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a b s t r a c t 

Infinite-dimensional optimization (InfiniteOpt) problems involve modeling components (variables, objec- 

tives, and constraints) that are functions defined over infinite-dimensional domains. Examples include 

continuous-time dynamic optimization (time is an infinite domain and components are functions of 

time), PDE optimization problems (space and time are infinite domains and components are functions 

of space-time), as well as stochastic and semi-infinite optimization (random space is an infinite domain 

and components are a function of such random space). InfiniteOpt problems also arise from combinations 

of these problem classes (e.g., stochastic PDE optimization). Given the infinite-dimensional nature of ob- 

jectives and constraints, one often needs to define appropriate quantities (measures) to properly pose the 

problem. Moreover, InfiniteOpt problems often need to be transformed into a finite dimensional repre- 

sentation so that they can be solved numerically. In this work, we present a unifying abstraction that 

facilitates the modeling, analysis, and solution of InfiniteOpt problems. The proposed abstraction enables 

a general treatment of infinite-dimensional domains and provides a measure-centric paradigm to handle 

associated variables, objectives, and constraints. This abstraction allows us to transfer techniques across 

disciplines and with this identify new, interesting, and useful modeling paradigms (e.g., event constraints 

and risk measures defined over time domains). Our abstraction serves as the backbone of an intuitive 

Julia -based modeling package that we call InfiniteOpt.jl . We demonstrate the developments us- 

ing diverse case studies arising in engineering. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Infinite-dimensional optimization (InfiniteOpt) problems con- 

ain parameters that live in infinite-dimensional domains (e.g., 

ime, space, random) ( Devolder et al., 2010 ); the components of 

hese problems (variables, objectives, and constraints) are param- 

terized over these domains and thus are functions with infinite- 

imensional domains (they form manifolds and surfaces). A clas- 

ical example of an InfiniteOpt problem is continuous-time dy- 

amic optimization ( Bertsekas et al., 1995 ); here, the control tra- 

ectory is a function of time and time is a parameter that lives 

n an infinite-dimensional (continuous) domain. This formulation 

ontrasts with that of a discrete-time dynamic optimization prob- 

em, in which the control trajectory is a collection of values de- 

ned over a finite set of times (domains are finite). Given the 

nfinite-dimensional nature of variables, objectives, and constraints, 

ne requires specialized techniques to define an InfiniteOpt prob- 

em properly. This is done by using measures , which are opera- 

ors that summarize/collapse an infinite-dimensional object into a 
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calar quantity. For instance, in dynamic optimization, one often 

inimizes the integral of the cost over the time domain and, in 

tochastic optimization, one often minimizes the expected value or 

ariance of the cost. Measures are thus a key modeling element 

f InfiniteOpt problems that help manipulate the shape of infinite- 

imensional objects to achieve desired outcomes (e.g., minimize 

eak/extreme costs or satisfy constraints with high probability). 

nfiniteOpt problems also often contain differential operators that 

ictate how components evolve over their corresponding domains; 

hese operators often appear in problems that include differential 

nd algebraic equations (DAEs) and partial differential equations 

PDEs). 

InfiniteOpt problems encompass a wide range of classical 

elds such as dynamic optimization ( Biegler, 2007 ), PDE optimiza- 

ion ( Hinze et al., 2008 ), stochastic optimization ( Birge and Lou- 

eaux, 2011 ), and semi-infinite optimization ( Stein and Still, 2003 ). 

ne also often encounters InfiniteOpt problems that are obtained 

y combining infinite-dimensional domains (e.g., space, time, and 

andom domains). This situation arises, for instance, in stochas- 

ic dynamic optimization (e.g., stochastic optimal control) prob- 

ems and in optimization problems with stochastic PDEs. In these 

roblems, one needs to define measures that summarize model- 

ng objects that are defined over the multiple domains (e.g., mini- 

https://doi.org/10.1016/j.compchemeng.2021.107567
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2021.107567&domain=pdf
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ize the space-time integral of the cost or minimize the expected 

alue of the time integral of the cost). InfiniteOpt problems appear 

n applications such as continuous-time model predictive control 

nd moving horizon estimation ( Rawlings, 20 0 0; Qin and Badgwell, 

003 ), design under uncertainty ( Stankiewicz et al., 20 0 0; Straub 

nd Grossmann, 1993 ), portfolio planning ( Çakmak and Özekici, 

006; Dentcheva and Ruszczy ́nski, 2006 ), parameter estimation for 

ifferential equations ( Shin et al., 2019; Biegler et al., 2003 ), relia- 

ility analysis ( Pulsipher and Zavala, 2020; Suksuwan and Spence, 

018 ), optimal power flow ( Roald et al., 2015; Lan et al., 2018 ), and

ynamic design of experiments ( Georgakis, 2013; Asprey and Mac- 

hietto, 2002 ). 

The infinite-dimensional nature of modeling objects make In- 

niteOpt problems challenging to solve ( Nicholson et al., 2018; 

anderbei, 2020; Nocedal and Wright, 2006 ). Specifically, these 

roblems often need to be transcribed/transformed into a finite di- 

ensional representation via discretization. For instance, differen- 

ial equations and associated domains are often discretized using 

nite difference and quadrature schemes ( Biegler, 2007 ), while ex- 

ectation operators and associated random domains are often dis- 

retized using Monte Carlo (MC) sampling and quadrature schemes 

 Chen et al., 2015; Kleywegt et al., 2002 ). The finite-dimensional 

epresentation of the problem can be handled using standard opti- 

ization solvers (e.g., Ipopt and Gurobi ). Sophisticated trans- 

ormation techniques are used in different scientific disciplines; 

or example, projection onto orthogonal basis functions is a tech- 

ique that is commonly used in PDE and stochastic optimization 

 Devolder et al., 2010; Koivu and Pennanen, 2010 ). 

Although common mathematical elements of InfiniteOpt prob- 

ems are found across disciplines, there are limited tools available 

o model and solve these problems in a unified manner. Power- 

ul, domain-specific software implementations are currently avail- 

ble for tackling dynamic and PDE optimization problems; ex- 

mples include Gekko , ACADO , and gPROMS ( Beal et al., 2018; 

ouska et al., 2011; Asteasuain et al., 2001 ). A key limitation of 

hese tools is that the modeling abstraction used is specialized 

o specific problem classes and are not that easy to extend. On 

he other hand, there are powerful algebraic modeling languages 

uch as JuMP , CasADi , PETSc , and Pyomo that offer high mod-

ling flexibility to tackle different problem classes; however, these 

ools require the user to transform InfiniteOpt problems manually 

which is tedious and prone to error). These limitations have re- 

ently motivated the development of modeling frameworks such 

s Pyomo.dae ( Nicholson et al., 2018 ); this framework unifies the 

otion of variables, objectives, and constraints defined over con- 

inuous, infinite-dimensional domains (sets). This abstraction facil- 

tates the modeling and transformation (via automatic discretiza- 

ion techniques) of optimization problems with embedded DAEs 

nd PDEs. A limitation of this abstraction is that the notion of con- 

inuous sets is limited to space and time and this hinders general- 

zability (e.g., domains defined by random parameters need to be 

reated separately). Moreover, this framework provides limited ca- 

abilities to define measures (e.g., multi-dimensional integrals and 

isk functionals). 

A unifying abstraction for InfiniteOpt problems can facilitate 

he development of software tools and the development of new 

nalysis and solution techniques. For instance, it has been recently 

hown that a graph abstraction unifies a wide range of optimiza- 

ion problems such as discrete-time dynamic optimization (graph 

s a line), network optimization (graph is the network itself), and 

ulti-stage stochastic optimization (graph is a tree) ( Jalving et al., 

019 ). This unifying abstraction has helped identify new theoretical 

roperties and decomposition algorithms ( Jalving et al., 2020; Shin 

t al., 2021 ); this has been enabled, in part, via transferring tech- 

iques and concepts across disciplines. The limited availability of 

nifying modeling tools ultimately limits our ability to experiment 
2 
ith techniques that appear in different disciplines and limits our 

bility to identify new modeling abstractions to tackle emerging 

pplications. 

In this work, we propose a unifying abstraction that facilitates 

he analysis, modeling, and solution of InfiniteOpt problems (see 

ig. 1 ). Central to our abstraction is the notion of infinite parame- 

ers, which are parameters defined over infinite-dimensional do- 

ains (e.g., time, space, and random parameters). The proposed 

bstraction allows us to construct these domains in a systematic 

anner by using cartesian product operations and to define vari- 

bles, objectives, and constraints over such domains and subdo- 

ains (restricted domains). The ability to handle restricted sub- 

omains allows us to capture infinite-dimensional and standard 

finite-dimensional) variables in a unified setting. Another key no- 

ion of the proposed abstraction are measure operators; these op- 

rators allow us to summarize infinite-dimensional objects over 

pecific domains or subdomains and with this formulate prob- 

ems with different types of objectives and constraints. The pro- 

osed abstraction also incorporates differential operators, which 

re used to model how variables evolve other their corresponding 

omains. These modeling elements provide a bridge between dif- 

erent disciplines and enables cross-fertilization. For instance, we 

how that the proposed abstraction allows us to leverage the use 

f risk measures (used in stochastic optimization) to shape time- 

ependent trajectories (arising in dynamic optimization). The pro- 

osed abstraction also facilitates the development of new abstrac- 

ions such as event-constrained optimization problems and opti- 

ization problems with space-time random fields. The proposed 

bstraction forms the basis of a Julia -based modeling package 

hat we call InfiniteOpt.jl . In this context, we show that the 

bstraction facilitates software development and enables a com- 

act and intuitive modeling syntax and the implementation of 

ransformation techniques (e.g., quadrature and sampling). 

The paper is structured as follows. Section 2 details the pro- 

osed unifying abstraction and highlights its implementation in 

nfiniteOpt.jl . Section 3 reviews problem transformations 

nto finite-dimensional representations through the lens of the ab- 

traction. Section 4 discusses benefits provided by the abstraction. 

ection 5 presents diverse case studies and Section 6 closes the 

aper. 

. InfiniteOpt abstraction 

In this section, we outline the proposed unifying abstraction 

or InfiniteOpt problems. Specifically, we discuss the different ele- 

ents of the abstraction, which include infinite domains and pa- 

ameters, decision variables, measure operators, and differential 

perators. 

.1. Infinite domains and parameters 

An InfiniteOpt problem includes a collection of infinite domains 

 � with index � ∈ L . An individual infinite domain is defined as 

 � ⊆ R 
n � . The term infinite refers to the fact that an infinite domain 

as infinite cardinality (i.e., |D � | = ∞ ) and is thus continuous. We 

lso note that each infinite domain D � is a subdomain of an n � -

imensional Euclidean space R 
n � . 

An infinite domain encompasses different domains encountered 

n applications; for instance, this can represent a time domain 

f the form D t = [ t 0 , t f ] ⊂ R (with n t = 1 ), a 3D spatial domain

 x = [ −1 , 1] 3 ∈ R 
3 (with n x = 3 ), or the co-domain of a multivari-

te random variable D ξ = (−∞ , ∞ ) m ∈ R 
m (with n ξ = m ). 

Infinite parameters are parameters that live in the associated 

nfinite domains; specifically, we define the general parameter d ∈ 

 � . In our previous examples, the parameters are time t ∈ D t , space

 ∈ D x , and random parameters ξ ∈ D ξ . 
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Fig. 1. Summary of the proposed InfiniteOpt abstraction; the abstraction seeks to unify existing problem classes and use this to develop new classes. 

Fig. 2. Cartesian product of random domain D ξ and time domain D t to produce D. 
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The domain of the InfiniteOpt problem is the cartesian product 

f the infinite domains: 

 := 

∏ 

� ∈L 
D � . (1) 

he construction of the problem domain is exemplified in Fig. 2 ; 

ere, we see that the domain obtained from the cartesian product 

f a 1D random domain D ξ and a 1D temporal domain D t . 

.2. Decision variables 

A key feature of an InfiniteOpt problem is that it contains de- 

ision variables that are functions of infinite-dimensional param- 

ters; as such, decision variables are also infinite-dimensional. In 

he proposed abstraction, we also consider InfiniteOpt problems 

hat contain finite-dimensional variables (that do not depend on 

ny parameters) and finite-dimensional variables that originate 

rom reductions of infinite variables (e.g., integration over a do- 

ain or evaluation of an infinite variable at a point in the domain). 

o account for these situations, we define different types of vari- 

bles: infinite, semi-infinite, point, and finite. 

Infinite variables y : D �→ Y ⊆ R 
n y are functions that map an in-

nite domain D to the domain Y . These variables are expressed as: 

 (d) ∈ Y, d ∈ D. (2) 
3 
ig. 3 shows that infinite variables are functions that can be inter- 

reted as manifolds (also known as surfaces and fields). The goal of 

he InfiniteOpt problem is to shape these manifolds to achieve pre- 

etermined goals (e.g., minimize their mean value or their peaks). 

xample classes of infinite variables include uncertainty-dependent 

ecision policies arising in stochastic optimization (i.e., recourse 

ariables), time-dependent control/state policies arising in dynamic 

ptimization, or space-time fields arising in PDE optimization. For 

nstance, in a stochastic PDE optimization problem, one might have 

n infinite variable of the form y (t, x, ξ ) , which is simultaneously 

arameterized over time t , space x , and uncertainty ξ . In other 
ords, an infinite variable is equivalent to a collection of finite de- 

ision variables indexed over an infinite domain (producing an infi- 

ite collection of variables). Fig. 4 illustrates some infinite variables 

ommonly encountered in different disciplines. 

Semi-infinite variables y : D −� �→ Y ⊆ R 
n y correspond to infinite 

ariables in which the subdomain D � has been restricted/projected 

o a single point ˆ d � ; the restricted domain is denoted as D −� . These

ariables are also functions that map from the infinite domain D −� 

o the domain Y: 

 (d) ∈ Y, d ∈ D −� . (3) 

e refer to ˆ d � ∈ D � as a support point of the domain. A depic-

ion of how semi-infinite variables are derived from infinite vari- 

bles via projection is provided in Fig. 5 . Example classes mir- 

or those of infinite variables with multiple parameter dependen- 

ies; for example, in a stochastic PDE problem, we might want to 

valuate the variable y (t, x, ξ ) at the support point t = 0 (initial

ime); this gives the semi-infinite variable y (0 , x, ξ ) and domain 

 −t = D x × D ξ . 

Point variables denote infinite variables in which the entire D is 

estricted to a single point ˆ d . These are finite-dimensional variables 

hat can be expressed as: 

 ( ̂  d ) ∈ Y. (4) 
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Fig. 3. Depiction of realizations of an infinite variable y (d) with Y ⊆ R and D ⊆ R 
2 . The horizontal axes define the domain D and the vertical axis denotes the domain of 

feasible decisions Y . 

Fig. 4. Example of infinite variables arising in traditional formulations. The recourse variable y (ξ ) is visualized in terms of its probability density function (as is customary 

in stochastic optimization). 

Fig. 5. Illustration of how a semi-infinite variable y (d) , d ∈ D −� and a point variable y ( ̂  d ) are obtained from an infinite variable y (d) , d ∈ D via restriction/projection. Semi- 

infinite and point variables are realizations of an infinite variable and live in the domain Y . 
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Fig. 6. A depiction of a finite variable z ∈ Z ⊆ R . 
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ig. 5 illustrates how point variables relate to other variable 

lasses. Examples of point variables include random variables eval- 

ated at a specific scenario/sample/realization of the uncertain pa- 

ameter or a space-time variable evaluated at a specific point in 

he domain (e.g., boundary conditions). Point variables are also 

sed in dynamic optimization to specify so-called point constraints 

these ensure that a time trajectory satisfies a set of constraints at 

pecific time points). Point variables can be thought of as variables 

hat are held constant in an infinite domain. 

The proposed abstraction also considers finite variables: 

 ∈ Z ⊆ R 
n z (5) 

here Z denotes the feasible set. These are variables that are not 

arameterized over an infinite domain. Examples of finite variables 

rising in applications are first-stage decision variables and design 

ariables arising in stochastic optimization or model parameters 

stimated in a dynamic optimization problem. Fig. 6 shows that 

his variable is analogous to the point variable depicted in Fig. 5 c. 
4 
n fact, this highlights that a point variable is a finite variable; the 

ifference is that a point variable is derived from a restriction of 

n infinite variable. However, we note that, technically speaking, a 

nite variable can be seen as a special case of an infinite variable 

n which the domain is a point. As such, infinite variables provide 

 unifying framework to capture different types of variables. 

.3. Differential operators 

Differential operators are a typical modeling element of Infini- 

eOpt problems. These operators capture how a given decision vari- 

ble (an infinite-dimensional function) changes over its associated 
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Fig. 7. Depiction of a differential operator D acting on the infinite variable y (d) . 

Fig. 8. Measure operator M t that acts on domain D t of the infinite variable y (d) , d ∈ D. This operation returns the semi-infinite variable m (ξ ) := M t y, ξ ∈ D ξ . 
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omain; for example, in a dynamic optimization problem, we want 

o know how quickly a state/control variable changes in time. 

The proposed abstraction defines a differential operator of the 

eneral form: 

 : D �→ R . (6) 

ifferential operators are applied to infinite variables y (d) , d ∈ D. 

hese operators capture partial derivatives over individual parame- 

ers and more sophisticated operators that simultaneously operate 

n multiple parameters such as the Laplacian operator (typically 

ncountered in PDE optimization). Fig. 7 illustrates a differential 

perator acting on an infinite variable. 

Differential operators map the infinite domain D to the scalar 

omain R . The output of a differential operator is an infinite vari- 

ble Dy (d) , d ∈ D that inherits the domain of the argument y (d) .

or example, consider the infinite variable y (t) , t ∈ D t ; the par-

ial derivative operator is an infinite variable y ′ (t) := ∂ y (t) /∂ t, t ∈
 t . Some other specific examples include the partial derivative 

∂y (t,x,ξ ) 
∂t 

, (t, x, ξ ) ∈ D and the Laplacian �y (x ) , x ∈ D x . Note that

erivatives of the form 
∂ 
∂ξ

are not typically used in stochastic op- 

imization problems; however, the proposed abstraction allows for 

his operator to be defined. This modeling feature can be used, for 

nstance, to control how a random variable changes in the uncer- 

ainty space (this can be used to manipulate the shape of its prob- 

bility density function). 

.4. Measure operators 

Measure operators are key modeling constructs that are used 

o summarize functions by collapsing them to a single quantity. For 

xample, in a dynamic optimization problem, one typically min- 

mizes the time-integral of the cost (a scalar quantity). The pro- 

osed abstraction defines a measure operator of the general form: 

 � : D �→ R (7) 

ere, the index � indicates that the operator is applied on the sub- 

omain D � and thus has the effect of restricting the domain. As 

uch, the output of a measure operator is a semi-infinite variable 
5 
hat lives in the restricted domain D −� . Fig. 8 illustrates such a 

easure operator. 

Measure operators are a key feature of InfiniteOpt prob- 

ems; specifically, objective functions and constraints are often ex- 

ressed in terms of measure operators. For instance, consider a 

eld y (t, x, ξ ) arising in a stochastic PDE problem; one can de- 

ne measure operator that computes the time-integral m (x, ξ ) := 

 

t∈D t y (t, x, ξ ) dt, (x, ξ ) ∈ D x × D ξ and note that the output of this

peration is a semi-infinite variable m (x, ξ ) that lives in D −t = 

 x × D ξ . One can also define an operator that computes the ex- 

ectation m (t, x ) := 

∫ 
ξ∈D ξ y (t, x, ξ ) p(ξ ) dξ , (t, x ) ∈ D t × D x (where

p(·) is the probability density function of ξ ); this operation gives 
 semi-infinite variable m (t, x ) that lives in D −ξ = D t × D x . 

The expectation is a measure operator that is of particular inter- 

st in stochastic optimization because this can be used to compute 

ifferent types of risk measures and probabilities; for instance, in 

he previous example, one might want to compute a probability of 

he form: 

 ξ (y (t, x, ξ ) ∈ Y) , (t, x ) ∈ D t × D x . (8)

his is the probability that y (t, x, ξ ) is in the domain Y and can be

omputed by using an expectation operator: 

 ξ (y (t, x, ξ ) ∈ Y) = E ξ

[
1 [ y (t, x, ξ ) ∈ Y] 

]
= 

∫ 
ξ∈D ξ

1 [ y (t, x, ξ ) ∈ Y] p(ξ ) dξ . (9) 

here 1 [ ·] is the indicator function and the argument of this func- 

ion is the event of interest. We recall that the indicator function 

eturns a value of 0 if the event is not satisfied or a value of 1

f the event is satisfied. An important observation is that the in- 

icator function can be used to define a wide range of measures 

nd over different types of domains; for instance, the measure 
 

t∈D t 1 [ y (t) > y ] dt denotes the amount of time that the function 

 (t) , t ∈ D t crosses the threshold ȳ . 

Measure operators can also be used to summarize infinite vari- 

bles over multiple subdomains; for example, one can consider the 

ollowing measures: 

 t,x y = 

∫ 
t∈D 

∫ 
x ∈D 

y (t, x, ξ ) d xd t, ξ ∈ D ξ (10a) 

t x 
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Fig. 9. Depiction of measure operator M ξ acting on infinite variable f (ξ ) = 

f (z, y (ξ )) . 

Fig. 10. Depiction of infinite-dimensional constraints g j (y (d) , z, d) ≤ 0 defined over 

an infinite domain D. 
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 t,x,ξ y = E ξ

[∫ 
t∈D t 

∫ 
x ∈D x 

y (t, x, ξ ) d xd t 

]
(10b) 

 t,x,ξ y = E ξ

[∫ 
t∈D t 

∫ 
x ∈D x 

1 [ y (t, x, ξ ) ∈ Y] d xd t 

]
. (10c) 

One can thus see that a wide range of measures can be envi- 

ioned. 

.5. Objectives 

In InfiniteOpt problems, objective functions are functions of in- 

nite variables; as such, objectives are infinite variables. Minimiz- 

ng or maximizing an infinite-dimensional function does not yield 

 well-posed optimization problem. This situation is similar in 

pirit to that appearing in multi-objective optimization problem, 

n which we seek to simultaneously minimize/maximize a finite 

ollection of objectives (in an InfiniteOpt problem, the collection is 

nfinite). 

To deal with ill-posedness, one often resorts to scalariza- 

ion techniques; the idea is to reduce/summarize the infinite- 

imensional function into a single scalar quantity. The goal of this 

calarization procedure is to manipulate the shape of the infinite- 

imensional objective (e.g., minimize its mean value or its ex- 

reme value). Scalarization is performed by using measure oper- 

tors; for instance, in the context of multi-objective optimization, 

ne scalarizes the objectives by computing a weighted summation 

f the objectives. In an InfiniteOpt setting, this weighting is done 

y computing a weighted integral of the objective. For instance, 

n dynamic optimization, we often have a time-dependent objec- 

ive function f (t) := f (y (t ) , t ) , t ∈ D t ; here, we can notice that the

bjective depends on an infinite variable and is thus also an in- 

nite variable. We can scalarize this variable by using the mea- 

ure M t f := 

∫ 
t∈D t f (t) w (t) dt with a weighting function satisfying 

 : D t → [0 , 1] and 
∫ 
t∈D t w (t) dt = 1 (note that this measure is a

ime-average of the objective trajectory). 

In space-time PDE optimization, the objective is defined over 

n infinite domain D = D t × D x that depends on decision variables 

 (t, x ) ∈ Y; as such, the objective is given by the field f (t, x ) :=
f (y (t, x ) , t, x ) , t ∈ D t , x ∈ D x . One can scalarize this field by using a

easure: 

 t,x f = 

∫ 
(t,x ) ∈D t,x 

f (t, x ) w (t, x ) d td x, (11)

ith weighting function satisfying w : D t,x → [0 , 1] and 
 

(t,x ) ∈D t,x w (t , x ) dt dx = 1 . One can think of this measure as a

pace-time average of the objective. 

In stochastic optimization, we have infinite-dimensional objec- 

ives of the form f (ξ ) := f (z, y (ξ )) , ξ ∈ D ξ , where y (ξ ) is a re-

ourse variable (an infinite variable). Scalarization can be achieved 

y using the expectation operator: 

 ξ f = E ξ [ f (ξ )] = 

∫ 
ξ∈D ξ

f (ξ ) p(ξ ) dξ (12) 

here p(ξ ) is the probability density function satisfying p(ξ ) ≥ 0 

nd 
∫ 
ξ∈D ξ p(ξ ) = 1 . This measure is illustrated in Fig. 9 . 

Average measures as those described previously are intuitive 

nd widely used in practice; however, in Section 4.1 we will see 

hat one can envision using a huge number of measures to per- 

orm scalarization. The huge number of choices arises from the 

act that one can manipulate the shape of an infinite-dimensional 

unction in many different ways (by focusing on different features 

f the function); for instance, one can minimize the peak of the 

unction or minimize its variability. In the field of stochastic op- 

imization, for instance, one aims to manipulate the shape of the 
6 
nfinite-dimensional objective by selecting different risk measures 

summarizing statistics) such as the variance, median, quantile, 

orst/best -case value, or probabilities. We will see that one can 

orrow risk measures used in stochastic optimization to summa- 

ize infinite variables in other domains (e.g., space-time); this leads 

o interesting approaches to shape complex manifolds/fields arising 

n complex InfiniteOpt problems. 

.6. Constraints 

As in the case of objectives, constraints in InfiniteOpt problems 

epend on infinite variables and are thus infinite variables them- 

elves. One thus need to use specialized techniques to handle con- 

traints and with this ensure that the problem is well-posed. A 

ey observation that arises in this context is that constraints are 

reated differently than objectives; specifically, one typically seeks 

o impose bounds on constraint values and one can handle collec- 

ions of constraints simultaneously. For instance, in semi-infinite 

ptimization problems, one enforces constraints of the form: 

 j (y (d ) , d ) ≤ 0 , j ∈ J , d ∈ D. (13)

n vector form, this collection of constraints can be expressed as: 

(y (d ) , d ) ≤ 0 , d ∈ D. (14) 

here g(·) is a vector function that contains the constraint col- 
ection g j (·) j ∈ J . We can see that the constraint functions g(·)
re required to a take value below zero for all values of the pa- 

ameter d ∈ D. Moreover, we can see that the constraints j ∈ J are

ll enforced at once. Fig. 10 illustrates this constraint system. This 

articular approach to enforcing constraints is also widely used in 

ynamic optimization and stochastic optimization. For instance, in 

he context of dynamic optimization, one may seek to keep time 

rajectories for controls/states below a certain threshold value for 

ll times in a time horizon. In the context of stochastic optimiza- 

ion, one may seek to satisfy the demand of a product for all pos- 
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ible realizations of uncertainty (in this context the constraints are 

aid to be enforced almost surely or with probability of one). 

These types of constraints are defined in our abstraction using 

he general form: 

(Dy, y (d ) , z, d ) ≤ 0 , d ∈ D. (15)

hese encapsulate the above use cases and are exemplified by the 

ollowing PDE optimization constraints that include differential op- 

rators, path constraints, and point constraints (e.g., boundary con- 

itions): 

 ( Dy (t, x ) , y (t, x ) , t, x ) = 0 , (t, x ) ∈ D t × D x 

g ( y (t, x ) , t, x ) ≤ 0 , (t, x ) ∈ D t × D x 

g 
(
y ( ̂ t , ̂  x ) , ̂  t , ̂  x 

)
≤ 0 . (16) 

Constraints that follow the form of (15) can be quite restric- 

ive for certain applications, since they need to hold for every 

alue parameter d ∈ D. One can relax this requirement by instead 

nforcing the constraint on a selected set of points in the do- 

ain D or by enforcing constraints on a measure of the constraint 

unctions. For instance, consider the set of constraint functions 

 k (Dy (d) , y (d) , z, d) , k ∈ K; we can aim to enforce constraints on

xpected values of such functions as: 

 

ξ∈D ξ
h k (y (ξ ) , ξ ) p(ξ ) dξ ≥ 0 , k ∈ K. (17) 

iven that there are a wide range of measures that can help shape 

unctions over infinite-dimensional domains, one can also envi- 

ion different approaches to enforce constraints. For instance, in 

tochastic optimization, one typically uses scalar chance (proba- 

ilistic) constraints of the form: 

 ξ ( h k (y (ξ ) , ξ ) ≤ 0 ) ≥ α, k ∈ K. (18) 

his set of constraints require that each constraint function h k (·) 
s kept below zero to a certain probability level α. In stochastic 

ptimization, one also often enforces joint chance constraints: 

 ξ ( h k (y (ξ ) , ξ ) ≤ 0 , k ∈ K ) ≥ α. (19) 

he joint chance constraint can also be expressed in vector form 

s: 

 ξ ( h (y (ξ ) , ξ ) ≤ 0 ) ≥ α. (20) 

oint chance constraints require that the constraint functions h (·) 
re kept (jointly) below zero with a certain probability level α. 

e will see that joint chance constraints allow us to enforce con- 

traints on probability of events and we will see that this provides 

 flexible modeling construct to capture complex decision-making 

ogic. For instance, we might want to ensure that the temperature 

f a system is higher than a certain value and that the concentra- 

ion of the system is lower than a certain value with a given prob-

bility. Joint chance constraints can also be interpreted as a gen- 

ralization of other constraint types; for instance, if we set α = 1 , 

he constraint (19) is equivalent to (13) . 

The above measure constraints can be expressed in the follow- 

ng general form: 

h (Dy, y (d ) , z, d ) ≥ 0 . (21) 

or instance, the chance constraint (20) can be expressed as: 

 ξh ≥ 0 (22) 

ith 
 ξh = E ξ [ 1 [ h (y (ξ ) , ξ ) ≤ 0] ] − α. (23) L

7 
.7. InfiniteOpt formulation 

We summarize the previous elements to express the InfiniteOpt 

roblem in the following abstract form: 

in y (·) ∈Y,z∈Z Mf ( Dy, y (d) , z, d ) 
.t. g ( Dy, y (d) , z, d ) ≤ 0 , d ∈ D 

Mh ( Dy, y (d) , z, d ) ≥ 0 . 
(24) 

his abstract form seeks to highlight the different elements of the 

roposed abstraction (e.g., infinite domains and variables, finite 

ariables, measure operators, differential operators). 

.8. Implementation in InfiniteOpt.jl 

We now proceed to describe how the proposed abstraction can 

acilitate the development of modeling tools. Specifically, the pro- 

osed abstraction is used as the backbone of a modeling pack- 

ge that we call InfiniteOpt.jl ( https://github.com/zavalab/ 

nfiniteOpt.jl ). InfiniteOpt.jl is written in the Julia pro- 

ramming language ( Bezanson et al., 2017 ) and builds upon the 

apabilities of JuMP.jl ( Dunning et al., 2017 ) to intuitively and 

ompactly express InfiniteOpt problems. 

Some of the modeling features of InfiniteOpt.jl are illus- 

rated by using the example problem: 

min 
 a (t) ,y b (t,ξ ) ,y c (ξ ) ,z 

∫ 
t∈D t 

y a (t) 
2 + 2 E ξ [ y b (t, ξ )] dt (25a) 

.t. 
∂y b ( t, ξ ) 

∂t 
= y b ( t, ξ ) 

2 + y a ( t ) − z 1 , t ∈ D t , ξ ∈ D ξ (25b) 

 b ( t, ξ ) ≤ y c ( ξ ) U, t ∈ D t (25c) 

 ξ [ y c (ξ )] ≥ α (25d) 

 a (0) + z 2 = β (25e) 

 a ( t ) , y b ( t, ξ ) ∈ R + , y c ( ξ ) ∈ { 0 , 1 } , z ∈ Z 
2 
, t ∈ D t , ξ ∈ D ξ(25f) 

Here, y a (t) , y b (t, ξ ) , and y c (ξ ) are infinite variables, z are fi-

ite variables, U, α, β ∈ R are constants, D t = [ t 0 , t f ] is the time do-

ain, and D ξ is the co-domain of the random parameter N (μ, �) . 

The corresponding InfiniteOpt.jl syntax for expressing 

his problem is shown in Code Snippet 1 . An InfiniteOpt problem 

s stored in an InfiniteModel object; Line 4 shows the initial- 

zation of the model object model . The model is automatically 

ranscribed into a finite dimensional representation and solved us- 

ng the KNITRO solver ( Nocedal, 2006 ). More information on how 

he InfiniteModel is transcribed by InfiniteOpt.jl is pro- 

ided in Section 3.3 . Lines 7 and 8 use @infinite_parameter 

o define the infinite parameters with their respective infinite do- 

ains and indicate that each domain should use 100 finite sup- 

orts in the transcription. The random parameters ξ can be asso- 

iated with any probably density function supported by the Julia 

ackage Distributions.jl ( Besançon et al., 2019 ). Lines 11–14 

efine the decision variables and their associated properties in ac- 

ordance with Eq. (25f) following a symbolic JuMP.jl -like syntax 

y means of @variable . Line 17 defines the complex objective 

epicted in Eq. (25a) via @objective . Lines 20–23 define con- 

traints (25b) –(25e) using @constraint . Notice how the differ- 

ntial operator and measure operators (in this case an expecta- 

ion and an integral) are easily incorporated using Julia syntax. 

ines 26 and 27 illustrate how the model model is solved using 

https://github.com/zavalab/InfiniteOpt.jl


J.L. Pulsipher, W. Zhang, T.J. Hongisto et al. Computers and Chemical Engineering 156 (2022) 107567 

o
t

3

t

t

fi

t

m

f

O

m

e

f

3

d

o  

T

e

m

a

L

s

t

e

s

r

g

p

D

F

m

t

T

i

h

c

fi

c

p

a

o

t

s

a

M

w

i

M

T

o

d

a

t

l

a

r

t

b

w

t

h

g

H

a

g

ptimize! and then how the solution information can be ex- 

racted from the model. 

. InfiniteOpt transformations 

We now discuss how InfiniteOpt problems are solved through 

he lens of the proposed unifying abstraction. Solution approaches 

ypically rely on transforming the InfiniteOpt problem (24) into a 

nite-dimensional formulation that can be solved using conven- 

ional optimization solvers. There are a large number of possible 

ethods to transform InfiniteOpt problems that are used in dif- 

erent domains such as dynamic, PDE, and stochastic optimization. 

ur goal here is not to provide an extensive discussion and imple- 

entation of all these approaches; instead, we highlight common 

lements of different approaches and motivate how these can be 

acilitated by using a unifying abstraction. 

.1. Direct transcription 

Our first goal is to obtain a finite representation of an infinite 

omain D � ; direct transcription accomplishes this via a finite set 

f support points that we represent as ˆ D � = { ̂  d �,i : ˆ d �,i ∈ D � , i ∈ I � } .
he concept of the support set ˆ D � used here is general and a vari- 

ty of methods can be employed to generate it. In stochastic opti- 

ization, for instance, a set of MC samples is typically drawn from 

 probability density function of the infinite parameters ( Birge and 

ouveaux, 2011 ), while PDE problems commonly use quadrature 

chemes ( Shin and Zavala, 2020 ). The proposed abstraction seeks 

o enable porting techniques across fields; for instance, one might 

nvision generating support points for a space-time domain by 

ampling or one might envision generating support points for a 

andom domain by using quadrature points (as done in sparse 

rids and Latin hypercube sampling). 

The support set for the infiniteOpt problem ˆ D is the cartesian 

roduct of the individual supports sets: 

ˆ  := 

∏ 

� ∈L 
ˆ D � . (26) 

ig. 11 illustrates how the support set (a finite domain) approxi- 

ates the infinite domain D. Note that this definition of ˆ D assumes 

hat the individual domains D � are independent of one another. 

his assumption does not hold in some complex applications; for 

nstance, in stochastic dynamic optimization problems, we might 
8 
ave random parameters that are functions of time (this is dis- 

ussed further in Section 4.2 ). 

The infinite-dimensional formulation (24) is projected onto the 

nite support set to yield a finite-dimensional approximation that 

an be modeled using conventional optimization solvers. We now 

roceed to discuss how this projection is achieved. Measures are 

pproximated with an appropriate numerical scheme; this can take 

n a range of forms and may require the incorporation of addi- 

ional supports and variables. For instance, a common set of mea- 

ures (e.g., expectations and integrals over space-time domains) 

re of the form: 

 � y = 

∫ 
d ′ ∈D � 

y (d ′ ) w (d ′ ) d d ′ (27) 

here w (·) is a weighting function. Such measures can be approx- 

mated using support points as: 

 � y ≈
∑ 

i ∈I � 
βi y ( ̂  d �,i ) w ( ̂  d �,i ) . (28) 

his general form is used in quadrature and sampling schemes; the 

nly difference between these schemes arises in how the supports 
ˆ 
 �,i and the coefficients βi are selected. Fig. 12 depicts a measure 

pproximated via quadrature. 

Differential operators appearing in formulation (24) also need 

o be approximated. Sometimes these operators can be reformu- 

ated in integral form; in such a case, one can use the measure 

pproximations previously discussed. However, in some cases, this 

eformulation is not possible; for instance, a differential opera- 

or might be implicitly defined within expression functions (e.g., 

oundary conditions) and/or within measures. In our framework, 

e treat differential operators as infinite variables and handle 

hem via lifting . To illustrate how this is done, suppose that we 

ave an expression of the form: 

 

(
∂y (d) 

∂d � 
, y (d) , z 

)
= 0 , d ∈ D � . (29) 

ere, we introduce an auxiliary variable y ′ (d) and reformulate the 

bove constraint as: 

(y ′ (d) , y (d) , z) = 0 , d ∈ D � (30a) 

∂y (d) 

∂d 
= y ′ (d) , d ∈ D � . (30b) 
� 
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Fig. 11. Finite support set ˆ D that approximates infinite domain D. 

Fig. 12. Depiction of a measure operator M t approximated via a numerical scheme (quadrature in this case). 

Fig. 13. Depiction of a differential operator D approximated via a numerical scheme (central finite differences in this case) relative to a realization of infinite variable y (d) . 
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The second expression can now be approximated using tradi- 

ional schemes using support points; for instance, when d denotes 

ime (e.g., in a dynamic optimization problem), one typically uses 

 backward finite difference: 

 ( ̂  d �,i ) = y ( ̂  d �,i −1 ) + ( ̂  d �,i − ˆ d �,i −1 ) y 
′ (d �,i ) . (31)

ig. 13 illustrates how these techniques approximate differential 

perators. A lifting approach can be used to handle higher-order 

nd multi-dimensional operators (e.g., Laplacian) via nested recur- 

ions. These basic constructs can be used to enable the imple- 

entation of direct transcription schemes such as MC sampling, 

uadrature, finite difference, and orthogonal collocation over finite 

lements. 

Once the measures and derivatives are approximated, the di- 

ect transcription procedure is finalized by projecting the remain- 

ng constraints with infinite domain dependencies over the finite 

upport set ˆ D . The transformation incurred by direct transcription 

s often linear since the typical measure and differential operator 

pproximations are linear transformations of the respective mod- 

ling objects (e.g., MC sampling and finite difference). For instance, 

his means that if the InfiniteOpt problem of interest is an infinite 

uadratic program (QP), then its transcribed variant will typically 

e a finite QP. 

We note that direct transcription of problems with multiple in- 

nite domains (e.g., PDE-constrained problems) can incur tractabil- 

ty concerns due to the support combinatorics. For such prob- 

ems, decomposition approaches such as the one proposed in 
9 
a et al. (2020) can be used address these limitations. Moreover, 

lternative transformations may enhance tractability for certain 

roblem classes as is discussed in Section 3.2 . 

.2. Alternative transformations 

Direct transcription is a common class of methods for trans- 

orming an InfiniteOpt problem into a finite-dimensional represen- 

ation by using a finite set of support points. A limitation of this 

pproach is that it does not provide a solution in functional form 

it only provides a solution defined at the support points). Alter- 

ative transformation methods can be envisioned to deliver solu- 

ions in functional form. The method of weighted residuals (MWR) 

s a general class of methods that conducts the transformation by 

pproximating the problem elements using basis expansions. Pop- 

lar MWR techniques include polynomial chaos expansion (PCE) 

sed in stochastic optimization ( Xiu, 2010 ) and orthogonal col- 

ocation used in dynamic optimization ( Armaou and Christofides, 

002; Koivu and Pennanen, 2010 ). For instance, Gnegel et. al. re- 

ently demonstrated how such basis expansion techniques can 

nhance the tractability of mixed-integer PDE problems relative 

o using traditional transcription methods ( Gnegel et al., 2021 ). 

uch techniques are often behind what are typically referred to 

s order reduction methods in the PDE community ( Armaou and 

hristofides, 2002 ). 

In MWR, a set of trial/basis functions 	 = { φi (d) : i ∈ I} is de-
ned over an infinite domain D and linear combinations of these 
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Fig. 14. Depiction of how an infinite variable y (d) can be approximated as a linear combination of basis functions φi (·) . 
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unctions are used to approximate the infinite variables: 

 (d) ≈
∑ 

i ∈I 
˜ y i φi (d) (32) 

here ˜ y i ∈ R are the basis function coefficients. An illustration of 

his approximation is given in Fig. 14 ; here, we require that the 

asis functions φi (d) and the infinite variables y (d) both reside 

n a common space such that this approximation becomes ex- 

ct when the set 	 is an orthogonal set of basis functions and 

 	| → ∞ ( Graham and Rawlings, 2013 ). Since the basis functions

re known, this representation allows us to represent the infinite 

ariables y (d) in terms of the coefficients ˜ y i (which are finite vari- 

bles). As such, this approach effectively transforms infinite vari- 

bles into finite variables. The goal is now to project the formu- 

ation (24) onto a set of basis functions so as to obtain a finite

ormulation that solely depends on the finite variables ˜ y i and z. 

his is done by expressing differential and measure operators by 

sing the basis expansion of the infinite variables (i.e., with oper- 

tors applied to the basis functions). In certain cases, the expan- 

ion coefficients can be useful in evaluating certain measure types; 

or example, the coefficients will correspond to the statistical mo- 

ents of the infinite variables when PCE is applied to a stochastic 

ormulation with a basis that is orthogonal to the probability den- 

ity function and these moments are often used to express expec- 

ations and risk measures ( Zymler et al., 2013 ). 

After basis expansion representations are incorporated, the 

roblem is fully defined in terms of the finite-dimensional vari- 

bles ˜ y i and z. However, this representation is not yet tractable, 

ince it still contains infinite-dimensional objects (e.g., basis func- 

ions and associated operators). To deal with this, we consider 

he residual (i.e., finite error) R (d) associated with performing this 

rojection on each constraint and on the objective. Each resulting 

esidual will be made as small as possible by exacting that they be 

rthogonal to a set of weight functions ψ k (d) , k ∈ K, d ∈ D: 

 R, ψ k 〉 w = 0 , ∀ k ∈ K (33) 

here 〈·, ·〉 w denotes the inner product between functions using 

he appropriate weighting function w (d) for the given space: 

 R, ψ k 〉 w = 

∫ 
d ′ ∈D 

R (d ′ ) ψ k (d 
′ ) w (d ′ ) d d ′ . (34)

he weight functions are typically chosen such that |K| = |I| . The 
rojection results in a tractable finite-dimensional formulation; 

hat remains is our choice of the weight functions ψ k (·) . This 
hoice gives rise to a range of techniques; if the Galerkin method 

s applied then we choose φk (d) = ψ k (d) and have that I = K.

his induces the first |I| terms of the residuals in the trial func- 

ions to vanish if the functions are orthogonal ( Graham and Rawl- 

ngs, 2013 ). Another popular choice is that of orthogonal colloca- 

ion, where we choose ψ k (d) = δ(d − ˆ d k ) ; here, the set ˆ d k , k ∈ K
enote collocation points (i.e., particular infinite parameter sup- 

orts) and δ(·) is the Dirac delta function. This approach seeks to 
nforce that the residual is zero at the collocation points. When or- 

hogonal basis functions are chosen and this is applied over a set 
10 
f transcription points (i.e., finite elements), we obtain a method 

nown as orthogonal collocation over finite elements. A variety of 

ther methods such as least squares and the method of moments 

an also be employed to weight the residuals (these are discussed 

n detail in Finlayson, 2013 ). 

The transformation of (24) to a finite-dimensional form via 

WR is, in general, a nonlinear transformation (depending on 

he choices of the trial functions φi (·) , weight functions ψ k (·) , 
nd their corresponding space). However, there exist special cases 

here the transformation is linear, as is often the case with PCE 

ransformations ( Mühlpfordt et al., 2019 ). Advantages of employing 

WR instead of direct transcription is that one obtains functional 

epresentations for the infinite variables (as opposed to values at 

he support points), one can achieve better stability for boundary- 

alued problems, and one can obtain better accuracy for certain 

ormulations ( Devolder et al., 2010 ). On the other hand, the main 

isadvantage of MWR is that evaluating differential and measure 

perators and inner products tends to be cumbersome (especially 

or nonlinear formulations). Also, basis functions can be difficult to 

erive for formulations with multivariate infinite domains. In our 

bstraction, we provide the modeling elements that facilitate the 

mplementation of these transformation techniques. 

.3. Transformation framework in InfiniteOpt.jl 

In Section 2.8 we discussed how our unifying abstraction is 

mplemented in InfiniteOpt.jl ; one creates a model as an 

nfiniteModel object. In this section, we discuss a general 

ransformation framework incorporated into InfiniteOpt.jl 

hat facilitates the implementation of different transformation ap- 

roaches (e.g., direct transcription and MWRs). We also outline the 

fficient direct transcription capabilities that are currently imple- 

ented. 

The framework centers around applying a transformation to the 

nfiniteModel that converts it to a standard JuMP.jl Model 

bject (referred to as an optimizer model in this context). The 

ptimizer model can then be solved using the optimizers imple- 

ented in MathOptInterface.jl ( Legat et al., 2020 ). More- 

ver, this framework features a collection of methods to enable a 

eamless interface between the InfiniteModel and its corre- 

ponding optimizer model to facilitate capabilities such as informa- 

ion extraction (e.g., solution queries) that do not require direct in- 

errogation of the optimizer model. This framework is summarized 

n Fig. 15 . This software structure distinguishes InfiniteOpt.jl 

rom other software tools (e.g., Pyomo.dae and Gekko ) whose 

mplementations center around (and are limited to) direct tran- 

cription. Thus, InfiniteOpt.jl is unique in providing a flex- 

ble API for solving InfiniteOpt problems. 

Following this framework, a desired solution scheme is in- 

orporated by defining a few prescribed methods (principally 

uild_optimizer_model! ) to implement the associated trans- 

ormation. This methodology is implicitly invoked on line 26 of 

ode Snippet 1 where optimize! creates an optimizer model us- 



J.L. Pulsipher, W. Zhang, T.J. Hongisto et al. Computers and Chemical Engineering 156 (2022) 107567 

Fig. 15. Transformation framework employed by InfiniteOpt.jl for converting 
an InfiniteModel into a JuMP.jl Model . 

Fig. 16. Juxtaposition of the total computation time used to formulate and solve 

a stochastic optimization problem ( Pulsipher and Zavala, 2019 ) using MC sam- 

pling implemented in InfiniteOpt.jl v0.4.1 and manual transcription in 

JuMP.jl v0.21.8 . 
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Fig. 17. Visualization of the expectation measure E t [ f (t)] = 
1 

t f −t 0 

∫ t f 
t 0 

f (t ) dt where 

the rectangle formed has an area equal to that of the region under f (t) . 
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ng the prescribed transformation and then solves it with the de- 

ired optimizer. The full technical detail of this API is beyond the 

cope of this work and is available via the InfiniteOpt.jl doc- 

mentation. 

InfiniteOpt.jl provides an efficient implementation 

f direct transcription following the procedures described in 

ection 3.1 ; this serves as the default transformation technique for 

nfiniteOpt models. These techniques are implemented in a sub- 

odule called TranscriptionOpt that follows the optimizer 

odel framework shown in Fig. 15 . The TranscriptionOpt 

odule features a sophisticated finite support generation and 

anagement system that enables tackling a wide variety of 

nfinite-dimensional optimization formulations using diverse eval- 

ation techniques for measure and derivative operators. Moreover, 

ts automatic transcription is efficient and compares compet- 

tively to manually transcribing a problem and implementing 

t via JuMP.jl . This incredible behavior is demonstrated in 

ig. 16 where a two-stage stochastic optimization problem (the 

-node distribution network example featured in Pulsipher and 

avala, 2019 ) is solved for a range of MC samples using automatic 

ranscription in InfiniteOpt.jl and manual transcription in 

uMP.jl . We note that, contrary to other software implemen- 

ations, automatic transcription in InfiniteOpt.jl denotes 

 minor computational expense relative to manual transcription 

ith the benefit of avoiding the errors commonly incurred by 

ranscribing InfiniteOpt formulations manually. 

. Innovations enabled by unifying abstraction 

In this section, we discuss innovative modeling approaches that 

re enabled by the proposed InfiniteOpt abstraction. Specifically, 

hese innovations are facilitated by the ability to transfer model- 
11 
ng techniques and constructs across disciplines. For instance, in 

he proposed abstraction, there is no explicit notion of time, space, 

r random domains (all domains are treated mathematically in the 

ame way); as such, one can easily identify analogues of modeling 

lements across disciplines. 

.1. Measure operators 

Here we highlight the advantages of using an abstraction that 

ocuses on measure operators. We will highlight how InfiniteOpt 

ormulations from different disciplines are connected via analogous 

athematical features; we place particular attention to common 

eatures arising in dynamic and stochastic optimization problems. 

.1.1. Expectation measures 

In Section 2.4 , we provide examples of typical measures used to 

ormulate objective functions in InfiniteOpt problems (space-time 

ntegrals and expectations). For simplicity in the presentation, we 

onsider a temporal domain D t and consider the time integral: 
 

t∈D t 
f (t) dt (35) 

here we write f (t) = f (y (t ) , t ) for compactness. Minimizing the

easure (35) seeks to shape the cost function (a surface defined 

n the domain D t ) in a way that it displaces the entire surface. 

nalogously, minimizing the expectation measure: 

 ξ [ f (ξ )] := 

∫ 
ξ∈D ξ

f (ξ ) p(ξ ) dξ (36) 

hapes the cost surface (defined in the domain D ξ ) in a way that 

isplaces the surface. An obvious difference between time inte- 

ral and the random expectation is that the random expectation is 

eighted by a probability density function p(·) and this gives flex- 
bility to put more/less emphasis on different locations of the ran- 

om domain D ξ . Thus, as a simple example on how one can trans- 

er modeling strategies, we can formulate the expectation over the 

emporal domain using a weighting function as: 

 t [ f (t)] := 

∫ 
t∈D t 

f (t) w (t) dt. (37) 

ote that the selection of the notation t to denote the infinite 

omain is arbitrary; one can simply define a general infinite pa- 

ameter d. If one defines w (t) = 1 /S with S = 

∫ 
t∈D t dt , we can see

hat the above measure is the time average of f (t) (with equal 

eight placed at each location in the domain). If the time do- 

ain is D t = [ t 0 , t f ] , we have that S = t f − t 0 . Fig. 17 provides a ge-

metric interpretation of the time-expectation; here, the area of 

he rectangle with height E t [ f (t)] and width S is equivalent to 
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Fig. 18. An illustration of CVaR ξ ( f (ξ ) ;α) in terms of the probability density func- 

tion p( f (ξ )) . 

Fig. 19. Illustration of CVaR ξ ( f (ξ ) ;α) following the representation given in (43) . 

This provides an alternative view of the probabilistic representation shown in 

Fig. 18 . 
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he area under f (t) ( Stewart, 2009 ). This is just a scaled version

f the integral measure (35) and will thus shape f (t) in similar 

anner. In fact, the integral (35) is just a special case of mea- 

ure (37) (obtained by setting w (t) = 1 ); also, note that this ap-

roach is equivalent to using a weighting function w (t) that corre- 

ponds to the probability density function of a uniform random pa- 

ameter ξ ∼ U(t 0 , t f ) . As such, one can envision defining weighting 

unctions associated with probability densities of different random 

arameters (e.g., Gaussian, exponential, Weibull); this would have 

he effect of inducing interesting prioritization strategies that can 

e used to shape the cost surface in desirable ways. For instance, 

 Gaussian weighting function places emphasis on the middle of 

he time domain (and emphasis decays rapidly as one moves away 

rom the center of the domain), while an exponential weighting 

unction places emphasis at the beginning of the domain (and de- 

ays rapidly as one marches in time). This modeling feature can be 

seful in dynamic optimization and optimal control problems in 

hich it is often desirable to place more/less emphasis on initial 

r final conditions. For instance, in infinite-horizon problems, w (·) 
btained from the probability density function of an exponential 

ensity function behaves as a discount factor ( Petrik and Scherrer, 

008; Shin et al., 2021 ). 

.1.2. Risk measures 

A large collection of risk measures have been proposed in 

he stochastic optimization literature to manipulate random cost 

unctions in desirable ways (e.g., to minimize impacts of extreme 

vents) ( Ruszczy ́nski and Shapiro, 2006 ). In this context, risk mea- 

ures are typically interpreted as measures that aim to shape the 

ail of the probability densities of cost or constraint functions. 

 popular risk measure used for this purpose is the conditional 

alue-at-risk (CVaR): 

VaR ξ ( f (ξ ) ;α) := min 
ˆ f ∈ R 

{ 

ˆ f + 

1 

1 − α
E ξ

(
max ( f (ξ ) − ˆ f , 0) 

)} 

(38) 

here α ∈ [0 , 1) is a desired probability level and ˆ f is an auxiliary

ariable. 

One can show that the value of the auxiliary variable that min- 

mizes the inner function of CVaR is given by ˆ f ∗ = Q ξ ( f (ξ ) ;α) ,

hich is the α-quantile of f (ξ ) ( Rockafellar et al., 20 0 0 ). We recall

hat the quantile is defined as: 

 ξ ( f (ξ ) ;α) := inf 
ˆ f ∈ R 

{ 

P ξ

(
f (ξ ) ≤ ˆ f 

)
≥ α

} 

. (39) 

he quantile is thus the threshold value for f (ξ ) such that the 

robability of finding this function below the threshold is at least 

. 

One can also show that CVaR is a conditional expectation of the 

orm: 

VaR ξ ( f (ξ ) ;α) = E ξ

[
f (ξ ) | f (ξ ) ≥ Q ξ ( f (ξ ) ;α) 

]
(40) 

ence, minimizing CVaR has the effect of minimizing the condi- 

ional expectation over the 1 − α probability region with the high- 

st cost, thus hedging against extreme events. Moreover, the calcu- 

ation of CVaR at a probability level α implicitly defines the quan- 

ile of f (ξ ) . 

A key property of CVaR is that it is a general measure that cap-

ures the expectation CVaR ξ ( f (ξ ) ;α) = E ξ [ f (ξ )] as α → 0 and the

orst-case CVaR ξ ( f (ξ ) ;α) = sup ξ ( f (ξ )) as α → 1 . Fig. 18 shows 

ow these measures are typically interpreted in terms of the prob- 

bility density function of the cost f (ξ ) , motivating the α and 

 − α probability regions. 

Through the perspective of the proposed unifying abstraction, 

ne can interpret CVaR as a measure that captures the excursion of 

 function (field) from a given threshold. To see this, we define the 
12 
ositive and negative function excursion sets of f (ξ ) which denote 

he range of f (ξ ) above and below a threshold ˆ f , respectively: 

 
+ 
ξ
( f (ξ ) ; ˆ f ) : = { ξ ∈ D ξ : f (ξ ) ≥ ˆ f } 

 
−
ξ
( f (ξ ) ; ˆ f ) : = { ξ ∈ D ξ : f (ξ ) ≤ ˆ f } (41) 

here D 
+ 
ξ
( f (ξ ) ; ˆ f ) ⊆ D ξ and D 

−
ξ
( f (ξ ) ; ˆ f ) ⊆ D ξ are the positive 

nd negative function excursion sets, respectively. We simplify the 

otation for these excursion sets by using D 
−
ξ
( ̂  f ) and D 

+ 
ξ
( ̂  f ) . Us-

ng these definitions, we can express the quantile function q α := 

 ξ ( f (ξ ) ;α) as: 

 α = inf 
ˆ f ∈ R 

{∫ 
ξ∈D −

ξ
( ̂ f ) 

p(ξ ) dξ ≥ α

}
. (42) 

his reveals that CVaR considers the expectation of f (ξ ) over the 

estricted domain D 
+ 
ξ
(q α) , which indexes the 1 − α probabilistic 

egion shown in Fig. 18 : 

VaR ξ ( f (ξ ) ;α) = 

1 

1 − α

∫ 
ξ∈D + 

ξ
(q α ) 

f ( ξ ) p( ξ ) dξ . (43) 

ig. 19 illustrates that CVaR ξ ( f (ξ ) ;α) using this functional inter- 

retation for a realization of f (ξ ) and compares it to the other 

easures shown in Fig. 18 . 

The representation of CVaR shown in (43) highlights that this 

an be seen as a measure operator that can be applied to differ- 

nt types of infinite domains (e.g., space and time). For instance, 

haping time-dependent trajectories to minimize extreme values is 

pplicable to dynamic optimization (e.g., to prevent peak costs or 

xtreme operating conditions that can hinder safety). For instance, 

isbeck and Rawlings, 2019 recently proposed a model predictive 

ontrol formulation that has the dual goal of minimizing total ac- 
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Fig. 20. Illustration of CVaR t ( f (t) ;α) , as represented in (45) . 
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umulated cost and peak cost: 
 

t∈D t 
f (t) dt + λ · max 

t∈D t 
f (t) (44) 

here λ ∈ R + is a trade-off parameter. More generally, we might 

ant to penalize a subdomain of the time domain that attains the 

ighest costs; this can be achieved by applying a CVaR measure 

perator to the time-dependent cost f (t) : 

VaR t ( f (t) ;α) = 

1 

1 − α

∫ 
t∈D + t (q α )) 

f ( t) p( t) dt (45) 

here the density function can be selected as p(t) = 
1 

t f −t 0 
. Note 

hat this definition implicitly introduces the notion of a quantile in 

 time domain; this quantile is given by: 

 α := Q t ( f (t) ;α) = inf 
ˆ f ∈ R 

{∫ 
t∈D −t ( f (t) ; ˆ f ) 

p(t) dt ≥ α

}
. (46) 

Using the properties of CVaR we can conclude that: 

lim 

→ 0 
CVaR t ( f (t) ;α) = 

∫ 
t∈D t 

f (t) p(t) dt 

lim 

→ 1 
CVaR t ( f (t) ;α) = max 

t∈D t 
f (t) . (47) 

his highlights that CVaR provides an intuitive measure that can 

elp shape time-dependent trajectories. Fig. 20 illustrates the ap- 

lication of this measure over the time domain and shows that this 

s analogous to the application over a random domain shown in 

ig. 19 . We highlight that, in practice, CVaR t ( f (t) ;α) is computed 

y using (38) (defined for t instead of ξ ). 
This example illustrates how the CVaR construct used in 

tochastic optimization can be utilized to motivate new formula- 

ions for other optimization disciplines. The measure-centric uni- 

ying abstraction facilitates this process by capturing objects via 

easure operators. The process of transferring ideas through the 

easure-centric abstraction is also amendable to other risk mea- 

ures (see Krokhmal et al., 2013 for a review of risk measures). We 

resent a numerical study of using CVaR for an optimal control 

ormulation in Section 5.2 . 

.1.3. Event constraints 

An interesting modeling paradigm that arises from the pro- 

osed abstraction are event constraints . These constraints general- 

ze the notion of chance constraints, excursion set conditions, and 

xceedance probabilities that are used in different scientific dis- 

iplines (e.g., stochastic optimization, reliability engineering, and 

andom fields). This unified view also promotes transfer of mod- 

ling concepts across disciplines; for instance, we will see that 

hance constraints in a random domain are analogous to ex- 

eedance times in a time domain. 
13 
To exemplify the notion of event constraints, consider the so- 

alled excursion time ; this measure is widely used in reliability 

nalysis of dynamical systems and is defined as the fraction of 

ime that a function h (t) , t ∈ D t is above a given threshold ( Au and

eck, 2001 ). Here, we consider a zero threshold value to give the 

vent constraint: 

 t ( {∃ t ∈ D t : h (t) > 0 } ) ≤ α. (48) 

here α ∈ [0 , 1] . In the context of an InfiniteOpt problem, the 

unction h (t) , t ∈ D t can denote a constraint h (y (t) , z, t) , t ∈ D t .

he excursion time is expressed as a probability-like measure of 

he form: 

 t ( {∃ t ∈ D t : h (t) > 0 } ) = 

∫ 
t∈D t 

1 [ {∃ t ∈ D t : h (t) > 0 } ] w (t) dt 

(49) 

here w : D t → [0 , 1] is a weighting function satisfying 
 

t∈D t w (t) dt = 1 . The excursion time measure can be interpreted as 

he fraction of time under which the event of interest occurs; for 

nstance, in safety analysis, one might be interested in determining 

he fraction of time that a constraint is violated and to ensure that 

his is not greater than some fraction α. Alternatively, we could 

lso search to minimize this measure (by using it as an objective). 

he excursion time constraint is an event constraint that can help 

hape a time-dependent trajectory in interesting and non-intuitive 

ays. 

One can generalize the excursion time measure by construct- 

ng complex events. For instance, consider that we want to deter- 

ine the fraction of time that any of the time-varying constraints 

 k (t) , k ∈ K crosses a threshold. This can be expressed as: 

 t 

(
∪ 

k ∈K 
{ ∃ t ∈ D t : h k ( t ) > 0 } 

)
. (50) 

ere, 
⋃ 

is a logical or operator. If we want to determine fraction 

f time that all constraints are violated then we use: 

 t 

(
∩ 

k ∈K 
{ ∃ t ∈ D t : h k ( t ) > 0 } 

)
. (51) 

ere, 
⋂ 

is a logical and operator. 

To highlight transfer across different disciplines, we recognize 

hat the excursion time is directly analogous to a chance constraint 

operating in the random space, as opposed to time) and our pre- 

ious analysis suggests that one can construct chance constraints 

hat capture complex events. For instance, consider the event con- 

traint: 

 ξ

( ⋃ 

k ∈K 
{∃ ξ ∈ D ξ : h k (ξ ) > 0 } 

) 

≤ α. (52) 

ere, we see that the constraint is directly analogous to the event 

onstraint (50) . Fig. 21 a illustrates the logical event space that con- 

traint (52) shapes. We thus see that events can be defined in a 

eneral form over different infinite domains; to highlight this fact, 

e consider the event constraint: 

 d 

( ⋃ 

k ∈K 
{∃ d ∈ D : h k (d) > 0 } 

) 

≤ α. (53) 

The previous event constraint is different to traditional joint- 

hance constraints used in stochastic optimization: 

 ξ

( ⋂ 

k ∈K 
{∃ ξ ∈ D ξ : h k (ξ ) ≤ 0 } 

) 

≤ α. (54) 

his makes it more readily apparent that traditional joint-chance 

onstraints consider the logical event space that is complementary 

o that of constraint (52) . Fig. 21 b shows this region which is the

ogical complement of Fig. 21 a. 
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Fig. 21. Logical event regions (shown in blue) constrained by the event constraints (52) and (54) . In particular, they constrain the condition h 1 > 0 ∪ h 2 > 0 ∪ h 3 > 0 and the 

condition h 1 ≤ 0 ∩ h 2 ≤ 0 ∩ h 3 ≤ 0 , respectively. 

Fig. 22. Illustration of logical event region captured by constraint (55) . 
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Fig. 23. Sample of a random field defined over space and time. 
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Another interesting insight that we draw from event constraints 

s that logical operators (e.g., ∩ and ∪ ) can be used to model com-

lex decision-making logic. For example, following the constraint 

ystem shown in Fig. 21 ; we might consider the logical event re- 

ion derived from the condition that h 1 ≤ 0 ∩ (h 2 ≤ 0 ∪ h 3 ≤ 0) giv-

ng the event constraint: 

 ξ

({∀ ξ ∈ D ξ : h 1 ≤ 0 ∩ (h 2 ≤ 0 ∪ h 3 ≤ 0) } ) ≥ α. (55) 

his is depicted in Fig. 22 ; we note that this event constraint en-

apsulates a wider probabilistic region relative to that of the tradi- 

ional joint-chance constraint (54) . 

In summary, the presented examples illustrate that excursion 

ime constraints and chance constraints as special cases of event 

onstraints. This crossover also led us to representing joint-chance 

onstraints with logical operators which introduce the notion of 

mbedding problem-specific logic to shape the probabilistic region 

hese constraints consider. We illustrate this example further with 

 stochastic optimal power flow case study in Section 5.1 . 

.2. Random fields 

We now discuss how the abstraction inspires the incorporation 

f modeling concepts from random field theory into InfiniteOpt 

ormulations. A random field is a random function with realiza- 

ions of the form f (d) : D �→ R 
n f ( Adler, 2010 ). For instance, one

an think of a continuous-time trajectory that is random (e.g., due 
14 
o uncertainty in a differential equation model that generates it). 

 random field generalizes the notion of multivariate random vari- 

bles (e.g., a multivariate Gaussian ξ ∼ N (μ, �) ) that are jointly- 

istributed to that of infinite jointly-distributed random variables 

hat are indexed over some continuous domain. Another example 

f a random field is that of a dynamic Gaussian process ξ (t) ∼
P (μ(t) , �(t, t ′ )) for t ∈ D t . Fig. 23 depicts a realization of a ran-

om field. 

Modeling concepts from random field theory allows us to in- 

orporate dependencies of a random parameter over other infinite 

omains (e.g., account for stochastic processes). For instance, in the 

ontext of our abstraction, consider the random time-dependent 

unction y (t, ξ ) . This decision function is random due to the pres- 

nce of ξ ∈ D ξ and is also indexed over t ∈ D t ; this means that it

an be precisely characterized as a random field. From this it fol- 

ows that all infinite variables y (d −ξ , ξ ) are random fields. Hence, 

ptimally choosing y (d −ξ , ξ ) in a given formulation amounts to 

ngineering a random field that is in general correlated over the 

nfinite domain D −ξ . This important observation enables us to 

onnect a wide breadth of optimization disciplines to random 

eld theory. For instance, the theory and methods behind random 

eld constructs like excursion sets, excursion probabilities, and ex- 

ected Euler characteristics are amendable to the measure oper- 

tors and/or event constraints formalized in our abstraction (see 

ections 4.1.2 and 4.1.3 ) ( Adler, 20 0 0 ). 
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Fig. 24. Realizations of a random parameter ξ ∈ D ξ that are invariant relative to 

other infinite domains (e.g., time t). 
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The particular class of infinite variables discussed up to this 

oint only consider a random parameter ξ that is invariant over 

ther domains, as exemplified for a few realizations of ξ in Fig. 24 . 

his means that, although the infinite variables in this class of for- 

ulations are general random fields, the input uncertainty ξ is 

aken to be static random parameter that does not capture any 

patial or temporal correlation. We can overcome this modeling 

imitation by extending our abstraction to consider infinite pa- 

ameter functions (e.g., random parameters that are functions of 

ther infinite parameters). In the context of our current example, 

his is accomplished by defining the infinite parameter function 

(t) ∈ D ξ (t) , t ∈ D t which denotes a known random field whose

ample domain D ξ (t) is a set of temporal functions. With this ex- 

ension, we can now define the infinite variable y (t, ξ (t)) , which 

enotes a random field variable (an infinite variable) where ξ (t) 

s a known random field that can capture correlations of ξ over 

ime t . Note that ξ (t) is explicitly shown as an input to y so that

t is distinguished from deterministic infinite-dimensional variables 

 (t) . Fig. 25 shows a realization of ξ (t) in the case that it exhibits

emporal correlation and in the case that ξ approaches no tempo- 

al correlation. Note this can also capture the static case shown in 

ig. 24 . 

Random fields have been widely used in disciplines such as ro- 

ust topology design optimization ( Zhao and Wang, 2014; Zhang 

t al., 2018 ); however, to the best of our knowledge, the integra- 

ion of random field theory in optimization represents a new class 

f optimization formulations. We call this class random field opti- 

ization and we note that this is a special case of the proposed 

nfiniteOpt abstraction. This class provides effective means of cap- 

uring correlation of uncertainty over other domains an optimiza- 

ion formulation which is enabled by the rich theory that has been 

eveloped for random fields ( Adler, 2010 ). Moreover, random field 

ptimization can be seen as a generalization of stochastic optimiza- 

ion . For instance, it provides an intriguing alternative to multi- 

tage (discrete time) stochastic formulations which cannot be read- 

ly generalized to continuous time or general infinite domains (e.g., 

pace) ( Shapiro, 2003 ), whereas our proposed formulation class is 

efined for general infinite domains (e.g., space and time) and can 

ncorporate random field uncertainty models such as Gaussian pro- 

esses. 

Another interesting observation is that extending the proposed 

bstraction to include infinite parameter functions can also be 

one for non-random infinite parameters. For instance, we could 

ccount for a time-dependent spatial parameter x (t) ∈ D x (t) where 

 x (t) is some space. We leave a rigorous formalization of such an 

xtension to our abstraction and its implications for random field 

ptimization problems to future work. 
15 
.3. Problem analysis 

Here we highlight some of the advantages that arise from char- 

cterizing InfiniteOpt problems directly in accordance with for- 

ulation (24) , in contrast to the standard practice of express- 

ng them solely via finite reformulations. For instance, within the 

rea of dynamic optimization, it is commonplace to abstract and 

ormalize problem classes in discrete time (i.e., in a transcribed 

orm) ( Rawlings et al., 2017 ). This practice tends to make prob- 

ems more difficult to formulate since they are inherently cou- 

led with the transformation scheme employed (e.g., orthogonal 

ollocation or explicit Euler). Hence, decoupling the problem defi- 

ition from its transformation helps to ease its formalization. Ar- 

uably, this decoupling better defines a particular problem and 

romotes the use of diverse formulations and transformation tech- 

iques. For instance, by operating at a different level of abstraction, 

ne might more easily identify alternative modeling and solution 

echniques: different measures, non-traditional support schemes, 

lternative derivative approximations, and/or advanced problem 

ransformations. For instance, analyzing the problem in its infinite- 

imensional form is what inspired the case study discussed in 

ection 5.2 ; this example shows how to use CVaR as a way to ma-

ipulate time-dependent trajectories. 

Establishing theoretical properties for InfiniteOpt formulations 

s also often facilitated when these problems are expressed in 

heir native form. This is exemplified in the recent work of 

aulwasser and Grüne (2020) , where the authors utilize continuous 

nd discrete time formulations to derive properties of the turn- 

ike phenomenon in the field of optimal control. The turnpike phe- 

omenon refers to the propensity of optimal control trajectories to 

emain within a certain region for a significant portion of the time 

orizon until later departing it. Fig. 26 illustrates this for a dy- 

amic variable y (t) . The properties discussed by the authors with 

egard to turnpike behavior are beyond the scope of this work but, 

nterestingly, they observe that a considerable amount of analysis 

as been done for finite time formulations whereas many concep- 

ual gaps remain for the continuous-time case. This conceptual dis- 

arity between the continuous and discrete time cases can at least 

n part be attributed to the rather standard practice of express- 

ng optimal control formulations in discrete time. This observation 

s not unique to the optimal control community and there exists 

uch to be explored for InfiniteOpt formulations in their native 

orms throughout their respective communities in general. Some 

otential avenues of research for InfiniteOpt formulations include 

ystematic initialization techniques that consider the formulation 

nfinite domain, generalized pre-solving methods (e.g., feasibility 

hecking), and enhanced transformations (e.g., basis function ap- 

roaches used in Georgakis, 2013 and Gnegel et al., 2021 ). 

The proposed abstraction also encourages a more systematic 

reatment of infinite-dimensional data and modeling objects. To 

llustrate this, we consider dynamic parameter estimation formu- 

ations and show how lifting a finite-dimensional data represen- 

ation into an infinite-dimensional form might be beneficial. We 

onsider conducting dynamic experiments k ∈ K that collect the 

et of observations (data) { ̃  y k (t) : t ∈ ˆ D t k 
, k ∈ K} over the set of

ime points t ∈ ˆ D t k 
. A dynamic parameter estimation formulation 

hen seeks the optimal choice of parameters z ∈ Z to fit and verify 

he efficacy of a candidate model g(y (t) , z, t) = 0 relative to empir-

cal data ( Shin et al., 2019; Venturelli et al., 2018 ). For simplicity

n example, we consider a least-squares approach that yields the 

ollowing canonical discrete-time estimation formulation: 

min 
 k ( ·) ,z 

∑ 

k ∈K 
∑ 

t∈ ̂ D t k ( 
y k ( t ) − ˜ y k ( t ) ) 

2 

s.t. ˆ g ( y ( t ) , z, t ) = 0 , t ∈ ˆ D t k , k ∈ K 

z ∈ Z 

(56) 
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Fig. 25. Realizations of a time-dependent random field ξ (t) with and without time correlation. 

Fig. 26. Illustration of the turnpike phenomenon for a time-dependent trajectory 

y (t) where the turnpike occurs on the interval [ t 1 , t 2 ] . 
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here ˆ g (·) is the discretized dynamic model and y k (·) are the 
odel predicted variables. This discrete representation is guided 

y the nature of the experimental data ˜ y k (t) available, which cor- 

esponds to a finite set of time points t ∈ ˆ D t k 
. This limits the

odel to a particular transcribed domain; however, we can express 

ormulation (56) in continuous time by representing the experi- 

ental data with appropriate infinite-dimensional lifting functions 

f k (t) , t ∈ D t k 
such that f k (t) = ˜ y (t) at t ∈ ˆ D t k 

: 

min 
 k ( ·) ,z 

∑ 

k ∈K 

(∫ 
t∈D t k 

( y k ( t ) − ˜ y k ( t ) ) 
2 dt 

)
s.t. g ( y ( t ) , z, t ) = 0 , t ∈ D t k , k ∈ K 

˜ y k ( t ) = f k ( t ) , t ∈ D t k , k ∈ K 

z ∈ Z. 

(57) 

e now have a formulation that fits into our unifying InfiniteOpt 

bstraction; as such, we can begin to consider general modeling 

lements and transformations. This means, for instance, that we 

ight want to consider alternative time-dependent measures or 

ore accurate derivative approximations (e.g., orthogonal colloca- 

ion over finite elements) ( Tjoa and Biegler, 1991 ). Fig. 27 demon- 

trates this principle for a certain derivative D y k . This approach 

lso has the potential to alleviate the large computational burden 

ssociated with the noisy experimental data that often plague dy- 

amic estimation ( Ramsay et al., 2007 ), since the chosen empiri- 

al data functions f k (·) smooth the empirical domains as a prepro- 

essing step (see Fig. 32 in the case study). The data functions also 

acilitate the computation of data derivatives; which can be used 

n estimation techniques such as SINDy . We leave a more rigor- 

us analysis of formulation (57) to future work but we hope that 

his discussion helps illustrate how lifting can help identify new 

erspectives to tackle problems that are typically treated as finite- 
16 
imensional. We study this approach further in the biological dy- 

amic parameter estimation case study presented in Section 5.3 . 

. Case studies 

In this section, we provide illustrative case studies to demon- 

trate the concepts discussed. These case studies seek to exemplify 

ow the unifying abstraction captures a wide range of formula- 

ion classes and how it drives innovation. These cases are imple- 

ented via InfiniteOpt.jl v0.4.1 using Ipopt v3.13.2 

or continuous problems and Gurobi v9.1.1 for integer-valued 

roblems on an Intel® Core TM i7-7500U machine running at 

.90 GHz with 4 hardware threads and 16 GB of RAM running 

indows 10 Home. All scripts needed to reproduce the results 

an be found in https://github.com/zavalab/JuliaBox/tree/master/ 

nfiniteDimensionalCases . 

.1. Event-constrained optimal power flow 

We apply the event constraints featured in Section 4.1.3 to 

 stochastic optimal power flow (SOPF) formulation (a stochas- 

ic optimization problem). We base our SOPF formulation as 

 variant of the chance-constrained formulation presented in 

ühlpfordt et al. (2018) . This considers DC power grid networks 

ubject to random power demands ξ ∈ D ξ ⊆ R 
n ξ . The optimal pol- 

cy defines the power generation y g (ξ ) ∈ Y g ⊆ R 
n g and the branch 

ower flow y b (ξ ) ∈ Y b ⊆ R 
n b recourse functions to satisfy the de- 

ands where the respective feasible sets denote the engineering 

imits (i.e., Y g = [0 , y g ] and Y b = [ −y b , y b ] ). The power model en-

orces a linear energy balance at each node of the form: 

y b (ξ ) + C g y g (ξ ) −C ξ ξ = 0 , ξ ∈ D ξ (58) 

here A ∈ R 
n n ×n b is the incidence matrix, C g ∈ R 

n n ×n g maps the 

enerators to the correct nodes, and C ξ ∈ R 
n n ×n ξ maps the de- 

ands to the correct nodes. 

A traditional joint-chance constraint enforces limits to a certain 

robabilistic threshold α: 

 ξ

( ( ⋂ 

i ∈I g 
{∀ ξ ∈ D ξ : y g,i (ξ ) ≤ y g i } 

) 

⋂ 

( ⋂ 

i ∈I b 
{∀ ξ ∈ D ξ : −y b i ≤ y b,i (ξ ) ≤ y b i } 

) ) 

≥ α (59) 

here I g is the set of generator indices and I b is the set of branch
ndices. The non-negativity constraints on the generators are ex- 

luded such that they are enforced almost surely. The joint-chance 

https://github.com/zavalab/JuliaBox/tree/master/InfiniteDimensionalCases
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Fig. 27. Comparison between the derivative approximation approaches common to traditional dynamic estimation formulations and higher-order ones possible using our 

new formulation (e.g., using orthogonal collocation). 
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Fig. 28. Sketch of the 4-bus power network topology with its bus nodes (blue cir- 

cles), branches (blue lines), generators (green squares), and demand loads (orange 
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onstraint thus enforces that all the engineering limits are satisfied 

o at least a probability α and constraint (59) is equivalent to: 

 ξ

[ 

1 

[ ( ⋂ 

i ∈I g 
y g,i (ξ ) ≤ y g i 

) ⋂ 

( ⋂ 

i ∈I b 
−y b i ≤ y b,i (ξ ) ≤ y b i 

) ] ] 

≥ α. 

(60) 

his representation can be reformulated into algebraic constraints 

y introducing an infinite binary variable y w (ξ ) ∈ { 0 , 1 } and

n appropriate upper-bounding constant U ∈ R + ( Luedtke and 

hmed, 2008 ): 

 g,i (ξ ) − y g i ≤ y w (ξ ) U, ξ ∈ D ξ , i ∈ I g 
y b,i (ξ ) − y b i ≤ y w (ξ ) U, ξ ∈ D ξ , i ∈ I b 
 b,i (ξ ) − y b i ≤ y w (ξ ) U, ξ ∈ D ξ , i ∈ I b 
 ξ [ 1 − y w (ξ ) ] ≥ α. 

(61) 

imilarly, we can apply the excursion probability constraint; this 

nforces the probability that any engineering limit violation be no 

ore than 1 − α: 

 ξ

( ( ⋃ 

i ∈I g 
{∃ ξ ∈ D ξ : y g,i (ξ ) > y g i } 

) 

⋃ 

( ⋃ 

i ∈I b 
{∃ ξ ∈ D ξ : | y b,i (ξ ) | > y b i } 

) ) 

≤ 1 − α. (62) 

his constraint is equivalent to a joint-chance constraint; this be- 

omes apparent when we reformulate constraint (62) as: 

 ξ

[ 

1 

[ ( ⋃ 

i ∈I g 
y g,i (ξ ) > y g i 

) ⋃ 

( ⋃ 

i ∈I b 
| y b,i (ξ ) | > y b i 

) ] ] 

≤ 1 − α. 

(63) 

nd then use y w (ξ ) and U to obtain: 

 g,i (ξ ) − y g i ≤ y w (ξ ) U, ξ ∈ D ξ , i ∈ I g 
y b,i (ξ ) − y b i ≤ y w (ξ ) U, ξ ∈ D ξ , i ∈ I b 
 b,i (ξ ) − y b i ≤ y w (ξ ) U, ξ ∈ D ξ , i ∈ I b 
 ξ [ y w (ξ ) ] ≤ 1 − α. 

(64) 

hese are equivalent to the set of constraints (61) since 

 ξ [ 1 − y w (ξ ) ] ≥ α implies E ξ [ y w (ξ ) ] ≤ 1 − α. 

As an example of leveraging logical operators (e.g., ∩ and ∪ ) 

o constraint more complex regions, we consider the probability 

hat all the generator limits being satisfied or all the branch limits 

eing satisfied: 

 ξ

[ 

1 

[ ( ⋂ 

i ∈I g 
y g,i (ξ ) ≤ y g i 

) ⋃ 

( ⋂ 

i ∈I b 
−y b i ≤ y b,i (ξ ) ≤ y b i 

) ] ] 

≥ α. 

(65) 
17 
his encapsulates a wider probabilistic region relative to that of 

he joint-chance constraint (60) . This can be reformulated into a 

ystem of algebraic constraints by following the same methodology 

utlined for the other event constraints; however, we need to use 

ultiple infinite binary variables y w,g (ξ ) , y w,b (ξ ) , y w,o (ξ ) : 

 g,i (ξ ) − y g i ≤ y w,g (ξ ) U, ξ ∈ D ξ , i ∈ I g 
y b,i (ξ ) − y b i ≤ y w,b (ξ ) U, ξ ∈ D ξ , i ∈ I b 
 b,i (ξ ) − y b i ≤ y w,b (ξ ) U, ξ ∈ D ξ , i ∈ I b 
 w,o (ξ ) ≥ y w,g (ξ ) + y w,b (ξ ) − 1 , ξ ∈ D ξ

 ξ [ 1 − y w,o (ξ ) ] ≥ α. 

(66) 

We can now define the SOPF formulation; here, we aim to com- 

are the use of constraint (60) with the use of constraint (65) : 

in y g (ξ ) ,y b (ξ ) E ξ

[
c T g y g (ξ ) 

]
.t. Ay b (ξ ) + C g y g (ξ ) −C ξ ξ = 0 , ξ ∈ D ξ

y g (ξ ) ≥ 0 , ξ ∈ D ξ

(5 . 60) or(5 . 65) 

(67) 

here c g ∈ R 
n g are generation unit costs. We apply this SOPF for- 

ulation to the 4-bus power system depicted in Fig. 28 . We set 

 g i = 10 , y b i = 4 , U = 100 , c T g = [1 10] , and ξ ∼ N (μ, �) where 

= 

[
3 
5 

]
, � = 

[
2 0 
0 2 

]
. (68) 

he matrices A , C g , and C ξ are determined by the topology shown

n Fig. 28 . 
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Fig. 29. Pareto frontiers associated formulation (67) where the joint-chance curve 

refers to using constraint (60) and the new logic curve corresponds to constraint 

(65) . 
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We implement both variants of (67) in InfiniteOpt.jl and 

se direct transcription with 10 0 0 MC samples of ξ to transform 

he InfiniteOpt problem into finite-dimensional form. Code Snippet 

 shows an excerpt of the script used in InfiniteOpt.jl . Note 

hat the algebraic reformulations of each event constraint are used 

e.g., constraints (61) in place of constraint (60) ). Each formulation 

s solved over a range of α values to obtain Pareto pairs, which are 

hown in Fig. 29 . We observe that the traditional joint-chance con- 

traint requires a higher power generation cost for a given proba- 

ility α. This makes sense, because the alternate formulation cap- 

ures a larger probabilistic event region (it is less constraining). 

his highlights how logic affects the behavior of event-constrained 

ptimization formulations. In summary, in this case study we have 

sed our unifying abstraction to explore the use of event con- 

traints. This is facilitated by studying the analogy between excur- 
18 
ion probability constraints and joint-chance constraints through 

he lens our abstraction. 

.2. Stochastic optimal pandemic control 

We exemplify the discussion in Section 4.1.2 in which we dis- 

uss how to use CVaR to shape time-dependent trajectories. We do 

o by considering a pandemic optimal control problem; here, we 

eek to combat the spread of a contagion while minimizing the 

nforced isolation policy y u (t) ∈ [0 , 1] (i.e., social distancing pol- 

cy). The majority of other pandemic control studies in the liter- 

ture ( Lemecha Obsu and Feyissa Balcha, 2020; Area et al., 2017; 

say et al., 2020 ) use integral objectives that uniformly penalize 

he shape of optimal trajectories. We represent traditional formu- 

ations using the objective: 

in 
y u (·) 

1 

S 

∫ 
t∈D t 

y u (t) dt (69) 

ith S = 

∫ 
t∈D t dt . This objective minimizes the time-average isola- 

ion policy. We also consider an alternative objective by incorpo- 

ating a peak penalty (e.g., (44) ) to also control the maximum iso- 

ation policy: 

in 
y u (·) 

max 
t∈D t 

y u (t) . (70) 

This new objective can be formulated as: 

in y u (·) ,z z 
.t. z ≥ y u (t) , t ∈ D t 

(71) 

here z ∈ R is an auxiliary variable that captures the peak 

 Vanderbei, 2020 ). We will now show that objectives (69) and 

70) are special cases of the CVaR objective: 

in 
y u ( ·) 

CVaR t ( y u ( t ) ;α) (72) 

here α ∈ [0 , 1) . This problem can be reformulated as: 

in y u (·) ,y m (·) ,z z + 
1 

1 −α E t [ y m (t)] 
.t. y m (t) ≥ y u (t) − z, t ∈ D t 

y m (t) ≥ 0 , t ∈ D t 

(73) 
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Table 1 

Parameter values used in the InfiniteOpt formulation (75) . 

β γ ξ ξ i max y u s 0 e 0 i 0 r 0 

0.727 0.303 0.1 0.6 0.02 0.8 1 − 10 −5 10 −5 0 0 
here y m : D t → R and z ∈ R are appropriate infinite and finite

uxiliary variables ( Dowling et al., 2016 ). 

We model the spread of the contagion through a given popula- 

ion using the SEIR model ( Aron and Schwartz, 1984 ), which con- 

iders four population categories: 

usceptible → Exposed → Infectious → Recovered . 

e define the fractional populations of individuals susceptible to 

nfection y s : D t → [0 , 1] , exposed individuals that are not yet in-

ectious y e : D t → [0 , 1] , infectious individuals y i : D t → [0 , 1] , and

ecovered individuals y r : D t → [0 , 1] (considered immune to fu- 

ure infection). The variables are normalized such that y s (t) + 

 e (t) + y i (t) + y r (t) = 1 . The deterministic SEIR model is formal-

zed as: 

dy s ( t ) 
dt 

= ( y u ( t ) − 1 ) βy s ( t ) y i ( t ) , t ∈ D t 
dy e ( t ) 
dt 

= ( 1 − y u ( t ) ) βy s ( t ) y i ( t ) − ξy e ( t ) , t ∈ D t 
dy i ( t ) 
dt 

= ξy e ( t ) − γ y i ( t ) , t ∈ D t 
dy r ( t ) 
dt 

= γ y i ( t ) , t ∈ D t 

(74) 

here β, γ , ξ ∈ R are the rates of infection, recovery, and incuba- 
ion, respectively. For our case study, we consider ξ to be an un- 

ertain parameter ξ ∼ U( ξ , ξ ) . This introduces the random domain 

 ξ (i.e., the co-domain of U( ξ , ξ ) ) and gives a stochastic dynamic

ptimization problem of the form: 

in Objective (5.69), (5.71), or (5.73) 

.t. ∂y s (t,ξ ) 
∂t 

= (y u (t) − 1) βy s (t, ξ ) y i (t, ξ ) , t ∈ D t , ξ ∈ D ξ
∂y e (t,ξ ) 

∂t 
= (1 − y u (t )) βy s (t , ξ ) y i (t , ξ ) − ξy e (t, ξ ) , t ∈ D t , ξ ∈ D ξ

∂y i (t,ξ ) 
∂t 

= ξy e (t, ξ ) − γ y i (t, ξ ) , t ∈ D t , ξ ∈ D ξ
∂y r (t,ξ ) 

∂t 
= γ y i (t, ξ ) , t ∈ D t , ξ ∈ D ξ

y s (0 , ξ ) = s 0 , y e (0 , ξ ) = e 0 , y i (0 , ξ ) = i 0 , y r (0 , ξ ) = r 0 , ξ ∈ D ξ

y i (t, ξ ) ≤ i max , t ∈ D t , ξ ∈ D ξ

y u (t) ∈ [0 , y u ] , t ∈ D t 

(75) 
19 
here s 0 , e 0 , i 0 , r 0 ∈ R denote the initial population fractions, i max 

enotes the maximum allowable fraction of infected individuals 

 i (t) , and y u denotes the maximum realizable population isolation. 

he state variables y s (·) , y i (·) , y e (·) , y r (·) are now infinite variables

hat are parameterized in the time and random domains, while the 

ontrol variable y u is an infinite variable that is only parameterized 

n the time domain (since we need to decide our control policy be- 

ore knowing the realizations of ξ ). 
We solve the InfiniteOpt problem (75) using the parame- 

ers defined in Table 1 with D t = [0 , 200] . We transcribe it via

nfiniteOpt.jl using 111 supports for D t and 20 MC samples 

or D ξ . Code Snippet 3 shows an excerpt of this implementation 

n InfiniteOpt.jl . The optimal policies corresponding to ob- 

ectives (69) and (71) are shown in Fig. 30 . Penalizing the peak 

solation provides a smoother isolation policy y u (t) relative to the 

ore traditional integral based objective. Moreover, the population 

f susceptible individuals y s (t, ξ ) associated with penalizing the 

eak isolation decreases at a lower rate which indicates that penal- 

zing the peak isolation is more effective at mitigating the spread 

f the contagion in this particular case. 

We address formulation (75) by using the proposed CVaR 

easure. Three solutions are obtained corresponding to α = 

 0 , 0 . 5 , 0 . 99 } and are depicted in Fig. 31 . Note that we use α =
 . 99 because a singularity is incurred with α = 1 . We observe 

hat Fig. 31 a and 31 b are identical to Fig. 30 a and 30 b; this il-

ustrates that the CVaR objective (72) is a generalization of ob- 

ectives (69) and (70) . Moreover, CVaR provides a range between 
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Fig. 30. Optimal trajectories for formulation (75) using traditional dynamic optimization objectives. For the state variables y s (t, ξ ) , y e (t, ξ ) , y r (t, ξ ) , and y r (t, ξ ) the solid 

lines denote the trajectories averaged over ξ and the dashed lines denote the trajectories that are one standard deviation away from the mean. 

Fig. 31. Optimal policies for solving Formulation (75) in combination with Objective (73) . 

20 
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Table 2 

Species membership of the microbial community. 

Species Name Abbreviation 

Blautia hydrogenotrophica BH 

Collinsella aerofaciens CA 

Bacteroides uniformis BU 

Prevotella copri PC 

Bacteroides ovatus BO 

Bacteroides vulgatus BV 

Bacteroides thetaiotaomicron BT 

Eggerthella lenta EL 

Faecalibacterium prausnitzii FP 

Clostridium hiranonis CH 

Desulfovibrio piger DP 

Eubacterium rectale ER 
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Fig. 32. Empirical fit for a mono-species experiment of Bacteroides vulgatus using 

(78) . 
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hese cases by varying the value of α. Hence, we can also seek 

radeoff solutions such as what is shown in Fig. (31) c with α = 0 . 5 .

nterestingly, this optimal policy combines aspects of the average 

nd peak solution policies, but also is unique in enforcing isola- 

ion policies from the start. This shows that CVaR can be used to 

hape time-dependent trajectories in unique ways that are difficult 

o achieve with traditional measures used in dynamic optimization. 

.3. Estimation in dynamic biological systems 

We consider a dynamic parameter estimation problem for a bi- 

logical system model; this study aims to demonstrate how the 

nifying abstraction inspires new formulation classes by lifting for- 

ulations into infinite dimensional spaces. This follows from the 

iscussion in Section 4.3 with regard to formulations (56) and (57) . 

To juxtapose the utility of formulations (56) and (57) , we con- 

ider a microbial community consisting of the 12 species described 

n Table 2 using the generalized Lotka–Volterra (gLV) model: 

dy x,i (t) 

dt 
= 

(
z μ,i + 

∑ 

j∈I 
z α,i j y x, j (t) 

)
y x,i (t) , i ∈ I (76) 

here I represents the set of microbial species, y x,i (t) is the esti- 

ated absolute abundance of species i ∈ I , z μ,i is the growth rate 

f species i , and z α,i j is a species interaction coefficient which de- 

cribes the effect of the recipient species i on the growth of the 

onor species j ( Shin et al., 2019 ). We use the gLV model parame-

ers presented in Venturelli et al. (2018) to generate simulated ex- 

erimental data with random noise ε ∼ N (0 , 0 . 01) for 12 mono- 

pecies and 66 pairwise experiments. This will enhance our assess- 

ent of Formulations (56) and (57) , since we have an established 

round truth for the model parameters. 
Incorporating (76) into Formulation (56) provides us with our 

iscrete dynamic biological community estimation formulation: 

in 
∑ 

k ∈K 
∑ 

i ∈I 
∑ 

t∈ ̂ D t k 
(y x,ik (t) − ˜ y x,ik (t)) 

2 

.t. 
dy x,ik (t) 

dt 
= 

(
z μ,i + 

∑ 

j∈I z α,i j y x, jk (t) 
)
y x,ik (t) , t ∈ ˆ D t k , i ∈ I, k ∈ K 

0 . 09 ≤ z μ,i ≤ 2 . 1 , i ∈ I 
−10 ≤ z α,ii ≤ 0 , i ∈ I 
−10 ≤ z α,i j ≤ 10 , (i, j � = i ) ∈ I × I. 

(77) 
21 
Note that we sum over each species i for each experiment k in 

ccordance with (76) . Also, we recall that the derivative terms are 

imited to finite difference approximation schemes that employ the 

upport points in ˆ D t k 
. 

To derive an explicit form of Formulation (57) , we first fit an 

mpirical function f ik (t k ) to each experiment k and each species 

 . Our goal is not to create a generalizable predictive represen- 

ation but rather to construct a continuous, infinite-dimensional 

unction that represents the dynamic behavior observed in each 

xperiment. We observe that the experiments appear to exhibit 

igmoidal characteristics, and thus we use least-squares to fit each 

xperiment k and species i to an empirical function of the form: 

f ik (t) := 

β1 ,ik 

β2 ,ik + β3 ,ik e 
β4 ,ik (t−β5 ,ik ) 

, t ∈ D t k , i ∈ I, k ∈ K (78)

here β1 ,ik , β2 ,ik , β3 ,ik , β4 ,ik , and β5 ,ik are fitting parameters. 

q. (78) fits our experimental datasets well as demonstrated for 
he particular experiment shown in Fig. 32 which is indicative of 
verall fit qualities we observed. Thus, we substitute Eqs. (76) and 
78) into Formulation (57) to obtain: 

in 
∑ 

k ∈K 
∑ 

i ∈I 

( ∫ 
t∈D t k 

(y x,ik (t) − ˜ y x,ik (t)) 
2 dt 

)
.t. 

dy x,ik (t) 

dt 
= 

(
z μ,i + 

∑ 

j∈I z α,i j y x, jk (t) 
)
y x,ik (t) , t ∈ D t k , i ∈ I, k ∈ K 

˜ y x,ik (t) = 
β1 ,ik 

β2 ,ik + β3 ,ik e 
β4 ,ik (t−β5 ,ik ) 

, t ∈ D t k , i ∈ I, k ∈ K 

0 . 09 ≤ z μ,i ≤ 2 . 1 , i ∈ I 
−10 ≤ z α,ii ≤ 0 , i ∈ I 
−10 ≤ z α,i j ≤ 10 , (i, j � = i ) ∈ I × I. 

(79) 
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Fig. 33. Optimal trajectories from formulations (77) and (79) using orthogonal collocation over finite elements to approximate the derivatives with two and four points, 

respectively. All shown in comparison to the experimental data. The x-axis is time in hours, and the y-axis is the absolute abundance of the recipient species in contact with 

the corresponding donor species. The results for the mono-species experiments are observed on the diagonal with the rest being pairwise. 
22 
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Fig. 34. Optimal profiles for select experiments using different formulations and collocation node amounts (top-left: (FP, BT), top-right: (EL, EL), bottom-left: (CH, PC), 

bottom-right: (FP, BU)). 
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We solve formulations (77) and (79) using InfiniteOpt.jl 

ia its automated transcription capabilities. Code Snippet 

 presents an illustrative summary of the syntax for imple- 

enting Formulation (79) . We employ 15 time supports for each 

xperiment in Formulation (79) and necessarily use the measure- 

ent times as supports for formulation (77) . We use orthogonal 

ollocation over finite elements to approximate the differential 

quations; we use two nodes per finite element (necessarily using 

nly the boundary points) in Formulation (77) and a range of 
23 
ode amounts with formulation (79) to investigate their effect on 

olution quality. Fig. 33 summarizes the model fits of both solution 

ets relative to the experimental data. Although both estimation 

roblems are able to choose parameters that characterize the data 

ell, there are significant deviations between the profiles across a 

ew experiments. 

Fig. 34 shows a representative subset of experiments to demon- 

trate how the solutions vary with respect to the estimation for- 
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Table 3 

Sum-squared-errors between the actual and estimated 

parameters for each formulation and number of collo- 

cation nodes per finite element. 

Formulation SSE z α SSE z μ

Discrete, 2 Nodes 1 . 02 × 10 2 4 . 72 × 10 −2 

Continuous, 2 Nodes 2 . 14 × 10 1 2 . 46 × 10 −2 

Continuous, 4 Nodes 1 . 59 × 10 1 9 . 05 × 10 −4 

Continuous, 6 Nodes 1 . 59 × 10 1 9 . 10 × 10 −4 
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B

B

B

Ç

C
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D

D

D  
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F

ulation and the number of collocation points. We find that the 

iscrete formulation solution generally deviates from the analyti- 

al solution to a greater extent than the solutions procured via the 

ontinuous formulation. However, it is difficult to conclude which 

stimation problem best represents the data when the measure- 

ent noise is near the magnitude of the absolute abundance be- 

ause no model matches the true analytical solution particularly 

ell; the continuous formulation solutions, however, in general 

eem to better represent the trend of the system. This suggests 

hat Formulation (79) has effectively smoothed over noisy exper- 

ments, leading to a better fit. Furthermore, we observe that the 

bility of Formulation (79) to enable arbitrary collocation nodes 

as a significant effect on the accuracy of the solutions. This in- 

reased accuracy seems to effectively taper off at four collocation 

odes in this case. 

We seek to substantiate our qualitative observation that the 

ontinuous formulation is able to better represent the experimen- 

al data by comparing the sum-squared-errors (SSE) between the 

rue parameters used to generate the experimental data to those 

pproximated from formulations (77) and (79) . Specifically, we 

onsider the error metrics: 

SE z μ := 

∑ 

i ∈I 
(z μ,i − z̄ μ.i ) 

2 

SE z α := 

∑ 

i ∈I 

∑ 

j∈I 
(z α,i j − z̄ α,i j ) 

2 

here z̄ μ.i and z̄ α,i j denote the actual parameters used in the sim- 

lations to generate the experimental data. The results are shown 

n Table 3 and demonstrate that the continuous formulation solu- 

ions yield significantly smaller sum-squared-errors. Moreover, in- 

reased collocation nodes for each finite element are able to reduce 

he overall error by more than an order of magnitude. 

. Conclusions and future work 

We have presented a unifying abstraction for representing 

nfinite-dimensional optimization (InfiniteOpt) problems that ap- 

ear across diverse disciplines. This unifying abstraction introduces 

he notions of infinite variables (variables parameterized over 

nfinite-dimensional domains). The abstraction also uses measure 

nd differential operators that facilitate the construction of objec- 

ives and constraints. The proposed abstraction facilitates knowl- 

dge transfer; specifically, it helps identify and transfer model- 

ng constructs across disciplines. For instance, we discussed how 

hance constraints are analogues of excursion probabilities and 

ow these can be generalized using event constraints; as an- 

ther example, we show how one can use risk measures to shape 

ime-dependent trajectories in dynamic optimization. The pro- 

osed modeling abstraction aims also to decouple the formula- 

ion from transformation schemes (e.g., direct transcription), as we 

elieve that this facilitates analysis and implementation. The pro- 

osed abstraction serves as the backbone of a Julia-based modeling 

ramework called InfiniteOpt.jl . 
24 
In future work, we will further investigate theoretical crossovers 

etween disciplines. In particular, we are interested in rigorously 

nalyzing the characteristics of risk measures across general infi- 

ite domains. Such measures have the potential to enhance the 

haping of optimal trajectories in spatio-temporal domains and 

rovide an intuitive analogy for stochastic optimization problems. 

vent constraints also present an intriguing general constraint class 

hat warrants further research (e.g., connections with disjunctive 

rogramming). We also plan to further develop the theoretical and 

lgorithmic foundations for incorporating random field theory into 

ptimization. Furthermore, we will continue enriching the capa- 

ilities of InfiniteOpt.jl to support these research endeavors 

nd to make advanced transformation approaches (e.g., MWR ap- 

roaches) more readily accessible. 
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