izability (e.g., domains defined by random parameters need to be
treated separately). Moreover, this framework provides limited ca-
pabilities to define measures (e.g., multi-dimensional integrals and
risk functionals).

A unifying abstraction for InfiniteOpt problems can facilitate
the development of software tools and the development of new
analysis and solution techniques. For instance, it has been recently
shown that a graph abstraction unifies a wide range of optimiza-
tion problems such as discrete-time dynamic optimization (graph
is a line), network optimization (graph is the network itself), and
multi-stage stochastic optimization (graph is a tree) (Jalving et al.,
2019). This unifying abstraction has helped identify new theoretical
properties and decomposition algorithms (Jalving et al., 2020; Shin
et al., 2021); this has been enabled, in part, via transferring tech-
niques and concepts across disciplines. The limited availability of
unifying modeling tools ultimately limits our ability to experiment

Computers and Chemical Engineering 156 (2022) 107567

with techniques that appear in different disciplines and limits our
ability to identify new modeling abstractions to tackle emerging
applications.

In this work, we propose a unifying abstraction that facilitates
the analysis, modeling, and solution of InfiniteOpt problems (see
Fig. 1). Central to our abstraction is the notion of infinite parame-
ters, which are parameters defined over infinite-dimensional do-
mains (e.g., time, space, and random parameters). The proposed
abstraction allows us to construct these domains in a systematic
manner by using cartesian product operations and to define vari-
ables, objectives, and constraints over such domains and subdo-
mains (restricted domains). The ability to handle restricted sub-
domains allows us to capture infinite-dimensional and standard
(finite-dimensional) variables in a unified setting. Another key no-
tion of the proposed abstraction are measure operators; these op-
erators allow us to summarize infinite-dimensional objects over
specific domains or subdomains and with this formulate prob-
lems with different types of objectives and constraints. The pro-
posed abstraction also incorporates differential operators, which
are used to model how variables evolve other their corresponding
domains. These modeling elements provide a bridge between dif-
ferent disciplines and enables cross-fertilization. For instance, we
show that the proposed abstraction allows us to leverage the use
of risk measures (used in stochastic optimization) to shape time-
dependent trajectories (arising in dynamic optimization). The pro-
posed abstraction also facilitates the development of new abstrac-
tions such as event-constrained optimization problems and opti-
mization problems with space-time random fields. The proposed
abstraction forms the basis of a Julia-based modeling package
that we call InfiniteOpt. j1. In this context, we show that the
abstraction facilitates software development and enables a com-
pact and intuitive modeling syntax and the implementation of
transformation techniques (e.g., quadrature and sampling).

The paper is structured as follows. Section 2 details the pro-
posed unifying abstraction and highlights its implementation in
InfiniteOpt.jl. Section 3 reviews problem transformations
into finite-dimensional representations through the lens of the ab-
straction. Section 4 discusses benefits provided by the abstraction.
Section 5 presents diverse case studies and Section 6 closes the

paper.
2. InfiniteOpt abstraction

In this section, we outline the proposed unifying abstraction
for InfiniteOpt problems. Specifically, we discuss the different ele-
ments of the abstraction, which include infinite domains and pa-
rameters, decision variables, measure operators, and differential
operators.

2.1. Infinite domains and parameters

An InfiniteOpt problem includes a collection of infinite domains
D, with index ¢ € £. An individual infinite domain is defined as
D, € R™. The term infinite refers to the fact that an infinite domain
has infinite cardinality (i.e., |D¢| = co) and is thus continuous. We
also note that each infinite domain D, is a subdomain of an n,-
dimensional Euclidean space R™.

An infinite domain encompasses different domains encountered
in applications; for instance, this can represent a time domain
of the form D = [tg,tf] C R (with n; =1), a 3D spatial domain
Dy =[-1,1]3 € R? (with ny = 3), or the co-domain of a multivari-
ate random variable D¢ = (—o0, 00)™ € R™ (with ng = m).

Infinite parameters are parameters that live in the associated
infinite domains; specifically, we define the general parameter d
Dy. In our previous examples, the parameters are time ¢ € Dy, space
X € Dy, and random parameters & € Dk.

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

Traditional Formulations

Computers and Chemical Engineering 156 (2022) 107567

New Formulations

. -

4 N\ (@ P — ™\
>
vl -f’”’,n >
D, \ ,,
_ t J N\ _ d,, J
Dynamic Optimization S . Event-Constrained Optimization
Y e Unifying Abstraction .
1) - 4)
y y(z) \
y y - o ol PRAT O
y P! ’\&W 2y 1 AR »L\?}M"\"’W»N’J
> | - ’ = o ,
J i : ! :)

Random Field Optimization

) .

P(y())] / \

Stochastic Optimization

Infinite-Dimensional Optimization

I

Generalized Formulations

Fig. 1. Summary of the proposed InfiniteOpt abstraction; the abstraction seeks to unify existing problem classes and use this to develop new classes.

Dy

' i :

Fig. 2. Cartesian product of random domain D; and time domain D; to produce D.

The domain of the InfiniteOpt problem is the cartesian product
of the infinite domains:

D:=[]D. (1)
tel

The construction of the problem domain is exemplified in Fig. 2;

here, we see that the domain obtained from the cartesian product

of a 1D random domain Dg and a 1D temporal domain Ds.

2.2. Decision variables

A key feature of an InfiniteOpt problem is that it contains de-
cision variables that are functions of infinite-dimensional param-
eters; as such, decision variables are also infinite-dimensional. In
the proposed abstraction, we also consider InfiniteOpt problems
that contain finite-dimensional variables (that do not depend on
any parameters) and finite-dimensional variables that originate
from reductions of infinite variables (e.g., integration over a do-
main or evaluation of an infinite variable at a point in the domain).
To account for these situations, we define different types of vari-
ables: infinite, semi-infinite, point, and finite.

Infinite variables y : D+ Y € R™ are functions that map an in-
finite domain D to the domain Y. These variables are expressed as:

yd) ey, deD. (2)

Fig. 3 shows that infinite variables are functions that can be inter-
preted as manifolds (also known as surfaces and fields). The goal of
the InfiniteOpt problem is to shape these manifolds to achieve pre-
determined goals (e.g., minimize their mean value or their peaks).
Example classes of infinite variables include uncertainty-dependent
decision policies arising in stochastic optimization (i.e., recourse
variables), time-dependent control/state policies arising in dynamic
optimization, or space-time fields arising in PDE optimization. For
instance, in a stochastic PDE optimization problem, one might have
an infinite variable of the form y(t,x, &), which is simultaneously
parameterized over time t, space x, and uncertainty £. In other
words, an infinite variable is equivalent to a collection of finite de-
cision variables indexed over an infinite domain (producing an infi-
nite collection of variables). Fig. 4 illustrates some infinite variables
commonly encountered in different disciplines.

Semi-infinite variables y : D_, = Y € R™ correspond to infinite
variables in which the subdomain D, has been restricted/projected
to a single point d,; the restricted domain is denoted as D_,. These
variables are also functions that map from the infinite domain D_,
to the domain Y:

y(d)ey, deD,. (3)

We refer to d, € D, as a support point of the domain. A depic-
tion of how semi-infinite variables are derived from infinite vari-
ables via projection is provided in Fig. 5. Example classes mir-
ror those of infinite variables with multiple parameter dependen-
cies; for example, in a stochastic PDE problem, we might want to
evaluate the variable y(t,x, &) at the support point t =0 (initial
time); this gives the semi-infinite variable y(0,x, &) and domain
D,t = Dx X DS

Point variables denote infinite variables in which the entire D is
restricted to a single point d. These are finite-dimensional variables
that can be expressed as:

y)ey. 4)

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

Computers and Chemical Engineering 156 (2022) 107567

Fig. 3. Depiction of realizations of an infinite variable y(d) with Y € R and D < R2. The horizontal axes define the domain D and the vertical axis denotes the domain of

feasible decisions).

Dy

A
v

v t

(a) Dynamic Optimization

(b) PDE Optimization

4 §

(c) Stochastic Optimization

Fig. 4. Example of infinite variables arising in traditional formulations. The recourse variable y(&) is visualized in terms of its probability density function (as is customary

in stochastic optimization).

(a) Infinite

f
Y
2 d N
y(d) 34
Y Yy
D,
< —
v E J v
(b) Semi-Infinite (c) Point

Fig. 5. Illustration of how a semi-infinite variable y(d), d € D_, and a point variable y(zf) are obtained from an infinite variable y(d), d € D via restriction/projection. Semi-
infinite and point variables are realizations of an infinite variable and live in the domain).

Fig. 5 illustrates how point variables relate to other variable
classes. Examples of point variables include random variables eval-
uated at a specific scenario/sample/realization of the uncertain pa-
rameter or a space-time variable evaluated at a specific point in
the domain (e.g., boundary conditions). Point variables are also
used in dynamic optimization to specify so-called point constraints
(these ensure that a time trajectory satisfies a set of constraints at
specific time points). Point variables can be thought of as variables
that are held constant in an infinite domain.
The proposed abstraction also considers finite variables:

ze ZCR™ (5)

where Z denotes the feasible set. These are variables that are not
parameterized over an infinite domain. Examples of finite variables
arising in applications are first-stage decision variables and design
variables arising in stochastic optimization or model parameters
estimated in a dynamic optimization problem. Fig. 6 shows that
this variable is analogous to the point variable depicted in Fig. 5c.

z

Fig. 6. A depiction of a finite variable ze Z C R.

In fact, this highlights that a point variable is a finite variable; the
difference is that a point variable is derived from a restriction of
an infinite variable. However, we note that, technically speaking, a
finite variable can be seen as a special case of an infinite variable
in which the domain is a point. As such, infinite variables provide
a unifying framework to capture different types of variables.

2.3. Differential operators
Differential operators are a typical modeling element of Infini-

teOpt problems. These operators capture how a given decision vari-
able (an infinite-dimensional function) changes over its associated

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

Computers and Chemical Engineering 156 (2022) 107567

Fig. 7. Depiction of a differential operator D acting on the infinite variable y(d).

Yy

) y(d)

D t - ’
D
Y
y(d)
Yy

M, [- ’

D

v >

A

Myy(d)

A
v

£
S

Fig. 8. Measure operator M, that acts on domain D; of the infinite variable y(d), d € D. This operation returns the semi-infinite variable m(&§) := My, & € D¢.

domain; for example, in a dynamic optimization problem, we want
to know how quickly a state/control variable changes in time.

The proposed abstraction defines a differential operator of the
general form:

D:Dw— R. (6)

Differential operators are applied to infinite variables y(d), d € D.
These operators capture partial derivatives over individual parame-
ters and more sophisticated operators that simultaneously operate
on multiple parameters such as the Laplacian operator (typically
encountered in PDE optimization). Fig. 7 illustrates a differential
operator acting on an infinite variable.

Differential operators map the infinite domain D to the scalar
domain R. The output of a differential operator is an infinite vari-
able Dy(d), d € D that inherits the domain of the argument y(d).
For example, consider the infinite variable y(t), t € D;; the par-
tial derivative operator is an infinite variable y’(t) := dy(t)/dt, t €
D:. Some other specific examples include the partial derivative
3”(3;"5), (t,x,&) e D and the Laplacian Ay(x), x € Dx. Note that
derivatives of the form % are not typically used in stochastic op-
timization problems; however, the proposed abstraction allows for
this operator to be defined. This modeling feature can be used, for
instance, to control how a random variable changes in the uncer-
tainty space (this can be used to manipulate the shape of its prob-
ability density function).

2.4. Measure operators

Measure operators are key modeling constructs that are used
to summarize functions by collapsing them to a single quantity. For
example, in a dynamic optimization problem, one typically min-
imizes the time-integral of the cost (a scalar quantity). The pro-
posed abstraction defines a measure operator of the general form:

M;:D— R (7)

Here, the index ¢ indicates that the operator is applied on the sub-
domain D, and thus has the effect of restricting the domain. As
such, the output of a measure operator is a semi-infinite variable

that lives in the restricted domain D_,. Fig. 8 illustrates such a
measure operator.

Measure operators are a key feature of InfiniteOpt prob-
lems; specifically, objective functions and constraints are often ex-
pressed in terms of measure operators. For instance, consider a
field y(t,x, &) arising in a stochastic PDE problem; one can de-
fine measure operator that computes the time-integral m(x, £) :=
fteDry(t,x,g)dt, (x,&) € Dy x D¢ and note that the output of this
operation is a semi-infinite variable m(x, £) that lives in D_; =
Dx x Dg. One can also define an operator that computes the ex-
pectation m(t,x) := fée”s y(t.x,&)pE)dE, (t,x) e Dy x Dy (Where
p(-) is the probability density function of &£); this operation gives
a semi-infinite variable m(t, x) that lives in D_g =Dt x Dx.

The expectation is a measure operator that is of particular inter-
est in stochastic optimization because this can be used to compute
different types of risk measures and probabilities; for instance, in
the previous example, one might want to compute a probability of
the form:

P:(y(t.x.§) €Y), (t.X) € D¢ x Dy. (8)

This is the probability that y(t, x, £) is in the domain) and can be
computed by using an expectation operator:

Pe(y(t.x.§) € ¥) = E¢[1[y(t, x.§) € V]
- / 1y (t.x. &) € YIp(&)dt. 9)
EeD;

where 1[-] is the indicator function and the argument of this func-
tion is the event of interest. We recall that the indicator function
returns a value of O if the event is not satisfied or a value of 1
if the event is satisfied. An important observation is that the in-
dicator function can be used to define a wide range of measures
and over different types of domains; for instance, the measure
ftED(1[y(t) > y]dt denotes the amount of time that the function
y(t), t € D; crosses the threshold y.

Measure operators can also be used to summarize infinite vari-
ables over multiple subdomains; for example, one can consider the
following measures:

Mixy = / y(t.x £)dxdt, & €Dy (10a)
teD; JxeDy

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

Mix ey = Eg [y(t,x, S)dxdt} (10b)

teDy JXxeDy

Mixey =]E$|: /x . 1[y(t,x, &) e y]dxdti|. (10¢)

teD;
One can thus see that a wide range of measures can be envi-
sioned.

2.5. Objectives

In InfiniteOpt problems, objective functions are functions of in-
finite variables; as such, objectives are infinite variables. Minimiz-
ing or maximizing an infinite-dimensional function does not yield
a well-posed optimization problem. This situation is similar in
spirit to that appearing in multi-objective optimization problem,
in which we seek to simultaneously minimize/maximize a finite
collection of objectives (in an InfiniteOpt problem, the collection is
infinite).

To deal with ill-posedness, one often resorts to scalariza-
tion techniques; the idea is to reduce/summarize the infinite-
dimensional function into a single scalar quantity. The goal of this
scalarization procedure is to manipulate the shape of the infinite-
dimensional objective (e.g., minimize its mean value or its ex-
treme value). Scalarization is performed by using measure oper-
ators; for instance, in the context of multi-objective optimization,
one scalarizes the objectives by computing a weighted summation
of the objectives. In an InfiniteOpt setting, this weighting is done
by computing a weighted integral of the objective. For instance,
in dynamic optimization, we often have a time-dependent objec-
tive function f(t) := f(y(t),t), t € Dr; here, we can notice that the
objective depends on an infinite variable and is thus also an in-
finite variable. We can scalarize this variable by using the mea-
sure M;f := fteDt f®)w(t)dt with a weighting function satisfying
w: D — [0,1] and fte’Dt w(t)dt =1 (note that this measure is a
time-average of the objective trajectory).

In space-time PDE optimization, the objective is defined over
an infinite domain D = D; x Dy that depends on decision variables
y(t,x) € ¥; as such, the objective is given by the field f(t,x) :=
fy(t,x),t,x), t € D¢, x € Dx. One can scalarize this field by using a
measure:

M f = f&, x)w(t, x)dtdx, (11)
(t.x)€Dr x

with weighting function satisfying w:D;x—[0,1] and

Jiexyep,, W(t. x)dtdx =1. One can think of this measure as a

space-time average of the objective.

In stochastic optimization, we have infinite-dimensional objec-
tives of the form f(§) := f(z,y(§)), § € Dg, where y(§) is a re-
course variable (an infinite variable). Scalarization can be achieved
by using the expectation operator:

Mef = Ee[f(§)] = /S @) (12)
€D;

where p(£) is the probability density function satisfying p(§) > 0
and fEeDE p(€) = 1. This measure is illustrated in Fig. 9.

Average measures as those described previously are intuitive
and widely used in practice; however, in Section 4.1 we will see
that one can envision using a huge number of measures to per-
form scalarization. The huge number of choices arises from the
fact that one can manipulate the shape of an infinite-dimensional
function in many different ways (by focusing on different features
of the function); for instance, one can minimize the peak of the
function or minimize its variability. In the field of stochastic op-
timization, for instance, one aims to manipulate the shape of the

Computers and Chemical Engineering 156 (2022) 107567

— —

M; N — M(©)

< >
v

¢
— L —

Fig. 9. Depiction of measure operator M; acting on infinite variable f(¢)=

fz y()).

T 9i(y(d),2,d) <0

y(d)

4

Fig. 10. Depiction of infinite-dimensional constraints g;(y(d), z, d) < 0 defined over
an infinite domain D.

infinite-dimensional objective by selecting different risk measures
(summarizing statistics) such as the variance, median, quantile,
worst/best -case value, or probabilities. We will see that one can
borrow risk measures used in stochastic optimization to summa-
rize infinite variables in other domains (e.g., space-time); this leads
to interesting approaches to shape complex manifolds/fields arising
in complex InfiniteOpt problems.

2.6. Constraints

As in the case of objectives, constraints in InfiniteOpt problems
depend on infinite variables and are thus infinite variables them-
selves. One thus need to use specialized techniques to handle con-
straints and with this ensure that the problem is well-posed. A
key observation that arises in this context is that constraints are
treated differently than objectives; specifically, one typically seeks
to impose bounds on constraint values and one can handle collec-
tions of constraints simultaneously. For instance, in semi-infinite
optimization problems, one enforces constraints of the form:

gi(y(d),d) <0, jeJ,deD. (13)

In vector form, this collection of constraints can be expressed as:

g(y(d),d) <0, deD. (14)

where g(-) is a vector function that contains the constraint col-
lection g;(-) j € J. We can see that the constraint functions g(-)
are required to a take value below zero for all values of the pa-
rameter d € D. Moreover, we can see that the constraints j € 7 are
all enforced at once. Fig. 10 illustrates this constraint system. This
particular approach to enforcing constraints is also widely used in
dynamic optimization and stochastic optimization. For instance, in
the context of dynamic optimization, one may seek to keep time
trajectories for controls/states below a certain threshold value for
all times in a time horizon. In the context of stochastic optimiza-
tion, one may seek to satisfy the demand of a product for all pos-

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

sible realizations of uncertainty (in this context the constraints are
said to be enforced almost surely or with probability of one).

These types of constraints are defined in our abstraction using
the general form:

g(Dy.y(d),z,d) <0, deD. (15)

These encapsulate the above use cases and are exemplified by the
following PDE optimization constraints that include differential op-
erators, path constraints, and point constraints (e.g., boundary con-
ditions):

g(Dy(t.x),y(t,x),t,x) =0, (t,X) € D x Dy
g(t,x),t,x) <0, (t,x) € Dt x Dy
gy@.®)..8) <0. (16)

Constraints that follow the form of (15) can be quite restric-
tive for certain applications, since they need to hold for every
value parameter d € D. One can relax this requirement by instead
enforcing the constraint on a selected set of points in the do-
main D or by enforcing constraints on a measure of the constraint
functions. For instance, consider the set of constraint functions
hy(Dy(d),y(d),z,d), k € K; we can aim to enforce constraints on
expected values of such functions as:

f h(E). £)pE)dE = 0, k e K. (17)
£eD;

Given that there are a wide range of measures that can help shape
functions over infinite-dimensional domains, one can also envi-
sion different approaches to enforce constraints. For instance, in
stochastic optimization, one typically uses scalar chance (proba-
bilistic) constraints of the form:

Pe (e (¥(£).6) <0) >, ke K. (18)

This set of constraints require that each constraint function h;(-)
is kept below zero to a certain probability level «. In stochastic
optimization, one also often enforces joint chance constraints:

Pe (he(y(§),6) <0, ke K) > a. (19)

The joint chance constraint can also be expressed in vector form
as:

Pe(h(y(§).§) <0) > a. (20)

Joint chance constraints require that the constraint functions h(-)
are kept (jointly) below zero with a certain probability level «.
We will see that joint chance constraints allow us to enforce con-
straints on probability of events and we will see that this provides
a flexible modeling construct to capture complex decision-making
logic. For instance, we might want to ensure that the temperature
of a system is higher than a certain value and that the concentra-
tion of the system is lower than a certain value with a given prob-
ability. Joint chance constraints can also be interpreted as a gen-
eralization of other constraint types; for instance, if we set o =1,
the constraint (19) is equivalent to (13).

The above measure constraints can be expressed in the follow-
ing general form:

Mh(Dy,y(d), z,d) > 0. (21)
For instance, the chance constraint (20) can be expressed as:
with

Mch = E¢[1[h(y(£).£) < 0]] - a. (23)

Computers and Chemical Engineering 156 (2022) 107567

2.7. InfiniteOpt formulation

We summarize the previous elements to express the InfiniteOpt
problem in the following abstract form:

miny(-)ey.zez Mf(Dy,y(d),z, d)
s.t. g(Dy.y(d),z,d) <0, deD (24)
Mh(Dy, y(d),z.d) = 0.

This abstract form seeks to highlight the different elements of the
proposed abstraction (e.g., infinite domains and variables, finite
variables, measure operators, differential operators).

2.8. Implementation in InfiniteOpt. 51

We now proceed to describe how the proposed abstraction can
facilitate the development of modeling tools. Specifically, the pro-
posed abstraction is used as the backbone of a modeling pack-
age that we call InfiniteOpt.jl (https://github.com/zavalab/
InfiniteOpt.jl). InfiniteOpt.jl is written in the Julia pro-
gramming language (Bezanson et al., 2017) and builds upon the
capabilities of JuMP. j1 (Dunning et al., 2017) to intuitively and
compactly express InfiniteOpt problems.

Some of the modeling features of InfiniteOpt. jl are illus-
trated by using the example problem:

T en”” (O + 28y, (¢, £))de (25a)
s.t. %ﬁf) =Yp(t,E) +Ya(t) =21, teD:, &eD: (25b)
V(€. &) <y (U, teD; (25¢)
Eelyc(§)] =« (25d)
Ya(0) +2z2 =B (25e)

Ya(t).yp(t.§) e R yc(§) €{0.1}.z€ Z*, t € Dy, & € TR5)

Here, yq(t), yp(t, &), and y.(§) are infinite variables, z are fi-
nite variables, U, &, 8 € R are constants, D¢ = [ty, tf] is the time do-
main, and D is the co-domain of the random parameter NV (i, X).

The corresponding InfiniteOpt.jl syntax for expressing
this problem is shown in Code Snippet 1. An InfiniteOpt problem
is stored in an InfiniteModel object; Line 4 shows the initial-
ization of the model object model. The model is automatically
transcribed into a finite dimensional representation and solved us-
ing the KNITRO solver (Nocedal, 2006). More information on how
the InfiniteModel is transcribed by InfiniteOpt. jl is pro-
vided in Section 3.3. Lines 7 and 8 use @infinite_parameter
to define the infinite parameters with their respective infinite do-
mains and indicate that each domain should use 100 finite sup-
ports in the transcription. The random parameters £ can be asso-
ciated with any probably density function supported by the Julia
package Distributions. j1 (Besancon et al, 2019). Lines 11-14
define the decision variables and their associated properties in ac-
cordance with Eq. (25f) following a symbolic JuMP . j1-like syntax
by means of @variable. Line 17 defines the complex objective
depicted in Eq. (25a) via Qobjective. Lines 20-23 define con-
straints (25b)-(25e) using @constraint. Notice how the differ-
ential operator and measure operators (in this case an expecta-
tion and an integral) are easily incorporated using Julia syntax.
Lines 26 and 27 illustrate how the model model is solved using

https://github.com/zavalab/InfiniteOpt.jl

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

optimize! and then how the solution information can be ex-
tracted from the model.

Code Snippet 1: Modeling problem (2.25) using InfiniteOpt.jl.

Computers and Chemical Engineering 156 (2022) 107567

have random parameters that are functions of time (this is dis-
cussed further in Section 4.2).

using InfiniteOpt, Distributions, KNITRO
Initialize the model

model = InfiniteModel (KNITRO.Optimizer)
Add the infinite parameters corresponding to the infinite domains
@infinite_parameter (model, t € [t0, tf], num_supports =

@infinite_parameter (model, £[] ~ MvNormal (u,

Add the variables and their domain constraints

@variable (model, < vya, Infinite(t)

@variable (model, < yb, Infinite(t, §)

@variable (model, yc, Infinite({), Bin)

@variable (model, z[1, Int)

Define the objective

@objective (model, Min, {(ya ~ + « E(yb, &), t))
Add the constraints

@Qconstraint (model, d(yb, t) == yb + va - z[1])

@constraint (model,
@Qconstraint (model,
@constraint (model,

yb < yc * U)
E(ye, §) = o)
va(0) + z[2] ==)

Solve and retrieve the results
optimize! (model)
opt_objective =

objective_value (model)

3), num_supports =)

)

3. InfiniteOpt transformations

We now discuss how InfiniteOpt problems are solved through
the lens of the proposed unifying abstraction. Solution approaches
typically rely on transforming the InfiniteOpt problem (24) into a
finite-dimensional formulation that can be solved using conven-
tional optimization solvers. There are a large number of possible
methods to transform InfiniteOpt problems that are used in dif-
ferent domains such as dynamic, PDE, and stochastic optimization.
Our goal here is not to provide an extensive discussion and imple-
mentation of all these approaches; instead, we highlight common
elements of different approaches and motivate how these can be
facilitated by using a unifying abstraction.

3.1. Direct transcription

Our first goal is to obtain a finite representation of an infinite
domain D,; direct transcription accomplishes this via a finite set
of support points that we represent as D, = {dA“ : d},i €Dy, ieTy).
The concept of the support set D, used here is general and a vari-
ety of methods can be employed to generate it. In stochastic opti-
mization, for instance, a set of MC samples is typically drawn from
a probability density function of the infinite parameters (Birge and
Louveaux, 2011), while PDE problems commonly use quadrature
schemes (Shin and Zavala, 2020). The proposed abstraction seeks
to enable porting techniques across fields; for instance, one might
envision generating support points for a space-time domain by
sampling or one might envision generating support points for a
random domain by using quadrature points (as done in sparse
grids and Latin hypercube sampling).

The support set for the infiniteOpt problem D is the cartesian
product of the individual supports sets:

ﬁ::ﬂﬁg.

tel

(26)

Fig. 11 illustrates how the support set (a finite domain) approxi-
mates the infinite domain D. Note that this definition of D assumes
that the individual domains D, are independent of one another.
This assumption does not hold in some complex applications; for
instance, in stochastic dynamic optimization problems, we might

The infinite-dimensional formulation (24) is projected onto the
finite support set to yield a finite-dimensional approximation that
can be modeled using conventional optimization solvers. We now
proceed to discuss how this projection is achieved. Measures are
approximated with an appropriate numerical scheme; this can take
on a range of forms and may require the incorporation of addi-
tional supports and variables. For instance, a common set of mea-
sures (e.g., expectations and integrals over space-time domains)
are of the form:

M.y = / y(d)w(d)dd'
d'eD,

where w(-) is a weighting function. Such measures can be approx-
imated using support points as:

My ~ 3" Biy(d,yw(dy;).

ieT,

(27)

(28)

This general form is used in quadrature and sampling schemes; the
only difference between these schemes arises in how the supports
d}j and the coefficients §; are selected. Fig. 12 depicts a measure
approximated via quadrature.

Differential operators appearing in formulation (24) also need
to be approximated. Sometimes these operators can be reformu-
lated in integral form; in such a case, one can use the measure
approximations previously discussed. However, in some cases, this
reformulation is not possible; for instance, a differential opera-
tor might be implicitly defined within expression functions (e.g.,
boundary conditions) and/or within measures. In our framework,
we treat differential operators as infinite variables and handle
them via lifting. To illustrate how this is done, suppose that we
have an expression of the form:

dy(d)
g(ad,

Here, we introduce an auxiliary variable y’(d) and reformulate the
above constraint as:

,y(d),z) =0, deD,. (29)

g(y'(d),y(d),z) =0, d € D, (30a)
D _y@. den. (30b)

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

P —

!
X

D B o e e e

>

A

Computers and Chemical Engineering 156 (2022) 107567

\

A

v 6

Fig. 11. Finite support set D that approximates infinite domain D.

— My(d)

A

A

Fig. 13. Depiction of a differential operator D approximated via a numerical scheme (central finite differences in this case) relative to a realization of infinite variable y(d).

The second expression can now be approximated using tradi-
tional schemes using support points; for instance, when d denotes
time (e.g., in a dynamic optimization problem), one typically uses
a backward finite difference:

y(de)) =y(dyi1) + (doi—doi 1)y (dei).

Fig. 13 illustrates how these techniques approximate differential
operators. A lifting approach can be used to handle higher-order
and multi-dimensional operators (e.g., Laplacian) via nested recur-
sions. These basic constructs can be used to enable the imple-
mentation of direct transcription schemes such as MC sampling,
quadrature, finite difference, and orthogonal collocation over finite
elements.

Once the measures and derivatives are approximated, the di-
rect transcription procedure is finalized by projecting the remain-
ing constraints with infinite domain dependencies over the finite
support set D. The transformation incurred by direct transcription
is often linear since the typical measure and differential operator
approximations are linear transformations of the respective mod-
eling objects (e.g., MC sampling and finite difference). For instance,
this means that if the InfiniteOpt problem of interest is an infinite
quadratic program (QP), then its transcribed variant will typically
be a finite QP.

We note that direct transcription of problems with multiple in-
finite domains (e.g., PDE-constrained problems) can incur tractabil-
ity concerns due to the support combinatorics. For such prob-
lems, decomposition approaches such as the one proposed in

(31)

Na et al. (2020) can be used address these limitations. Moreover,
alternative transformations may enhance tractability for certain
problem classes as is discussed in Section 3.2.

3.2. Alternative transformations

Direct transcription is a common class of methods for trans-
forming an InfiniteOpt problem into a finite-dimensional represen-
tation by using a finite set of support points. A limitation of this
approach is that it does not provide a solution in functional form
(it only provides a solution defined at the support points). Alter-
native transformation methods can be envisioned to deliver solu-
tions in functional form. The method of weighted residuals (MWR)
is a general class of methods that conducts the transformation by
approximating the problem elements using basis expansions. Pop-
ular MWR techniques include polynomial chaos expansion (PCE)
used in stochastic optimization (Xiu, 2010) and orthogonal col-
location used in dynamic optimization (Armaou and Christofides,
2002; Koivu and Pennanen, 2010). For instance, Gnegel et. al. re-
cently demonstrated how such basis expansion techniques can
enhance the tractability of mixed-integer PDE problems relative
to using traditional transcription methods (Gnegel et al., 2021).
Such techniques are often behind what are typically referred to
as order reduction methods in the PDE community (Armaou and
Christofides, 2002).

In MWR, a set of trial/basis functions ® = {¢;(d) : i € Z} is de-
fined over an infinite domain D and linear combinations of these

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

Computers and Chemical Engineering 156 (2022) 107567

Fig. 14. Depiction of how an infinite variable y(d) can be approximated as a linear combination of basis functions ¢;(-).

functions are used to approximate the infinite variables:

y(d) ~) yigi(d)

ieT

(32)

where J; € R are the basis function coefficients. An illustration of
this approximation is given in Fig. 14; here, we require that the
basis functions ¢;(d) and the infinite variables y(d) both reside
in a common space such that this approximation becomes ex-
act when the set ® is an orthogonal set of basis functions and
|®| - oo (Graham and Rawlings, 2013). Since the basis functions
are known, this representation allows us to represent the infinite
variables y(d) in terms of the coefficients J; (which are finite vari-
ables). As such, this approach effectively transforms infinite vari-
ables into finite variables. The goal is now to project the formu-
lation (24) onto a set of basis functions so as to obtain a finite
formulation that solely depends on the finite variables J; and z.
This is done by expressing differential and measure operators by
using the basis expansion of the infinite variables (i.e., with oper-
ators applied to the basis functions). In certain cases, the expan-
sion coefficients can be useful in evaluating certain measure types;
for example, the coefficients will correspond to the statistical mo-
ments of the infinite variables when PCE is applied to a stochastic
formulation with a basis that is orthogonal to the probability den-
sity function and these moments are often used to express expec-
tations and risk measures (Zymler et al., 2013).

After basis expansion representations are incorporated, the
problem is fully defined in terms of the finite-dimensional vari-
ables j; and z. However, this representation is not yet tractable,
since it still contains infinite-dimensional objects (e.g., basis func-
tions and associated operators). To deal with this, we consider
the residual (i.e., finite error) R(d) associated with performing this
projection on each constraint and on the objective. Each resulting
residual will be made as small as possible by exacting that they be
orthogonal to a set of weight functions ¥, (d), k€ K,d € D:

(R, Y)w =0, Vke K (33)

where (., -}, denotes the inner product between functions using
the appropriate weighting function w(d) for the given space:

(R Yidw = [RE@)y@widdd.

The weight functions are typically chosen such that |K| = |Z|. The
projection results in a tractable finite-dimensional formulation;
what remains is our choice of the weight functions (-). This
choice gives rise to a range of techniques; if the Galerkin method
is applied then we choose ¢;(d) = ¥(d) and have that Z = K.
This induces the first |Z| terms of the residuals in the trial func-
tions to vanish if the functions are orthogonal (Graham and Rawl-
ings, 2013). Another popular choice is that of orthogonal colloca-
tion, where we choose v, (d) = 8(d — dy); here, the set dy, k e K
denote collocation points (i.e., particular infinite parameter sup-
ports) and §(-) is the Dirac delta function. This approach seeks to
enforce that the residual is zero at the collocation points. When or-
thogonal basis functions are chosen and this is applied over a set

(34)

10

of transcription points (i.e., finite elements), we obtain a method
known as orthogonal collocation over finite elements. A variety of
other methods such as least squares and the method of moments
can also be employed to weight the residuals (these are discussed
in detail in Finlayson, 2013).

The transformation of (24) to a finite-dimensional form via
MWR is, in general, a nonlinear transformation (depending on
the choices of the trial functions ¢;(-), weight functions (),
and their corresponding space). However, there exist special cases
where the transformation is linear, as is often the case with PCE
transformations (Miihlpfordt et al., 2019). Advantages of employing
MWR instead of direct transcription is that one obtains functional
representations for the infinite variables (as opposed to values at
the support points), one can achieve better stability for boundary-
valued problems, and one can obtain better accuracy for certain
formulations (Devolder et al., 2010). On the other hand, the main
disadvantage of MWR is that evaluating differential and measure
operators and inner products tends to be cumbersome (especially
for nonlinear formulations). Also, basis functions can be difficult to
derive for formulations with multivariate infinite domains. In our
abstraction, we provide the modeling elements that facilitate the
implementation of these transformation techniques.

3.3. Transformation framework in InfiniteOpt. j1

In Section 2.8 we discussed how our unifying abstraction is
implemented in InfiniteOpt.jl; one creates a model as an
InfiniteModel object. In this section, we discuss a general
transformation framework incorporated into InfiniteOpt.jl
that facilitates the implementation of different transformation ap-
proaches (e.g., direct transcription and MWRs). We also outline the
efficient direct transcription capabilities that are currently imple-
mented.

The framework centers around applying a transformation to the
InfiniteModel that converts it to a standard JuMP. j1 Model
object (referred to as an optimizer model in this context). The
optimizer model can then be solved using the optimizers imple-
mented in MathOptInterface.jl (Legat et al, 2020). More-
over, this framework features a collection of methods to enable a
seamless interface between the InfiniteModel and its corre-
sponding optimizer model to facilitate capabilities such as informa-
tion extraction (e.g., solution queries) that do not require direct in-
terrogation of the optimizer model. This framework is summarized
in Fig. 15. This software structure distinguishes InfiniteOpt.jl
from other software tools (e.g., Pyomo.dae and Gekko) whose
implementations center around (and are limited to) direct tran-
scription. Thus, InfiniteOpt. jl is unique in providing a flex-
ible API for solving InfiniteOpt problems.

Following this framework, a desired solution scheme is in-
corporated by defining a few prescribed methods (principally
build_optimizer_model!) to implement the associated trans-
formation. This methodology is implicitly invoked on line 26 of
Code Snippet 1 where optimize! creates an optimizer model us-

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

Information Forwarding Methods

[1

Formulation
];537 InfiniteModel . 74 Model
Transformation JUMP

t)

Information Extraction Methods

Fig. 15. Transformation framework employed by InfiniteOpt. j1 for converting
an InfiniteModel into a JuMP. j1 Model.

® InfiniteOpt.jl /0
2.5 JuMPjl 47
//
4
7
7
7
2.0 s
: ,
,g /,,
= B
5 .~
= 1.5 7
2 "
- I
o ‘/
:
© 1.0 _z
2 =57
] E 4
//
-
0.5 A Pt
X 4
o
T T T T T
0 2000 4000 6000 8000 10000

Number of Samples

Fig. 16. Juxtaposition of the total computation time used to formulate and solve
a stochastic optimization problem (Pulsipher and Zavala, 2019) using MC sam-
pling implemented in InfiniteOpt.jl v0.4.1 and manual transcription in
JuMP. j1 v0.21.8.

ing the prescribed transformation and then solves it with the de-
sired optimizer. The full technical detail of this API is beyond the
scope of this work and is available via the InfiniteOpt. j1 doc-
umentation.

InfiniteOpt.jl provides an efficient implementation
of direct transcription following the procedures described in
Section 3.1; this serves as the default transformation technique for
InfiniteOpt models. These techniques are implemented in a sub-
module called TranscriptionOpt that follows the optimizer
model framework shown in Fig. 15. The TranscriptionOpt
module features a sophisticated finite support generation and
management system that enables tackling a wide variety of
infinite-dimensional optimization formulations using diverse eval-
uation techniques for measure and derivative operators. Moreover,
its automatic transcription is efficient and compares compet-
itively to manually transcribing a problem and implementing
it via JuMP. jl. This incredible behavior is demonstrated in
Fig. 16 where a two-stage stochastic optimization problem (the
3-node distribution network example featured in Pulsipher and
Zavala, 2019) is solved for a range of MC samples using automatic
transcription in InfiniteOpt.jl and manual transcription in
JuMP. j1. We note that, contrary to other software implemen-
tations, automatic transcription in InfiniteOpt.jl denotes
a minor computational expense relative to manual transcription
with the benefit of avoiding the errors commonly incurred by
transcribing InfiniteOpt formulations manually.

4. Innovations enabled by unifying abstraction

In this section, we discuss innovative modeling approaches that
are enabled by the proposed InfiniteOpt abstraction. Specifically,
these innovations are facilitated by the ability to transfer model-

1

Computers and Chemical Engineering 156 (2022) 107567

< »
% >

to t ty

Fig. 17. Visualization of the expectation measure E;[f(t)] = rflto .tf)/ f(t)dt where

the rectangle formed has an area equal to that of the region under f(t).

ing techniques and constructs across disciplines. For instance, in
the proposed abstraction, there is no explicit notion of time, space,
or random domains (all domains are treated mathematically in the
same way); as such, one can easily identify analogues of modeling
elements across disciplines.

4.1. Measure operators

Here we highlight the advantages of using an abstraction that
focuses on measure operators. We will highlight how InfiniteOpt
formulations from different disciplines are connected via analogous
mathematical features; we place particular attention to common
features arising in dynamic and stochastic optimization problems.

4.1.1. Expectation measures

In Section 2.4, we provide examples of typical measures used to
formulate objective functions in InfiniteOpt problems (space-time
integrals and expectations). For simplicity in the presentation, we
consider a temporal domain D; and consider the time integral:

f(t)de

teDy

(35)

where we write f(t) = f(y(t),t) for compactness. Minimizing the
measure (35) seeks to shape the cost function (a surface defined
in the domain D;) in a way that it displaces the entire surface.
Analogously, minimizing the expectation measure:

BALfE)]:= [F©)p(E)ds (36)
&eD;

shapes the cost surface (defined in the domain Dg) in a way that
displaces the surface. An obvious difference between time inte-
gral and the random expectation is that the random expectation is
weighted by a probability density function p(-) and this gives flex-
ibility to put more/less emphasis on different locations of the ran-
dom domain D;. Thus, as a simple example on how one can trans-
fer modeling strategies, we can formulate the expectation over the
temporal domain using a weighting function as:

E[f(0)] = / fow.

Note that the selection of the notation t to denote the infinite
domain is arbitrary; one can simply define a general infinite pa-
rameter d. If one defines w(t) =1/S with S= fteDt dt, we can see
that the above measure is the time average of f(t) (with equal
weight placed at each location in the domain). If the time do-
main is Dy = [to, tf], we have that S = t; — to. Fig. 17 provides a ge-
ometric interpretation of the time-expectation; here, the area of
the rectangle with height E[f(t)] and width S is equivalent to

(37)

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

the area under f(t) (Stewart, 2009). This is just a scaled version
of the integral measure (35) and will thus shape f(t) in similar
manner. In fact, the integral (35) is just a special case of mea-
sure (37) (obtained by setting w(t) = 1); also, note that this ap-
proach is equivalent to using a weighting function w(t) that corre-
sponds to the probability density function of a uniform random pa-
rameter & ~ U(to, ty). As such, one can envision defining weighting
functions associated with probability densities of different random
parameters (e.g., Gaussian, exponential, Weibull); this would have
the effect of inducing interesting prioritization strategies that can
be used to shape the cost surface in desirable ways. For instance,
a Gaussian weighting function places emphasis on the middle of
the time domain (and emphasis decays rapidly as one moves away
from the center of the domain), while an exponential weighting
function places emphasis at the beginning of the domain (and de-
cays rapidly as one marches in time). This modeling feature can be
useful in dynamic optimization and optimal control problems in
which it is often desirable to place more/less emphasis on initial
or final conditions. For instance, in infinite-horizon problems, w(-)
obtained from the probability density function of an exponential
density function behaves as a discount factor (Petrik and Scherrer,
2008; Shin et al., 2021).

4.1.2. Risk measures

A large collection of risk measures have been proposed in
the stochastic optimization literature to manipulate random cost
functions in desirable ways (e.g., to minimize impacts of extreme
events) (Ruszczynski and Shapiro, 2006). In this context, risk mea-
sures are typically interpreted as measures that aim to shape the
tail of the probability densities of cost or constraint functions.
A popular risk measure used for this purpose is the conditional
value-at-risk (CVaR):

. PN 1 ~
CVaRe(/(§):) := min {F+ 75 Ee(max(r€) - f.0))} 38)

where o € [0, 1) is a desired probability level and f is an auxiliary
variable.

One can show that the value of the auxiliary variable that min-
imizes the inner function of CVaR is given by f* = Qs (f(§);),
which is the a-quantile of f(&) (Rockafellar et al., 2000). We recall
that the quantile is defined as:
Q(7):e) = inf [(£(6) =) > al. (39)

cR
The quantile is thus the threshold value for f(£) such that the
probability of finding this function below the threshold is at least
o.

One can also show that CVaR is a conditional expectation of the
form:

CVaR; (f(§); @) =B [f(€) | f(§) = Q:(f(§):)] (40)

Hence, minimizing CVaR has the effect of minimizing the condi-
tional expectation over the 1 — « probability region with the high-
est cost, thus hedging against extreme events. Moreover, the calcu-
lation of CVaR at a probability level « implicitly defines the quan-
tile of f(&).

A key property of CVaR is that it is a general measure that cap-
tures the expectation CVaRg (f(§); @) = E¢[f(§)] as o — 0 and the
worst-case CVaRg (f(§); o) =supg (f(§)) as o — 1. Fig. 18 shows
how these measures are typically interpreted in terms of the prob-
ability density function of the cost f(£), motivating the o and
1 — o probability regions.

Through the perspective of the proposed unifying abstraction,
one can interpret CVaR as a measure that captures the excursion of
a function (field) from a given threshold. To see this, we define the

12

Computers and Chemical Engineering 156 (2022) 107567

p(f(§))

<
<

I 760

Fig. 18. An illustration of CVaRg (f(§):) in terms of the probability density func-
tion p(f(§)).

A

A
v

Fig. 19. Illustration of CVaR; (f(§):) following the representation given in (43).
This provides an alternative view of the probabilistic representation shown in
Fig. 18.

positive and negative function excursion sets of f (&) which denote
the range of f(&) above and below a threshold f, respectively:

DFfE:NH:={EeDe: f§) =)
Dy (fE):NH:=1{EeDe: f§) <)
where D} (f(§); f)<De and D (f(); f) < D; are the positive
and negative function excursion sets, respectively. We simplify the

notation for these excursion sets by using Dg (f) and Dg (f). Us-
ing these definitions, we can express the quantile function qy :=

Q: (f(§);) as:

{/ LS za}‘
gen; ()

This reveals that CVaR considers the expectation of f(£) over the
restricted domain Dg(qa), which indexes the 1 — « probabilistic

region shown in Fig. 18:

al
1—a Jeepiq

3

(41)

qo = inf

i (42)
feR

CVaR; (f(§): @) =) fE)p&)ds. (43)

Fig. 19 illustrates that CVaRg (f(§); @) using this functional inter-
pretation for a realization of f(£) and compares it to the other
measures shown in Fig. 18.

The representation of CVaR shown in (43) highlights that this
can be seen as a measure operator that can be applied to differ-
ent types of infinite domains (e.g., space and time). For instance,
shaping time-dependent trajectories to minimize extreme values is
applicable to dynamic optimization (e.g., to prevent peak costs or
extreme operating conditions that can hinder safety). For instance,
Risbeck and Rawlings, 2019 recently proposed a model predictive
control formulation that has the dual goal of minimizing total ac-

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

Fig. 20. Illustration of CVaR;(f(t); «), as represented in (45).

cumulated cost and peak cost:

f@©)dt +2-max f(t) (44)

teDy
where A € Ry is a trade-off parameter. More generally, we might
want to penalize a subdomain of the time domain that attains the
highest costs; this can be achieved by applying a CVaR measure
operator to the time-dependent cost f(t):

1
CVaR(fOr) = == [fop@d (45)
1 —a Jien; (qu)
where the density function can be selected as p(t) = ——. Note

=7
f—0

that this definition implicitly introduces the notion of a quantile in
a time domain; this quantile is given by:

o = Q(f(D): @) = ipf{/) p(t)dtzoe}. (46)
fer | Jten; (F(6):)
Using the properties of CVaR we can conclude that:
lim CVaR; (f(t); &) = fOp®)dt
a—0 teDy
lim CVaR; (f(t); @) = max f(t). (47)
a—1 teD;

This highlights that CVaR provides an intuitive measure that can
help shape time-dependent trajectories. Fig. 20 illustrates the ap-
plication of this measure over the time domain and shows that this
is analogous to the application over a random domain shown in
Fig. 19. We highlight that, in practice, CVaR;(f(t); @) is computed
by using (38) (defined for t instead of &).

This example illustrates how the CVaR construct used in
stochastic optimization can be utilized to motivate new formula-
tions for other optimization disciplines. The measure-centric uni-
fying abstraction facilitates this process by capturing objects via
measure operators. The process of transferring ideas through the
measure-centric abstraction is also amendable to other risk mea-
sures (see Krokhmal et al., 2013 for a review of risk measures). We
present a numerical study of using CVaR for an optimal control
formulation in Section 5.2.

4.1.3. Event constraints

An interesting modeling paradigm that arises from the pro-
posed abstraction are event constraints. These constraints general-
ize the notion of chance constraints, excursion set conditions, and
exceedance probabilities that are used in different scientific dis-
ciplines (e.g., stochastic optimization, reliability engineering, and
random fields). This unified view also promotes transfer of mod-
eling concepts across disciplines; for instance, we will see that
chance constraints in a random domain are analogous to ex-
ceedance times in a time domain.

13

Computers and Chemical Engineering 156 (2022) 107567

To exemplify the notion of event constraints, consider the so-
called excursion time; this measure is widely used in reliability
analysis of dynamical systems and is defined as the fraction of
time that a function h(t), t € D; is above a given threshold (Au and
Beck, 2001). Here, we consider a zero threshold value to give the
event constraint:

P:({3t € D; : h(t) > 0}) < a. (48)

where « €[0,1]. In the context of an InfiniteOpt problem, the
function h(t), t € D; can denote a constraint h(y(t),z,t), t € D;.
The excursion time is expressed as a probability-like measure of
the form:

Pe({3t € Dp : h(t) > 0}) =f

teD

1[{3t € Dy : h(t) > 0} w(t)dr
t (49)

where w:D;— [0,1] is a weighting function satisfying
ftsDt w(t)dt = 1. The excursion time measure can be interpreted as
the fraction of time under which the event of interest occurs; for
instance, in safety analysis, one might be interested in determining
the fraction of time that a constraint is violated and to ensure that
this is not greater than some fraction «. Alternatively, we could
also search to minimize this measure (by using it as an objective).
The excursion time constraint is an event constraint that can help
shape a time-dependent trajectory in interesting and non-intuitive
ways.

One can generalize the excursion time measure by construct-
ing complex events. For instance, consider that we want to deter-
mine the fraction of time that any of the time-varying constraints
hi(t), k € K crosses a threshold. This can be expressed as:

P, (kg}c{ar e De i hy(t) > 0}>.

Here, | is a logical or operator. If we want to determine fraction
of time that all constraints are violated then we use:

P, (kQK{ar €Dyt hy(t) > 0}>.

Here,) is a logical and operator.

To highlight transfer across different disciplines, we recognize
that the excursion time is directly analogous to a chance constraint
(operating in the random space, as opposed to time) and our pre-
vious analysis suggests that one can construct chance constraints
that capture complex events. For instance, consider the event con-
straint:

(50)

(51)

Pe | (J{3E e Dyt h(§) > 0} | < cv.

kek

(52)

Here, we see that the constraint is directly analogous to the event
constraint (50). Fig. 21a illustrates the logical event space that con-
straint (52) shapes. We thus see that events can be defined in a
general form over different infinite domains; to highlight this fact,
we consider the event constraint:

Py U{Eldeth(d) >O} <.
ke

(53)

The previous event constraint is different to traditional joint-
chance constraints used in stochastic optimization:

Pg ﬂ{ﬁéeDg:hk(E)go} <a.

kek

(54)

This makes it more readily apparent that traditional joint-chance
constraints consider the logical event space that is complementary
to that of constraint (52). Fig. 21b shows this region which is the
logical complement of Fig. 21a.

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

hi,ha,hs >0

(a) Excursion Constraint

Computers and Chemical Engineering 156 (2022) 107567

hi.ho,hy >0

(b) Joint-Chance Constraint

Fig. 21. Logical event regions (shown in blue) constrained by the event constraints (52) and (54). In particular, they constrain the condition h; > 0Uh; > 0Uh3 > 0 and the

condition h; <0Nh,; <0Nh;s <0, respectively.

llyl. ILQ,]I;; >0

Fig. 22. Illustration of logical event region captured by constraint (55).

Another interesting insight that we draw from event constraints
is that logical operators (e.g., N and U) can be used to model com-
plex decision-making logic. For example, following the constraint
system shown in Fig. 21; we might consider the logical event re-
gion derived from the condition that h; <0n (h, <0U h3 < 0) giv-
ing the event constraint:

Pe({V& e Dg 1y <0N (h; <0UN3 <0)}) > a. (55)

This is depicted in Fig. 22; we note that this event constraint en-
capsulates a wider probabilistic region relative to that of the tradi-
tional joint-chance constraint (54).

In summary, the presented examples illustrate that excursion
time constraints and chance constraints as special cases of event
constraints. This crossover also led us to representing joint-chance
constraints with logical operators which introduce the notion of
embedding problem-specific logic to shape the probabilistic region
these constraints consider. We illustrate this example further with
a stochastic optimal power flow case study in Section 5.1.

4.2. Random fields

We now discuss how the abstraction inspires the incorporation
of modeling concepts from random field theory into InfiniteOpt
formulations. A random field is a random function with realiza-
tions of the form f(d) : D — R™ (Adler, 2010). For instance, one
can think of a continuous-time trajectory that is random (e.g., due

14

Fig. 23. Sample of a random field defined over space and time.

to uncertainty in a differential equation model that generates it).
A random field generalizes the notion of multivariate random vari-
ables (e.g., a multivariate Gaussian & ~ N (u, X)) that are jointly-
distributed to that of infinite jointly-distributed random variables
that are indexed over some continuous domain. Another example
of a random field is that of a dynamic Gaussian process & (t) ~
GP(u(t), Z(t,t")) for t € D;. Fig. 23 depicts a realization of a ran-
dom field.

Modeling concepts from random field theory allows us to in-
corporate dependencies of a random parameter over other infinite
domains (e.g., account for stochastic processes). For instance, in the
context of our abstraction, consider the random time-dependent
function y(t, £). This decision function is random due to the pres-
ence of £ Dg and is also indexed over t € D;; this means that it
can be precisely characterized as a random field. From this it fol-
lows that all infinite variables y(d_¢, &) are random fields. Hence,
optimally choosing y(d_g,§) in a given formulation amounts to
engineering a random field that is in general correlated over the
infinite domain D_g. This important observation enables us to
connect a wide breadth of optimization disciplines to random
field theory. For instance, the theory and methods behind random
field constructs like excursion sets, excursion probabilities, and ex-
pected Euler characteristics are amendable to the measure oper-
ators and/or event constraints formalized in our abstraction (see
Sections 4.1.2 and 4.1.3) (Adler, 2000).

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

Dy

<
<

A 4

v t

Fig. 24. Realizations of a random parameter & € D; that are invariant relative to
other infinite domains (e.g., time t).

The particular class of infinite variables discussed up to this
point only consider a random parameter £ that is invariant over
other domains, as exemplified for a few realizations of £ in Fig. 24.
This means that, although the infinite variables in this class of for-
mulations are general random fields, the input uncertainty & is
taken to be static random parameter that does not capture any
spatial or temporal correlation. We can overcome this modeling
limitation by extending our abstraction to consider infinite pa-
rameter functions (e.g., random parameters that are functions of
other infinite parameters). In the context of our current example,
this is accomplished by defining the infinite parameter function
E(t) e Dg (), t € Dy which denotes a known random field whose
sample domain D¢ is a set of temporal functions. With this ex-
tension, we can now define the infinite variable y(t, £(t)), which
denotes a random field variable (an infinite variable) where & (t)
is a known random field that can capture correlations of & over
time t. Note that & (t) is explicitly shown as an input to y so that
it is distinguished from deterministic infinite-dimensional variables
y(t). Fig. 25 shows a realization of £(t) in the case that it exhibits
temporal correlation and in the case that & approaches no tempo-
ral correlation. Note this can also capture the static case shown in
Fig. 24.

Random fields have been widely used in disciplines such as ro-
bust topology design optimization (Zhao and Wang, 2014; Zhang
et al.,, 2018); however, to the best of our knowledge, the integra-
tion of random field theory in optimization represents a new class
of optimization formulations. We call this class random field opti-
mization and we note that this is a special case of the proposed
InfiniteOpt abstraction. This class provides effective means of cap-
turing correlation of uncertainty over other domains an optimiza-
tion formulation which is enabled by the rich theory that has been
developed for random fields (Adler, 2010). Moreover, random field
optimization can be seen as a generalization of stochastic optimiza-
tion. For instance, it provides an intriguing alternative to multi-
stage (discrete time) stochastic formulations which cannot be read-
ily generalized to continuous time or general infinite domains (e.g.,
space) (Shapiro, 2003), whereas our proposed formulation class is
defined for general infinite domains (e.g., space and time) and can
incorporate random field uncertainty models such as Gaussian pro-
cesses.

Another interesting observation is that extending the proposed
abstraction to include infinite parameter functions can also be
done for non-random infinite parameters. For instance, we could
account for a time-dependent spatial parameter x(t) € Dy where
Dy(r) is some space. We leave a rigorous formalization of such an
extension to our abstraction and its implications for random field
optimization problems to future work.

15

Computers and Chemical Engineering 156 (2022) 107567
4.3. Problem analysis

Here we highlight some of the advantages that arise from char-
acterizing InfiniteOpt problems directly in accordance with for-
mulation (24), in contrast to the standard practice of express-
ing them solely via finite reformulations. For instance, within the
area of dynamic optimization, it is commonplace to abstract and
formalize problem classes in discrete time (i.e., in a transcribed
form) (Rawlings et al.,, 2017). This practice tends to make prob-
lems more difficult to formulate since they are inherently cou-
pled with the transformation scheme employed (e.g., orthogonal
collocation or explicit Euler). Hence, decoupling the problem defi-
nition from its transformation helps to ease its formalization. Ar-
guably, this decoupling better defines a particular problem and
promotes the use of diverse formulations and transformation tech-
niques. For instance, by operating at a different level of abstraction,
one might more easily identify alternative modeling and solution
techniques: different measures, non-traditional support schemes,
alternative derivative approximations, and/or advanced problem
transformations. For instance, analyzing the problem in its infinite-
dimensional form is what inspired the case study discussed in
Section 5.2; this example shows how to use CVaR as a way to ma-
nipulate time-dependent trajectories.

Establishing theoretical properties for InfiniteOpt formulations
is also often facilitated when these problems are expressed in
their native form. This is exemplified in the recent work of
Faulwasser and Griine (2020), where the authors utilize continuous
and discrete time formulations to derive properties of the turn-
pike phenomenon in the field of optimal control. The turnpike phe-
nomenon refers to the propensity of optimal control trajectories to
remain within a certain region for a significant portion of the time
horizon until later departing it. Fig. 26 illustrates this for a dy-
namic variable y(t). The properties discussed by the authors with
regard to turnpike behavior are beyond the scope of this work but,
interestingly, they observe that a considerable amount of analysis
has been done for finite time formulations whereas many concep-
tual gaps remain for the continuous-time case. This conceptual dis-
parity between the continuous and discrete time cases can at least
in part be attributed to the rather standard practice of express-
ing optimal control formulations in discrete time. This observation
is not unique to the optimal control community and there exists
much to be explored for InfiniteOpt formulations in their native
forms throughout their respective communities in general. Some
potential avenues of research for InfiniteOpt formulations include
systematic initialization techniques that consider the formulation
infinite domain, generalized pre-solving methods (e.g., feasibility
checking), and enhanced transformations (e.g., basis function ap-
proaches used in Georgakis, 2013 and Gnegel et al., 2021).

The proposed abstraction also encourages a more systematic
treatment of infinite-dimensional data and modeling objects. To
illustrate this, we consider dynamic parameter estimation formu-
lations and show how lifting a finite-dimensional data represen-
tation into an infinite-dimensional form might be beneficial. We
consider conducting dynamic experiments k € K that collect the
set of observations (data) {y,(t):te ﬁtk, k € K} over the set of
time points t € ﬁfk. A dynamic parameter estimation formulation
then seeks the optimal choice of parameters z € Z to fit and verify
the efficacy of a candidate model g(y(t), z, t) = 0 relative to empir-
ical data (Shin et al,, 2019; Venturelli et al., 2018). For simplicity
in example, we consider a least-squares approach that yields the
following canonical discrete-time estimation formulation:

min Yo Yiep, Oi(®) = Fil®)’
st B((t).zt)=0, teDy.kek (56)

zeZ

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

Computers and Chemical Engineering 156 (2022) 107567

Dy

A
A 4

\4 t

(b) Uncorrelated

Fig. 25. Realizations of a time-dependent random field & (t) with and without time correlation.

&(t)
< 1 ; >
(a) Correlated
Yy
y(t)
A
| turnpike
e -mmmmmemeeeenoemmmmmneeeeen >
: D,
v . ' t2

Fig. 26. Illustration of the turnpike phenomenon for a time-dependent trajectory
y(t) where the turnpike occurs on the interval [y, t;].

where g(-) is the discretized dynamic model and y,(-) are the
model predicted variables. This discrete representation is guided
by the nature of the experimental data y,(t) available, which cor-
responds to a finite set of time points teﬁtk. This limits the
model to a particular transcribed domain; however, we can express
formulation (56) in continuous time by representing the experi-
mental data with appropriate infinite-dimensional lifting functions
fe(©).t € Dy, such that fi(t) =J(t) at t € Dy:

min - Siee (fren, 010 ~5u(0))dr)
st. g(t),zt)=0, teDy,kek (57)
V() = fi(0), teDy. kek

zZeZ.

We now have a formulation that fits into our unifying InfiniteOpt
abstraction; as such, we can begin to consider general modeling
elements and transformations. This means, for instance, that we
might want to consider alternative time-dependent measures or
more accurate derivative approximations (e.g., orthogonal colloca-
tion over finite elements) (Tjoa and Biegler, 1991). Fig. 27 demon-
strates this principle for a certain derivative Dy,. This approach
also has the potential to alleviate the large computational burden
associated with the noisy experimental data that often plague dy-
namic estimation (Ramsay et al., 2007), since the chosen empiri-
cal data functions f(-) smooth the empirical domains as a prepro-
cessing step (see Fig. 32 in the case study). The data functions also
facilitate the computation of data derivatives; which can be used
in estimation techniques such as SINDy. We leave a more rigor-
ous analysis of formulation (57) to future work but we hope that
this discussion helps illustrate how lifting can help identify new
perspectives to tackle problems that are typically treated as finite-

16

dimensional. We study this approach further in the biological dy-
namic parameter estimation case study presented in Section 5.3.

5. Case studies

In this section, we provide illustrative case studies to demon-
strate the concepts discussed. These case studies seek to exemplify
how the unifying abstraction captures a wide range of formula-
tion classes and how it drives innovation. These cases are imple-
mented via InfiniteOpt.jl v0.4.1 using Ipopt v3.13.2
for continuous problems and Gurobi v9.1.1 for integer-valued
problems on an Intel® Core™ i7-7500U machine running at
2.90 GHz with 4 hardware threads and 16 GB of RAM running
Windows 10 Home. All scripts needed to reproduce the results
can be found in https://github.com/zavalab/JuliaBox/tree/master/
InfiniteDimensionalCases.

5.1. Event-constrained optimal power flow

We apply the event constraints featured in Section 4.1.3 to
a stochastic optimal power flow (SOPF) formulation (a stochas-
tic optimization problem). We base our SOPF formulation as
a variant of the chance-constrained formulation presented in
Miihlpfordt et al. (2018). This considers DC power grid networks
subject to random power demands & € Dg C R". The optimal pol-
icy defines the power generation yg(§) € J; € R™ and the branch
power flow y,(§) € J, € R™ recourse functions to satisfy the de-
mands where the respective feasible sets denote the engineering
limits (i.e., Vg =[0,¥g] and Y, = [-¥p. ¥p]). The power model en-
forces a linear energy balance at each node of the form:

Ayp(§) +Coyg(§) -G£ =0, § e D (58)

where A € R™*™ is the incidence matrix, C; € R™*"¢ maps the
generators to the correct nodes, and C; e R"™* " maps the de-
mands to the correct nodes.

A traditional joint-chance constraint enforces limits to a certain
probabilistic threshold «:

IP%— ﬂ{VS S DE :yg,i(;::) S-Ei}

icZ,
>

(L NVE € De - =V <950 (E) < Vi) (59)

i)

where T is the set of generator indices and Zj, is the set of branch
indices. The non-negativity constraints on the generators are ex-
cluded such that they are enforced almost surely. The joint-chance

https://github.com/zavalab/JuliaBox/tree/master/InfiniteDimensionalCases

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

Dyl\‘

,,,,,,, Analytical
Approximate

t
(a) Traditional

Computers and Chemical Engineering 156 (2022) 107567

Dy
....... Analytical
— Approximate D
th
-t —— —— ——
v t
(b) New

Fig. 27. Comparison between the derivative approximation approaches common to traditional dynamic estimation formulations and higher-order ones possible using our

new formulation (e.g., using orthogonal collocation).

constraint thus enforces that all the engineering limits are satisfied
to at least a probability o and constraint (59) is equivalent to:

E [ﬂ[(ny&i(s) sygf) N (ﬂ =) 5”")“ -

(60)

This representation can be reformulated into algebraic constraints
by introducing an infinite binary variable y,(§) € {0,1} and
an appropriate upper-bounding constant U € Ry (Luedtke and
Ahmed, 2008):

Vei(€) =Yg <yw@U, EeDiely
—Vpi(§) —Vpi <yw(EIU, & eDgiel, (61)
Vi) =i =yw(IU, EeDgiel,

Ee[1—-yw(é)] = a.

Similarly, we can apply the excursion probability constraint; this
enforces the probability that any engineering limit violation be no
more than 1 —«:

]P’g ((U{HE € DE :yg,,-(é;:) > ygl})

icZ,

(62)

U <U{3‘§ € Dg 2 ypi(§)l >yb,-}>) <l-a.

i€Z),

This constraint is equivalent to a joint-chance constraint; this be-
comes apparent when we reformulate constraint (62) as:

Eg |:1|:(UYg,i(f) >Ygi) U (U V5. (8)| >Ybi>:|:| <l-oa.

(63)
and then use y,(£) and U to obtain:
Yg,i(é)*JTgLSYW(S)Us éeDg,ieIg
“V.i(§) —Ybi <yw(E)U, & €Dg e, 64)
Vi(€) = Yoi <yw(&)U, EeDsicTy
IE&E[.VW(%_)] <l-o.
These are equivalent to the set of constraints (61) since

Ee[1 - yw(§)] = o implies E¢[yw(§)] < 1-a.

As an example of leveraging logical operators (e.g., N and U)
to constraint more complex regions, we consider the probability
that all the generator limits being satisfied or all the branch limits
being satisfied:

£, [ﬂ[(.ﬂy&i@ sygf) U (ﬂ =) f”’fm -

(65)

17

Fig. 28. Sketch of the 4-bus power network topology with its bus nodes (blue cir-
cles), branches (blue lines), generators (green squares), and demand loads (orange
triangles). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

This encapsulates a wider probabilistic region relative to that of
the joint-chance constraint (60). This can be reformulated into a
system of algebraic constraints by following the same methodology
outlined for the other event constraints; however, we need to use
multiple infinite binary variables yw.¢(&), ¥5(&). Yw.0(§):

.Vg.i(S)_JTgLSYW,g(E)U, SGDg,ieIg

—Y,i(§) = Vpi <Ywp (U, §eDeicT

Y5,i(§) — Vi < Ywp(E)U, EeDsicd (66)
Ywo(§) = Ywe(E) +ywp) -1, & € D¢

]Eé[l _yw,o(‘i:)] > o.

We can now define the SOPF formulation; here, we aim to com-
pare the use of constraint (60) with the use of constraint (65):

miny, ey, Be[cpye(6)]
st AY(E) +Cyg(§) —Ce6 =0, & eD; 67)
Yg(s) > Os g S DE

(5.60)0r(5.65)

where ¢z € R" are generation unit costs. We apply this SOPF for-
mulation to the 4-bus power system depicted in Fig. 28. We set
Vg =10, y; =4, U =100, ¢} =[110], and & ~ V' (u, ¥) where

(68)

The matrices A, Cg, and C¢ are determined by the topology shown
in Fig. 28.

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

1.09 o e e e e e 5
S = o--———— prm— 1
1 _.__.__..-—-.—"'."' b
| .—’
L 3
08 |
"
P 1
s i
2061 o
[i
o | i
g 1
= 1
Q I
E 0.4 :
8 "
& i
:,
029 1
|
s
:: ® Joint-Chance
0.0 4 el New Logic
7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7

Generation Cost

Fig. 29. Pareto frontiers associated formulation (67) where the joint-chance curve
refers to using constraint (60) and the new logic curve corresponds to constraint
(65).

Computers and Chemical Engineering 156 (2022) 107567

sion probability constraints and joint-chance constraints through
the lens our abstraction.

5.2. Stochastic optimal pandemic control

We exemplify the discussion in Section 4.1.2 in which we dis-
cuss how to use CVaR to shape time-dependent trajectories. We do
so by considering a pandemic optimal control problem; here, we
seek to combat the spread of a contagion while minimizing the
enforced isolation policy y,(t) € [0, 1] (i.e., social distancing pol-
icy). The majority of other pandemic control studies in the liter-
ature (Lemecha Obsu and Feyissa Balcha, 2020; Area et al., 2017;
Tsay et al., 2020) use integral objectives that uniformly penalize
the shape of optimal trajectories. We represent traditional formu-
lations using the objective:

.1
min —

t)dt
el Yu(t)

teD;

(69)

with S = freD, dt. This objective minimizes the time-average isola-
tion policy. We also consider an alternative objective by incorpo-
rating a peak penalty (e.g., (44)) to also control the maximum iso-
lation policy:

Code Snippet 2: Formulation (5.67) with constraints (5.61) via InfiniteOpt.jl to obtain Pareto solu-

tions.

using InfiniteOpt, Distributions, Gurobi
Initialize the model

model = InfiniteModel (Gurobi.Optimizer)

Define the parameters
@finite_parameter (model, « ==)
@infinite parameter (model, &I[

Define the variables
@variables (model, begin
<= ygl], Infinite(§)
vbl 1, Infinite(§)
yw, Infinite(§), Bin
end)

Set the objective

@objective (model, Min, E(cg’ * yg, £)
Add the constraints
@Qconstraint (model, A * yb .+ Cg * yg .- C{ x £ .== 0)

@constraint (model,

(yg - vg_lim .<= yw = U)
@constraint (model,

(

(

- yb - yb_lim .<= yw % U)
vb - yb_lim .<= yw * U)
chance, E(1 - yw, &) >= «a)

@constraint (model,
@constraint (model,

Solve for the Pareto solutions

objs = zeros(length(as))
probs = zeros(length(as))
for (i, prob) in enumerate (as)

set_value (a, prob)
optimize! (model)
objs[i] = objective_value (model)
probs[i] = value(chance)
end

] ~ MvNormal (g, X), num_supports =)

We implement both variants of (67) in InfiniteOpt. jl and
use direct transcription with 1000 MC samples of & to transform
the InfiniteOpt problem into finite-dimensional form. Code Snippet
2 shows an excerpt of the script used in InfiniteOpt.jl. Note
that the algebraic reformulations of each event constraint are used
(e.g., constraints (61) in place of constraint (60)). Each formulation
is solved over a range of « values to obtain Pareto pairs, which are
shown in Fig. 29. We observe that the traditional joint-chance con-
straint requires a higher power generation cost for a given proba-
bility . This makes sense, because the alternate formulation cap-
tures a larger probabilistic event region (it is less constraining).
This highlights how logic affects the behavior of event-constrained
optimization formulations. In summary, in this case study we have
used our unifying abstraction to explore the use of event con-
straints. This is facilitated by studying the analogy between excur-

18

minmax yu (®). (70)
This new objective can be formulated as:
minyu(,),z z (71)

s.t. z>yu(t), teD:

where ze R is an auxiliary variable that captures the peak
(Vanderbei, 2020). We will now show that objectives (69) and
(70) are special cases of the CVaR objective:

mgl)lCVaRt Yu(t); @) (72)

yU -

where « € [0, 1). This problem can be reformulated as:

miny,)y, 1.2 2+ g Eelym(0)]

s.L. Ym() = yu(t) =z, teD; (73)
Ym(t) =0, t eD;

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

where yn : Dr — R and z e R are appropriate infinite and finite
auxiliary variables (Dowling et al., 2016).

We model the spread of the contagion through a given popula-
tion using the SEIR model (Aron and Schwartz, 1984), which con-
siders four population categories:

Susceptible — Exposed — Infectious — Recovered.

We define the fractional populations of individuals susceptible to
infection ys : Dy — [0, 1], exposed individuals that are not yet in-
fectious y. : Dy — [0, 1], infectious individuals y; : D; — [0, 1], and
recovered individuals y; : D; — [0, 1] (considered immune to fu-
ture infection). The variables are normalized such that ys(t) +
Ye(t) +yi(t) +yr(t) = 1. The deterministic SEIR model is formal-
ized as:

dys(t)

i Gu() = DY), teD
L= (= yO)BYONO ~Eve©). LeDe gy
o= EVe(t) = yi(t). teD,
“a& = vyi(t), teD;

Computers and Chemical Engineering 156 (2022) 107567

where sg, eg, iy, g € R denote the initial population fractions, imax
denotes the maximum allowable fraction of infected individuals
y;(t), and y,; denotes the maximum realizable population isolation.
The state variables ys(-),y;(-),Ye(-), yr(-) are now infinite variables
that are parameterized in the time and random domains, while the
control variable y, is an infinite variable that is only parameterized
in the time domain (since we need to decide our control policy be-
fore knowing the realizations of &).

We solve the InfiniteOpt problem (75) using the parame-
ters defined in Table 1 with D¢ = [0, 200]. We transcribe it via
InfiniteOpt.jl using 111 supports for D; and 20 MC samples
for Dg. Code Snippet 3 shows an excerpt of this implementation
in InfiniteOpt. jl. The optimal policies corresponding to ob-
jectives (69) and (71) are shown in Fig. 30. Penalizing the peak
isolation provides a smoother isolation policy y,(t) relative to the
more traditional integral based objective. Moreover, the population
of susceptible individuals ys(t,&) associated with penalizing the
peak isolation decreases at a lower rate which indicates that penal-
izing the peak isolation is more effective at mitigating the spread
of the contagion in this particular case.

Code Snippet 3: Formulation (5.75) with objective (5.73) via InfiniteOpt.jl.

using InfiniteOpt, Distributions, Ipopt

Initialize the model
model = InfiniteModel (Ipopt.Optimizer)

Set the infinite parameters

Set the infinite variables

var_inds = [:s, :e, :i, :r]

@variable (model, < ylvar_inds], Infinite(t, §))
@variable (model, ysi, Infinite(t, &))

@variable (model, < yu < , Infinite(t), start

Set the CVaR objective
@variable (model, z)

@variable (model, < ym, Infinite(t))
@Qobjective (model, Min, z + / (1 - a) = E(ym, t))
@constraint (model, ym = yu - z)
Define the initial conditions
@constraint (model, [v € var_inds], yI[v] (0, &)
Define the SEIR equations
@constraints (model, begin
O(yl:s], t) == -(1 - yu) = B = ysi
O(yl:el, t) == (1 - yu) » B« ysi - § » yl:el
O(yl:1], t) == & * yl:e]l - v = y[:i]
O(yl:r], t) == » yl:i]
ysi == yl:s] » y[:i]

end)

Define the infection limit
@constraint (model, y[:1] < i_max)

Optimize and get the results

optimize! (model)

state_opt = value. (y, ndarray =)
control_opt = value(yu)

obj_opt = objective_value (model)

ts = value(t)

&s = value(€)

@infinite_parameter (model, t € [t0, tf], num_supports
add_supports (t, extra_ts)
@infinite_parameter (model, £ ~ Uniform({_min, £ max),

== y0Ilvl])

=)

num_supports =)

where 8, y,& € R are the rates of infection, recovery, and incuba-
tion, respectively. For our case study, we consider £ to be an un-

certain parameter § ~U(§, £). This introduces the random domain
Dg (ie., the co-domain of U/(§, £)) and gives a stochastic dynamic
optimization problem of the form:

min Objective (5.69), (5.71), or (5.73)

st LD =y (6) - DByt it §), teD,§eD;
D8 — (1 yu(0))Bys(t. E)yi(t, §) — Eye(t. &), teD,§eD;
WO _ gy, (t,£) - yyilt. §), teDpéeD;
W — yyi(t. 6). teD,§eD;
¥5(0,€) =50.ye(0.&) = €9,yi(0.8) =io.y:(0,6) =19, & €Dy
Yi(t. &) < imax. tEDIsEGDS
Yu(t) € [0, y.]. t e D¢

(75)

19

We address formulation (75) by using the proposed CVaR
measure. Three solutions are obtained corresponding to o =
{0,0.5,0.99} and are depicted in Fig. 31. Note that we use « =
0.99 because a singularity is incurred with o = 1. We observe
that Fig. 31a and 31b are identical to Fig. 30a and 30b; this il-
lustrates that the CVaR objective (72) is a generalization of ob-
jectives (69) and (70). Moreover, CVaR provides a range between

Table 1
Parameter values used in the InfiniteOpt formulation (75).

B Y E £
0727 0303 01 06

Yu e io 1o

0.8

Imax So

0.02

1-10-3 105 0 0

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al. Computers and Chemical Engineering 156 (2022) 107567

100 4 100 4
_ \ I] e
2 — ylt, 2 — ys(t,E)
5 50 YAt 5 50
a a
o_ T T T T T T T 0 T T T T T T T
2-

~ 24 — yi(t,§) = — yi(t,§)

9 IS

g g

& &

100 100

g — yult) g — yult)
c [

S 50 S 50+

© ©

[} o

u n

0 : : : . : . : 0 : : . - : : :
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Time (Days) Time (Days)

(a) Objective (5.69) (b) Objective (5.71)

Fig. 30. Optimal trajectories for formulation (75) using traditional dynamic optimization objectives. For the state variables y;(t, &), ye(t,§), y:(t,§), and y.(t,&) the solid
lines denote the trajectories averaged over £ and the dashed lines denote the trajectories that are one standard deviation away from the mean.

100 1 100 A
_ \ _ — Yt
g 5o — ¥it® g N e 221
g] — yilt) g]
0- T T T T T T T 0 T T T T T T T
=
g
o
a
100 100
9 — yult) 9 — yult)
c [
S 50 2 507
© ©
u L]
0 T v T r v r r 0 v r v T r T v
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Time (Days) Time (Days)
@a=0 (b) @ = 0.99
100 A
A N
P
& — ys(t,§)
5 501
o
a

1— ytt.&
| — velt. &)

Pop. (%)

Isolation (%)
w
o

0 25 50 75 100 125 150 175 200
Time (Days)

(c)a=0.5

Fig. 31. Optimal policies for solving Formulation (75) in combination with Objective (73).

20

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

Table 2
Species membership of the microbial community.

Species Name Abbreviation

Blautia hydrogenotrophica BH
Collinsella aerofaciens CA
Bacteroides uniformis BU
Prevotella copri PC
Bacteroides ovatus BO
Bacteroides vulgatus BV
Bacteroides thetaiotaomicron BT
Eggerthella lenta EL
Faecalibacterium prausnitzii FP
Clostridium hiranonis CH
Desulfovibrio piger DP
Eubacterium rectale ER

these cases by varying the value of «. Hence, we can also seek
tradeoff solutions such as what is shown in Fig. (31)c with @ = 0.5.
Interestingly, this optimal policy combines aspects of the average
and peak solution policies, but also is unique in enforcing isola-
tion policies from the start. This shows that CVaR can be used to
shape time-dependent trajectories in unique ways that are difficult
to achieve with traditional measures used in dynamic optimization.

5.3. Estimation in dynamic biological systems

We consider a dynamic parameter estimation problem for a bi-
ological system model; this study aims to demonstrate how the
unifying abstraction inspires new formulation classes by lifting for-
mulations into infinite dimensional spaces. This follows from the
discussion in Section 4.3 with regard to formulations (56) and (57).

To juxtapose the utility of formulations (56) and (57), we con-
sider a microbial community consisting of the 12 species described
in Table 2 using the generalized Lotka-Volterra (gLV) model:

DO _ (24 D © i(0), e (76)
jez
where 7 represents the set of microbial species, y, ;(t) is the esti-
mated absolute abundance of species i € 7, z,, ; is the growth rate
of species i, and z, ;; is a species interaction coefficient which de-
scribes the effect of the recipient species i on the growth of the
donor species j (Shin et al., 2019). We use the gLV model parame-
ters presented in Venturelli et al. (2018) to generate simulated ex-
perimental data with random noise € ~ A (0,0.01) for 12 mono-
species and 66 pairwise experiments. This will enhance our assess-
ment of Formulations (56) and (57), since we have an established

ground truth for the model parameters.
Incorporating (76) into Formulation (56) provides us with our
discrete dynamic biological community estimation formulation:

min - Y Y rep, Wrin(t) = Frix()?

dyy ik (€ A
s.t. %) = (ZM + Zjdza.,»jyxijk(t)>y,c,~k(t), teDy ielkek

009<z,;<21, ieZ
—10 <245 <0, ieZ
—10 <z, < 10, (i, j#1)eZIxT.

(77)

Computers and Chemical Engineering 156 (2022) 107567

0.6

0.5 A

°
>
L

I
w
L

Abundance

o
N
L

0.1 A

0.0 A

0 5 10 15 20
Time (Hours)

Fig. 32. Empirical fit for a mono-species experiment of Bacteroides vulgatus using
(78).

Note that we sum over each species i for each experiment k in
accordance with (76). Also, we recall that the derivative terms are
limited to finite difference approximation schemes that employ the
support points in Dy, .

To derive an explicit form of Formulation (57), we first fit an
empirical function f;,(t;) to each experiment k and each species
i. Our goal is not to create a generalizable predictive represen-
tation but rather to construct a continuous, infinite-dimensional
function that represents the dynamic behavior observed in each
experiment. We observe that the experiments appear to exhibit
sigmoidal characteristics, and thus we use least-squares to fit each
experiment k and species i to an empirical function of the form:

/Bl,ik

Ba.ik + ﬂ3,ikeﬁ4.ik([*ﬁ5.ik) ’

where B1 i Boik Bsik Bai and Psy are fitting parameters.
Eq. (78) fits our experimental datasets well as demonstrated for
the particular experiment shown in Fig. 32 which is indicative of
overall fit qualities we observed. Thus, we substitute Egs. (76) and
(78) into Formulation (57) to obtain:

fie@) := teDy,ieT, kek (78)

min Yo Sier (oo, Orie(®) = Fean(0))?e)

dyy.i :
s.t. y#(t) = (Z,,u' + Zjezza,ijyx,jk(t))yx‘ik(t)v teDy,ieZkek

YX.ik(t)=W, tE'D[k,l'EI,kE/C (79)
0.09<z,;<21, iel

-10<2,; <0, ieZ

—10 <z, < 10, (i,j#i)eIxT.

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

Donor Species

Computers and Chemical Engineering 156 (2022) 107567

0.25 0.25 025 0.25 025 ; 025
s LA A A A A A A = A AAL A
0.004 0.00 0.00 0.00 4 0.00 0.00 d 0.00 0.00 0.00 0.0 0.00 0.00
o 20 0 5o 0 50 0 50 0 50 0 s0 0 50 0 50) 0 50 0 50 0 50
0.2 0.2 0.25 7] 0.25 0.0 5 0.25 0.2 0.25 0.25
O 11 O 7 P 7 O 0 73 7 70 2 o i 1 o P
0.0 : 0.0 0.00 0.000 0.00 0.000 0.00 0.0 0.00 0.0 0.00 s 0.00
0 50 0o 20 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50
os{ /M 0.5 05 05 05 o 05 05 05 0.5 05
o I A e VA 0 1 1 0 e 4
0.0 0.0 0.0 0.0 00 0.0 0.00 0.0 0.0 0.0 0.0 0.0
0o 50 0 50 o 20 0 50 0o s0) 0 50 0o 50 0o 50 0o 50 0o 50 0 50
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000kl L]
0 50 0o 50 0 50 o 20 0 50 0o 50 0 50 0o 50 0 50)) 0 50
] 1) ; (S Walali ¥ y 9 i
S X
Q0 0.0 0.0 0.0 X 0.0 0.0 0.00 0.0 00 0.0 0.0kt 00 b 1 o0
5 0 50 0 50 0 50 0o 50 0o 20 0o 50 0 50 0o 50 0 50 0 50 0 50 0 50
o BV °° r' 05 rr 0.25 ” 05 y G55 rn 0.5 0.1 0.5 r r 0.5 ' r 05 0.5 0.5
(V)] /|
o 0.0 0.0 0.00 0.0 0.00% 0.0 0.0 0.0 0.0 0.0 0.0 0.0
- 0o 50 0o 50 0 50 0o 50 0o 50 o 20 0 50 0 50 0o s0 0o 50 0o 50 0 50
S oY) {00 <[<) < <) O < L T
o 0.0 0.0% 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0 50 0 50 0 50 0 50 0 50 0o 50 0o 20 0 50 0 50 0 50) 0 50
0.2] 3 01 05 05 y 0.2 =] 3| — 0.2 a2
0.0 0.0 2 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 K 0.0
0 50 0 50 0 50 0 50 0o s0 0 50 0 50 o 20 0 50 0 50 0 50 0 50
0.15 0.05 0. 0.075 0.2 0.2
FP 010 01 0.025 0.1 005 5 0025f o o050 1 o
0.05 . T 0.025
0.0 0.000 0.0 0.00 0.00 0.000 0.0 0.0 0.0
0 50 0o 50 0 50 0 50 0 50 0o 50 0o 50 0o 50 0o 20 0 50 0 50 0 50
= e Fa 9 0.25 ‘ e
1 A e e B [{71!
0.00 0.00 1 0.00% 0.00 0.00 ol 0.00 0.00 0.00 0.00 0.00 .00 I ¥
0 50 0 50 0 s0 0 50 0 50 0 50 0 50) 0 50 0o 20 0 50 0 50
0.025
. 01 0.1 .
op ool A U] UL A AV o AAL S U e il
0.00 0.0 0.0 0.000 0.0 0.0 0.0 sl 00 0.00 0.00 0.0 0.0
0o 50 0 50 0 50 0 50 0 50 0 50)) 0 50 0 50 o 20 0 50
017 01 01 o 01 - 0.10
i3 s - # J 0.1
en ool o o "l V) Fad L= 1A
0.00 0.00 0.0 0.000 0.0 0.0 0.0 0.0 0.000 0.0
0 50 0 50 0 50 0 50 0 s0 0 0 50 0 50) 0 50 0o 20

=+ Continuous Formulation
= Discrete Formulation

Fig. 33. Optimal trajectories from formulations (77) and (79) using orthogonal collocation over finite elements to approximate the derivatives with two and four points,
respectively. All shown in comparison to the experimental data. The x-axis is time in hours, and the y-axis is the absolute abundance of the recipient species in contact with

the corresponding donor species. The results for the mono-species experiments are observed on the diagonal with the rest being pairwise.

22

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

—— Discrete
—-= Cont., 2 Nodes

—-= Cont., 4 Nodes
—-= Cont., 6 Nodes

Abundance

o
w
1

o
N

Abundance

=
=

o
o
L

20 40 60
Time (Hours)

o

Computers and Chemical Engineering 156 (2022) 107567

Exp. Data
= Actual Solution

0.20 A

0.15 4

0.10 A

Time (Hours)

Fig. 34. Optimal profiles for select experiments using different formulations and collocation node amounts (top-left: (FP, BT), top-right: (EL, EL), bottom-left: (CH, PC),

bottom-right: (FP, BU)).

Code Snippet 4: Formulation (5.79) using InfiniteOpt.j1.

1 using InfiniteOpt, Ipopt
3 | # Initialize the model
% model = InfiniteModel (Ipopt.Optimizer)
o)
6 | # Set the infinite parameters
7 |einfinite_parameter (model, tl[k € K] € [0, T[k]], num_supports = 15, independent = true,
3 derivative_method = OrthogonalCollocation(4))
10 | # Set the finite variables
11 |evariable(model, 0.09 < zu[i € I] < 2.1)
12 |evariable(model, -10 < zal[i € I, j € I] < za_max[i, F1)
13
14 | # Set the infinite variables
15 |evariable (model, yx[i € I, k € K] = 0, Infinite(t[k]))
16 |evariable(model, zayx[i € I, j € I, k € K], Infinite(t[k]))
1
18 | # Set the empirical functions using fitted q[i, k](t) functions
19 |eparameter_function(model, yx_tilde[i € I, k € K] == ql[i, k] (t[k]))
20
2 # Set the least—squares objective
;J @objective(model, Min, sum({((yx[i, k] - yx_tildel(i, k]) " 2, t[k]) for i € I, k € K))
24 |# Define the gLV equations
25 |@constraint (model, [i € I, k € K],
6 O(yx[i, k1, t[k]) == (zpli] + sum(zayx[i, j, k] for j € I)) » yx[i, k])
' @Qconstraint (model, [i € I, j € I, k € K], zayx[i, j, k]l == zali, j1 = yx[j, kI)
9 | # Optimize and get the results
30 |optimize! (model)
3 za_opt = value. (za)
32 | zp_opt = value. (zp)
33 |yx_opt = value. (yx)
34 |ts = supports(t)

We solve formulations (77) and (79) using InfiniteOpt. jl
via its automated transcription capabilities. Code Snippet
4 presents an illustrative summary of the syntax for imple-
menting Formulation (79). We employ 15 time supports for each
experiment in Formulation (79) and necessarily use the measure-
ment times as supports for formulation (77). We use orthogonal
collocation over finite elements to approximate the differential
equations; we use two nodes per finite element (necessarily using
only the boundary points) in Formulation (77) and a range of

23

node amounts with formulation (79) to investigate their effect on
solution quality. Fig. 33 summarizes the model fits of both solution
sets relative to the experimental data. Although both estimation
problems are able to choose parameters that characterize the data
well, there are significant deviations between the profiles across a
few experiments.

Fig. 34 shows a representative subset of experiments to demon-
strate how the solutions vary with respect to the estimation for-

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

Table 3

Sum-squared-errors between the actual and estimated
parameters for each formulation and number of collo-
cation nodes per finite element.

Formulation SSE,, SSEz,

Discrete, 2 Nodes 1.02 x 102 4.72 x 1072
Continuous, 2 Nodes 2.14 x 10" 2.46 x 102
Continuous, 4 Nodes 1.59 x 10! 9.05 x 104
Continuous, 6 Nodes ~ 1.59 x 10! 9.10 x 10~

mulation and the number of collocation points. We find that the
discrete formulation solution generally deviates from the analyti-
cal solution to a greater extent than the solutions procured via the
continuous formulation. However, it is difficult to conclude which
estimation problem best represents the data when the measure-
ment noise is near the magnitude of the absolute abundance be-
cause no model matches the true analytical solution particularly
well; the continuous formulation solutions, however, in general
seem to better represent the trend of the system. This suggests
that Formulation (79) has effectively smoothed over noisy exper-
iments, leading to a better fit. Furthermore, we observe that the
ability of Formulation (79) to enable arbitrary collocation nodes
has a significant effect on the accuracy of the solutions. This in-
creased accuracy seems to effectively taper off at four collocation
nodes in this case.

We seek to substantiate our qualitative observation that the
continuous formulation is able to better represent the experimen-
tal data by comparing the sum-squared-errors (SSE) between the
true parameters used to generate the experimental data to those
approximated from formulations (77) and (79). Specifically, we
consider the error metrics:

SSEy, =Y (Zui — Zui)?
ieT

SSEz, 1=y Y (Zu.ij — Zaij)’

ieZ jeT

where Z,, ; and Z, ;; denote the actual parameters used in the sim-
ulations to generate the experimental data. The results are shown
in Table 3 and demonstrate that the continuous formulation solu-
tions yield significantly smaller sum-squared-errors. Moreover, in-
creased collocation nodes for each finite element are able to reduce
the overall error by more than an order of magnitude.

6. Conclusions and future work

We have presented a unifying abstraction for representing
infinite-dimensional optimization (InfiniteOpt) problems that ap-
pear across diverse disciplines. This unifying abstraction introduces
the notions of infinite variables (variables parameterized over
infinite-dimensional domains). The abstraction also uses measure
and differential operators that facilitate the construction of objec-
tives and constraints. The proposed abstraction facilitates knowl-
edge transfer; specifically, it helps identify and transfer model-
ing constructs across disciplines. For instance, we discussed how
chance constraints are analogues of excursion probabilities and
how these can be generalized using event constraints; as an-
other example, we show how one can use risk measures to shape
time-dependent trajectories in dynamic optimization. The pro-
posed modeling abstraction aims also to decouple the formula-
tion from transformation schemes (e.g., direct transcription), as we
believe that this facilitates analysis and implementation. The pro-
posed abstraction serves as the backbone of a Julia-based modeling
framework called InfiniteOpt. jl.

24

Computers and Chemical Engineering 156 (2022) 107567

In future work, we will further investigate theoretical crossovers
between disciplines. In particular, we are interested in rigorously
analyzing the characteristics of risk measures across general infi-
nite domains. Such measures have the potential to enhance the
shaping of optimal trajectories in spatio-temporal domains and
provide an intuitive analogy for stochastic optimization problems.
Event constraints also present an intriguing general constraint class
that warrants further research (e.g., connections with disjunctive
programming). We also plan to further develop the theoretical and
algorithmic foundations for incorporating random field theory into
optimization. Furthermore, we will continue enriching the capa-
bilities of InfiniteOpt. j1 to support these research endeavors
and to make advanced transformation approaches (e.g., MWR ap-
proaches) more readily accessible.

Declaration of Competing Interest

None.

Acknowledgments

We acknowledge financial support from the U.S. Department of
Energy under grant DE-SC0014114 and from the U.S. National Sci-
ence Foundation under award 1832208.

References

Adler, RJ., 2000. On excursion sets, tube formulas and maxima of random fields.
Ann. Appl. Probab. 1-74.

Adler, RJ., 2010. The geometry of random fields. SIAM.

Area, I, Ndairou, F, Nieto, J. J., Silva, C. J., Torres, D. F., 2017. Ebola model and opti-
mal control with vaccination constraints. arXiv preprint arXiv:1703.01368.

Armaou, A., Christofides, P.D., 2002. Dynamic optimization of dissipative PDE sys-
tems using nonlinear order reduction. Chem. Eng. Sci. 57 (24), 5083-5114.

Aron,].L., Schwartz, 1.B., 1984. Seasonality and period-doubling bifurcations in an
epidemic model.]. Theor. Biol. 110 (4), 665-679.

Asprey, S., Macchietto, S., 2002. Designing robust optimal dynamic experiments. J.
Process Control 12 (4), 545-556.

Asteasuain, M., Tonelli, S.M., Brandolin, A., Bandoni, J.A., 2001. Dynamic simulation
and optimisation of tubular polymerisation reactors in Gproms. Comput. Chem.
Eng. 25 (4-6), 509-515.

Au, S., Beck, J.L., 2001. First excursion probabilities for linear systems by very effi-
cient importance sampling. Probab. Eng. Mech. 16 (3), 193-207.

Beal, L.D., Hill, D.C., Martin, R.A., Hedengren,].D., 2018. Gekko optimization suite.
Processes 6 (8), 106.

Bertsekas, D.P., Bertsekas, D.P.,, Bertsekas, D.P., Bertsekas, D.P., 1995. Dynamic Pro-
gramming and Optimal Control, 1. Athena scientific Belmont, MA.

Besangon, M., Anthoff, D., Arslan, A., Byrne, S., Lin, D., Papamarkou, T., Pearson,]J.,
2019. Distributions.jl: definition and modeling of probability distributions in the
Juliastats ecosystem. arXiv preprint arXiv:1907.08611.

Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B., 2017. Julia: a fresh approach to
numerical computing. SIAM Rev. 59 (1), 65-98.

Biegler, L.T., 2007. An overview of simultaneous strategies for dynamic optimization.
Chem. Eng. Process. Process Intensif. 46 (11), 1043-1053.

Biegler, L.T., Ghattas, O., Heinkenschloss, M., van Bloemen Waanders, B., 2003.
Large-scale PDE-constrained optimization: an introduction. In: Large-Scale PDE-
Constrained Optimization. Springer, pp. 3-13.

Birge, J.R., Louveaux, F., 2011. Introduction to Stochastic Programming. Springer Sci-
ence & Business Media.

Cakmak, U., Ozekici, S., 2006. Portfolio optimization in stochastic markets. Math.
Methods Oper. Res. 63 (1), 151-168.

Chen, M., Mehrotra, S., Papp, D., 2015. Scenario generation for stochastic opti-
mization problems via the sparse grid method. Comput. Optim. Appl. 62 (3),
669-692.

Dentcheva, D., Ruszczyiski, A., 2006. Portfolio optimization with stochastic domi-
nance constraints. J. Bank. Financ. 30 (2), 433-451.

Devolder, O., Glineur, ., Nesterov, Y., 2010. Solving infinite-dimensional optimization
problems by polynomial approximation. In: Recent Advances in Optimization
and its Applications in Engineering. Springer, pp. 31-40.

Dowling, AW., Ruiz-Mercado, G., Zavala, V.M., 2016. A framework for multi-s-
takeholder decision-making and conflict resolution. Comput. Chem. Eng. 90,
136-150.

Dunning, I., Huchette, J., Lubin, M., 2017. Jump: a modeling language for mathemat-
ical optimization. SIAM Rev. 59 (2), 295-320.

Faulwasser, T., Griine, L., 2020. Turnpike properties in optimal control: an overview
of discrete-time and continuous-time results. arXiv preprint arXiv:2011.13670.

Finlayson, B.A., 2013. The Method of Weighted Residuals and Variational Principles.
SIAM.

http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0001
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0001
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0002
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0002
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0004
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0004
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0004
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0005
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0005
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0005
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0006
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0006
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0006
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0007
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0007
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0007
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0007
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0007
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0008
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0008
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0008
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0009
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0009
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0009
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0009
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0009
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0010
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0010
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0010
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0010
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0010
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0012
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0012
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0012
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0012
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0012
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0013
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0013
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0014
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0014
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0014
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0014
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0014
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0015
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0015
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0015
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0016
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0016
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0016
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0017
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0017
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0017
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0017
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0018
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0018
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0018
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0019
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0019
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0019
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0019
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0020
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0020
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0020
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0020
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0021
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0021
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0021
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0021
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0023
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0023

J.L. Pulsipher, W. Zhang, T,J. Hongisto et al.

Georgakis, C., 2013. Design of dynamic experiments: a data-driven methodology
for the optimization of time-varying processes. Ind. Eng. Chem. Res. 52 (35),
12369-12382.

Gnegel, F, Fiigenschuh, A., Hagel, M., Leyffer, S., Stiemer, M., 2021. A solution frame-
work for linear PDE-constrained mixed-integer problems. Math. Program. 1-34.

Graham, M.D., Rawlings,].B., 2013. Modeling and Analysis Principles for Chemical
And Biological Engineers. Nob Hill Pub..

Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S., 2008. Optimization with PDE Con-
straints, 23. Springer Science & Business Media.

Houska, B., Ferreau, H,J., Diehl, M., 2011. Acado toolkit - an open-source framework
for automatic control and dynamic optimization. Optim. Control Appl. Methods
32 (3), 298-312.

Jalving, J., Cao, Y., Zavala, V.M., 2019. Graph-based modeling and simulation of com-
plex systems. Comput. Chem. Eng. 125, 134-154.

Jalving, J., Shin, S., Zavala, V. M. 2020. A graph-based modeling abstraction
for optimization: concepts and implementation in plasmo. jl. arXiv preprint
arXiv:2006.05378.

Kleywegt, A.., Shapiro, A., Homem-de Mello, T., 2002. The sample average approx-
imation method for stochastic discrete optimization. SIAM]. Optim. 12 (2),
479-502.

Koivu, M., Pennanen, T., 2010. Galerkin methods in dynamic stochastic program-
ming. Optimization 59 (3), 339-354.

Krokhmal, P, Zabarankin, M., Uryasev, S., 2013. Modeling and optimization of
risk. In: Handbook of the Fundamentals of Financial Decision Making: Part II,
pp. 555-600.

Lan, T., Zhou, Z., Huang, G.M., 2018. Modeling and numerical analysis of stochastic
optimal transmission switching with DCOPF and ACOPF. IFAC-PapersOnLine 51
(28), 126-131.

Legat, B., Dowson, O., Garcia, J. D., Lubin, M., 2020. Mathoptinterface: a data struc-
ture for mathematical optimization problems. arXiv preprint arXiv:2002.03447.

Lemecha Obsu, L., Feyissa Balcha, S., 2020. Optimal control strategies for the trans-
mission risk of COVID-19. J. Biol. Dyn. 14 (1), 590-607.

Luedtke, J., Ahmed, S., 2008. A sample approximation approach for optimization
with probabilistic constraints. SIAM]. Optim. 19 (2), 674-699.

Miihlpfordt, T, Faulwasser, T., Hagenmeyer, V., 2018. A generalized framework
for chance-constrained optimal power flow. Sustain. Energy Grids Netw. 16,
231-242.

Miihlpfordt, T., Roald, L., Hagenmeyer, V., Faulwasser, T., Misra, S., 2019. Chance-
constrained ac optimal power flow: a polynomial chaos approach. IEEE Trans.
Power Syst. 34 (6), 4806-4816.

Na, S., Shin, S., Anitescu, M., Zavala, V. M., 2020. Overlapping Schwarz decomposi-
tion for nonlinear optimal control. arXiv preprint arXiv:2005.06674.

Nicholson, B., Siirola, J.D., Watson, J.-P,, Zavala, V.M., Biegler, L.T., 2018. Pyomo. DAE:
a modeling and automatic discretization framework for optimization with dif-
ferential and algebraic equations. Math. Program. Comput. 10 (2), 187-223.

Nocedal, J., 2006. Knitro: an integrated package for nonlinear optimization. In:
Large-Scale Nonlinear Optimization. Springer, pp. 35-60.

Nocedal, J., Wright, S., 2006. Numerical Optimization. Springer Science & Business
Media.

Petrik, M., Scherrer, B., 2008. Biasing approximate dynamic programming with a
lower discount factor. In: Proceedings of the Twenty-Second Annual Conference
on Neural Information Processing Systems-NIPS 2008.

Pulsipher, J.L., Zavala, V.M., 2019. A scalable stochastic programming approach for
the design of flexible systems. Comput. Chem. Eng. 128, 69-76.

Pulsipher, J.L., Zavala, V.M., 2020. Measuring and optimizing system reliability: a
stochastic programming approach. TOP 1-20.

Qin, SJ., Badgwell, T.A., 2003. A survey of industrial model predictive control tech-
nology. Control Eng. Pract. 11 (7), 733-764.

25

Computers and Chemical Engineering 156 (2022) 107567

Ramsay, J.0., Hooker, G., Campbell, D., Cao, J., 2007. Parameter estimation for differ-
ential equations: a generalized smoothing approach. J. R. Stat. Soc. Ser. B (Stat.
Methodol.) 69 (5), 741-796.

Rawlings,].B., 2000. Tutorial overview of model predictive control. IEEE Control Syst.
Mag. 20 (3), 38-52.

Rawlings, J.B., Mayne, D.Q., Diehl, M., 2017. Model Predictive Control: Theory, Com-
putation, and Design, 2. Nob Hill Publishing Madison, WI.

Risbeck, M.J., Rawlings,]J.B., 2019. Economic model predictive control for time-
varying cost and peak demand charge optimization. IEEE Trans. Autom. Control
65 (7), 2957-2968. doi:10.1109/TAC.2019.2939633.

Roald, L, Misra, S., Chertkov, M., Andersson, G., 2015. Optimal power flow with
weighted chance constraints and general policies for generation control. In:
Proceedings of the 54th IEEE Conference on Decision and Control (CDC). IEEE,
pp. 6927-6933.

Rockafellar, R.T,, Uryasev, S., et al., 2000. Optimization of conditional value-at-risk.
J. Risk 2, 21-42.

Ruszczynski, A., Shapiro, A., 2006. Optimization of risk measures. In: Probabilistic
and Randomized Methods for Design Under Uncertainty. Springer, pp. 119-157.

Shapiro, A., 2003. Inference of statistical bounds for multistage stochastic program-
ming problems. Math. Methods Oper. Res. 58 (1), 57-68.

Shin, S., Anitescu, M., Zavala, V. M., 2021. Exponential decay of sensitivity in graph-
structured nonlinear programs. arXiv preprint arXiv:2101.03067.

Shin, S., Venturelli, O.S., Zavala, V.M., 2019. Scalable nonlinear programming frame-
work for parameter estimation in dynamic biological system models. PLoS Com-
put. Biol. 15 (3), e1006828.

Shin, S. Zavala, V. M. 2020. Diffusing-horizon model predictive control. arXiv
preprint arXiv:2002.08556.

Stankiewicz, A.l, Moulijn, J.A., et al, 2000. Process intensification: transforming
chemical engineering. Chem. Eng. Prog. 96 (1), 22-34.

Stein, O., Still, G., 2003. Solving semi-infinite optimization problems with interior
point techniques. SIAM J. Control Optim. 42 (3), 769-788.

Stewart, J., 2009. Calculus: Concepts and Contexts. Cengage Learning.

Straub, D.A., Grossmann, LE., 1993. Design optimization of stochastic flexibility.
Comput. Chem. Eng. 17 (4), 339-354.

Suksuwan, A., Spence, S.M., 2018. Optimization of uncertain structures subject to
stochastic wind loads under system-level first excursion constraints: a data-
driven approach. Comput. Struct. 210, 58-68.

Tjoa, LB., Biegler, L.T,, 1991. Simultaneous solution and optimization strategies for
parameter estimation of differential-algebraic equation systems. Ind. Eng. Chem.
Res. 30 (2), 376-385.

Tsay, C., Lejarza, F, Stadtherr, M. A., Baldea, M. 2020. Modeling, state esti-
mation, and optimal control for the us COVID-19 outbreak. arXiv preprint
arXiv:2004.06291.

Vanderbei, RJ., 2020. Linear Programming: Foundations and Extensions, 285.
Springer Nature.

Venturelli, O.S., Carr, A.V.,, Fisher, G., Hsu, R.H., Lau, R.,, Bowen, B.P, Hromada, S.,
Northen, T., Arkin, A.P., 2018. Deciphering microbial interactions in synthetic hu-
man gut microbiome communities. Mol. Syst. Biol. 14 (6), e8157.

Xiu, D., 2010. Numerical Methods for Stochastic Computations: a Spectral Method
Approach. Princeton University Press.

Zhang, X., He, J., Takezawa, A., Kang, Z., 2018. Robust topology optimization of
phononic crystals with random field uncertainty. Int. J. Numer. Methods Eng.
115 (9), 1154-1173.

Zhao, ., Wang, C., 2014. Robust structural topology optimization under random field
loading uncertainty. Struct. Multidiscip. Optim. 50 (3), 517-522.

Zymler, S., Kuhn, D., Rustem, B., 2013. Distributionally robust joint chance con-
straints with second-order moment information. Math. Program. 137 (1-2),
167-198.

http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0024
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0024
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0025
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0025
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0025
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0025
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0025
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0025
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0026
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0026
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0026
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0027
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0027
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0027
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0027
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0027
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0028
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0028
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0028
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0028
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0029
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0029
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0029
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0029
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0031
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0031
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0031
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0031
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0032
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0032
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0032
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0033
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0033
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0033
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0033
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0034
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0034
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0034
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0034
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0036
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0036
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0036
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0037
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0037
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0037
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0038
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0038
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0038
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0038
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0039
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0039
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0039
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0039
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0039
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0039
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0041
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0041
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0041
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0041
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0041
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0041
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0042
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0042
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0043
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0043
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0043
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0044
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0044
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0044
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0045
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0045
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0045
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0046
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0046
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0046
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0047
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0047
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0047
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0048
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0048
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0048
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0048
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0048
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0049
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0049
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0050
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0050
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0050
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0050
https://doi.org/10.1109/TAC.2019.2939633
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0052
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0052
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0052
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0052
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0052
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0053
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0053
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0053
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0053
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0054
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0054
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0054
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0055
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0055
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0057
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0057
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0057
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0057
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0059
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0059
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0059
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0059
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0060
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0060
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0060
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0061
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0061
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0062
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0062
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0062
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0063
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0063
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0063
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0064
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0064
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0064
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0066
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0066
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0067
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0067
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0067
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0067
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0067
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0067
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0067
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0067
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0067
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0067
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0068
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0068
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0069
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0069
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0069
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0069
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0069
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0070
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0070
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0070
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0071
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0071
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0071
http://refhub.elsevier.com/S0098-1354(21)00345-8/sbref0071

	A unifying modeling abstraction for infinite-dimensional optimization
	1 Introduction
	2 InfiniteOpt abstraction
	2.1 Infinite domains and parameters
	2.2 Decision variables
	2.3 Differential operators
	2.4 Measure operators
	2.5 Objectives
	2.6 Constraints
	2.7 InfiniteOpt formulation
	2.8 Implementation in InfiniteOpt.jl

	3 InfiniteOpt transformations
	3.1 Direct transcription
	3.2 Alternative transformations
	3.3 Transformation framework in InfiniteOpt.jl

	4 Innovations enabled by unifying abstraction
	4.1 Measure operators
	4.1.1 Expectation measures
	4.1.2 Risk measures
	4.1.3 Event constraints

	4.2 Random fields
	4.3 Problem analysis

	5 Case studies
	5.1 Event-constrained optimal power flow
	5.2 Stochastic optimal pandemic control
	5.3 Estimation in dynamic biological systems

	6 Conclusions and future work
	Declaration of Competing Interest
	Acknowledgments
	References

