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In this work we present a generalization of market coordination to multi-product supply chains and use 

this framework to analyze their spatio-temporal economic properties. We interpret a supply chain as 

a market consisting of independent stakeholders (suppliers, consumers, transportation, and technology 

providers) who bid into a coordination system that is managed and cleared by an independent entity 

to obtain product allocations and prices. The proposed model provides a general graph representation 

of spatio-temporal product transport that helps capture geographical transport, time delays, and storage 

(temporal transport) in a unified and compact manner. This representation allows us to establish funda- 

mental economic properties for the supply chain (revenue adequacy, cost recovery, and competitiveness) 

and to establish bounds for space-time prices. To illustrate these concepts, we consider a case study in 

which organic waste is used for producing biogas and electricity. Our market model shows that incen- 

tives for waste storage emerge from electricity demand dynamics and illustrates how space-time price 

dynamics for waste and derived products emerge from geographical transport and storage. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Multi-product supply chains (SCs) arise in a wide range of in- 

ustrial applications such as energy infrastructures (e.g., biofu- 

ls from biomass and coupled electrical power-natural gas sys- 

ems) ( Mitridati et al., 2020; Dueñas et al., 2015 ), waste in- 

rastructures (e.g., plastic, livestock, food), and chemical man- 

facturing (e.g., pharma, petrochemical, semiconductors) ( Lima 

t al., 2016; Barbosa-Póvoa, 2014 ). A key defining aspect of the 

ulti-product SCs that are of interest to chemical engineers is 

he presence of product transformation (i.e., products are pro- 

essed/combined/transformed to obtain other derived products) 

nd critically, this feature is not represented in existing coordi- 

ation models. Multi-product SCs typically involve a wide range 

f stakeholders such as suppliers and consumers of products, 

roviders of transport, processing, and storage (inventory) services, 

nd other external actors (e.g., policy). This creates a transaction 

etwork that exhibits complex interconnectivity across products, 

takeholders, spatial (geographical) locations, and time (see Fig. 1 ); 

oreover, stakeholders are often competitive, strategic, and profit- 

aximizing entities ( Garcia and You, 2015; Papageorgiou, 2009 ). As 

uch, understanding the emergent behavior of product flows and 
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f their inherent monetary values (prices) in multi-product SCs is 

echnically challenging. 

It has been recently observed that SCs exhibit parallels with co- 

rdinated markets Sampat et al. (2019) ; in such markets, stake- 

olders bid into a coordination system (a coordinator) that de- 

ermines stakeholder allocations and product prices by solving a 

learing problem (a mathematical optimization problem). A coordi- 

ated market interpretation of SCs provides a useful view that can 

elp understand their emergent behavior and economic properties. 

or instance, one can show that an optimal solution of the SC de- 

ivers competitive equilibria, cost recovery (no stakeholder incurs 

nancial loss), revenue adequacy (payments collected from con- 

umers balances revenue of service providers), and price bound- 

dness (clearing prices are compatible with bids). Moreover, a co- 

rdinated market setting can offer a potential avenue to manage 

ctual SC operations. For instance, coordinated markets have been 

uccessfully deployed in electrical power systems ( Blumstein et al., 

0 02; Hogan, 20 02; Bohn et al., 1984 ); in this context, coordina- 

ion is key to ensure that consumers have access to a continual 

upply of electricity (complicated by capacity limitations of power 

enerators and of the transmission network) and is key to en- 

ure transparent prices that reveal the inherent value of electric- 

ty. It is of note that electricity SCs are coordinated with respect to 

ne product - electricity - and do not feature product transforma- 

ion. Moreover, electricity transmission has complex physics and 

ransportation that is also typically left out of electricity coordi- 

ation systems. Coordination has been applied to other products; 

https://doi.org/10.1016/j.compchemeng.2022.107666
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Fig. 1. A supply chain topology can be represented as a graph that connects stakeholders in space and time. Suppliers are visualized in red, technology providers in yellow, 

and consumers in blue. The arcs represent product transport across spatial and temporal dimensions. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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ratt et al. (1996) use coordinated markets to handle multiple dairy 

roducts (e.g., milk, cheese, yoghurt) over a SC that spans the en- 

ire United States. 

Alternative multi-product SC models and associated eco- 

omic interpretations have been proposed in the literature. 

okhlesian and Zegordi (2014) developed a bilevel framework 

or multi-product SCs which determines coordinating prices 

nd inventory in competitive settings. Saghaeeian and Rameza- 

ian (2018) present a Stackelberg framework for competitive multi- 

roduct markets; these market models aim to capture realistic, 

trategic behavior but are computationally challenging to handle. 

arly work in developing coordinated market models for multi- 

roduct SCs was presented by Thomas and Griffin (1996) . Recent 

ork by Sampat et al. (2017, 2019) , Tominac and Zavala (2020) , 

nd Tominac et al. (2021) developed general coordination schemes 

or handling steady-state, multi-product SCs. This work general- 

zes coordination to multi-product supply chains in a dynamic set- 

ing, and shows that desirable economic properties of coordinated 

arkets can be obtained in a general setting that involves dif- 

erent types of stakeholders and product transformations. More- 

ver, large instances of these models can be handled using state- 

f-the-art optimization solvers. In this work, we extend this SC 

odeling setting by capturing dynamic behavior; this allows us to 

ncorporate product storage and transportation delays. We use a 

raph-theoretic representation that allows us to capture geograph- 

cal transport, storage, and delays in a unified manner; specifically, 

e show that these effects can be modeled using space-time flows 

p

2 
hat transport product cross space and time. This effectively cre- 

tes a space-time graph representation of the SC, similar in spirit 

o that used in the network flow literature ( Ahuja et al., 1988 ). We

how that the proposed graph-theoretic representation allows us 

o establish fundamental economic properties for the SC model in 

 compact and intuitive manner. 

. Supply chain model 

The proposed SC model is an extension of the steady-state (SS) 

odel proposed in ( Tominac and Zavala, 2020 ) to a dynamical set- 

ing. Central to our development is the generalization of the con- 

ept of product transport flows from a spatial (geographical) set- 

ing to a space-time setting. Space-time flows will allow us to cap- 

ure a wide range of features (e.g., delays and storage) under a 

nified framework, will reveal mechanisms that can be used to 

emunerate stakeholders, and will be used to establish bounding 

roperties for space-time prices. The concept of space-time flows 

as been recently proposed in the context of electrical power mar- 

ets (single-product markets) by Zhang and Zavala (2021) ; here, 

e generalize this concept to a multi-product setting. 

To highlight the relevance and properties of space-time flows, 

e will construct our SC model by first introducing a model un- 

er a steady-state setting that only captures spatial transport (we 

efer to this as the SC-SS model). We will then extend this model 

y considering a dynamical setting; this model can be seen as a se- 

uence of time snapshots of a steady-state SC that allows for trans- 

ort of product across time (we refer to this as the SC-ST model). 
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Fig. 2. Geographical visualization of a supply chain. Spatial transport flows (at a given time) are illustrated by solid arrows on the maps (representing individual times) and 

transport flows traversing time dimension are indicated with dashed lines. 

Fig. 3. Schematic of a space-time node s = (n, t) in the SC graph G (S, A ) . Suppliers ( i ∈ G) consumers ( j ∈ D) and technology providers ( m ∈ M ) act on products at a 

particular node; transportation providers ( l ∈ L ) move products across nodes. All the stakeholders influence product prices πn,t,p at the space-time node. 
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e will see that, by using a graph-theoretical representation, one 

an represent SC-ST in a form that is directly analogous to SC-SS; 

his will be key to generalizing economic properties from steady- 

tate to a dynamical setting. The space-time SC setting under study 

s illustrated in Fig. 2 . 

.1. Supply chain model (steady-state) 

The steady-state SC setting contains a set of suppliers G, con- 
umers D, geographical (spatial) transport providers L , and prod- 

ct transformation (or technology) providers M . The SC model has 

n associated graph G (N , A ) , where N is a set of spatial nodes and

 is the set of arcs (edges, links) connecting such spatial nodes via 

roduct transport. Consumers, suppliers, and technology providers 

re attached to a given spatial node, while transportation providers 

re attached to a given arc. 

Each supplier i ∈ G has an associated supply flow variable g i ∈ 

 + , a supply capacity parameter g i ∈ R + (representing the maxi- 

um flow that it can deliver), and a bid cost parameter αg 
i 

∈ R .

e use n (i ) ∈ N and p(i ) ∈ P to denote the node at which sup-

lier is located and the product that it supplies, respectively. If the 

upply bid cost is positive, the supplier expects payment for prod- 

ct p(i ) delivered and, when it is negative, the supplier offers a 

ayment to have p(i ) be taken away. This indicates that suppli- 

rs may act as either revenue sources or revenue sinks (depend- 

ng on the sign of their bid); as such, we categorize suppliers us- 

ng the subsets G + ⊆ G of suppliers with G + := { i ∈ G| αg 
i 

≥ 0 } and
3 
 
− ⊆ G of suppliers with αg 

i 
< 0 . Negative supplier bids are com- 

on in waste markets (the supplier of waste desires to get rid of 

t and is willing to pay a tipping fee). We also categorize suppliers 

y location and product by defining the subsets G n,p ⊆ G (where 

 n,p := { i | n (i ) = n, p(i ) = p} ). 
Each consumer j ∈ D has a demand flow variable d j ∈ R + , a

emand capacity parameter d j ∈ R + (indicating the maximum de- 

and flow that it can receive), and a purchase bid cost parameter 
d 
j 

∈ R . We use n ( j) ∈ N and p( j) ∈ P to indicate the consumer lo-

ation and the product requested. A positive bid cost indicates that 

 consumer offers payment in exchange for a product while a neg- 

tive bid indicates that a consumer demands payment on receiv- 

ng a product. As with suppliers, consumers in a market may act 

s either revenue sources or sinks. We define the subsets D 
+ ⊆ D

f consumers with bids αd 
j 

≥ 0 and D 
− ⊆ D with αd 

j 
< 0 . Negative 

onsumer bids are also common in waste markets (a landfill can 

ct as a consumer that requests a tipping fee to take waste). We 

lso categorize consumers by location and product by defining the 

ubsets D n,p ⊆ D where D n,p := { j | n ( j ) = n, p( j ) = p} . 
Each transport provider l ∈ L has a transport flow variable f l ∈ 

 + , capacity parameter f l ∈ R + , and bid parameter α f 

l 
∈ R + (repre- 

enting the cost of the transport service). Each transport provider 

oves product from a base (source) node n b (l) ∈ N to a receiving

destination) node n r (l) ∈ N via the arc a := (n b , n r ) ∈ A and we

se p(l) ∈ P to denote the product that is transported. We cate- 

orize transport providers using the subsets L 
in 
n,p ⊆ L and L 

out 
n,p ⊆ L , 
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hich correspond to incoming and outgoing providers for a given 

ode n and for a given product p; here, L 
in 
n,p := { l | n r (l ) = n, p(l ) =

p} and L 
out 
n,p := { l | n b (l ) = n, p(l ) = p} . We use the notation n b (a ) ∈

 and n r (a ) ∈ N to denote the base and receiving nodes of arc a ,

espectively. In graph-theoretical terminology, n b (a ) and n r (a ) are 

he support nodes of arc a . 

Each technology provider m ∈ M transforms a set of input 

roducts p ∈ P 
con 
m 

⊂ P into a set of output products p ∈ P 

gen 
m 

⊂ P .

he provider thus acts simultaneously as a consumer and supplier 

f products and introduces interconnectivity between products. 

ach technology has a flow processing variable ξm ∈ R + represent- 
ng either consumption or generation flow in terms of a reference 

roduct p̄ m ∈ P 
con 
m 

. Product transformations are defined by a set 

f yield coefficient parameters γm,p ∈ R + , p ∈ {P 
con 
m 

, P 

gen 
m 

} with re-

pect to the reference product p̄ m such that γm, ̄p = 1 . Each technol- 

gy has an processing capacity ξm 
∈ R + , and a bid α

ξ
m 

∈ R + (tech-
ology service cost) in terms of the reference product p̄ (m ) . We 

lassify these stakeholders by the types of products that they con- 

ume or generate by using the subsets M 
con 
n,p ⊆ M and M 

gen 
n,p ⊆ M 

here M 
con 
n,p := { m | n (m ) = n, p(m ) ∈ P 

con 
m 

} and M 

gen 
n,p := { m | n (m ) =

, p(m ) ∈ P 

gen 
m 

} . Negative bids for transport and technology ser-
ices are not considered, as these do not have practical interpre- 

ation; however, the formulation can be easily extended to allow 

or this. 

We interpret the SC model as a market clearing formulation; 

his interpretation reveals economic properties that can help ex- 

lain behavior (e.g., product and revenue flows across the system). 

o establish this connection, we consider that stakeholders submit 

idding information that consists of costs (αg , αd , α f , αξ ) and ca- 

acities ( g , d , f , ξ ) . An independent entity, called an independent 

ystem operator (ISO), clears the market by solving the optimiza- 

ion problem (2.1) (we call this the SC-SS model). In a market con- 

ext, this formulation determines product allocations for the stake- 

olders and determines the inherent economic value for such allo- 

ations (prices). The formulation also implicitly provides a mecha- 

ism to remunerate stakeholders. 

The objective function (2.1a) of the clearing formulation aims to 

nd allocations (g, d, f, ξ ) that maximize the demand served and 

hat minimize the service costs. This objective naturally makes al- 

ocations to the highest-bidding consumers and the lowest-bidding 

uppliers, transport providers, and technology providers (priori- 

izes based on bid costs). The presence of negative bid costs re- 

erses prioritization logic (e.g., the formulation allocates product 

o suppliers with negative bid costs). Maximizing this objective is 

quivalent to maximize the total profit of the stakeholders (differ- 

nce between their revenues and costs); as such, the objective of 

he clearing formulation is often called the total surplus . The dual 

ariables π of the nodal product balances (2.1b) (known as clearing 

onstraints ) play a key role in remunerating stakeholders. 

max 
,g, f,ξ

∑ 

j∈D 
αd 

j d j −
∑ 

i ∈G 
αg 
i 
g i −

∑ 

l∈L 
α f 

l 
f l −

∑ 

m ∈M 

αξ
m 
ξm (2.1a) 

s.t. 
∑ 

i ∈G n,p 

g i + 

∑ 

l∈L in n,p 

f l + 

∑ 

m ∈M 
gen 
n,p 

γm,p ξm = 

∑ 

j∈D n,p 

d j + 

∑ 

l∈L out n,p 

f l 

+ 

∑ 

m ∈M 
con 
n,p 

γm,p ξm , (n, t, p) ∈ N × T × P, (πn,p ) (2.1b) 

 i ≤ g i , i ∈ G, ( λi ) (2.1c) 

 j ≤ d j , j ∈ D, ( λ j ) (2.1d) 

f l ≤ f l , l ∈ L , ( λl ) (2.1e) 
4 
m ≤ ξm 
, m ∈ M , ( λm ) (2.1f) 

.2. Supply chain model (dynamical) 

We now extend the steady-state SC model to a dynamical set- 

ing by considering a sequence of times t ∈ T . The set of times T is
ypically known as the time horizon (or planning horizon). In the 

roposed setting, we interpret a given time t as a node in a tempo- 

al graph; as such, we construct a space-time graph G (S, A ) with 

pace-time nodes given by the index pair s := (n, t) ∈ S and with 

rcs A connecting space-time nodes. We refer to this model as 

C-ST; under this setting, suppliers, consumers, and transformation 

roviders participate at a given spatial node n ∈ N and at a given 

ime node t ∈ T (or simply s ∈ S). In other words, they offer or re-

uest product and services at a given space-time node s . Moreover, 

nder this setting, transport providers move product across space- 

ime nodes via arcs. The time set T is ordered (the spatial set N 

s not) and it is thus often expressed as T = { t 0 , t 1 , . . . ., t T } with

 0 ≤ t 1 ≤ · · · ≤ t T . We define the distance between two subsequent 

ime nodes t j and t j+1 as δ(t j , t j+1 ) ; this distance is often referred

o as the time step. For simplicity, we assume that all the time 

teps are equal and given by δ(t j , t j+1 ) = δ for all j = 0 , . . . , T − 1 . 

Under a space-time setting, each supplier i ∈ G has a flow vari- 

ble g i ∈ R + , capacity parameter g i ∈ R + , and a bid parameter αg 
i 

∈
 . Moreover, each supplier offers product p(i ) ∈ P at a space- 

ime node s (i ) = (n (i ) , t(i )) ∈ S (with n (i ) ∈ N and t(i ) ∈ T ). As
efore, we categorize suppliers based on their bid cost as G + := 

 i ∈ G| αg 
i 

≥ 0 } and G − := { i ∈ G| αg 
i 

< 0 } and G − ⊆ G. We also de-

ne subsets G s,p ⊆ G (with G s,p := { i | s (i ) = s, p(i ) = p} ) to catego-
ize suppliers by space-time location and product. 

Each consumer j ∈ D has a flow variable d j ∈ R + , capacity pa-
ameter d j ∈ R + , and bid parameter αd 

j 
∈ R . As with suppliers, each 

onsumer has an associated space-time node s ( j) = (n ( j ) , t( j )) ∈
and product p( j) ∈ P . We define the subsets D 

+ ⊆ D of con- 

umers with bids αd 
j 

≥ 0 and D 
− ⊆ D with αd 

j 
< 0 . We also define 

ubsets D s,p ⊆ D where D s,p := { j | s ( j ) = s, p( j ) = p} . 
Each technology provider m ∈ M converts a set of input prod- 

cts p ∈ P 
con 
m 

⊂ P into a set of output products p ∈ P 

gen 
m 

⊂ P . Each

echnology has a variable flow ξm ∈ R + and yield parameters 

m,p ∈ R + , p ∈ {P 
con 
m 

, P 

gen 
m 

} . Each technology has an input capac-
ty defined by ξm 

∈ R + , and a bid αξ
m 

∈ R + . As with suppliers

nd consumers, each technology provides has an associated space- 

ime node s (m ) ∈ S . We define subsets for technology providers 

 
con 
n,t,p ⊆ M and M 

gen 
n,t,p ⊆ M where M 

con 
s,p := { m | s (m ) = s, p(m ) ∈

 
con 
m 

} and M 

gen 
s,p := { m | s (m ) = s, p(m ) ∈ P 

gen 
m 

} . 
The key difference between the steady-state and the dynami- 

al setting is in how transportation providers are defined and in- 

erpreted. Each transport provider l ∈ L has a space-time transport 

ow variable f l ∈ R + , a capacity parameter f l ∈ R + , and a bid pa-
ameter α f 

l 
∈ R + . Each transport provider moves product from a 

ource node s b (l) ∈ N to a receiving node s r (l) ∈ N . The base node

s given by s b (l) := (n b (l) , t b (l)) with n b (l) ∈ N and t b (l) ∈ T (a

imilar definition is used for the receiving node). We define sub- 

ets for transport providers L 
in 
s,p ⊆ L and L 

out 
s,p ⊆ L corresponding to 

nbound and outbound transport flow from a space-time node s 

nd for product p. Here, L 
in 
s,p := { l | s r (l ) = s, p(l ) = p} and L 

out 
s,p :=

 l | s b (l ) = s, p(l) = p} . A transport provider moves product across

ime via the arc a := (s b , s r ) ∈ A ; the arc can also be expressed

 = (n b , t b , n r , t r ) to highlight the spatial and temporal nodes. We

se the notation n b (a ) ∈ N and t b (a ) ∈ T to denote the support

odes of the space-time arc. 

From the previous definitions it is clear that the concepts of 

pace-time nodes and flows allow us to define transport providers 

n a manner that is directly analogous to the steady-state counter- 
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art. We now discuss how the notion of space-time flows offers 

odeling flexibility to capture different behavior encountered in 

upply chains. 

• A transport flow from a spatial location n b (l) to n r (l) at a fixed

time location ( t b (l) = t r (l) ) can be used to capture short-term

(instantaneous) transport. This type of spatial transport is the 

one assumed in the SS-SC model. 
• A transport flow l from spatial location n b (l) to n r (l) and from 

time t b (l) to t r (l) (with t r (l) ≥ t b (l) ) can be used to capture

long-term transport; here, the time distance δ(t r (l) , t b (l)) is the 

transportation delay. If δ(t r (l) , t b (l)) = 0 , we have the instanta-

neous case previously described. 
• A transport flow from time location t b (l) to time location t r (l) 

(with t r (l) ≥ t b (l) ) at a fixed spatial location ( n b (l) = n r (l) ) can

be used to capture product storage (inventory). In other words, 

product storage can be seen as a form of temporal product 

transport. 

The above discussion reveals that there are different types of 

rcs present in the SC (spatial, temporal, and spatio-temporal). To 

apture this categorization, we define the spatial arc set A N := 

 a ∈ A | t b (a ) = t r (a ) } (sending and receiving time locations are the

ame), the temporal arc set A T := { a ∈ A | n b (a ) = n r (a ) } (sending
nd receiving spatial locations are the same), and the space-time 

rc set A S := { a ∈ A | n b (a ) � = n r (a ) or t b (a ) � = t r (a ) } . We thus have

hat the entire arc set is given by A = A N ∪ A T ∪ A S . 
One can think of the space-time SC as a time sequence of sup- 

ly chains that are connected in time via temporal and spatiotem- 

oral arcs. This interpretation also suggests that we can partition 

he set of suppliers G into the subsets G t := { i ∈ G | t(i ) = t} and
hus G = ∪ t∈T G t ; one can follow this same reasoning to partition

he set of consumers D and technology providers M . The set of 

ransport providers L can be partitioned in a form that is analo- 

ous to the arc partitioning (in spatial L N , temporal L T , and spa-
iotemporal transporters L S ). In addition, one can also partition 
he set L into subsets of the form L t := { l ∈ L | t b (l) = t} and thus
 = 

⋃ 

t∈T 
L t . 

A special case of the SC-ST model is that in which it is assumed

hat no temporal and spatiotemporal arcs are present; as such, we 

ave A T = ∅ and A S = ∅ and thus A = A N . We also note that this

s equivalent to restricting the flows of the transporters in the SC- 

T model as f l = 0 for l ∈ A T ∪ A S (effectively eliminating any arcs

hat connect nodes across time). In this case, the SC-ST model is 

imply a time sequence of SC-SS models that are disconnected in 

ime; this is equivalent to making a quasi steady-state assumption 

all transport in time is instantaneous). We thus refer to this spe- 

ial SC-ST model as SC-QSS. The SC-QSS assumption is often made, 

or instance, if any time delay is much shorter than the time hori- 

on (e.g., time step is in hours while the time horizon spans an en-

ire year). However, our interest in the SC-QSS model arises from 

he observation that this can be used as a reference model that 

elp us analyze the properties of the SC-ST model. Specifically, we 

bserve that SC-QSS is a restricted version of SC-ST; this observa- 

ion will highlight how space-time product transport can be ex- 

loited to control space-time price dynamics. 

.2.1. SC-ST Formulation (primal) 

We interpret the SC-ST formulation as a market clearing for- 

ulation; this interpretation reveals important and interesting eco- 

omic properties and behavior of the SC. The formulation is given 

y: 

max 
,g, f,ξ

∑ 

j∈D 
αd 

j d j −
∑ 

i ∈G 
αg 
i 
g i −

∑ 

l∈L 
α f 

l 
f l −

∑ 

m ∈M 

αξ
m 
ξm (2.2a) 
o

5 
.t. 
∑ 

i ∈G s,p 
g i + 

∑ 

l∈L in s,p 

f l + 

∑ 

m ∈M 
gen 
s,p 

γm,p ξm = 

∑ 

j∈D s,p 
d j + 

∑ 

l∈L out s,p 

f l + 

∑ 

m ∈M 
con 
s,p 

γm,p ξm , (s, p) ∈ S × P, (πs,p ) 

(2.2b) 

 i ≤ g i , i ∈ G, ( λi ) (2.2c) 

 j ≤ d j , j ∈ D, ( λ j ) (2.2d) 

f l ≤ f l , l ∈ L , ( λl ) (2.2e) 

m ≤ ξm 
, m ∈ M , ( λm ) (2.2f) 

We note that this formulation is directly analogous to that of 

C-SS formulation (2.1); the key difference is that SC-SS uses the 

patial node set N , while the SC-ST formulation (2.2) uses the 

pace-time node set S . This observation is key to establish eco- 
omic properties for the SC under a dynamic setting. In the SC-ST 

ormulation, the market clearing constraints capture product bal- 

nces at different spatial locations and at different times. Here, it 

s clear that transport of product across space and time is driven 

y the transport flows. The dual variable of the clearing constraint 

s denoted πs,p ∈ R ; the optimal value for this variable is the clear- 

ng price of product p at space-time node s = (n, t) . This reveals

hat clearing prices exhibit space-time behavior. 

Eqs. (2.2c) to (2.2f) enforce capacity constraints for each 

takeholder. The corresponding dual variables λi ∈ R + , λ j ∈ 

 + , λl ∈ R + , and λm ∈ R + are highlighted here. Tominac and 

avala (2020) demonstrate that non-zero lower bounds create arti- 

cial incentives that interfere with market clearing prices; as such, 

e do not allow for non-zero lower bounds on allocations. 

If we express the space-time nodes in disaggregated form s = 

n, t) and we use set time partitions, we can express the SC-ST 

odel in the equivalent form: 

max 
,g, f,ξ

∑ 

t∈T 
(∑ 

j∈D t α
d 
j 
d j −

∑ 

i ∈G t α
g 
i 
g i −

∑ 

l∈L t α
f 

l 
f l 

−∑ 

m ∈M t 
αξ
m 
ξm 

) (2.3a) 

s.t. 
∑ 

i ∈G n,t,p 

g i + 

∑ 

l∈L in n,t,p 

f l + 

∑ 

m ∈M 
gen 
n,t,p 

γm,p ξm = 

∑ 

j∈D n,t,p 

d j + 

∑ 

l∈L out n,t,p 

f l 

+ 

∑ 

m ∈M 
con 
n,t,p 

γm,p ξm , (n, t, p) ∈ N × T × P, (πn,t,p ) (2.3b) 

 i ≤ g i , i ∈ G, ( λi ) (2.3c) 

 j ≤ d j , j ∈ D, ( λ j ) (2.3d) 

f l ≤ f l , l ∈ L , ( λl ) (2.3e) 

m ≤ ξm 
, m ∈ M , ( λm ) (2.3f) 

This formulation is more verbose but reveals the space-time na- 

ure of the problem. Specifically, this reveals that the dynamic SC is 

ndeed a time sequence of SS-SCs that are interconnected via tem- 

oral transport flows. Moreover, the total surplus is the summation 

f the surplus at the different times. 
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.2.2. SC-ST Formulation (dual) 

The SS-ST formulation can be expressed in the dual form: 

in π, λ

∑ 

i ∈G g i λi + 

∑ 

j∈D d j λ j + 

∑ 

l∈L f l λl + 

∑ 

m ∈M 
ξm 

λm 

(2.4a) 

.t. πn (i ) ,t(i ) ,p(i ) − λi ≤ αg 
i 
, i ∈ G (2.4b) 

n ( j) ,t( j) ,p( j) + λ j ≥ αd 
j 
, j ∈ D (2.4c) 

n r (l) ,t r (l ) ,p(l ) − πn b (l) ,t b (l ) ,p(l ) 
− λl ≤ α f 

l 
, l ∈ L (2.4d) 

∑ 

p∈P gen m 

γm,p πn (m ) ,t(m ) ,p(m ) −
∑ 

p∈P con m 

γm,p πn (m ) ,t(m ) ,p(m ) 

−λm ≤ αξ
m 
, m ∈ M (2.4e) 

This formulation more clearly reveals the relationship between 

he prices π and the capacity dual variables λ (which can be in- 

erpreted as marginal profits). The dual problem also immediately 

eveals bounding properties for clearing prices. The dual objective 

2.4a) does not depend on market prices; it only depends on the 

arginal profit variables λ. Viewed through complementary slack- 

ess, the dual formulation minimizes the combined total of stake- 

older profits. 

Constraints (2.4b) to (2.4e) correspond to the primal allocations 

g, d, f, ξ ) and define spatiotemporal prices associated with each 

takeholder class in terms of the clearing prices πn,t,p . We de- 

ne the price identities (πi , π j , πl , πm ) in (2.5). The price iden- 

ities (2.5a) to (2.5d) are interpreted as the supply price, de- 

and price, transportation price, and technology (or transforma- 

ion) price. These identities demonstrate that supply and demand 

rices are equivalent to the corresponding nodal product prices; 

his means that suppliers and consumers pay (or are paid) accord- 

ng to the product value at their space-time location. The trans- 

ort price is the difference between prices at different space-time 

odes. The technology price is a yield-weighted difference between 

odal prices of the outputs of a given technology and its inputs. A 

olution of the dual problem provides these prices, and substitu- 

ion of these identities into (2.4) condenses the dual to the form 

hown in (2.7). 

i := πn (i ) ,t(i ) ,p(i ) , i ∈ G (2.5a) 

j := πn ( j) ,t( j) ,p( j) , j ∈ D (2.5b) 

l := πn r (l) ,t r (l ) ,p(l ) − πn b (l) ,t b (l ) ,p(l ) 
, l ∈ L (2.5c) 

m := 

∑ 

p∈P gen m 

γm,p πn (m ) ,t(m ) ,p(m ) 

−
∑ 

p∈P con m 

γm,p πn (m ) ,t(m ) ,p(m ) , m ∈ M (2.5d) 

We note that the price identities in (2.5) imply additional rela- 

ionships between the nodal prices and the stakeholder prices, as 

hown in (2.6). 
 

n ∈N 
∑ 

t∈T 
∑ 

p∈P πn,t,p 

∑ 

i ∈G n,t,p 
g i = 

∑ 

i ∈G πi g i (2.6a) 

 

n ∈N 
∑ 

t∈T 
∑ 

p∈P πn,t,p 

∑ 

j∈D n,t,p 
d j = 

∑ 

j∈D π j d j (2.6b) 

 

n ∈N 
∑ 

t∈T 
∑ 

p∈P πn,t,p 

(∑ 

l∈L in n,t,p 
f l −

∑ 

l∈L out n,t,p 
f l 

)
= 

∑ 

l∈L πl f l 
6 
(2.6c) 

∑ 

n ∈N 

∑ 

t∈T 

∑ 

p∈P 
πn,t,p 

⎛ 

⎝ 

∑ 

m ∈M 
gen 
n,t,p 

γm,p ξm −
∑ 

m ∈M 
con 
n,t,p 

γm,p ξm 

⎞ 

⎠ 

= 

∑ 

m ∈M 

πm ξm (2.6d) 

Substitution of the identities into the dual program yields (2.7); 

his formulation illustrates price bounding relationships governing 

he coordination behavior. The dual constraint (2.7c) provides a 

ower bound on consumer prices π j , while the remaining dual con- 

traints provide upper bounds on the stakeholder prices πi , πl , and 

m for suppliers, transport providers, and technology providers, re- 

pectively. These bounds are important in understanding price be- 

avior (e.g., space-time dynamics) that arise under coordination. 

in 
π, λ

∑ 

i ∈G 
g i λi + 

∑ 

j∈D 
d j λ j + 

∑ 

l∈L 
f l λl + 

∑ 

m ∈M 

ξm 
λm (2.7a) 

.t. πi − λi ≤ αg 
i 
, i ∈ G (2.7b) 

j + λ j ≥ αd 
j 
, j ∈ D (2.7c) 

l − λl ≤ α f 

l 
, l ∈ L (2.7d) 

m − λm ≤ αξ
m 
, m ∈ M (2.7e) 

The primal and dual program relationships with individual 

takeholder objectives are reproduced in Fig. 4 , which illustrates 

ow bidding information flows from individual stakeholders to the 

oordinator. The coordinator determines product allocations and 

arket prices. We will see that market coordination aims to maxi- 

ize the individual profits of all stakeholders and yields a compet- 

tive equilibrium. 

.2.3. SC-ST Formulation (Lagrangian dual) 

The Lagrangian dual formulation of SC-ST is: 

max 
π, λ

min 
g,d, f,ξ

L (g, d, f, ξ , π, λ) = 

∑ 

i ∈G 
−(πi − αg 

i 
) g i + (g i − g i ) λi 

+ 

∑ 

j∈D 
−(αd 

j − π j ) d j + (d j − d j ) λ j + 

∑ 

l∈L 
−(πl − α f 

l 
) f l 

+ ( f l − f l ) λl + 

∑ 

m ∈M 

−(πm − αξ
m 
) ξm + (ξm − ξm 

) λm (2.8) 

ere, we denote the Lagrangian function as L (g, d, f, ξ , π, λ) and

he Lagrangian dual problem is stated in (2.8) . This formulation 

ill reveal that objective function of the clearing problem aims 

o maximize the stakeholder profits and provides additional price 

ounding information. Specifically, we observe that all of the terms 

f the form (x u − x u ) λu are identically zero (either x u − x u = 0 or 

u = 0 by complementary slackness). We express the remaining 

erms to obtain: 

max 
π, λ

min 
g,d, f,ξ

L (g, d, v , f, ξ , π, λ) = 

∑ 

i ∈} 
−(πi − αg 

i 
) g i + 

∑ 

j∈D 
−(αd 

j − π j ) d j 

+ 

∑ 

l∈L 
−(πl − α f 

l 
) f l + 

∑ 

m ∈M 

−(πm − αξ
m ) ξm (2.9) 

e define the profit allocated to a stakeholder by the market as 

he difference between its revenue and costs. We assume that 

takeholders bid their marginal value for a product (their oper- 

ting costs); this assumption is consistent with the bidding out- 

omes in a Vickrey-Clarke-Groves auction, in which bidders are 
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Fig. 4. Primal and dual view of the SC-ST (market clearing) model. The coordinator aims to maximize all the player profits; maximizing each profit subject to the bidding 

information it receives. The coordinator determines the allocations and market prices that solve the clearing problem. 
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ncentivized to bid their marginal value ( Vickrey, 1961; Clarke, 

971; Groves, 1973 ). We denote the vector of stakeholder profits 

= (φg , φd , φ f , φξ ) , where individual stakeholder profits are: 

g 
i 
:= (πi − αg 

i 
) g i , i ∈ G (2.10a) 

d 
j 
:= (αd 

j 
− π j ) d j , j ∈ D (2.10b) 

f 

l 
:= (πl − α f 

l 
) f l , l ∈ L (2.10c) 

ξ
m 
:= (πm − αξ

m 
) ξm , m ∈ M (2.10d) 

We note that consumer profits are defined differently from 

hose of service providers. Consumer profit is to be interpreted as 

oney saved; the difference between the consumer bid (consumer 

illingness to pay) and the market price (that is paid) for the con- 

umer allocation. This difference in the formulation emerges from 

he expectation that consumers will be revenue sources and ser- 

ice providers will be revenue sinks. These identities are logically 

onsistent for those with negative bids (i.e., i ∈ G − and j ∈ D 
−). 

max 
π, λ

min 
g,d, f,ξ

L (g, d, f, ξ , π, λ) 

= −
( ∑ 

i ∈G 
φg 
i 

+ 

∑ 

j∈D 
φd 

j + 

∑ 

l∈L 
φ f 

l 
+ 

∑ 

m ∈M 

φξ
m 

) 

(2.11) 

ubstitution of the profit identities into (2.9) results in (2.11) , from 

hich we conclude that the Lagrangian dual maximizes the sum 

f the stakeholder profits. 

. Economic properties of SC-ST model 

In this section we establish economic properties of the SC; 

hese properties leverage the clearing interpretation of the SC-ST 

ormulation. We begin by establishing that coordination maximizes 
7 
takeholder profits and that the stakeholder profits are all nonneg- 

tive (regardless of the market outcome). 

heorem 1. The SC-ST formulation delivers prices π and allocations 

g, d, f, ξ ) that maximize the collective stakeholder profit; moreover, 

he profits are all nonnegative. 

roof. For an arbitrary set of prices π (and the associated λ) 
he allocations (g, d, f, ξ ) = (0 , 0 , 0 , 0) result in a value of the La-

rangian function (2.11) of zero, i.e., L (0 , 0 , 0 , 0 , π, λ) = 0 . Solving

he Lagrangian problem produces an allocation (g ∗, d ∗, f ∗, ξ ∗) min-

mizing the Lagrangian with 

 (g ∗, d ∗, f ∗, ξ ∗, π, λ) ≤ 0 . 

nder fixed prices, the Lagrangian is the sum of player profits 

nd thus the allocation (g ∗, d ∗, f ∗, ξ ∗) results in profits that are no
orse than (0,0,0,0). It follows that the profits (φg , φd , φ f , φξ ) are 

onnegative. Since this is true for arbitrary prices, it holds for the 

ptimal prices π ∗, and profits are nonnegative for optimal alloca- 

ions and prices. �

Theorem 1 provides the groundwork necessary to establish that 

 solution of the SC-ST formulation is better than the solution of 

he SC-QSS problem (in terms of total surplus). Here, we define the 

ptimal total surplus of SC-ST as ϕ 
∗ and the optimal total surplus 

f SC-QSS as ˆ ϕ . 

heorem 2. The optimal total surplus of SC-ST ϕ 
∗ and of SC-QSS ˆ ϕ 

atisfy ϕ 
∗ ≥ ˆ ϕ . 

roof. The SC-QSS problem can be obtained from SC-ST by impos- 

ng the flow constraints f l = 0 for l ∈ A T ∪ A S . As such, the feasi-
le region of SC-QSS is contained in the that of SC-ST. The result 

ollows. �

This result is important because it highlights that temporal 

ransport of product can add flexibility to improve the total surplus. 

e next establish that the solution of SC-ST gives a competitive 

quilibrium. 
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heorem 3. A solution of SC-ST delivers prices π and allocations 

g, d, f, ξ ) that represent a competitive equilibrium. 

roof. It is sufficient to show that the solution of SC-ST maximizes 

rofits subject to the clearing constraints. For arbitrary prices π
olving the Lagrangian (2.11) produces allocations (g ∗, d ∗, f ∗, ξ ∗) 
aximizing stakeholder profits (independently). The market clear- 

ng program is linear, and strong duality implies that the alloca- 

ions (g ∗, d ∗, f ∗, ξ ∗) also satisfy the clearing constraints in the pri-
al program (2.2). �

Coordination should yield consistent properties with respect to 

roduct prices and revenue streams. Importantly, SC-ST must sat- 

sfies a condition termed revenue adequacy , which states that rev- 

nue streams collected from revenue sources is sufficient to remu- 

erate revenue sinks. 

heorem 4. A solution of SC-ST delivers clearing prices π and allo- 

ations (g, d, f, ξ ) that satisfy revenue adequacy: ∑ 

j∈D + 
π j d j + 

∑ 

i ∈G −
πi g i = 

∑ 

j∈D −
π j d j + 

∑ 

i ∈G + 
πi g i 

+ 

∑ 

l∈L 
πl f l + 

∑ 

m ∈M 

πm ξm (3.12) 

roof. Consider the market clearing constraint (2.2b) . We obtain 

ll spatiotemporal revenue streams by multiplying the product al- 

ocations at each node and time point by their corresponding dual 

rices πn,t,p , and adding over the node, time, and product dimen- 

ions in (3.13) 

 

n ∈N 
∑ 

t∈T 
∑ 

p∈P πn,t,p 

(∑ 

i ∈G n,t,p 
g i + 

∑ 

l∈L in n,t,p 
f l + 

∑ 

m ∈M 
gen 
n,t,p 

γm,p ξm 

− ∑ 

j∈D n,t,p 
d j −

∑ 

l∈L out n,t,p 
f l −

∑ 

m ∈M 
con 
n,t,p 

γm,p ξm 

)
(3.13) 

Applying the price identities in (2.6) results in: 
 

i ∈G πi g i + 

∑ 

l∈L πl f l + 

∑ 

m ∈M 
πm ξm −

∑ 

j∈D π j d j = 0 (3.14) 

his is identical to (3.12) (with suppliers and consumers grouped 

y their bid signs). �

An important implication of revenue adequacy is that coordi- 

ation does not introduce inefficiencies into the market. Moreover, 

evenue adequacy implies that revenue streams may flow both for- 

ard and backward through time. One way of interpreting this re- 

ult is that the promise of future payment creates incentives to 

ove products to future time periods. Revenue adequacy is some- 

imes called cost recovery in electricity markets, and provides elec- 

ricity buyers and sellers with theoretical guarantees of price be- 

avior and confidence in the competitiveness of market outcomes. 

he derived revenue adequacy result provides a compact and intu- 

tive view on how economic value (revenue) is preserved in space- 

ime (economic value is conserved). 

heorem 5. The clearing prices (πi , π j , πl , πm ) corresponding to the 

leared players (G ∗, D 
∗, L 

∗, M 
∗) satisfy the bounds πi ≥ αg 

i 
, i ∈ G ∗,

j ≤ αd 
j 
, j ∈ D 

∗, πl ≥ α f 

l 
, l ∈ L 

∗, and πm ≥ αξ
m 

, m ∈ M 
∗. 

roof. Theorem 1 indicates that profits (φg , φd , φ f , φξ ) are non- 

egative. The allocations (g, d, f, ξ ) are nonnegative by definition, 

nd strictly positive for cleared stakeholders. Together with the 

rofit identities (2.10) this implies that πi − αg 
i 

≥ 0 , i ∈ G ∗, αd 
j 
−

j ≥ 0 , j ∈ D 
∗, πl − α f 

l 
≥ 0 , l ∈ L 

∗, πm − αξ
m 

≥ 0 , m ∈ M 
∗. �

Theorems 1,3,4 , and 5 were established for SC-SS ( Sampat et al., 

019 ); here, we prove that these properties hold in a dynamical 

etting. Notably, this generalization is quite straightforward by us- 

ng the concept of space-time transport flows. 
8 
In addition to the bounds in Theorem 5 (emerging from the La- 

rangian dual) we are able to establish the following price bound- 

ng behavior from the dual program. 

heorem 6. The clearing prices (πi , π j , πl , πm ) satisfy the bounds 

i − λi ≤ αg 
i 
, i ∈ G, π j + λ j ≥ αd 

j 
, j ∈ D, πl − λl ≤ α f 

l 
, l ∈ L , and

m − λm ≤ αξ
m 

, m ∈ M . 

roof. The result follows directly from the dual representation of 

C-ST (2.7). �

The bounds defined in Theorem 6 are upper bounds on player 

rices (lower for consumers); this means that we now have lower 

3.15) and upper (3.16) bounds on prices ( vice versa for consumers). 

hese results are key in understanding space-time dynamic behav- 

or of prices. 

πi − αg 
i 
) g i ≥ 0 , i ∈ G (3.15a) 

αd 
j 
− π j ) d j ≥ 0 , j ∈ D (3.15b) 

πl − α f 

l 
) f l ≥ 0 , l ∈ L (3.15c) 

πm − αξ
m 
) ξm ≥ 0 , m ∈ M (3.15d) 

i ≤ αg 
i 

+ λi , i ∈ G (3.16a) 

j ≥ αd 
j 
− λ j , j ∈ D (3.16b) 

l ≤ α f 

l 
+ λl , l ∈ L (3.16c) 

m ≤ αξ
m 

+ λm , m ∈ M (3.16d) 

We observe that the lower bounds (3.15) are enforced subject to 

he corresponding player receiving a positive allocation. Using the 

upplier class to illustrate, we have g i > 0 ⇒ πi ≥ αg 
i 
(from (3.15a) ). 

trong duality provides that the λ dual variables in (3.16) are pos- 

tive only if the corresponding stakeholder is allocated its entire 

apacity, mathematically: g i = ḡ i ⇐
 λi > 0 for suppliers, with sim- 

lar logic for the other classes. The λ are zero otherwise, e.g., 

 i < ḡ i ⇒ λi = 0 . So a supplier with an allocation 0 < g i < ḡ i experi-

nces a market price equal to its bid due to the bounds αg 
i 

≤ πi ≤
g 
i 
. The interplay of strong duality and market prices has impor- 

ant implications on how profits are allocated in coordinated mar- 

ets. Substituting the price bounding results into the correspond- 

ng profit definitions from (2.10) we observe λi > 0 ⇒ φg 
i 

≤ λi ̄g i 

nd λi = 0 ⇒ φg 
i 

= 0 . Following similar logic, we obtain bounds 

or the other classes λ j > 0 ⇒ φd 
j 

≤ λ j d̄ j , λl > 0 ⇒ φ f 

l 
≤ λl f̄ l , and 

m > 0 ⇒ φξ
m 

≤ λm ̄ξm . 

heorem 7. A solution of SC-ST delivers clearing prices π and alloca- 

ions (g, d, f, ξ ) such that a player can be allocated a positive profit

nly if it is allocated its entire capacity. 

roof. We have that the market with players (G, D, L , M ) and the

et of cleared players (G ∗, D 
∗, L 

∗, M 
∗) (i.e., G ∗ := { i ∈ G| g i > 0 } ).

efine the sets (G •, D 
•, L 

•, M 
•) and (G ◦, D 

◦, L 
◦, M 

◦) where G • :=
 i ∈ G| g i = ḡ i } and G ◦ := { i ∈ G| 0 < g i < ḡ i } , so we have G ∗ \ G • = G ◦
with the same for the other classes). Further, define the sets of 

ry players (G �, D 
�, L 

�, M 
�) where G � := { i ∈ G| g i = 0 } , having

 \ G ∗ = G �. We can express the price bounds from (3.15) as 

i 

{
≥ αg 

i 
, i ∈ G ∗

∈ R , i ∈ G �
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w

w

(

b
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c
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c

l

j 

{
≤ αd 

j 
, j ∈ D 

∗

∈ R , j ∈ D 
�

l 

{
≥ α f 

l 
, l ∈ L 

∗

∈ R , l ∈ L 
�

m 

{
≥ αξ

m 
, m ∈ M 

∗

∈ R , m ∈ M 
�

nd from (3.16) as 

i 

{
≤ αg 

i 
+ λi , i ∈ G •

≤ αg 
i 
, i ∈ G � ∪ G ◦

j 

{
≥ αd 

j 
+ λ j , j ∈ D 

•

≥ αd 
j 
, j ∈ D 

� ∪ D 
◦

l 

{
≤ α f 

l 
+ λl , l ∈ L 

•

≤ α f 

l 
, l ∈ L 

� ∪ L 
◦

m 

{
≤ αξ

m 
+ λm , m ∈ M 

•

≤ αξ
m 
, m ∈ M 

� ∪ M 
◦

Substitution of the price bounds into the profit definitions re- 

ults in the profit bounds: 

i 

{ ≤ λi ̄g i , i ∈ G •
≤ 0 , i ∈ G � ∪ G ◦
≥ 0 , i ∈ G 

j 

{ ≤ λ j d̄ j , j ∈ D 
•

≤ 0 , j ∈ D 
� ∪ D 

◦

≥ 0 , j ∈ D 

l 

{ ≤ λl f̄ l , l ∈ L 
•

≤ 0 , l ∈ L 
� ∪ L 

◦

≥ 0 , l ∈ L 

m 

{ ≤ λm ξ̄m , m ∈ M 
•

≤ 0 , m ∈ M 
� ∪ M 

◦

≥ 0 , m ∈ M 

he profit bounds identified exhaust all possible player outcomes. 

nly players in the sets (G •, D 
•, L 

•, M 
•) have a positive profit

ound, completing the proof. �

Theorem 7 informs the distribution of profit to market stake- 

olders. Though the clearing problem can possess degeneracy (so- 

ution multiplicity), it is limited to a specific subset of stakehold- 

rs in any particular outcome. Given our analysis, it is necessary to 

onfirm that there will be at least one stakeholder that is cleared 

n a non-dry market with a positive profit bound whom can be 

llocated profit by the ISO. 

heorem 8. A solution of SC-ST delivers clearing prices π and allo- 

ations (g, d, f, ξ ) such that at least one market player has a strictly

ositive bound on its profit allocation in a non-dry market. 

roof. Proof is by contradiction and relies on the extreme 

oint properties of linear programming solutions. Assume 

e have a market with an optimal set of clear transactions 

G ∗, D 
∗, L 

∗, M 
∗) all satisfying (g ∗

i 
, d ∗

j 
, f ∗

l 
, ξ ∗

m 
) < ( ̄g i , d̄ j , f̄ l , ξ̄m ) ,

eaning (G •, D 
•, L 

•, M 
•) = ∅ . The objective value is z ∗ =

 

j∈D αd 
j 
d ∗
j 
− ∑ 

i ∈G α
g 
i 
g ∗
i 
− ∑ 

l∈L α
f 

l 
f ∗
l 

− ∑ 

m ∈M 
αξ
m 
ξ ∗
m 
. Since none 

f the allocation bounds ( ̄g i , d̄ j , f̄ l , ξ̄m ) are active, the ISO 

an increase its allocations by amounts (
g i , 
d j , 
 f l , 
ξm ) 

ubject to the market clearing constraints until one or 

ore of the allocations reaches its bound. The solution 
9 
g ∗
i 
+ 
g i , d 

∗
j 
+ 
d j f 

∗
l 

+ 
 f l , ξ
∗
m 

+ 
ξm ) produces an objective

alue z ∗ + 
z, and if z ∗ is optimal, then z ∗ + 
z > z ∗, which is a

ontradiction. Therefore, in any non-dry market, there will be at 

east one stakeholder in the sets (G •, D 
•, L 

•, M 
•) having a positive

pper bounds on its allocatable profits. �

We next examine space-time price dynamics; here, we are in- 

erested in the concept of space-time price volatility (variability) 

nd how we can design markets to mitigate price volatility for 

arket stakeholders. Price volatility may manifest in both the spa- 

ial and temporal dimensions, with spatial volatility manifesting as 

rice variation between spatial nodes n ∈ N and temporal volatility 

etween temporal nodes t ∈ T . Transport providers play a key role 
n driving and controlling space-time volatility, as we next observe. 

heorem 9. Transport providers can drive space-time price volatility 

o zero. 

roof. The transport price in (2.5c) is subject to bounds defined by 

he dual program (2.7) and the Lagrangian dual (2.11) , from which 

e derive the bounds 

f 

l 
≤ πl ≤ α f 

l 
+ λl , l ∈ L | f l > 0 

or transport providers with positive allocations. If a transport 

rovider does not receive a profit, either because its allocation f l is 

ess than its transport capacity f̄ l or due to degeneracy, then these 

ounds become: 

f 

l 
≤ πl ≤ α f 

l 
, l ∈ L | f l > 0 

mplying πn,t,p = πn ′ ,t ′ ,p for nodes (n, n ′ ) ∈ N and (t , t ′ ) ∈ T when
f 

l 
= 0 . �

Transport bids α f 

l 
lower than local supply bids (intuitively) 

llow access to product sources at other nodes or time points 

ith favorable prices. Perhaps the most important interpretation 

f these properties is that the spatial and temporal dimensions 

f the clearing model are fundamentally the same. This indicates, 

or instance, that storage systems and geographical transport sys- 

ems play a key role in determining price dynamics. Two simple 

xample problems that illustrate these theoretical properties are 

ncluded as supplementary material. The first demonstrates theo- 

etical properties related to profit allocations and prices, and how 

hose theorems may be interpreted in practice. The second focuses 

n the behavior of temporal transportation. We also comment on 

ow theoretical properties are observed in the context of our case 

tudy. 

. Case study 

We illustrate our theoretical developments by considering the 

aste-to-energy case study described by Hu et al. (2018) . Here, 

e analyze the potential creation of a coordinated livestock waste 

manure) market (a bioeconomy) in the State of Wisconsin that can 

e used to generate valuable energy products (e.g., biogas, elec- 

ricity). This problem can be cast as a supply chain problem and 

an be interpreted as a coordinated market in which suppliers of 

aste (dairy farmers) seek to satisfy demands of valuable prod- 

cts derived from waste (biogas and electricity). Specifically, in this 

arket we would use waste processing technologies (comprised of 

naerobic digestion and power generators) to produce biogas and 

lectricity from manure. Moreover, in this market we would have 

eographical transport of waste and temporal transport via waste 

torage. This market can also help mitigate myriad environmental 

ssues associated with manure management; specifically, the prac- 

ice of spreading manure on crop fields (as a fertilizer) leads to un- 

ontrolled degradation of organic matter contained in manure and 

eads to methane, nutrient, and pathogen emissions ( Sharara et al., 
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Fig. 5. Electricity demand curve scaled to Wisconsin annual consumption levels. The curve represents one week (168 hours) of demand. 

Fig. 6. Electricity supply available from grid producers. Three producers are modeled nonlinear generation curves, representing different conventional electricity producers. 
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017 ). Unfortunately, manure processing technologies are expen- 

ive and it is desirable to ensure that biogas and electricity gen- 

rate sufficient revenue. 

Here, we reexamine this problem, using the same data as 

u et al. (2018) (including the disposition of farms, biogas tech- 

ologies, storage capacities, and technology costs) and identify new 

evenue opportunities for manure processing by exploiting the dy- 

amics of electricity prices. We aim to show that manure pro- 

essing systems can respond to dynamic price incentives in the 

ame way that modern natural gas power plants can (because 

hey are able to rapidly commit energy to the grid). We esti- 

ate dynamic electricity demand across the State of Wisconsin 

sing the demand curve from Zavala and Anitescu (2011) scaled 

o the Wisconsin statewide annual electricity consumption rate of 

8.8 TWh per year ( Lippert, 2015 ), illustrated in Fig. 5 . We also

t the generation curves of Zavala and Anitescu (2011) (repre- 

enting three distinct conventional grid power suppliers) to re- 

ect reasonable values of Wisconsin off and on-peak electricity 

rices of 0.05 and 0.18 USD/kWh, respectively (based on 2019 real- 

ime market price data from the Midcontinent Independent Sys- 

em Operator (MISO) (2021) ) (illustrated in Fig. 6 ); i.e., the curves 

re fit to yield these prices at the corresponding on-peak and 

ff-peak output levels. The three supply curves are fit using sim- 
10 
le quadratic equations of the form y = β x 2 where the parame- 

ers g are [1.66 ×10 −5 ,8.31 ×10 −6 ,4.15 ×10 −5 ]. We retain the three 

eparate curves from Zavala and Anitescu (2011) as a representa- 

ion of different generator types, with varying costs, but discretize 

hem to intervals of 100 MW of output. Each of these output lev- 

ls is treated as a separate supplier; this illustrates how the pro- 

osed modeling framework can capture nonlinear bidding costs. 

e model one week of dynamic behavior (168 h long periods) us- 

ng this data. 

The dairy infrastructure comprises 245 farms (concentrated an- 

mal feeding operations, or CAFOs) of which 120 are equipped with 

aste processing and biogas systems. Our problem setup corre- 

ponds to the biogas gas study of Hu et al. (2018) , and that pa-

er provides the complete data for farms and technology speci- 

cations. We assume a single collection point for the electricity 

enerated from biogas, centered on the City of Madison; since the 

ransportation cost of electricity is contextually small (estimated 

t 7.5 ×10 −6 USD/MWh ·km based on average transmission losses of 

% per 10 0 0 km reported by Vaillancourt (2014) ) this assumption 

hould not have a significant impact on the qualitative nature of 

ur results. The disposition of CAFOs and processing systems are 

isualized in Fig. 7 , which showcases the average hourly produc- 

ion rates of dairy waste throughout the state. 



P.A. Tominac, W. Zhang and V.M. Zavala Computers and Chemical Engineering 159 (2022) 107666 

Fig. 7. Hourly dairy waste production rate at CAFOs across Wisconsin (colorbar). Biogas infrastructure and farm distribution are shown by filled circles. CAFO locations are 

indicated by black circles, CAFOs with storage and biogas processing equipment have a gold center. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Our spatiotemporal model has 168 time periods (each one hour 

ong) with 246 spatial nodes (245 CAFOs and the electricity col- 

ection hub). Arcs are constructed connecting all CAFOs to each 

AFO with processing facilities on site (i.e., the 125 CAFOs with- 

ut processing systems are each connected to the 120 equipped 

ith them) and these 120 CAFOs have arcs connecting them to 

he collection hub at each time point. We assume that these trans- 

ortation flows occur within a single time period. Temporal flows 

re interpreted as waste storage; these are implemented as arcs 

onnecting CAFOs over the temporal dimension. To mitigate model 

ize, arcs are constructed across single time points only (i.e., from 

our 1 to hour 2, and from 2 to 3, but not from 1 to 3 directly)

o model the dynamics of waste storage. This setup also illustrates 

ow we can use our formulation to model various physical phe- 

omena. 

In addition to our base model, we include three variations that 

elp illustrate the theoretical properties associated with the model 

tself, and that provide some useful insights into the base case so- 

ution. The cases are the base case, a case with no waste storage 

as though electricity can only be produced in the same period 

hat waste is supplied) a case with unlimited storage (storage be- 

ng both free of cost and effectively unlimited in capacity) and fi- 

ally a case study in which the base case waste supply is tripled. 

We implemented and solve all problems in the Julia program- 

ing language (version 1.5.3) ( Bezanson et al., 2017 ) and the JuMP 

odeling language (version 25.1) ( Dunning et al., 2017 ) with the 

urboi solver (version 9.1.1) ( Gurobi Optimization, 2021 ). We char- 

cterize the model solution using market prices of electricity and 

aste, the amount of waste processed to produce biogas, and il- 

ustrate some of the dynamics with specific instances of variable 

alues. Overall, our model suggests that all of the dairy waste pro- 

uced at CAFOs in Wisconsin can be profitably processed to pro- 

uce biogas and electricity by taking advantage of price fluctua- 

ions. Due to the low yield of electricity from waste, the electric- 

ty contributed this way is small on the state scale (WI consumes 

bout 17,100 MWh each week, with our statewide biogas network 
b

11 
veraging about a 102 MW power rating) the base case total en- 

rgy supply, including both the conventional grid and contributions 

rom biogas, is illustrated in Fig. 8 . 

.1. Base results 

Base electricity generation rates at various time points (cho- 

en to illustrate temporal variation) are shown in Fig. 9 . Electric- 

ty generation is concentrated at two major CAFOs, with marginal 

roduction distributed throughout the state (the figures are pre- 

ented in log scale to highlight smaller contributions). The disposi- 

ion of electricity generation throughout the state is influenced by 

aste availability, transport costs, and local technology availabil- 

ty. We replicate technology placement from Hu et al. (2018) , but 

bserve that a different distribution of technologies may be opti- 

al in a dynamic setting. Nonetheless, we observe temporal vari- 

tion, with electricity generation at CAFOs following peak demand 

imes and none during off-peak hours when prices are less favor- 

ble. The pattern is most prominent between hour 5 and hour 19, 

hich capture the low and high extents of electricity generation 

ates throughout the state. 

Base case hourly waste storage levels are shown in Fig. 10 and 

emonstrate that coupling to the state electrical grid creates an in- 

entive to store and use waste for electricity production. The stor- 

ge dynamics are cyclic; we observe that waste storage units begin 

mpty, gradually fill ( t= 5) to capacity throughout the state ( t= 11)

nd then empty ( t= 19) as biogas is used to produce electricity. The 

ycle repeats over subsequent days. Storage tanks remain full for 

oughly fourteen hours each day in this case, and empty for ten. 

his pattern is indicative of biogas accumulation and processing 

atterns. 

.2. Comparative case studies 

We now present results from all case studies for comparison. To 

egin, we present the revenue streams from each of our four case 
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Fig. 8. Total energy supply to the Wisconsin grid over a one week period. Contributions from conventional suppliers and the aggregate production at CAFOs are shown. The 

grand total replicates the demand curve. 

Fig. 9. Electricity produced from biogas (MWh). Peak hourly generation exceeds 300 MWh, primarily focused on two major CAFOs. The graph on the right present log(MWh) 

values to highlight smaller levels of generation on the order of 2 - 5 MWh. 

Fig. 10. Distribution of hourly waste storage at select time points. Storage units fill to capacity and empty cyclically over the horizon. Coupling with the electricity grid 

creates temporally varying incentives for waste storage. 
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tudies in Table 1 . Here, we present the total revenue spent (neg- 

tive) or collected (positive) from the market over all stakehold- 

rs of a given class. We include the grand total values (all zero) 

ecause these demonstrate Theorem 4 (revenue adequacy), which 

uarantees that revenue balances in the market. Importantly, this 

lso demonstrates Theorem 3 (competitiveness) because we ob- 
12 
erve that all revenues paid into the market are collected by other 

arket players; i.e., ISO coordination does not incur costs, and 

oes not introduce inefficiencies, it simply accelerates the clear- 

ng procedure. Specifically, consumer revenue represents statewide 

pending on electricity. Supplier revenue includes payments both 

o conventional electricity producers and to CAFOs. Payments to 
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Table 1 

Revenue streams for supply chain consumers, suppliers, transport providers (separated by spatial and 

temporal dimensions) technologies, and grand total values. These demonstrate revenue adequacy in the 

market clearing procedure. 

Revenue stream Base case No storage Unlimited storage Triple waste 

Consumer total -169,019,002 -169,554,946 -167,596,601 -160,798,068 

Supplier total 168,833,665 169,508,659 167,550,314 160,515,484 

Transport (temporal) total 137,214 0 0 143,522 

Transport (spatial) total 47,807 45,971 45,971 138,114 

Technologies total 316 316 316 948 

Grand Total 0 0 0 0 

Fig. 11. Electricity prices resulting under (solid black) base case conditions, (dotted black) no storage, (red) with unlimited storage, and (blue) with triple the amount of 

waste available. Biogas systems are able to take advantage of demand peaks to provide electricity at lower price during peak hours, which reduces peak pricing, and creates 

value for dairy farmers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ransportation and technology providers (these also being associ- 

ted with CAFOs) are listed separately. 

The 245 CAFOs (with 120 technology-enabled sites) together 

ontribute to the base case generation profile in Fig. 9 , which im- 

acts the market price of electricity as shown in Fig. 11 , which 

hows the price of electricity over the time entire horizon at the 

ollection node. Electricity prices resulting in our base case setting 

solid black line) are lower than those emerging in the no stor- 

ge case (i.e., when electricity is available from conventional grid 

uppliers only ) (dotted line). Interestingly, electricity prices in the 

o storage case follow the dynamics of the demand curve ( Fig. 5 )

eplicating its shape. Notably, electricity prices in the base case are 

ower at peak times, illustrating how the coordination system takes 

dvantage of peak electricity prices by concentrating biogas gen- 

ration during peak hours, electricity prices are lower than they 

ould be with only the conventional electricity producers. The 

ase and no storage cases specifically demonstrate Theorem 2 ; we 

bserve that waste storage allows CAFOs to take advantage of real- 

ime electricity price dynamics to make money and reduce elec- 

ricity prices for consumers. The unlimited storage and triple waste 

ases also result in lower electricity prices; notably tripling the 

mount of waste available reduces prices at all time points, while 

emoving storage limits reduces peak prices only. This result is im- 

ortant; increasing the amount of waste allows CAFOs to profit in 

he electricity market, but it is storage that allows CAFOs to take 

dvantage of peak hour pricing. 

The greatest decrease in base case price observed is 1.26 cents 

er kWh (12.6 USD/MWh) representing a significant peak savings, 

oting that our peak price is around 18 cents per kWh. Over the 

ourse of the 168 h horizon, the average difference between the 
13 
lectricity price with and without the biogas contribution is only 

.34 cents per kWh, demonstrating that the effects are concen- 

rated at the peaks. We suggest that biogas represents an opportu- 

ity to reduce electricity prices during peak hours, creating value 

or consumers and for dairy farmers who can realize the inherent 

alue in waste. Specifically, we observe that the value of waste is 

inked to storage. Total waste storage state-wide is illustrated in 

ig. 12 , from which we observe that storage is used to its full ex-

ent in both the base and triple cases, and in the unlimited storage 

ase we observe significantly greater usage of waste storage, sug- 

esting that the ability to take advantage of peak prices is limited 

y existing storage capacity. This is reflected in Fig. 11 . 

In Fig. 13 (which shows the price of waste at a particular CAFO 

ode) we observe that waste prices are driven by dynamics of elec- 

ricity prices and by waste storage. The peak base case waste price 

s 13.15 USD/tonne, illustrating how market coordination captures 

he inherent value of this resource through its potential in the 

lectricity market. In the base case, we observe less waste price 

ariation than in the no storage case, while the triple waste case 

esults in lower waste prices overall than in the base case. The un- 

imited storage case demonstrates the extreme mitigation of waste 

rice over time, with all the induced electricity price dynamics ef- 

ectively balanced by storage dynamics resulting in a stable value 

f waste around 12 USD/tonne. This demonstrates Theorem 9 , hav- 

ng eliminated the price volatility in waste prices, and mitigated 

olatility in electricity prices. There is spatial variation in waste 

rices as well, though it is on a smaller scale than the temporal 

ariation. Fig. 14 illustrates these scales for the base case; tempo- 

al price variation (more than 8.00 USD/tonne) dominates spatial 

ariation (approximately 0.30 USD/tonne). 
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Fig. 12. State-wide waste storage profiles in each of our four case studies. Waste storage is coupled to waste and electricity prices. 

Fig. 13. Waste prices at a particular CAFO are induced the dynamics of electricity prices at the collection node, which translates into a peak value of 13.15 USD per tonne in 

the base case. With unlimited storage, the price of waste reaches a stable value. 

Fig. 14. Base case waste price dynamics show significantly more temporal variation than spatial, with waste value heavily influenced by electricity prices. Spatial variation is 

influenced by transportation costs. Due to the difference in scale, two separate color bars are used for spatial and temporal price variation. The primary color bar indicates 

temporal waste prices, while a gray scale overlay captures temporal variation at each time point. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

14 
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Fig. 15. Combined electricity generation over 245 WI CAFOs. Unlimited storage allows the coordination system to take advantage of real time price peaking, compared with 

the base case where there is some generation during off-peak hours. 
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We can interpret price and storage dynamics through electric- 

ty generation profiles. In Fig. 15 we illustrate the combined gen- 

ration of all 245 CAFOs over the 168 h horizon. Notably, the base 

ase has generation concentrated on the on-peak hours, but due 

o the storage limitations associated with this case, we also ob- 

erve generation in off-peak hours. Tripling the amount of waste 

vailable does not change the qualitative nature of this result; the 

urves are similar. In contrast, the no storage case has a constant 

eneration rate of about 100 MWh. In the unlimited storage case, 

e observe no generation during off-peak hours, with generation 

oncentrated on peak prices. This provides some insight into the 

imiting nature of storage in this problem, and suggests that the 

exibility that storage provides allows farmers to take advantage 

f the highest prices. 

.3. Profit implications for dairy farmers 

In our base result, dairy farms are able to derive (in aggregate) 

,095,953 USD in profit over the course of the 168 h horizon (ex- 

rapolating to an entire year, this could reach 100 million USD). 

his profit is a result of targeting peak prices in the electricity mar- 

et through careful planning of waste processing and biogas gen- 

ration. We have observed how coordination uses these systems, 

nd how limitations in storage influence our results. Averaging our 

rofit value over 245 CAFOs suggests profit on the order of 8555 

SD per CAFO per week, or about 4 4 4,855 USD per CAFO per year

rom participating in the electricity market. Note that we have ig- 

ored the disposition of electricity generation in this estimate in 

avor of an average per-CAFO value. 

In our triple-waste case study we observe that all waste is con- 

umed, and peak electricity prices are reduced even further than 

n the base case. Fig. 11 illustrates this in contrast with the base 

ase and the modified storage cases. From this tripled case, we in- 

erpret that there appears to be significant room for growth in the 

isconsin dairy industry. Coupling dairy waste processing to the 

lectrical grid has the potential to generate revenue streams that 

ncentivize profitable waste processing for dairy farmers. The di- 

estate resulting from this process presents a subsequent opportu- 

ity, with prospective solutions (like shipping the digestate to nu- 

rient deficient locations in other states as a fertilizer, or process- 

ng it further to produce fertilizer products like struvite) not fac- 

ng the full cost of processing due to the revenue stream created 

y electricity market participation. The next logical step is cou- 

ling digestion to a fertilizer industry that addresses phosphorus 
15 
ssues (because the electricity grid coupling does nothing to solve 

he phosphorous issue on its own; it is the revenue stream that is 

mportant in this context). Coupling to the electricity grid lowers 

he cost barriers for market entry in other areas. 

It is also important to note that there are other barriers to dairy 

aste processing that we have not included in our case studies. 

here are inefficiencies associated with biogas storage (compres- 

ion and equipment costs) and farms typically use some fraction 

f the electricity they generate as a part of anaerobic digester op- 

ration through combined heat and power (CHP) systems. There 

s also competition from biogas RINs. These practices reduce the 

rofitability of electricity sales, with the value of the power sold 

o grid functionally amortized over a greater amount of waste; i.e., 

he inefficiencies reduce the value of waste. These factors are dif- 

cult to address and will be studied in future work; here, the pro- 

osed market framework can provide a valuable tool in doing so. 

. Conclusions 

We have presented a graph-based dynamic coordinated market 

ramework for multiproduct SC optimization, generalizing coordi- 

ation to multi-product supply chains in a dynamic setting and 

emonstrating that spatiotemporal transportation induces tempo- 

al dynamics in product prices. This unified spatiotemporal frame- 

ork captures the inherent value of products stemming from inter- 

ctions between market stakeholders: suppliers, consumers, tech- 

ology providers, and transportation providers. In particular, our 

ramework captures product transformation, demonstrating that 

echnology prices capture the relative values of inputs and outputs, 

longside and in concert with spatiotemporal product transporta- 

ion. Primal, dual, and Lagrangian formulations are documented, 

nd are used to establish market pricing properties, which pro- 

ide insight into ISO behavior. Future developments in the mar- 

et framework will reconcile specific physical phenomena that are 

esirable in supply chain models, but seem incompatible with the 

conomic formulation. 

We illustrate the utility of this model by returning to a previ- 

usly published problem based on biogas in the Wisconsin dairy 

ndustry, and show that by capturing the daily variation of elec- 

ricity prices, there is a window of opportunity in which generat- 

ng electricity from dairy biogas is profitable. Moreover, this win- 

ow is wide enough to accommodate substantially larger amounts 

f dairy biogas. Our results suggest that dairy farmers could profit 

on average) at a rate on the order of 445,0 0 0 USD annually, an
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utcome that motivates techno-economic analysis of the proposed 

ystem, accounting for a variety of complicating unmodeled fac- 

ors, to determine the potential realizable value of this biogas. 

In closing, while we have generalized coordination to multi- 

roduct SCs, there are limitations that arise in the model (e.g., re- 

ycle loops must be internal to technologies; we cannot represent 

hem Tominac and Zavala (2020) ) that restrict our use to large- 

cale planning problems rather than short-term economic-based 

cheduling. In future work, we will explore how uncertainty influ- 

nces our coordination framework, and how we use coordination 

n sustainability applications (e.g., understanding emissions policy). 
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