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ABSTRACT

In this work we present a generalization of market coordination to multi-product supply chains and use
this framework to analyze their spatio-temporal economic properties. We interpret a supply chain as
a market consisting of independent stakeholders (suppliers, consumers, transportation, and technology
providers) who bid into a coordination system that is managed and cleared by an independent entity
to obtain product allocations and prices. The proposed model provides a general graph representation
of spatio-temporal product transport that helps capture geographical transport, time delays, and storage
(temporal transport) in a unified and compact manner. This representation allows us to establish funda-
mental economic properties for the supply chain (revenue adequacy, cost recovery, and competitiveness)
and to establish bounds for space-time prices. To illustrate these concepts, we consider a case study in
which organic waste is used for producing biogas and electricity. Our market model shows that incen-
tives for waste storage emerge from electricity demand dynamics and illustrates how space-time price
dynamics for waste and derived products emerge from geographical transport and storage.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-product supply chains (SCs) arise in a wide range of in-
dustrial applications such as energy infrastructures (e.g., biofu-
els from biomass and coupled electrical power-natural gas sys-
tems) (Mitridati et al., 2020; Duefias et al., 2015), waste in-
frastructures (e.g., plastic, livestock, food), and chemical man-
ufacturing (e.g., pharma, petrochemical, semiconductors) (Lima
et al.,, 2016; Barbosa-Pévoa, 2014). A key defining aspect of the
multi-product SCs that are of interest to chemical engineers is
the presence of product transformation (i.e., products are pro-
cessed/combined/transformed to obtain other derived products)
and critically, this feature is not represented in existing coordi-
nation models. Multi-product SCs typically involve a wide range
of stakeholders such as suppliers and consumers of products,
providers of transport, processing, and storage (inventory) services,
and other external actors (e.g., policy). This creates a transaction
network that exhibits complex interconnectivity across products,
stakeholders, spatial (geographical) locations, and time (see Fig. 1);
moreover, stakeholders are often competitive, strategic, and profit-
maximizing entities (Garcia and You, 2015; Papageorgiou, 2009). As
such, understanding the emergent behavior of product flows and
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of their inherent monetary values (prices) in multi-product SCs is
technically challenging.

It has been recently observed that SCs exhibit parallels with co-
ordinated markets Sampat et al. (2019); in such markets, stake-
holders bid into a coordination system (a coordinator) that de-
termines stakeholder allocations and product prices by solving a
clearing problem (a mathematical optimization problem). A coordi-
nated market interpretation of SCs provides a useful view that can
help understand their emergent behavior and economic properties.
for instance, one can show that an optimal solution of the SC de-
livers competitive equilibria, cost recovery (no stakeholder incurs
financial loss), revenue adequacy (payments collected from con-
sumers balances revenue of service providers), and price bound-
edness (clearing prices are compatible with bids). Moreover, a co-
ordinated market setting can offer a potential avenue to manage
actual SC operations. For instance, coordinated markets have been
successfully deployed in electrical power systems (Blumstein et al.,
2002; Hogan, 2002; Bohn et al., 1984); in this context, coordina-
tion is key to ensure that consumers have access to a continual
supply of electricity (complicated by capacity limitations of power
generators and of the transmission network) and is key to en-
sure transparent prices that reveal the inherent value of electric-
ity. It is of note that electricity SCs are coordinated with respect to
one product - electricity - and do not feature product transforma-
tion. Moreover, electricity transmission has complex physics and
transportation that is also typically left out of electricity coordi-
nation systems. Coordination has been applied to other products;
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Fig. 1. A supply chain topology can be represented as a graph that connects stakeholders in space and time. Suppliers are visualized in red, technology providers in yellow,
and consumers in blue. The arcs represent product transport across spatial and temporal dimensions. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Pratt et al. (1996) use coordinated markets to handle multiple dairy
products (e.g., milk, cheese, yoghurt) over a SC that spans the en-
tire United States.

Alternative multi-product SC models and associated eco-
nomic interpretations have been proposed in the literature.
Mokhlesian and Zegordi (2014) developed a bilevel framework
for multi-product SCs which determines coordinating prices
and inventory in competitive settings. Saghaeeian and Rameza-
nian (2018) present a Stackelberg framework for competitive multi-
product markets; these market models aim to capture realistic,
strategic behavior but are computationally challenging to handle.
Early work in developing coordinated market models for multi-
product SCs was presented by Thomas and Griffin (1996). Recent
work by Sampat et al. (2017, 2019), Tominac and Zavala (2020),
and Tominac et al. (2021) developed general coordination schemes
for handling steady-state, multi-product SCs. This work general-
izes coordination to multi-product supply chains in a dynamic set-
ting, and shows that desirable economic properties of coordinated
markets can be obtained in a general setting that involves dif-
ferent types of stakeholders and product transformations. More-
over, large instances of these models can be handled using state-
of-the-art optimization solvers. In this work, we extend this SC
modeling setting by capturing dynamic behavior; this allows us to
incorporate product storage and transportation delays. We use a
graph-theoretic representation that allows us to capture geograph-
ical transport, storage, and delays in a unified manner; specifically,
we show that these effects can be modeled using space-time flows

that transport product cross space and time. This effectively cre-
ates a space-time graph representation of the SC, similar in spirit
to that used in the network flow literature (Ahuja et al., 1988). We
show that the proposed graph-theoretic representation allows us
to establish fundamental economic properties for the SC model in
a compact and intuitive manner.

2. Supply chain model

The proposed SC model is an extension of the steady-state (SS)
model proposed in (Tominac and Zavala, 2020) to a dynamical set-
ting. Central to our development is the generalization of the con-
cept of product transport flows from a spatial (geographical) set-
ting to a space-time setting. Space-time flows will allow us to cap-
ture a wide range of features (e.g., delays and storage) under a
unified framework, will reveal mechanisms that can be used to
remunerate stakeholders, and will be used to establish bounding
properties for space-time prices. The concept of space-time flows
has been recently proposed in the context of electrical power mar-
kets (single-product markets) by Zhang and Zavala (2021); here,
we generalize this concept to a multi-product setting.

To highlight the relevance and properties of space-time flows,
we will construct our SC model by first introducing a model un-
der a steady-state setting that only captures spatial transport (we
refer to this as the SC-SS model). We will then extend this model
by considering a dynamical setting; this model can be seen as a se-
quence of time snapshots of a steady-state SC that allows for trans-
port of product across time (we refer to this as the SC-ST model).
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Fig. 2. Geographical visualization of a supply chain. Spatial transport flows (at a given time) are illustrated by solid arrows on the maps (representing individual times) and

transport flows traversing time dimension are indicated with dashed lines.
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Fig. 3. Schematic of a space-time node s= (n,t) in the SC graph G(S, A). Suppliers (i € G) consumers (j € D) and technology providers (m € M) act on products at a
particular node; transportation providers (I € £) move products across nodes. All the stakeholders influence product prices 7y, at the space-time node.

We will see that, by using a graph-theoretical representation, one
can represent SC-ST in a form that is directly analogous to SC-SS;
this will be key to generalizing economic properties from steady-
state to a dynamical setting. The space-time SC setting under study
is illustrated in Fig. 2.

2.1. Supply chain model (steady-state)

The steady-state SC setting contains a set of suppliers G, con-
sumers D, geographical (spatial) transport providers £, and prod-
uct transformation (or technology) providers M. The SC model has
an associated graph G(V, A), where N is a set of spatial nodes and
A is the set of arcs (edges, links) connecting such spatial nodes via
product transport. Consumers, suppliers, and technology providers
are attached to a given spatial node, while transportation providers
are attached to a given arc.

Each supplier i € G has an associated supply flow variable g; €
Ry, a supply capacity parameter g; € R, (representing the maxi-
mum flow that it can deliver), and a bid cost parameter aig eR.
We use n(i) e N and p(i) € P to denote the node at which sup-
plier is located and the product that it supplies, respectively. If the
supply bid cost is positive, the supplier expects payment for prod-
uct p(i) delivered and, when it is negative, the supplier offers a
payment to have p(i) be taken away. This indicates that suppli-
ers may act as either revenue sources or revenue sinks (depend-
ing on the sign of their bid); as such, we categorize suppliers us-
ing the subsets G* < G of suppliers with G* :={i e g|oz;g >0} and

G~ < G of suppliers with ot;g < 0. Negative supplier bids are com-
mon in waste markets (the supplier of waste desires to get rid of
it and is willing to pay a tipping fee). We also categorize suppliers
by location and product by defining the subsets Gp, € G (where
Gn.p = {iln(i) = n, p(i) = p}).

Each consumer je D has a demand flow variable dj e Ry, a
demand capacity parameter Ej € R, (indicating the maximum de-
mand flow that it can receive), and a purchase bid cost parameter
ozj.’ € R. We use n(j) € M and p(j) € P to indicate the consumer lo-
cation and the product requested. A positive bid cost indicates that
a consumer offers payment in exchange for a product while a neg-
ative bid indicates that a consumer demands payment on receiv-
ing a product. As with suppliers, consumers in a market may act
as either revenue sources or sinks. We define the subsets D+ C D
of consumers with bids a}j >0 and D~ < D with a? < 0. Negative
consumer bids are also common in waste markets (a landfill can
act as a consumer that requests a tipping fee to take waste). We
also categorize consumers by location and product by defining the
subsets D, p € D where Dy p := {j[n(j) =n, p(j) = p}.

Each transport provider I € £ has a transport flow variable f; €
R, capacity parameter f; € Ry, and bid parameter alf € R, (repre-
senting the cost of the transport service). Each transport provider
moves product from a base (source) node n(l) € N to a receiving
(destination) node n,(l) € N via the arc a:= (ny,n;) € A and we
use p(l) e P to denote the product that is transported. We cate-
gorize transport providers using the subsets C}'{fp C £ and C;’lf‘; ccL,
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which correspond to incoming and outgoing providers for a given
node n and for a given product p; here, /:;';11, = {lIn;(D) =n, p(l) =
p} and L?,f’{, = {l|ny () = n, p(l) = p}. We use the notation n,(a)
N and n;(a) e N to denote the base and receiving nodes of arc q,
respectively. In graph-theoretical terminology, n,(a) and n,(a) are
the support nodes of arc a.

Each technology provider m e M transforms a set of input
products p e PS" c P into a set of output products p e PE" c P.
The provider thus acts simultaneously as a consumer and supplier
of products and introduces interconnectivity between products.
Each technology has a flow processing variable &, € R, represent-
ing either consumption or generation flow in terms of a reference
product pm € PR". Product transformations are defined by a set
of yield coefficient parameters ym p € Ry, p € {PS", P&} with re-
spect to the reference product pr, such that y,, 5 = 1. Each technol-

ogy has an processing capacity &, € R, and a bid a,‘i € R, (tech-
nology service cost) in terms of the reference product p(m). We
classify these stakeholders by the types of products that they con-
sume or generate by using the subsets M € M and M5’y € M
where M := {m|n(m) = n, p(m) e PE"} and M) := {m|n(m) =
n, p(m) € PE"}. Negative bids for transport and technology ser-
vices are not considered, as these do not have practical interpre-
tation; however, the formulation can be easily extended to allow
for this.

We interpret the SC model as a market clearing formulation;
this interpretation reveals economic properties that can help ex-
plain behavior (e.g., product and revenue flows across the system).
To establish this connection, we consider that stakeholders submit
bidding information that consists of costs (a8, a?, &f, @) and ca-
pacities (g, d, f,£). An independent entity, called an independent
system operator (ISO), clears the market by solving the optimiza-
tion problem (2.1) (we call this the SC-SS model). In a market con-
text, this formulation determines product allocations for the stake-
holders and determines the inherent economic value for such allo-
cations (prices). The formulation also implicitly provides a mecha-
nism to remunerate stakeholders.

The objective function (2.1a) of the clearing formulation aims to
find allocations (g, d, f, &) that maximize the demand served and
that minimize the service costs. This objective naturally makes al-
locations to the highest-bidding consumers and the lowest-bidding
suppliers, transport providers, and technology providers (priori-
tizes based on bid costs). The presence of negative bid costs re-
verses prioritization logic (e.g., the formulation allocates product
to suppliers with negative bid costs). Maximizing this objective is
equivalent to maximize the total profit of the stakeholders (differ-
ence between their revenues and costs); as such, the objective of
the clearing formulation is often called the total surplus. The dual
variables 7 of the nodal product balances (2.1b) (known as clearing
constraints) play a key role in remunerating stakeholders.

max Y aldi— Y afgi- Y ol fi- Y anén (2.1a)
dg.f4 jeD ieg leL meM
st Y G+ > fit Y Vmpbm= Y di+ Y fi
i€Gnp lecin, meMSy j€Dnp leos
+ Z Ymp&m, (M t,p) e N X T xP, (Tnp) (2.1b)

meM
g <8 ied (L) (2.1¢)
dj<d;, jeD, (&) (2.1d)
fisf. leL, ) (2.1e)
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me M, (An) (2.1f)

Em < grnv
2.2. Supply chain model (dynamical)

We now extend the steady-state SC model to a dynamical set-
ting by considering a sequence of times t € 7. The set of times 7 is
typically known as the time horizon (or planning horizon). In the
proposed setting, we interpret a given time t as a node in a tempo-
ral graph; as such, we construct a space-time graph G(S, A) with
space-time nodes given by the index pair s := (n,t) € S and with
arcs A connecting space-time nodes. We refer to this model as
SC-ST; under this setting, suppliers, consumers, and transformation
providers participate at a given spatial node n € A’ and at a given
time node t € T (or simply s € S). In other words, they offer or re-
quest product and services at a given space-time node s. Moreover,
under this setting, transport providers move product across space-
time nodes via arcs. The time set 7 is ordered (the spatial set /'
is not) and it is thus often expressed as 7 = {tg, t1,....,tr} with
tp <t; <--- <tr. We define the distance between two subsequent
time nodes t; and ¢;,q as 8(tj, tj1); this distance is often referred
to as the time step. For simplicity, we assume that all the time
steps are equal and given by (¢, tj,1) =6 forall j=0,....T-1.

Under a space-time setting, each supplier i € G has a flow vari-
able g; € R,, capacity parameter g; € R,, and a bid parameter aig €
R. Moreover, each supplier offers product p(i) e P at a space-
time node s(i) = (n(i),t(i)) € S (with n(i) e N and t(i) € T). As
before, we categorize suppliers based on their bid cost as G* :=
{ieGlaf >0} and G~ :={ieGlaf <0} and G- < G. We also de-
fine subsets G; , € G (with Gsp := {i|s(i) =s, p(i) = p}) to catego-
rize suppliers by space-time location and product.

Each consumer j € D has a flow variable d; € R, capacity pa-
rameter Hj € R4, and bid parameter a;?’ € R. As with suppliers, each
consumer has an associated space-time node s(j) = (n(j), t(j)) e
S and product p(j) € P. We define the subsets DT € D of con-
sumers with bids a;?’ >0 and D~ < D with a;.i < 0. We also define
subsets Ds p € D where D;  := {j|s(j) = s, p(j) = p}.

Each technology provider m € M converts a set of input prod-
ucts p € PS" C P into a set of output products p € P&" c P. Each
technology has a variable flow &, ¢ Ry and yield parameters
Ym.p € Ry, p e {PO P&} Each technology has an input capac-
ity defined by &, €R,, and a bid af’; € Ry. As with suppliers
and consumers, each technology provides has an associated space-
time node s(m) € S. We define subsets for technology providers
M, < M and MET, < M where M = {m|s(m) =s, p(m) €
P} and MS5 = {m|s(m) =, p(m) € Pi"}.

The key difference between the steady-state and the dynami-
cal setting is in how transportation providers are defined and in-
terpreted. Each transport provider | € £ has a space-time transport
flow variable f; € Ry, a capacity parameter f; € Ry, and a bid pa-
rameter oz,f € R,. Each transport provider moves product from a
source node s, (l) € V' to a receiving node s,(I) € V. The base node
is given by sp(I) := (ny(I), t,(1)) with ny(I) e N and t,(I) e T (a
similar definition is used for the receiving node). We define sub-
sets for transport providers Lg’}p c £ and E;’_”; C £ corresponding to
inbound and outbound transport flow from a space-time node s
and for product p. Here, Eg’jp :={l|s;(l) =s, p(l) = p} and cg}g =
{lsp(1) =s, p(l) = p}. A transport provider moves product across
time via the arc a:= (55, 5r) € A; the arc can also be expressed
a = (ny, ty, ny, tr) to highlight the spatial and temporal nodes. We
use the notation ny(a) e N and t,(a) € T to denote the support
nodes of the space-time arc.

From the previous definitions it is clear that the concepts of
space-time nodes and flows allow us to define transport providers
in a manner that is directly analogous to the steady-state counter-
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part. We now discuss how the notion of space-time flows offers
modeling flexibility to capture different behavior encountered in
supply chains.

« A transport flow from a spatial location n,(I) to n;(I) at a fixed
time location (t,(I) =t-(I)) can be used to capture short-term
(instantaneous) transport. This type of spatial transport is the
one assumed in the SS-SC model.

A transport flow [ from spatial location n,(l) to n,(I) and from
time t,(I) to t:(I) (with t-(I) > t,(I)) can be used to capture
long-term transport; here, the time distance 4 (¢ (1), t,(l)) is the
transportation delay. If §(¢t-(1),t,(I)) = 0, we have the instanta-
neous case previously described.

A transport flow from time location t,(I) to time location t.(I)
(with t-(I) > t,(I)) at a fixed spatial location (n,(l) = nr(I)) can
be used to capture product storage (inventory). In other words,
product storage can be seen as a form of temporal product
transport.

The above discussion reveals that there are different types of
arcs present in the SC (spatial, temporal, and spatio-temporal). To
capture this categorization, we define the spatial arc set Ay :=
{ae A|ty(a) = t-(a)} (sending and receiving time locations are the
same), the temporal arc set Ay :={a € A|ny(a) = nr(a)} (sending
and receiving spatial locations are the same), and the space-time
arc set As :={a e A|np(a) # n;(a)orty(a) # tr(a)}. We thus have
that the entire arc set is given by A = Ay U A7 U As.

One can think of the space-time SC as a time sequence of sup-
ply chains that are connected in time via temporal and spatiotem-
poral arcs. This interpretation also suggests that we can partition
the set of suppliers G into the subsets G; :={i e G|t(i) =t} and
thus G = Uie7Gr; one can follow this same reasoning to partition
the set of consumers D and technology providers M. The set of
transport providers £ can be partitioned in a form that is analo-
gous to the arc partitioning (in spatial £,r, temporal £7, and spa-
tiotemporal transporters Ls). In addition, one can also partition
the set £ into subsets of the form £; := {l € £|t,(l) =t} and thus
c=Jc.

teT
A special case of the SC-ST model is that in which it is assumed

that no temporal and spatiotemporal arcs are present; as such, we
have A7 =@ and As = @ and thus A = Ay.. We also note that this
is equivalent to restricting the flows of the transporters in the SC-
ST model as f; =0 for | € A7 U As (effectively eliminating any arcs
that connect nodes across time). In this case, the SC-ST model is
simply a time sequence of SC-SS models that are disconnected in
time; this is equivalent to making a quasi steady-state assumption
(all transport in time is instantaneous). We thus refer to this spe-
cial SC-ST model as SC-QSS. The SC-QSS assumption is often made,
for instance, if any time delay is much shorter than the time hori-
zon (e.g., time step is in hours while the time horizon spans an en-
tire year). However, our interest in the SC-QSS model arises from
the observation that this can be used as a reference model that
help us analyze the properties of the SC-ST model. Specifically, we
observe that SC-QSS is a restricted version of SC-ST; this observa-
tion will highlight how space-time product transport can be ex-
ploited to control space-time price dynamics.

2.2.1. SC-ST Formulation (primal)

We interpret the SC-ST formulation as a market clearing for-
mulation; this interpretation reveals important and interesting eco-
nomic properties and behavior of the SC. The formulation is given
by:

max D orfd; =3 ofgi— D o/fi= ) ainkn

jeD ieg leL meM

(2.2a)
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St Y g+ > fit D Vmpkm=

i€Gs p lecin, meMgy
Z dj+ Z fi+ Z Ym.pbm, (S,p) € S x P, (sp)
JjeDsp leLgs meMs%y
(2.2b)
g<g ieg () (2.2¢)
di<d;, jeD, (&) (2.2d)
fi<h. leL, () (2.2e)
Em<E, meM, (kn) (2.2f)

We note that this formulation is directly analogous to that of
SC-SS formulation (2.1); the key difference is that SC-SS uses the
spatial node set N, while the SC-ST formulation (2.2) uses the
space-time node set S. This observation is key to establish eco-
nomic properties for the SC under a dynamic setting. In the SC-ST
formulation, the market clearing constraints capture product bal-
ances at different spatial locations and at different times. Here, it
is clear that transport of product across space and time is driven
by the transport flows. The dual variable of the clearing constraint
is denoted 75 , € R; the optimal value for this variable is the clear-
ing price of product p at space-time node s = (n,t). This reveals
that clearing prices exhibit space-time behavior.

Egs. (2.2c) to (2.2f) enforce capacity constraints for each

stakeholder. The corresponding dual variables A;eRy, A;e
Ry, A;€R;, and AmeR, are highlighted here. Tominac and
Zavala (2020) demonstrate that non-zero lower bounds create arti-
ficial incentives that interfere with market clearing prices; as such,
we do not allow for non-zero lower bounds on allocations.

If we express the space-time nodes in disaggregated form s =
(n,t) and we use set time partitions, we can express the SC-ST
model in the equivalent form:

max Zte’f (ZjeDr a?dj - Zieg[ a;gg,- - Zleﬁr alffl

dets . (2.3a)
_ZmeMr O‘mgm)
st. > &+ Y, fit D vmpbm= DY dj+ > fi
i€Gntp lecin, meME, j€Dntp lecgs
+ Y Ympbm, (L EDP)ENXT xP, (Tuep)  (2.3b)
meM;‘_’{'_p
8i<8 i€ (A) (2.3¢)
dj<dj;, jeD. (&) (2.3d)
fish. lecL, () (2.3e)
Em<&En meM, (Am) (2.3f)

This formulation is more verbose but reveals the space-time na-
ture of the problem. Specifically, this reveals that the dynamic SC is
indeed a time sequence of SS-SCs that are interconnected via tem-
poral transport flows. Moreover, the total surplus is the summation
of the surplus at the different times.
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2.2.2. SC-ST Formulation (dual)
The SS-ST formulation can be expressed in the dual form:

minr[.x Zieg gixi + ZjeD aJX] + ZIEL' T[X[ + ZmeM ngm

(2.4a)
s.t. nn(i),t(i).p(i) — XI‘ < Ol‘lg, ie g (24b)
_ 0
Tn(iyep() TAj =@, j€D (2.4¢)
T, ().t (1).p() — Tny 1)ty (1. p(1) — A< a,f, lel (2.4d)
> YmpTnamy.cmy.pm = D, Vi pTamy.cm).pam)
pePy” pePgn

~Am <O, MeM (2.4e)

This formulation more clearly reveals the relationship between
the prices 7 and the capacity dual variables A (which can be in-
terpreted as marginal profits). The dual problem also immediately
reveals bounding properties for clearing prices. The dual objective
(2.4a) does not depend on market prices; it only depends on the
marginal profit variables A. Viewed through complementary slack-
ness, the dual formulation minimizes the combined total of stake-
holder profits.

Constraints (2.4b) to (2.4e) correspond to the primal allocations
(g.d, f,&) and define spatiotemporal prices associated with each
stakeholder class in terms of the clearing prices ¢ p. We de-
fine the price identities (rr;, 7w}, 771, Tm) in (2.5). The price iden-
tities (2.5a) to (2.5d) are interpreted as the supply price, de-
mand price, transportation price, and technology (or transforma-
tion) price. These identities demonstrate that supply and demand
prices are equivalent to the corresponding nodal product prices;
this means that suppliers and consumers pay (or are paid) accord-
ing to the product value at their space-time location. The trans-
port price is the difference between prices at different space-time
nodes. The technology price is a yield-weighted difference between
nodal prices of the outputs of a given technology and its inputs. A
solution of the dual problem provides these prices, and substitu-
tion of these identities into (2.4) condenses the dual to the form
shown in (2.7).

T 1= Tagiy e6iy.ptiys 1€ G (259
Tj 1= TnGeir.py J €D (20
T = T, (), (.00 — Ty (.t (D.p(): L € £ (250
Tm i= Y YmpTn(m).c(m).p(m)
pePy"
= D YmpTnm).comy.pamys M € M (2:5d)
pePs”

We note that the price identities in (2.5) imply additional rela-
tionships between the nodal prices and the stakeholder prices, as
shown in (2.6).

Zne/\/' ZteT ZpeP Tn.t.p Zl‘egn.t‘p 8= Zieg Ti&i (26&)

Zne/\/ ZteT Zpe?’ Tnt.p ZjeD,,_[_p dj = ZjeD ”jdj (Z-Gb)

nt.p

Zne/\/ ZteT Zpep nn.t.p(ZleC"“ fi— Zlecﬂ’_‘[_p fl) = Zleﬁ mfi
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(2.60)
Z Z Z Tnt.p Z Ym.pbm — Z Ym.p&m
neN teT peP meME, meMr,
= Z Tm&m (2.6d)
meM

Substitution of the identities into the dual program yields (2.7);
this formulation illustrates price bounding relationships governing
the coordination behavior. The dual constraint (2.7c¢) provides a
lower bound on consumer prices 7;, while the remaining dual con-
straints provide upper bounds on the stakeholder prices 7;, 7}, and
1, for suppliers, transport providers, and technology providers, re-
spectively. These bounds are important in understanding price be-
havior (e.g., space-time dynamics) that arise under coordination.

miny gAi+ > dikj+ > fih+ Y Ephm (2.7a)
A ieG jeD leL mem

st.mi—Ai<af, ieg (2.7b)
7T]'+Xj ZO(?, jeD (2.7¢)
m-M<al lec (2.7d)
Tm — Am < afn, meM (2.7e)

The primal and dual program relationships with individual
stakeholder objectives are reproduced in Fig. 4, which illustrates
how bidding information flows from individual stakeholders to the
coordinator. The coordinator determines product allocations and
market prices. We will see that market coordination aims to maxi-
mize the individual profits of all stakeholders and yields a compet-
itive equilibrium.

2.2.3. SC-ST Formulation (Lagrangian dual)
The Lagrangian dual formulation of SC-ST is:

max min £(g.d. f.&. 1. 2) =) —(; — af)gi + (& — &) ki
a.x &d.fE

ieg
+Z—(O[;~j - JTj)dj + (d] —aj)xj' + Z—(]Tl —Oé’f)f]
jep leL
+ (= O+ Y ~Tm—o)én+ En—E)hm  (28)

meM

Here, we denote the Lagrangian function as £(g, d, f,€,m, 1) and
the Lagrangian dual problem is stated in (2.8). This formulation
will reveal that objective function of the clearing problem aims
to maximize the stakeholder profits and provides additional price
bounding information. Specifically, we observe that all of the terms
of the form (x, —Xy)A, are identically zero (either x, —X, =0 or
Ay =0 by complementary slackness). We express the remaining
terms to obtain:

max min £(g, d, v, f, &, 7, 1) = Z —(m; — Ol,-g)gi + Z —(O‘}i - 7;)d;
7.x &d.f.& il jep

+3 - fi+ Y (Tt — tfy)m (29)

leL meM

We define the profit allocated to a stakeholder by the market as
the difference between its revenue and costs. We assume that
stakeholders bid their marginal value for a product (their oper-
ating costs); this assumption is consistent with the bidding out-
comes in a Vickrey-Clarke-Groves auction, in which bidders are
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max a?dj = Z odgi — Z a{fl = Z Oabim

) ieg leL meM
s.t. Z 9i + Z fit+ Z Ym,p€m =
i€0n,t,p LELLATe meMil,
Yo odi+ D fit D Ymaptm
i€Dnrp  lELE,  mEMEE,

(n,t,p) €N X T X P, (Tn1p) g
9i<gi» 1€G, (N) ':E
dy<dj; JED, (A) E
fi<Tu leL, () :
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ta ts

min Zgixi + Z ajxj ar Z?lxl + Z ngm

™A ieg jeD leL meM

st.m—MN<al,ieG, (g)
mi+ X =>af, j€D, (dj)
m-N<aof, leL, (fi)
T — Am Safn, m € M,

Clearing Dual

(ém)

ISO Market Clearing

af:@T lgi;ﬂ'i a?vajT ldjij
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Fig. 4. Primal and dual view of the SC-ST (market clearing) model. The coordinator aims to maximize all the player profits; maximizing each profit subject to the bidding
information it receives. The coordinator determines the allocations and market prices that solve the clearing problem.

incentivized to bid their marginal value (Vickrey, 1961; Clarke,
1971; Groves, 1973). We denote the vector of stakeholder profits
¢ = (8, ¢4, ¢S, p%), where individual stakeholder profits are:

@F = (mi—af)g. ie€g (2.10a)
¢f = (af —m))d;, jeD (2.10b)
¢l = m—-aDfi. lec (2.10¢)
Ok 1= (Tm — 05 Em, m e M (2.10d)

We note that consumer profits are defined differently from
those of service providers. Consumer profit is to be interpreted as
money saved; the difference between the consumer bid (consumer
willingness to pay) and the market price (that is paid) for the con-
sumer allocation. This difference in the formulation emerges from
the expectation that consumers will be revenue sources and ser-
vice providers will be revenue sinks. These identities are logically
consistent for those with negative bids (i.e, i€ G~ and j € D).

max min £(g, d, f, &, 7, 1)
7.x &d.f§

(2.11)

--(g#rgaeza g

ieG jep leL meM

Substitution of the profit identities into (2.9) results in (2.11), from
which we conclude that the Lagrangian dual maximizes the sum
of the stakeholder profits.

3. Economic properties of SC-ST model

In this section we establish economic properties of the SC;
these properties leverage the clearing interpretation of the SC-ST
formulation. We begin by establishing that coordination maximizes

stakeholder profits and that the stakeholder profits are all nonneg-
ative (regardless of the market outcome).

Theorem 1. The SC-ST formulation delivers prices w and allocations
(g.d, f,&) that maximize the collective stakeholder profit; moreover,
the profits are all nonnegative.

Proof. For an arbitrary set of prices w (and the associated A)
the allocations (g.d, f,&) = (0,0, 0, 0) result in a value of the La-
grangian function (2.11) of zero, i.e., £(0,0,0,0, 7, ) = 0. Solving
the Lagrangian problem produces an allocation (g*, d*, f*, £*) min-
imizing the Lagrangian with

L(g ., d*, f* &7, 1) <0.

Under fixed prices, the Lagrangian is the sum of player profits
and thus the allocation (g*, d*, f*, £*) results in profits that are no
worse than (0,0,0,0). It follows that the profits (¢, ¢¢, ¢S, %) are
nonnegative. Since this is true for arbitrary prices, it holds for the
optimal prices %, and profits are nonnegative for optimal alloca-
tions and prices. O

Theorem 1 provides the groundwork necessary to establish that
a solution of the SC-ST formulation is better than the solution of
the SC-QSS problem (in terms of total surplus). Here, we define the
optimal total surplus of SC-ST as ¢* and the optimal total surplus
of SC-QSS as ¢@.

Theorem 2. The optimal total surplus of SC-ST ¢* and of SC-QSS ¢
satisfy ¢* > @.

Proof. The SC-QSS problem can be obtained from SC-ST by impos-
ing the flow constraints f; =0 for | € Ar U As. As such, the feasi-
ble region of SC-QSS is contained in the that of SC-ST. The result
follows. O

This result is important because it highlights that temporal
transport of product can add flexibility to improve the total surplus.
We next establish that the solution of SC-ST gives a competitive
equilibrium.
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Theorem 3. A solution of SC-ST delivers prices w and allocations
(g.d, f, &) that represent a competitive equilibrium.

Proof. It is sufficient to show that the solution of SC-ST maximizes
profits subject to the clearing constraints. For arbitrary prices m
solving the Lagrangian (2.11) produces allocations (g*, d*, f*, &*)
maximizing stakeholder profits (independently). The market clear-
ing program is linear, and strong duality implies that the alloca-
tions (g*, d*, f*, &*) also satisfy the clearing constraints in the pri-
mal program (2.2). O

Coordination should yield consistent properties with respect to
product prices and revenue streams. Importantly, SC-ST must sat-
isfies a condition termed revenue adequacy, which states that rev-
enue streams collected from revenue sources is sufficient to remu-
nerate revenue sinks.

Theorem 4. A solution of SC-ST delivers clearing prices w and allo-
cations (g, d, f, &) that satisfy revenue adequacy:

andj—l—ng,-: andj+2njg,-

jeD+t ieG- jeD~ ieGt

+Y mfi+ ) Ambn

leL meM

(3.12)

Proof. Consider the market clearing constraint (2.2b). We obtain
all spatiotemporal revenue streams by multiplying the product al-
locations at each node and time point by their corresponding dual
prices 7, ¢ p, and adding over the node, time, and product dimen-
sions in (3.13)

DneN 2oteT 2pep n"-t-p<zfégn.t,p 8i+ Yieen, i+ Xmersn Vi p&im
= Xjenne, 4~ Zleﬁg'f;p fi— Zmerﬁ;{p Vm,p§m>
(3.13)
Applying the price identities in (2.6) results in:

Z,‘gg g + X T + 2 mem Tm€m _ngD njdj =0 (3.14)

This is identical to (3.12) (with suppliers and consumers grouped
by their bid signs). O

An important implication of revenue adequacy is that coordi-
nation does not introduce inefficiencies into the market. Moreover,
revenue adequacy implies that revenue streams may flow both for-
ward and backward through time. One way of interpreting this re-
sult is that the promise of future payment creates incentives to
move products to future time periods. Revenue adequacy is some-
times called cost recovery in electricity markets, and provides elec-
tricity buyers and sellers with theoretical guarantees of price be-
havior and confidence in the competitiveness of market outcomes.
The derived revenue adequacy result provides a compact and intu-
itive view on how economic value (revenue) is preserved in space-
time (economic value is conserved).

Theorem 5. The clearing prices (7, 7j, 71, Tm) corresponding to the
cleared players (G*, D*, £*, M*) satisfy the bounds m; zoc;.g, ieg
mi<ad, jeD, mzaf lecr and mp > ab, me M-~

Proof. Theorem 1 indicates that profits (¢3, ¢4, ¢, ¢5) are non-
negative. The allocations (g, d, f, &) are nonnegative by definition,
and strictly positive for cleared stakeholders. Together with the
profit identities (2.10) this implies that m; —ot;g >0, ieg* otf -

{zo,leﬁ*,ﬂm—aﬁ,zo,meM*. O

7;>0, jeD" -«

Theorems 1,3,4, and 5 were established for SC-SS (Sampat et al.,
2019); here, we prove that these properties hold in a dynamical
setting. Notably, this generalization is quite straightforward by us-

ing the concept of space-time transport flows.
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In addition to the bounds in Theorem 5 (emerging from the La-
grangian dual) we are able to establish the following price bound-
ing behavior from the dual program.

Theorem 6. The clearing prices (7, 7wj, 71, Tm) satisfy the bounds
mi-Aisaf ieG mi+hjzal jeD m-X <af ler, and
Tm — Am Saﬁ], me M.

Proof. The result follows directly from the dual representation of
SC-ST (2.7). O

The bounds defined in Theorem 6 are upper bounds on player
prices (lower for consumers); this means that we now have lower
(3.15) and upper (3.16) bounds on prices (vice versa for consumers).
These results are key in understanding space-time dynamic behav-
ior of prices.

(mi—of)gi=0,ieg (3.15a)
(! -m)d; =0, jeD (3.15b)
(m—a)fi=0.leL (3.15¢)
(7Tm — 5)Em 2 0. M e M (3.15d)
mi<af+hr,ieg (3.16a)
mizal—%j jeD (3.16b)
m<ol +h. leL (3.16¢)
TTm < 05 + Am, M e M (3.16d)

We observe that the lower bounds (3.15) are enforced subject to
the corresponding player receiving a positive allocation. Using the
supplier class to illustrate, we have g; > 0 = m; > af (from (3.15a)).
Strong duality provides that the A dual variables in (3.16) are pos-
itive only if the corresponding stakeholder is allocated its entire
capacity, mathematically: g; = §; <= A; > O for suppliers, with sim-
ilar logic for the other classes. The A are zero otherwise, e.g.,
g < & = A; = 0. So a supplier with an allocation 0 < g; < g; experi-
ences a market price equal to its bid due to the bounds aig <m <
aig. The interplay of strong duality and market prices has impor-
tant implications on how profits are allocated in coordinated mar-
kets. Substituting the price bounding results into the correspond-
ing profit definitions from (2.10) we observe A; > 0= ¢¢ < 1§;
and X; =0:>¢>§=0. Following similar logic, we obtain bounds
for the other classes A; > 0= ¢;’ <Adj, A >0= d)lf <A f;, and
o > 0= @ < Aménm.

Theorem 7. A solution of SC-ST delivers clearing prices w and alloca-
tions (g, d, f, &) such that a player can be allocated a positive profit
only if it is allocated its entire capacity.

Proof. We have that the market with players (G, D, £, M) and the
set of cleared players (G*, D*, £*, M*) (ie., G* :={ieG|g > 0}).
Define the sets (G*, D*, £*, M*) and (G°, D°, L°, M°) where G* :=
{ieGlgi=g;} and G° :={i € G|0 < g; < &;}, so we have G*\ G* = G°
(with the same for the other classes). Further, define the sets of
dry players (G®, D9, £O, M®) where G° := {i € G|g; = 0}, having
G\ G* = G©. We can express the price bounds from (3.15) as

g : *

> o
TT; = 95 leg
eR, ieg®
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<ol jeD*
7Tj J . 1o}

eR, JeD

f *

I >af, leL

eR, 1leL®
- zafn, me M*
MeR, meMO®

and from (3.16) as

) S(X}g—l-xi, iEQ'
=, iegPuge
- ZOl?-l—Xj, jGD'
J za;’, jeDOuUDe
. galf—f—X,, lere
! §oe,f, leLoucrLe
- <5 +Am meM*
™ < ab, me MO uUM°

Substitution of the price bounds into the profit definitions re-
sults in the profit bounds:

<Mhg. ieg
$i1<0, ieg®uge
>0, ieg
EX_,d_J, jED'
¢j <0, jeDOuUuDe
>0, jeD
<X[f[, leL
¢4 <0, leLOucre
>0, lel
< AmEm, meM*
®m{ <0, me M® U M°
>0, me M

The profit bounds identified exhaust all possible player outcomes.
Only players in the sets (G*,D*, £, M*) have a positive profit
bound, completing the proof. O

Theorem 7 informs the distribution of profit to market stake-
holders. Though the clearing problem can possess degeneracy (so-
lution multiplicity), it is limited to a specific subset of stakehold-
ers in any particular outcome. Given our analysis, it is necessary to
confirm that there will be at least one stakeholder that is cleared
in a non-dry market with a positive profit bound whom can be
allocated profit by the ISO.

Theorem 8. A solution of SC-ST delivers clearing prices mw and allo-
cations (g.d, f, &) such that at least one market player has a strictly
positive bound on its profit allocation in a non-dry market.

Proof. Proof is by contradiction and relies on the extreme
point properties of linear programming solutions. Assume
we have a market with an optimal set of clear transactions
(G*,D*, £*, M*) all satisfying (g”lf,d;f,fl*,%)<(§i,dj,f,,.§m).
meaning (G*,D*, £*, M*) = @. The objective value is z*=
Zje’D a;jdj - Zieg algg;k - Zleﬁ alffl* - Zmeﬂ/l aiigr);l Since  none
of the allocation bounds (g.d;. fj.&n) are active, the ISO
can increase its allocations by amounts (Ag;, Adj, Afj, Aépm)
subject to the market clearing constraints until one or
more of the allocations reaches its bound. The solution
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(g + Ag;, d;f + Adjff + Afi, &5+ Aém) produces an objective
value z* + Az, and if z* is optimal, then z* + Az > z*, which is a
contradiction. Therefore, in any non-dry market, there will be at
least one stakeholder in the sets (G*, D*, £*, M*) having a positive
upper bounds on its allocatable profits. O

We next examine space-time price dynamics; here, we are in-
terested in the concept of space-time price volatility (variability)
and how we can design markets to mitigate price volatility for
market stakeholders. Price volatility may manifest in both the spa-
tial and temporal dimensions, with spatial volatility manifesting as
price variation between spatial nodes n € A" and temporal volatility
between temporal nodes t € 7. Transport providers play a key role
in driving and controlling space-time volatility, as we next observe.

Theorem 9. Transport providers can drive space-time price volatility
to zero.

Proof. The transport price in (2.5¢) is subject to bounds defined by
the dual program (2.7) and the Lagrangian dual (2.11), from which
we derive the bounds

oe,fgn,ga,f—i—xl, leL| fi>0

for transport providers with positive allocations. If a transport
provider does not receive a profit, either because its allocation f; is
less than its transport capacity f, or due to degeneracy, then these
bounds become:

oclffmgalf, leL| fi>0

implying 7n ¢, p = 7y v , for nodes (n,n') e N and (¢,t') € T when
(xlf =0. O

Transport bids a,f lower than local supply bids (intuitively)
allow access to product sources at other nodes or time points
with favorable prices. Perhaps the most important interpretation
of these properties is that the spatial and temporal dimensions
of the clearing model are fundamentally the same. This indicates,
for instance, that storage systems and geographical transport sys-
tems play a key role in determining price dynamics. Two simple
example problems that illustrate these theoretical properties are
included as supplementary material. The first demonstrates theo-
retical properties related to profit allocations and prices, and how
those theorems may be interpreted in practice. The second focuses
on the behavior of temporal transportation. We also comment on
how theoretical properties are observed in the context of our case
study.

4. Case study

We illustrate our theoretical developments by considering the
waste-to-energy case study described by Hu et al. (2018). Here,
we analyze the potential creation of a coordinated livestock waste
(manure) market (a bioeconomy) in the State of Wisconsin that can
be used to generate valuable energy products (e.g., biogas, elec-
tricity). This problem can be cast as a supply chain problem and
can be interpreted as a coordinated market in which suppliers of
waste (dairy farmers) seek to satisfy demands of valuable prod-
ucts derived from waste (biogas and electricity). Specifically, in this
market we would use waste processing technologies (comprised of
anaerobic digestion and power generators) to produce biogas and
electricity from manure. Moreover, in this market we would have
geographical transport of waste and temporal transport via waste
storage. This market can also help mitigate myriad environmental
issues associated with manure management; specifically, the prac-
tice of spreading manure on crop fields (as a fertilizer) leads to un-
controlled degradation of organic matter contained in manure and
leads to methane, nutrient, and pathogen emissions (Sharara et al.,
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Fig. 5. Electricity demand curve scaled to Wisconsin annual consumption levels. The curve represents one week (168 hours) of demand.
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Fig. 6. Electricity supply available from grid producers. Three producers are modeled nonlinear generation curves, representing different conventional electricity producers.

2017). Unfortunately, manure processing technologies are expen-
sive and it is desirable to ensure that biogas and electricity gen-
erate sufficient revenue.

Here, we reexamine this problem, using the same data as
Hu et al. (2018) (including the disposition of farms, biogas tech-
nologies, storage capacities, and technology costs) and identify new
revenue opportunities for manure processing by exploiting the dy-
namics of electricity prices. We aim to show that manure pro-
cessing systems can respond to dynamic price incentives in the
same way that modern natural gas power plants can (because
they are able to rapidly commit energy to the grid). We esti-
mate dynamic electricity demand across the State of Wisconsin
using the demand curve from Zavala and Anitescu (2011) scaled
to the Wisconsin statewide annual electricity consumption rate of
68.8 TWh per year (Lippert, 2015), illustrated in Fig. 5. We also
fit the generation curves of Zavala and Anitescu (2011) (repre-
senting three distinct conventional grid power suppliers) to re-
flect reasonable values of Wisconsin off and on-peak electricity
prices of 0.05 and 0.18 USD/kWh, respectively (based on 2019 real-
time market price data from the Midcontinent Independent Sys-
tem Operator (MISO) (2021)) (illustrated in Fig. 6); i.e., the curves
are fit to yield these prices at the corresponding on-peak and
off-peak output levels. The three supply curves are fit using sim-

10

ple quadratic equations of the form y = B x> where the parame-
ters g are [1.66x1072,8.31x105,415x107>]. We retain the three
separate curves from Zavala and Anitescu (2011) as a representa-
tion of different generator types, with varying costs, but discretize
them to intervals of 100 MW of output. Each of these output lev-
els is treated as a separate supplier; this illustrates how the pro-
posed modeling framework can capture nonlinear bidding costs.
We model one week of dynamic behavior (168 h long periods) us-
ing this data.

The dairy infrastructure comprises 245 farms (concentrated an-
imal feeding operations, or CAFOs) of which 120 are equipped with
waste processing and biogas systems. Our problem setup corre-
sponds to the biogas gas study of Hu et al. (2018), and that pa-
per provides the complete data for farms and technology speci-
fications. We assume a single collection point for the electricity
generated from biogas, centered on the City of Madison; since the
transportation cost of electricity is contextually small (estimated
at 7.5x10-% USD/MWh-km based on average transmission losses of
5% per 1000 km reported by Vaillancourt (2014)) this assumption
should not have a significant impact on the qualitative nature of
our results. The disposition of CAFOs and processing systems are
visualized in Fig. 7, which showcases the average hourly produc-
tion rates of dairy waste throughout the state.
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Fig. 7. Hourly dairy waste production rate at CAFOs across Wisconsin (colorbar). Biogas infrastructure and farm distribution are shown by filled circles. CAFO locations are
indicated by black circles, CAFOs with storage and biogas processing equipment have a gold center. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Our spatiotemporal model has 168 time periods (each one hour
long) with 246 spatial nodes (245 CAFOs and the electricity col-
lection hub). Arcs are constructed connecting all CAFOs to each
CAFO with processing facilities on site (i.e., the 125 CAFOs with-
out processing systems are each connected to the 120 equipped
with them) and these 120 CAFOs have arcs connecting them to
the collection hub at each time point. We assume that these trans-
portation flows occur within a single time period. Temporal flows
are interpreted as waste storage; these are implemented as arcs
connecting CAFOs over the temporal dimension. To mitigate model
size, arcs are constructed across single time points only (i.e., from
hour 1 to hour 2, and from 2 to 3, but not from 1 to 3 directly)
to model the dynamics of waste storage. This setup also illustrates
how we can use our formulation to model various physical phe-
nomena.

In addition to our base model, we include three variations that
help illustrate the theoretical properties associated with the model
itself, and that provide some useful insights into the base case so-
lution. The cases are the base case, a case with no waste storage
(as though electricity can only be produced in the same period
that waste is supplied) a case with unlimited storage (storage be-
ing both free of cost and effectively unlimited in capacity) and fi-
nally a case study in which the base case waste supply is tripled.

We implemented and solve all problems in the Julia program-
ming language (version 1.5.3) (Bezanson et al., 2017) and the JuMP
modeling language (version 25.1) (Dunning et al., 2017) with the
Gurboi solver (version 9.1.1) (Gurobi Optimization, 2021). We char-
acterize the model solution using market prices of electricity and
waste, the amount of waste processed to produce biogas, and il-
lustrate some of the dynamics with specific instances of variable
values. Overall, our model suggests that all of the dairy waste pro-
duced at CAFOs in Wisconsin can be profitably processed to pro-
duce biogas and electricity by taking advantage of price fluctua-
tions. Due to the low yield of electricity from waste, the electric-
ity contributed this way is small on the state scale (WI consumes
about 17,100 MWh each week, with our statewide biogas network

1

averaging about a 102 MW power rating) the base case total en-
ergy supply, including both the conventional grid and contributions
from biogas, is illustrated in Fig. 8.

4.1. Base results

Base electricity generation rates at various time points (cho-
sen to illustrate temporal variation) are shown in Fig. 9. Electric-
ity generation is concentrated at two major CAFOs, with marginal
production distributed throughout the state (the figures are pre-
sented in log scale to highlight smaller contributions). The disposi-
tion of electricity generation throughout the state is influenced by
waste availability, transport costs, and local technology availabil-
ity. We replicate technology placement from Hu et al. (2018), but
observe that a different distribution of technologies may be opti-
mal in a dynamic setting. Nonetheless, we observe temporal vari-
ation, with electricity generation at CAFOs following peak demand
times and none during off-peak hours when prices are less favor-
able. The pattern is most prominent between hour 5 and hour 19,
which capture the low and high extents of electricity generation
rates throughout the state.

Base case hourly waste storage levels are shown in Fig. 10 and
demonstrate that coupling to the state electrical grid creates an in-
centive to store and use waste for electricity production. The stor-
age dynamics are cyclic; we observe that waste storage units begin
empty, gradually fill (t=5) to capacity throughout the state (t=11)
and then empty (t=19) as biogas is used to produce electricity. The
cycle repeats over subsequent days. Storage tanks remain full for
roughly fourteen hours each day in this case, and empty for ten.
This pattern is indicative of biogas accumulation and processing
patterns.

4.2. Comparative case studies

We now present results from all case studies for comparison. To
begin, we present the revenue streams from each of our four case
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Fig. 8. Total energy supply to the Wisconsin grid over a one week period. Contributions from conventional suppliers and the aggregate production at CAFOs are shown. The

grand total replicates the demand curve.
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Fig. 9. Electricity produced from biogas (MWh). Peak hourly generation exceeds 300 MWh, primarily focused on two major CAFOs. The graph on the right present log(MWh)

values to highlight smaller levels of generation on the order of 2 - 5 MWh.
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Fig. 10. Distribution of hourly waste storage at select time points. Storage units fill to capacity and empty cyclically over the horizon. Coupling with the electricity grid

creates temporally varying incentives for waste storage.

studies in Table 1. Here, we present the total revenue spent (neg-
ative) or collected (positive) from the market over all stakehold-
ers of a given class. We include the grand total values (all zero)
because these demonstrate Theorem 4 (revenue adequacy), which
guarantees that revenue balances in the market. Importantly, this
also demonstrates Theorem 3 (competitiveness) because we ob-
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serve that all revenues paid into the market are collected by other
market players; i.e., ISO coordination does not incur costs, and
does not introduce inefficiencies, it simply accelerates the clear-
ing procedure. Specifically, consumer revenue represents statewide
spending on electricity. Supplier revenue includes payments both
to conventional electricity producers and to CAFOs. Payments to
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Revenue streams for supply chain consumers, suppliers, transport providers (separated by spatial and
temporal dimensions) technologies, and grand total values. These demonstrate revenue adequacy in the

market clearing procedure.

Revenue stream Base case No storage Unlimited storage  Triple waste
Consumer total -169,019,002 -169,554,946 -167,596,601 -160,798,068
Supplier total 168,833,665 169,508,659 167,550,314 160,515,484
Transport (temporal) total 137,214 0 0 143,522
Transport (spatial) total 47,807 45,971 45,971 138,114
Technologies total 316 316 316 948
Grand Total 0 0 0 0
180
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Fig. 11. Electricity prices resulting under (solid black) base case conditions, (dotted black) no storage, (red) with unlimited storage, and (blue) with triple the amount of
waste available. Biogas systems are able to take advantage of demand peaks to provide electricity at lower price during peak hours, which reduces peak pricing, and creates
value for dairy farmers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

transportation and technology providers (these also being associ-
ated with CAFOs) are listed separately.

The 245 CAFOs (with 120 technology-enabled sites) together
contribute to the base case generation profile in Fig. 9, which im-
pacts the market price of electricity as shown in Fig. 11, which
shows the price of electricity over the time entire horizon at the
collection node. Electricity prices resulting in our base case setting
(solid black line) are lower than those emerging in the no stor-
age case (i.e., when electricity is available from conventional grid
suppliers only) (dotted line). Interestingly, electricity prices in the
no storage case follow the dynamics of the demand curve (Fig. 5)
replicating its shape. Notably, electricity prices in the base case are
lower at peak times, illustrating how the coordination system takes
advantage of peak electricity prices by concentrating biogas gen-
eration during peak hours, electricity prices are lower than they
would be with only the conventional electricity producers. The
base and no storage cases specifically demonstrate Theorem 2; we
observe that waste storage allows CAFOs to take advantage of real-
time electricity price dynamics to make money and reduce elec-
tricity prices for consumers. The unlimited storage and triple waste
cases also result in lower electricity prices; notably tripling the
amount of waste available reduces prices at all time points, while
removing storage limits reduces peak prices only. This result is im-
portant; increasing the amount of waste allows CAFOs to profit in
the electricity market, but it is storage that allows CAFOs to take
advantage of peak hour pricing.

The greatest decrease in base case price observed is 1.26 cents
per kWh (12.6 USD/MWh) representing a significant peak savings,
noting that our peak price is around 18 cents per kWh. Over the
course of the 168 h horizon, the average difference between the
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electricity price with and without the biogas contribution is only
0.34 cents per kWh, demonstrating that the effects are concen-
trated at the peaks. We suggest that biogas represents an opportu-
nity to reduce electricity prices during peak hours, creating value
for consumers and for dairy farmers who can realize the inherent
value in waste. Specifically, we observe that the value of waste is
linked to storage. Total waste storage state-wide is illustrated in
Fig. 12, from which we observe that storage is used to its full ex-
tent in both the base and triple cases, and in the unlimited storage
case we observe significantly greater usage of waste storage, sug-
gesting that the ability to take advantage of peak prices is limited
by existing storage capacity. This is reflected in Fig. 11.

In Fig. 13 (which shows the price of waste at a particular CAFO
node) we observe that waste prices are driven by dynamics of elec-
tricity prices and by waste storage. The peak base case waste price
is 13.15 USD/tonne, illustrating how market coordination captures
the inherent value of this resource through its potential in the
electricity market. In the base case, we observe less waste price
variation than in the no storage case, while the triple waste case
results in lower waste prices overall than in the base case. The un-
limited storage case demonstrates the extreme mitigation of waste
price over time, with all the induced electricity price dynamics ef-
fectively balanced by storage dynamics resulting in a stable value
of waste around 12 USD/tonne. This demonstrates Theorem 9, hav-
ing eliminated the price volatility in waste prices, and mitigated
volatility in electricity prices. There is spatial variation in waste
prices as well, though it is on a smaller scale than the temporal
variation. Fig. 14 illustrates these scales for the base case; tempo-
ral price variation (more than 8.00 USD/tonne) dominates spatial
variation (approximately 0.30 USD/tonne).
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Fig. 12. State-wide waste storage profiles in each of our four case studies. Waste storage is coupled to waste and electricity prices.
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Fig. 13. Waste prices at a particular CAFO are induced the dynamics of electricity prices at the collection node, which translates into a peak value of 13.15 USD per tonne in
the base case. With unlimited storage, the price of waste reaches a stable value.
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Fig. 14. Base case waste price dynamics show significantly more temporal variation than spatial, with waste value heavily influenced by electricity prices. Spatial variation is
influenced by transportation costs. Due to the difference in scale, two separate color bars are used for spatial and temporal price variation. The primary color bar indicates
temporal waste prices, while a gray scale overlay captures temporal variation at each time point. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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Fig. 15. Combined electricity generation over 245 WI CAFOs. Unlimited storage allows the coordination system to take advantage of real time price peaking, compared with

the base case where there is some generation during off-peak hours.

We can interpret price and storage dynamics through electric-
ity generation profiles. In Fig. 15 we illustrate the combined gen-
eration of all 245 CAFOs over the 168 h horizon. Notably, the base
case has generation concentrated on the on-peak hours, but due
to the storage limitations associated with this case, we also ob-
serve generation in off-peak hours. Tripling the amount of waste
available does not change the qualitative nature of this result; the
curves are similar. In contrast, the no storage case has a constant
generation rate of about 100 MWh. In the unlimited storage case,
we observe no generation during off-peak hours, with generation
concentrated on peak prices. This provides some insight into the
limiting nature of storage in this problem, and suggests that the
flexibility that storage provides allows farmers to take advantage
of the highest prices.

4.3. Profit implications for dairy farmers

In our base result, dairy farms are able to derive (in aggregate)
2,095,953 USD in profit over the course of the 168 h horizon (ex-
trapolating to an entire year, this could reach 100 million USD).
This profit is a result of targeting peak prices in the electricity mar-
ket through careful planning of waste processing and biogas gen-
eration. We have observed how coordination uses these systems,
and how limitations in storage influence our results. Averaging our
profit value over 245 CAFOs suggests profit on the order of 8555
USD per CAFO per week, or about 444,855 USD per CAFO per year
from participating in the electricity market. Note that we have ig-
nored the disposition of electricity generation in this estimate in
favor of an average per-CAFO value.

In our triple-waste case study we observe that all waste is con-
sumed, and peak electricity prices are reduced even further than
in the base case. Fig. 11 illustrates this in contrast with the base
case and the modified storage cases. From this tripled case, we in-
terpret that there appears to be significant room for growth in the
Wisconsin dairy industry. Coupling dairy waste processing to the
electrical grid has the potential to generate revenue streams that
incentivize profitable waste processing for dairy farmers. The di-
gestate resulting from this process presents a subsequent opportu-
nity, with prospective solutions (like shipping the digestate to nu-
trient deficient locations in other states as a fertilizer, or process-
ing it further to produce fertilizer products like struvite) not fac-
ing the full cost of processing due to the revenue stream created
by electricity market participation. The next logical step is cou-
pling digestion to a fertilizer industry that addresses phosphorus
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issues (because the electricity grid coupling does nothing to solve
the phosphorous issue on its own; it is the revenue stream that is
important in this context). Coupling to the electricity grid lowers
the cost barriers for market entry in other areas.

It is also important to note that there are other barriers to dairy
waste processing that we have not included in our case studies.
There are inefficiencies associated with biogas storage (compres-
sion and equipment costs) and farms typically use some fraction
of the electricity they generate as a part of anaerobic digester op-
eration through combined heat and power (CHP) systems. There
is also competition from biogas RINs. These practices reduce the
profitability of electricity sales, with the value of the power sold
to grid functionally amortized over a greater amount of waste; i.e.,
the inefficiencies reduce the value of waste. These factors are dif-
ficult to address and will be studied in future work; here, the pro-
posed market framework can provide a valuable tool in doing so.

5. Conclusions

We have presented a graph-based dynamic coordinated market
framework for multiproduct SC optimization, generalizing coordi-
nation to multi-product supply chains in a dynamic setting and
demonstrating that spatiotemporal transportation induces tempo-
ral dynamics in product prices. This unified spatiotemporal frame-
work captures the inherent value of products stemming from inter-
actions between market stakeholders: suppliers, consumers, tech-
nology providers, and transportation providers. In particular, our
framework captures product transformation, demonstrating that
technology prices capture the relative values of inputs and outputs,
alongside and in concert with spatiotemporal product transporta-
tion. Primal, dual, and Lagrangian formulations are documented,
and are used to establish market pricing properties, which pro-
vide insight into ISO behavior. Future developments in the mar-
ket framework will reconcile specific physical phenomena that are
desirable in supply chain models, but seem incompatible with the
economic formulation.

We illustrate the utility of this model by returning to a previ-
ously published problem based on biogas in the Wisconsin dairy
industry, and show that by capturing the daily variation of elec-
tricity prices, there is a window of opportunity in which generat-
ing electricity from dairy biogas is profitable. Moreover, this win-
dow is wide enough to accommodate substantially larger amounts
of dairy biogas. Our results suggest that dairy farmers could profit
(on average) at a rate on the order of 445,000 USD annually, an
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outcome that motivates techno-economic analysis of the proposed
system, accounting for a variety of complicating unmodeled fac-
tors, to determine the potential realizable value of this biogas.

In closing, while we have generalized coordination to multi-
product SCs, there are limitations that arise in the model (e.g., re-
cycle loops must be internal to technologies; we cannot represent
them Tominac and Zavala (2020)) that restrict our use to large-
scale planning problems rather than short-term economic-based
scheduling. In future work, we will explore how uncertainty influ-
ences our coordination framework, and how we use coordination
in sustainability applications (e.g., understanding emissions policy).
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