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A B S T R A C T

We establish economic properties for an electricity market clearing formulation that seeks to remunerate
spatio-temporal, load-shifting flexibility provided by data centers (DaCes). Load-shifting flexibility is a key
asset for power grid operators as they aim to integrate larger amounts of intermittent renewable power and to
decarbonize the grid. Central to our study is the concept of virtual links, which provide non-physical pathways
that can be used by DaCes to shift power loads (by shifting computing loads) across space and time. We use
virtual links to show that the clearing formulation treats DaCes as prosumers that simultaneously request load
and provide a load-shifting flexibility service. Our analysis also reveals that DaCes are remunerated for the
provision of load-shifting flexibility based on nodal price differences (across space and time). We also show
that DaCe flexibility helps relieve space–time price volatility and show that the clearing formulation satisfies
fundamental properties that are expected from coordinated markets (e.g., provides a competitive equilibrium
and achieves revenue adequacy and cost recovery). The concepts presented are applicable to other key market
players that can offer space–time shifting flexibility such as distributed manufacturing facilities and storage
systems. Case studies are presented to demonstrate these properties.
1. Introduction

1.1. Motivation and background

The power grid is undergoing major structural changes due to the
adoption of large amounts of renewable power and the need to decar-
bonize operations. Multiple U.S. states have set ambitious renewable
portfolio standards (RPS) that dictate the required level of renewable
energy use in the near future, including California (50% by 2030
according to California Public Utilities Commission [1]), Minnesota
and New York (around 25% by 2025 and 70% by 2030 according to
National Conference of State Legislatures [2]). A critical challenge that
emerges here is the unsteady, non-dispatchable, and spatio-temporal
nature of renewable power. Enabling high penetration of renewable
power requires new sources of load-shifting flexibility [3]. Flexibility is
key asset in power system operations that is often harnessed from
onsumers via demand response and price signals [4].
Rapid expansion of the computing industry also poses significant

challenges to the power grid. Power use from the information tech-
nology (IT) sector is experiencing fast growth (8% in 2016 and pro-
jected at 13% in 2027) and the dynamics and spatial distribution
of data centers (DaCes) now represents a significant demand on the
grid. In addition, the computing infrastructure is undergoing structural
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changes; specifically, motivated by economies of scale, large companies
(e.g., Amazon, Google, Alibaba, and Tencent) are centralizing DaCes.
These DaCes form a computing infrastructure that is managed collec-
tively via network operation centers (NOCs). NOCs have the ability to
shift computing loads/jobs (and associated power loads) across time
(via job scheduling) and across space (via service migration). As a
result, NOCs can play an important role in providing space–time load-
shifting flexibility to the power grid. These synergies are illustrated
in Fig. 1. Motivated by this trend, much research is focused on inte-
gration of data centers and power grids [5,6]. Exploiting load-shifting
flexibility also brings important environmental benefits; for instance,
Google recently introduced a Carbon-Intelligent Compute Management
system that schedules flexible workloads to minimize carbon footprint
(by consuming power at time or locations with low carbon content) [7].

Space–time, load-shifting flexibility can also be provided by other
key electricity market players such as manufacturing and storage sys-
tems. In the context of manufacturing, there is an on-going trend to
deploy small-scale, modular production facilities as a way to harness
distributed and stranded resources (e.g., waste streams, biomass, and
renewable power) and to gain more flexibility in both investment and
operations [8]. The deployment of modular manufacturing systems
vailable online 15 September 2022
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Fig. 1. Interactions between the computing and power infrastructures.

would decentralize power loads and potentially aid power grid oper-
ations. A key example of this trend is that of ammonia and hydrogen
manufacturing, which are currently produced at large centralized facil-
ities [9]. At the same time, it has been recently shown that space–time
electricity market dynamics incentivize the deployment of modular
systems and to decentralize loads; this is because exploiting space–
time dynamics provides investors with a mechanism to mitigate risk
(by exploiting price differences at across space and time [10].

1.2. Status quo of market designs and data center flexibility

There has been growing interest into investigating market mech-
anisms that harness space–time flexibility from DaCes. Recent work
by Wierman and co-workers has identified various forms of DaCe
flexibility that can be of practical use such as load shifting, load
shedding, and geographical load balancing [3]. A recent review also
demonstrates how operations of DaCes can provide demand response
services [11]. Great potentials of frequency regulation provision from
aCes are demonstrated in [12]. With respect to economic incentives,
t has been analyzed how NOCs may be incentivized to exploit price
ifferences across electricity markets [13]. The work in [14] sets up
Stackelberg game to simulate optimal load-shifting strategies that
aCes might follow to real-time pricing signals. The authors of [15]
pply a stochastic optimization framework to study how DCs can
redict coincidental peak-pricing and avoid high cost caused by peak
ours using temporal workload shifting. Research has also focused
n harnessing DaCe flexibility for the specific purpose of exploiting
he availability of renewable power (e.g., as a way to decarbonize
perations and mitigate variability) [16]. For example, work in [17]
hows that optimal placement and participation of DaCes in power grid
arkets (as dispatchable loads) leads to important reductions in power
pillage and cost and to a better utilization of wind generation (thus
nabling higher adoption levels).
Modeling DaCe flexibility is challenging due to the complicated

ature of their workloads [3]. Specifically, DaCes need to process
omplex mixtures of flexible and inflexible loads that vary significantly
ver time. Work by [18] has shown that load-shifting in DaCes can be
een as a form of large-scale storage but also note that incentivizing
he provision of DaCe flexibility in power markets is difficult. It is
lso important to recognize that different DaCes possess different types
nd degrees of spatial flexibility; for instance, some DaCes might only
ossess local flexibility, while others might be equipped with geograph-
cal flexibility. Similarly, some DaCes have different levels of temporal
lexibility, which is dictated by the nature of their workloads (e.g., job
uration).
2

f

DaCes demand responses have been studied using various game-
heoretic modeling frameworks. For instance, online auctioning is ap-
lied to study how to incentivize spatial and temporal flexibility partic-
pation from the DaCe side [19,20]. Nash bargaining frameworks have
lso been employed to study the design incentive mechanisms between
ata centers and load-serving entities [21] and between data centers
nd tenants in order to encourage the utilization of flexibility [22].
hese studies have shown that the amount of flexibility that data
enters are willing to offer is, in fact, highly dependent on electricity
rices. However, the decision-making process of DaCes is not properly
aken into account in existing electricity market designs; as such,
lectricity prices are limited in their ability to incentivize the provision
f flexibility.
Power grids in the U.S. are operated using a coordinated market

esign where an independent system operator (ISO) collects bid infor-
ation from power consumers and suppliers and uses this information
o solve a market clearing problem (an optimization problem). The
olution of this problem seeks to determine power allocations and
ocational marginal prices (LMPs) that maximize the social surplus
the collective profit of all players) subject to myriad constraints of
he underlying physical assets (e.g., transmission, capacity). Clearing
echanisms in current use are largely based on the pioneering works of
chweppe [23] and of Hogan [24,25], the latter of which establish rev-
nue adequacy for transmission congestion payments and uses duality
heory to determine proper remuneration mechanisms to participants
sing clearing prices.
On a related note, various market clearing formulations have been

roposed to capture different characteristics of other specific types of
lexible assets. A high-level review can be found in [26]. More specifi-
ally, formulations in [27,28] propose clearing formulations to capture
ime-dependent generation flexibility. Along the same lines, stochastic
learing formulations have been proposed to analyze whether LMPs
roperly reflect generation uncertainty, while maintaining key eco-
omic properties in the face of such uncertainty (e.g., revenue adequacy
nd cost recovery) [29,30]. New pricing methodology has also been
roposed to capture the cost of using an off-line resource to meet
perational constraints [31]. Several works have explored extending
he standard price-quantity bid format non-conventional market partic-
pants that are spatially and/or temporally flexible [32,33], including
nergy storage systems [34] and prosumers [35].
We recently proposed a market clearing formulation that captures

pace–time load-shifting flexibility of DaCes [36]. This flexibility is
aptured in the market clearing process using a load disaggregation
rocedure that can be represented using virtual links. Virtual links are
on-physical pathways that can be used by the ISO to shift power loads
n space (i.e., by sending a computing load to another geographical
ocation) and time (i.e., by delaying a computing load). This paradigm
s compatible with existing market clearing procedures and reveals
hat virtual links form an additional infrastructure layer (similar to
hat overseen by NOCs) that complements the transmission network.
his paradigm also captures general spatially and temporally flexi-
le loads that can be offered from other players such as distributed
anufacturing facilities and storage systems.

.3. Contributions

In this work, we provide a theoretical analysis of economic properties
or market clearing formulations with virtual links. This analysis re-
eals mechanisms under which DaCes should be remunerated for their
lexibility and reveals information that DaCes should share with the
SO in the bidding process. This also shows that flexible consumers
ct as prosumers that simultaneously pay for requested load and that
re paid for their flexibility service (there is an incentive to offer
lexibility in order to decrease total cost). Our analysis also shows that
irtual links provide a convenient mathematical construct to establish

undamental market properties; specifically, we show that a market that
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harnesses space–time load-shifting flexibility increases the social sur-
plus, achieves revenue adequacy, achieves cost recovery, and provides a
mechanism to mitigate space–time volatility of LMPs. The framework is
applied to case studies to illustrate the theoretical results and practical
impact.

1.4. Paper structure

The paper is structured as follows; Section 2 presents basic market
learing formulations that are used to introduce notation and concepts.
pecifically, we consider a formulation that uses load disaggregation to
apture DaCe flexibility and provide an equivalent representation that
ses virtual links. Section 3 presents a general market formulation that
aptures space–time virtual links along with its properties. Section 4
resents cases studies to illustrate the developments. Section 5 closes
ith remarks on future directions.

. Basic market formulations

The market clearing formulations under study incorporate several
ew elements that are not standard in the power systems literature.
s such, we introduce the reader to these new concepts by exploring a
amily of formulations of increasing complexity. This will also allows us
o introduce basic terminology, notation, and to highlight key concepts
hat motivate our work. The market setting studied is for an energy-
nly setting, similar to those studied in recent market design work
y [29,37,38], and [30].

.1. Basic notation and terminology

We begin our discussion by introducing basic notation for a static
etwork (there is no time associated with it). The market considers a
et of suppliers (owners of power plants)  and consumers (owners of
aCes)  connected to a transmission network comprised of geograph-
cal nodes  and transmission lines  (owned by transmission service
roviders).
Each supplier 𝑖 ∈  is connected to the power grid at node 𝑛(𝑖) ∈  .

he supplier bids into the market by offering power at bid price 𝛼𝑝𝑖 ∈ R+
nd offers available capacity 𝑝̄𝑖 ∈ [0,∞). We define 𝑛 ∶= {𝑖 ∈  | 𝑛(𝑖) =
} ⊆  (set of suppliers connected to node 𝑛). The cleared allocation
or supplier 𝑖 ∈  (load injected) are denoted as 𝑝𝑖 and must satisfy
𝑖 ∈ [0, 𝑝̄𝑖]. We use 𝑝 to denote the collection of all cleared allocations.
A consumer 𝑗 ∈  bids into the market by requesting power at bid

rice 𝛼𝑑𝑗 ∈ R+ and requests a maximum capacity 𝑑𝑗 ∈ [0,∞). We define
𝑛 ∶= {𝑗 ∈  | 𝑛(𝑗) = 𝑛} ⊆  (set of consumers connected to node 𝑛).

For simplicity, we assume that there is only one consumer at a given
node (𝑛 are singletons). The cleared allocation for consumer 𝑗 ∈ 
(load withdrawn) is denoted as 𝑑𝑗 and must satisfy 𝑑𝑗 ∈ [0, 𝑑𝑗 ]. We
use 𝑑 to denote the collection of all cleared allocations. We note that
our formulation does not enforce a hard minimum load (load shedding
is allowed to all levels). However, we can model a base load that is
relatively intolerant to shedding by separating it out as another load
and assigning a high bid price (often referred to as value of lost load
(VOLL) in electricity market literature).

A standard (inflexible) consumer requests that the cleared load 𝑑𝑗
is delivered at a single node 𝑛(𝑗) ∈  . A flexible consumer (a DaCe
owner), on the other hand, offers the possibility that the cleared load
𝑑𝑗 is delivered at a set of possible nodes 𝑑 ⊆ 𝑁 ; in other words,
the cleared load 𝑑𝑗 can be disaggregated and individual portions are
delivered at different nodes. We will see that this load disaggregation
scheme can be seen as a spatial, load-shifting mechanism that can
be modeled using virtual links. For simplicity, we will not make a
distinction between DaCe owners and inflexible consumers. This is
because an inflexible consumer can be modeled as a flexible consumer
3

with𝑑 = {𝑛(𝑗)} (it offers one node option for the load to be delivered).
Each transmission owner has a line 𝑙 ∈  defined by its sending
node snd(𝑙) ∈  and receiving node rec(𝑙) ∈  . The definitions of
snd(𝑙) and rec(𝑙) are interchangeable because power can flow in either
direction. The sending and receiving nodes of a link are also known
as its supporting nodes. For each node 𝑛 ∈  , we define its set of
receiving lines rec𝑛 ∶= {𝑙 ∈  | 𝑛 = rec(𝑙)} ⊆  and its set of sending
ines snd𝑛 ∶= {𝑙 ∈  | 𝑛 = snd(𝑙)} ⊆ . Each line offers a bid price
𝑓
𝑙 ∈ + and capacity 𝑓𝑙 ∈ [0,∞). Note that while in common market
learing practice, transmission line costs are not captured (i.e., 𝛼𝑓𝑙 = 0
for each line 𝑙), we add this generality in order to demonstrate the
similarity between transmission network and flexibility network later.
Each cleared flow 𝑓𝑙 must satisfy the bounds 𝑓𝑙 ∈ [−𝑓𝑙 , 𝑓𝑙] and the
collection 𝑓 must obey the direct-current (DC) power flow equations:

𝑓𝑙 = 𝐵𝑙(𝜃snd(𝑙) − 𝜃rec(𝑙)), (2.1)

where 𝐵𝑙 ∈ R+ is the line susceptance and 𝜃𝑛 ∈ R is the phase
angle at node 𝑛 ∈  . The DC power flow model is a linear model
and requires small phase angle differences across transmission lines
𝜃snd(𝑙) − 𝜃rec(𝑙) ∈ [−𝛥𝜃′𝑙 , 𝛥𝜃′𝑙]. The limits on phase angle differences and
the capacity constraints for flows can be captured as:

− 𝛥𝜃̄𝑙 ≤ 𝜃snd(𝑙) − 𝜃rec(𝑙) ≤ 𝛥𝜃̄𝑙 (2.2)

where 𝛥𝜃̄𝑙 ∶= min{𝑓𝑙∕𝐵𝑙 , 𝛥𝜃′𝑙}.
We use 𝜋𝑛 ∈ R+ to represent the cleared price at node 𝑛 ∈  . The

collection of cleared prices is denoted as 𝜋; these are also known as
nodal prices or LMPs and are used to charge/remunerate market play-
ers. We observe that, in a typical market, suppliers and transmission
owners offer a service to the grid, while inflexible consumers request a
service from the grid. This distinction is important because we will see
that flexible consumers (DaCes) act as prosumers that simultaneously
request a service (request load) and offer a service (flexibility for load
to be delivered at different locations); as such, a well-designed market
should properly remunerate the provision of flexibility by DaCes.

2.2. Basic formulation with inflexible consumers

We begin our discussion by studying a clearing formulation with
inflexible consumers:

max
𝑑,𝑝,𝑓 ,𝜃

∑

𝑗∈
𝛼𝑑𝑗 𝑑𝑗 −

∑

𝑖∈
𝛼𝑝𝑖 𝑝𝑖 −

∑

𝑙∈
𝛼𝑓𝑙 |𝑓𝑙| (2.3a)

s.t.
∑

𝑙∈rec𝑛

𝑓𝑙 +
∑

𝑖∈𝑛

𝑝𝑖 =
∑

𝑙∈snd𝑛

𝑓𝑙 +
∑

𝑗∈𝑛

𝑑𝑗 , (𝜋𝑛) 𝑛 ∈  (2.3b)

𝑓𝑙 = 𝐵𝑙(𝜃snd(𝑙) − 𝜃rec(𝑙)), 𝑙 ∈  (2.3c)

𝑑 ∈ 𝑑 , 𝑝 ∈ 𝑝 , 𝜃 ∈ 𝜃 . (2.3d)

Here, we define the feasible capacity sets 𝑑 ∶= {𝑑 | 𝑑𝑗 ∈ [0, 𝑑𝑗 ] ∀ 𝑗 ∈
}, 𝑝 ∶= {𝑝 | 𝑝𝑖 ∈ [0, 𝑝̄𝑖] ∀ 𝑖 ∈ } and 𝜃 ∶= {𝜃 | 𝜃rec(𝑙) − 𝜃snd(𝑙) ∈
−𝛥𝜃̄𝑙 , 𝛥𝜃̄𝑙] ∀ 𝑙 ∈ }. The objective function (2.3a) is known as the social
surplus or total welfare, which captures the value of demand served (to
be maximized) and the cost of supply and transmission cost services
(to be minimized). The transmission cost is typically not included in
the market clearing literature; this cost is included here to highlight an
important analogy between transmission costs and load-shifting costs
for DaCes (to be discussed later). Specifically, we will see that load-
shifting creates an alternative, non-physical infrastructure network that
is analogous to the transmission network. Constraint (2.3b) is the power
balance constraint at each node 𝑛 (Kirchhoff’s current law).

The solution of the market clearing problem gives the primal allo-
cations (𝑝, 𝑑, 𝑓 ) and the dual allocations 𝜋. The dual allocations are the
dual variables associated with the power balance constraints (2.3b). We
will see that these can be used locational marginal prices (LMPs) that
clear the market. We use (𝑝, 𝑑, 𝑓 , 𝜋) to denote the primal–dual allocation
obtained from the solution of the clearing formulation.

The social surplus (2.3a) is a non-smooth function because of the

presence of absolute value terms. As is standard practice, this can be
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reformulated as a standard linear program by decomposing each line 𝑙
nto directed edges 𝑙+ = (snd(𝑙), rec(𝑙)), 𝑙− = (rec(𝑙), snd(𝑙)) and replace
the terms in (2.3) as 𝑓𝑙 ← 𝑓𝑙+ − 𝑓𝑙− , |𝑓𝑙| ← 𝑓𝑙+ + 𝑓𝑙− , and 𝑓𝑙+ ≥
0, 𝑓𝑙− ≥ 0. We note that the validity of the absolute value reformulation
relies on the assumption that the objective function is minimizing the
absolute value, which helps reduce one of the (𝑓𝑙+ , 𝑓𝑙− ) to zero at the
optimal solution (more details on the validity of the absolute value
reformulation can be found in [39]). We use  to represent the set of
directed edges that results from this decomposition. Each edge 𝑘 ∈ 
from line 𝑙(𝑘) ∈  inherits the susceptance 𝐵𝑘 ∶= 𝐵𝑙(𝑘), bid price
𝛼𝑓𝑘 ∶= 𝛼𝑓𝑙(𝑘), and capacity 𝛥𝜃̄𝑘 ∶= 𝛥𝜃̄𝑙(𝑘). We define the profit term for
ach directed edge in a similar way:
𝑓
𝑘 (𝜋rec(𝑘), 𝜋snd(𝑘), 𝑓𝑘) ∶= (𝜋rec(𝑘) − 𝜋snd(𝑘) − 𝛼𝑓𝑘 )𝑓𝑘 (2.4)

Using these definitions, the transmission cost can be expressed as:
∑

𝑙∈
𝛼𝑓𝑙 |𝑓𝑙| =

∑

𝑙∈
𝛼𝑓𝑙 (𝑓𝑙+ + 𝑓𝑙− ) =

∑

𝑘∈
𝛼𝑓𝑘 𝑓𝑘, (2.5)

and the net flows entering a node 𝑛 can be expressed as:
∑

𝑙∈rec𝑛

𝑓𝑙 −
∑

𝑙∈snd𝑛

𝑓𝑙 =
∑

𝑙∈rec𝑛

(𝑓𝑙+ − 𝑓𝑙− ) −
∑

𝑙∈snd𝑛

(𝑓𝑙+ − 𝑓𝑙− )

=
⎛

⎜

⎜

⎝

∑

𝑙∈rec𝑛

𝑓𝑙+ +
∑

𝑙∈snd𝑛

𝑓𝑙−
⎞

⎟

⎟

⎠

−
⎛

⎜

⎜

⎝

∑

𝑙∈rec𝑛

𝑓𝑙− +
∑

𝑙∈snd𝑛

𝑓𝑙+
⎞

⎟

⎟

⎠

=
∑

𝑘∈rec𝑛

𝑓𝑘 −
∑

𝑙∈snd𝑛

𝑓𝑘.

(2.6)

This leads to the (equivalent) clearing problem:

min
𝑑,𝑝,𝑓 ,𝜃

∑

𝑖∈
𝛼𝑝𝑖 𝑝𝑖 +

∑

𝑘∈
𝛼𝑓𝑘 𝑓𝑘 −

∑

𝑗∈
𝛼𝑑𝑗 𝑑𝑗 (2.7a)

s.t.
∑

𝑘∈rec𝑛

𝑓𝑘 +
∑

𝑖∈𝑛

𝑝𝑖 =
∑

𝑘∈snd𝑛

𝑓𝑘 +
∑

𝑗∈𝑛

𝑑𝑗 , (𝜋𝑛) 𝑛 ∈  (2.7b)

𝑓𝑙+ − 𝑓𝑙− = 𝐵𝑙(𝜃snd(𝑙) − 𝜃rec(𝑙)), 𝑙 ∈  (2.7c)

𝑑 ∈ 𝑑 , 𝑝 ∈ 𝑝 , 𝜃 ∈ 𝜃 (2.7d)

In this formulation, we minimize the negative surplus (as opposed to
maximize the surplus); this equivalent representation will facilitate the
analysis.

A well-designed market clearing formulation must satisfy the fol-
lowing economic properties:

• Competitive Equilibrium: The clearing formulation must deliver
allocations and prices that represent a competitive equilibrium.
Specifically, the market must deliver allocations that balance
supply and demand and that maximize the collective profit for all
players. This property also ensures that the ISO does not interfere
with the competitive nature of the market players.

• Revenue Adequacy: The clearing formulation delivers allocations
and prices such that the total amount of money paid by service
requesters (consumers) covers the total amount paid to all service
providers (suppliers and transmission). This also ensures that the
ISO does not have financial gain.

• Cost Recovery: The clearing formulation delivers allocations and
prices such that no cleared player incurs a financial loss (it
recovers its operating cost).

Although not necessarily a fundamental property, it is often desired that
prices delivered by the market are consistent with bid prices provided
by market players (e.g., prices are bounded by bid prices provided by
players). This property is intimately related to cost recovery; specifi-
cally, for a service provider to not incur a financial loss, its cleared price
must be higher than its bid price (its marginal cost); for a consumer,
4

the cleared price must be lower than its bid price. We thus see that
prices must satisfy some inherent bounding properties in order for cost
recovery to occur.

We now discuss how to establish economic properties for the mar-
ket clearing formulation; our discussion here will be informal and is
intended to introduce the general logic behind the analysis of clearing
formulations (we will follow a similar logic in studying properties for
more complex formulations).

We first need to define the mechanism that will be used to
charge/remunerate players and we then need to verify that such
mechanism is compatible with the clearing formulation (see Fig. 2).
We consider that each supplier 𝑖 is remunerated with price 𝜋𝑛(𝑖) for
each unit of power cleared (injected) and each consumer 𝑗 pays 𝜋𝑛(𝑗)
for each unit of power cleared (withdrawn). Each transmission provider
𝑙 is remunerated using the unit price |𝜋rec(𝑙) − 𝜋snd(𝑙)|, which is the
price difference between the supporting nodes. The profit functions for
supplier 𝑖 ∈ , consumer 𝑗 ∈ , and transmission provider 𝑙 ∈  are
thus:

𝜙𝑝
𝑖 (𝜋𝑛(𝑖), 𝑝𝑖) ∶= (𝜋𝑛(𝑖) − 𝛼𝑝𝑖 )𝑝𝑖 (2.8a)

𝜙𝑑
𝑗 (𝜋𝑛(𝑗), 𝑑𝑗 ) ∶= (𝛼𝑑𝑗 − 𝜋𝑛(𝑗))𝑑𝑗 (2.8b)

𝜙𝑓
𝑙 (𝜋rec(𝑙), 𝜋snd(𝑙), 𝑓𝑙) ∶= (|𝜋rec(𝑙) − 𝜋snd(𝑙)| − 𝛼𝑓𝑙 )|𝑓𝑙| (2.8c)

When convenient, we use the short-hand notation 𝜙𝑝
𝑖 , 𝜙

𝑑
𝑗 , and 𝜙𝑓

𝑙 .
We proceed by defining the partial Lagrange function of the clearing
formulation (2.7) by dualizing the power balance constraints (2.7b)
nly:

(𝜋, 𝑑, 𝑝, 𝑓 ) =
∑

𝑖∈
𝛼𝑝𝑖 𝑝𝑖 +

∑

𝑘∈
𝛼𝑓𝑘 𝑓𝑘 −

∑

𝑗∈
𝛼𝑑𝑗 𝑑𝑗

−
∑

𝑛∈
𝜋𝑛

⎛

⎜

⎜

⎝

∑

𝑘∈rec𝑛

𝑓𝑘 +
∑

𝑖∈𝑛

𝑝𝑖 −
∑

𝑘∈snd𝑛

𝑓𝑘 −
∑

𝑗∈𝑛

𝑑𝑗
⎞

⎟

⎟

⎠

= −
∑

𝑗∈
(𝛼𝑑𝑗 − 𝜋𝑛(𝑗))𝑑𝑗 −

∑

𝑖∈
(𝜋𝑛(𝑖) − 𝛼𝑝𝑖 )𝑝𝑖

−
∑

𝑘∈
(𝜋rec(𝑘) − 𝜋snd(𝑘) − 𝛼𝑓𝑘 )𝑓𝑘

= −
∑

𝑗∈
𝜙𝑑
𝑗 −

∑

𝑖∈
𝜙𝑝
𝑖 −

∑

𝑘∈
𝜙𝑓
𝑘 .

(2.9)

artial Lagrange function is different from Lagrange function in general
n that Lagrange function is derived by dualizing all constraints in
n optimization problem. Constraints that are not dualized remain
ith the partial Lagrange function. The corresponding Lagrange dual
unction is:

(𝜋) ∶= min
𝑑∈𝑑 ,𝑝∈𝑝 ,𝑓∈

𝐿(𝜋, 𝑑, 𝑝, 𝑓 ). (2.10)

here  ∶= {𝑓 |∃ 𝜃 ∈ 𝜃 s.t. 𝑓𝑙+−𝑓𝑙− = 𝐵𝑙(𝜃snd(𝑙)−𝜃rec(𝑙)) ∀ 𝑙 ∈ } denotes
he set of flows that satisfies constraints (2.7c). These definitions allow
s to formulate the Lagrangian dual problem:

max
𝜋

(𝜋). (2.11)

hroughout our study we assume that strong duality holds for all pro-
osed market clearing formulations. For the setting discussed here, this
uarantees that an optimal solution of the clearing problem (2.7)) can
also be found by solving the corresponding Lagrangian dual problem
(2.11).

We now illustrate how to establish that the solution of the clearing
formulation constitutes a competitive equilibrium. By definition, the solu-
tion satisfies the nodal balance constraints (2.7b). Furthermore, given
a set of prices 𝜋, the Lagrange dual function (2.10) can be decomposed
into the independent optimization problems max𝑑𝑗∈[0,𝑑𝑗 ] 𝜙

𝑑
𝑗 for each

consumer 𝑗, max𝑝𝑖∈[0,𝑝̄𝑖] 𝜙
𝑝
𝑖 for each supplier 𝑖, and max𝑓∈

∑

𝑘∈ 𝜙𝑓
𝑘 for

the transmission providers. Thus, the clearing formulation finds prices

that maximize the profit function for each player. From strong duality
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e have that a solution of the Lagrangian dual problem also solves
he clearing problem and thus satisfies the power balance constraints
supply equals demand at each node).
To establish revenue adequacy, we need to show that the total

evenue collected from consumers matches the total revenue allocated
o service providers:
∑

∈
𝜋𝑛(𝑗)𝑑𝑗 =

∑

𝑖∈
𝜋𝑛(𝑖)𝑝𝑖 +

∑

𝑘∈
(𝜋rec(𝑘) − 𝜋snd(𝑘))𝑓𝑘. (2.12)

From the power balance constraints (2.7b) we have that:
∑

∈rec𝑛

𝑓𝑘 +
∑

𝑖∈𝑛

𝑝𝑖 −
∑

𝑘∈snd𝑛

𝑓𝑘 −
∑

𝑗∈𝑛

𝑑𝑗 = 0. (2.13)

This implies that,

∑

𝑛∈
𝜋𝑛

⎛

⎜

⎜

⎝

∑

𝑘∈rec𝑛

𝑓𝑘 +
∑

𝑖∈𝑛

𝑝𝑖 −
∑

𝑘∈snd𝑛

𝑓𝑘 −
∑

𝑗∈𝑛

𝑑𝑗
⎞

⎟

⎟

⎠

= 0. (2.14)

This expression can be written in the following equivalent form:

∑

𝑗∈
𝜋𝑛(𝑗)𝑑𝑗 =

∑

𝑖∈
𝜋𝑛(𝑖)𝑝𝑖 +

∑

𝑛∈
𝜋𝑛

⎛

⎜

⎜

⎝

∑

𝑘∈rec𝑛

𝑓𝑘 −
∑

𝑘∈snd𝑛

𝑓𝑘
⎞

⎟

⎟

⎠

=
∑

𝑖∈
𝜋𝑛(𝑖)𝑝𝑖 +

∑

𝑘∈

(

𝜋rec(𝑘) − 𝜋snd(𝑘)
)

𝑓𝑘, (2.15)

which establishes revenue adequacy.
To establish cost recovery we notice that, for a given set of prices, the

Lagrangian dual problem (2.10) maximizes the profit function for each
ndividual player. Furthermore, since (𝑝, 𝑑, 𝑓 , 𝜃) = (0, 0, 0, 0) is a feasible
trivial) solution we have that, at the optimal allocation, the profit
unction for each player must be non-negative and thus 𝜙𝑝

𝑖 , 𝜙
𝑑
𝑗 , 𝜙

𝑓
𝑙 ≥ 0.

To see how cost recovery leads to price-boundedness, we define the
et of cleared suppliers ∗ ∶= {𝑖 ∈  | 𝑝𝑖 > 0} and the set of cleared
onsumers ∗ ∶= {𝑗 ∈  | 𝑑𝑗 > 0}. From the argument behind cost
ecovery we have 𝜙𝑝

𝑖 (𝜋𝑛(𝑖), 𝑝𝑖) = (𝜋𝑛(𝑖) − 𝛼𝑝𝑖 )𝑝𝑖 ≥ 0 and 𝜙𝑑
𝑗 (𝜋𝑛(𝑗), 𝑑𝑗 ) =

𝛼𝑑𝑗 − 𝜋𝑛(𝑗))𝑑𝑗 ≥ 0. For 𝑖 ∈ ∗, we have 𝑝𝑖 > 0 and thus 𝜋𝑛(𝑖) ≥ 𝛼𝑝𝑖 .
imilarly, for 𝑗 ∈ ∗, we have 𝑑𝑗 > 0 and thus 𝜋𝑛(𝑗) ≤ 𝛼𝑑𝑗 . We will show
ater that the price boundedness property holds for multiple flexible
nd inflexible consumers/generators.
It is often observed that increasing transmission capacity of a line
5

as the effect of reducing the price difference between the connected
odes; in other words, transmission capacity reduces the spatial vari-
bility of prices. In the limit when there is enough transmission ca-
acity and the network is well-connected, power should be allowed
o move freely in the network (there is no market friction) and all
odal prices should collapse to a single value. On the other hand, when
here is not enough transmission capacity and/or the network is not
ell-connected, there will be large differences between nodal prices.
nderstanding the effect of transmission capacity on prices will become
elevant for the formulations studied in this paper; specifically, we will
ee that virtual links form an alternative infrastructure network that
an help overcome limitations of the transmission network.

.3. Basic formulation with flexible consumers

We now expand the previous clearing formulation by incorporating
lexible consumers; specifically, we consider flexible consumers that
ffer load-shifting flexibility by exploiting the availability of multiple
aCes placed at different nodes. For simplicity in the presentation, we
onsider a single flexible consumer. Suppose that this consumer submits
bid for requested load 𝑑 with bid price 𝛼𝑑 ; the requested load can
e served/delivered at a set of nodes 𝑑 ⊆  . Each node 𝑛 ∈ 𝑑
eceives a partial load 𝑑𝑛 ≥ 0; the total load served to the consumer is
𝑛∈𝑑

𝑑𝑛 and satisfies
∑

𝑛∈𝑑
𝑑𝑛 ≤ 𝑑 (total load served cannot exceed

the requested load). The clearing problem is:

min
𝑑,𝑝,𝑓 ,𝜃

∑

𝑖∈
𝛼𝑝𝑖 𝑝𝑖 +

∑

𝑘∈
𝛼𝑓𝑘 𝑓𝑘 − 𝛼𝑑

∑

𝑛∈𝑑

𝑑𝑛 (2.16a)

s.t.
∑

𝑘∈rec𝑛

𝑓𝑘 +
∑

𝑖∈𝑛

𝑝𝑖 =
∑

𝑘∈snd𝑛

𝑓𝑘 + 𝑑𝑛 (𝜋𝑛), 𝑛 ∈ 𝑑 (2.16b)

∑

𝑘∈rec𝑛

𝑓𝑘 +
∑

𝑖∈𝑛

𝑝𝑖 =
∑

𝑘∈snd𝑛

𝑓𝑘 (𝜋𝑛), 𝑛 ∈ ∖𝑑 (2.16c)

0 ≤
∑

𝑛∈𝑑

𝑑𝑛 ≤ 𝑑 (2.16d)

𝑑𝑛 ≥ 0, 𝑛 ∈ 𝑑 (2.16e)

𝑓𝑙+ − 𝑓𝑙− = 𝐵𝑙(𝜃snd(𝑙) − 𝜃rec(𝑙)), 𝑙 ∈  (2.16f)

𝑝 ∈ 𝑝 , 𝜃 ∈ 𝜃 (2.16g)

From the structure of the surplus function we see that the formulation
aims to maximize the total load delivered to the flexible consumer.
From the power balances, we see that nodes offered by the flexible
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consumer (𝑑) can receive load, while those not offered ( ⧵ 𝑑)
cannot. The profit function for the flexible consumer is defined as
𝜙𝑑 (𝜋, 𝑑) ∶=

∑

𝑛∈𝑑
(𝛼𝑑 − 𝜋𝑛)𝑑𝑛. This indicates that the consumer is

charged for power based on the prices of all the nodes offered. This
remuneration mechanism is fundamentally different from that of an
inflexible consumer (which is charged based on the price at a single
node). As such, when a consumer offers load to be delivered at multiple
nodes, it is expected that the ISO can exploit this flexibility to maximize
the consumer profit (if this is not the case, there is no incentive for the
consumer to offer flexibility).

We now establish the fundamental market properties for (2.16)
to highlight differences with the previous market setting. The partial
Lagrange function is:

𝐿(𝜋, 𝑑, 𝑝, 𝑓 ) =
∑

𝑖∈
𝛼𝑝𝑖 𝑝𝑖 +

∑

𝑘∈
𝛼𝑓𝑘 𝑓𝑘 − 𝛼𝑑

∑

𝑛∈𝑑

𝑑𝑛

−
∑

𝑛∈∖𝑑

𝜋𝑛
⎛

⎜

⎜

⎝

∑

𝑘∈rec𝑛

𝑓𝑘 −
∑

𝑖∈𝑛

𝑝𝑖 −
∑

𝑘∈snd𝑛

𝑓𝑘
⎞

⎟

⎟

⎠

−
∑

𝑛∈𝑑

𝜋𝑛
⎛

⎜

⎜

⎝

∑

𝑘∈rec𝑛

𝑓𝑘 −
∑

𝑖∈𝑛

𝑝𝑖 −
∑

𝑘∈snd𝑛

𝑓𝑘 − 𝑑𝑛
⎞

⎟

⎟

⎠

= −
∑

𝑗∈𝑑

(𝛼𝑑 − 𝜋𝑛(𝑗))𝑑𝑗 −
∑

𝑖∈
(𝜋𝑛(𝑖) − 𝛼𝑝𝑖 )𝑝𝑖

−
∑

𝑘∈
(𝜋rec(𝑘) − 𝜋snd(𝑘) − 𝛼𝑓𝑘 )𝑓𝑘,

(2.17)

and the Lagrangian dual problem is:

max
𝜋

(𝜋) ∶= min
𝑑,𝑝,𝑓 ,𝜃

𝐿(𝜋, 𝑑, 𝑝, 𝑓 ) (2.18a)

s.t. 0 ≤
∑

𝑗∈𝑑

𝑑𝑗 ≤ 𝑑 (2.18b)

𝑑𝑛 ≥ 0, 𝑛 ∈ 𝑑 (2.18c)

𝑓𝑙+ − 𝑓𝑙− = 𝐵𝑙(𝜃snd(𝑙) − 𝜃rec(𝑙)), 𝑙 ∈  (2.18d)

𝑝 ∈ 𝑝 , 𝜃 ∈ 𝜃 (2.18e)

The Lagrange dual function (𝜋) can be decomposed to individual
profit maximization problems:

max
𝑑

∑

𝑗∈𝑑

(𝛼𝑑 − 𝜋𝑛(𝑗))𝑑𝑗 (2.19a)

s.t. 0 ≤
∑

𝑗∈𝑑

𝑑𝑗 ≤ 𝑑 (2.19b)

𝑑𝑛 ≥ 0, 𝑛 ∈ 𝑑 (2.19c)

max
𝑝𝑖

(𝜋𝑛(𝑗) − 𝛼𝑝𝑖 )𝑝𝑖 (2.20a)

s.t. 0 ≤ 𝑝𝑖 ≤ 𝑝̄ (2.20b)

max
𝑓,𝜃∈𝜃

∑

𝑘∈
(𝜋rec(𝑘) − 𝜋snd(𝑘) − 𝛼𝑓𝑘 )𝑓𝑘 (2.21a)

s.t. 𝑓𝑙+ − 𝑓𝑙− = 𝐵𝑙(𝜃snd(𝑙) − 𝜃rec(𝑙)), 𝑙 ∈  (2.21b)

It is straightforward to show that the profit maximization problems
for suppliers (2.20) and transmission providers (2.21) are the same
as those of the base formulation with inflexible consumers (under DC
constraints). The main difference that arises here lies in the profit maxi-
mization problem for the consumer (2.19); the structure of this problem
confirms that the flexible consumer should be charged based on the
nodal prices and the corresponding components of the disaggregated
load; moreover, the total load served should not exceed the requested
6

capacity.
Market clearance is guaranteed by satisfaction of the power balance
constraints (2.16b), (2.16c). Furthermore, (2.19)–(2.21) show that the
formulation (2.16) delivers an optimal price and allocation that max-
imize profit for the flexible consumer, each of the suppliers, and the
transmission network. From the balance constraints (2.16b), (2.16c) we
ave:

=
∑

𝑛∈
𝜋𝑛

⎛

⎜

⎜

⎝

∑

𝑘∈rec𝑛

𝑓𝑘 +
∑

𝑖∈𝑛

𝑝𝑖 −
∑

𝑘∈snd𝑛

𝑓𝑘 −
∑

𝑗∈𝑛

𝑑𝑗
⎞

⎟

⎟

⎠

(2.22)

asic manipulations reveal that this expression implies revenue ade-
uacy.
To establish cost recovery, we note again that (𝑝, 𝑑, 𝑓 , 𝜃) = (0, 0, 0, 0)

s a feasible solution and thus the profit function of all players is non-
egative. Non-negative profits implies that 𝜙𝑝

𝑖 (𝜋𝑛(𝑖), 𝑝𝑖) = (𝜋𝑛(𝑖)−𝛼
𝑝
𝑖 )𝑝𝑖 ≥ 0

nd 𝜙𝑑 (𝜋, 𝑑) =
∑

𝑗∈𝑑
(𝛼𝑑 − 𝜋𝑛(𝑗))𝑑𝑗 ≥ 0. If supplier 𝑖 satisfies 𝑝𝑖 > 0,

hen 𝜋𝑛(𝑖) ≥ 𝛼𝑝𝑖 . To establish upper bounds, suppose by contradiction
hat there exists 𝑛 ∈ 𝑑 such that 𝛼𝑑 − 𝜋𝑛 < 0 and 𝑑𝑛 > 0; then, 𝑑
s not optimal (𝑑 does not attain the maximum profit for the flexible
onsumer); we can construct 𝑑′ by letting 𝑑′𝑛′ = 𝑑𝑛′ for 𝑛′ ∈ ∖{𝑗}
nd 𝑑′𝑛 = 0. We thus have that 𝑑′ satisfies all constraints and gives
higher profit; as such, 𝑑𝑛 > 0 implies 𝜋𝑛 ≤ 𝛼𝑑 . We thus see that
he introduction of flexibility affects price boundedness; specifically, for
arkets with inflexible loads, a nodal price can only be upper bounded
y the bid price of the load connected to it. This is not the case for
arkets with flexible loads; specifically, the price for any node in 𝑑
an be bounded by the load bid price 𝛼𝑑 . Therefore, the key insight
ere is that load-shifting flexibility provides a new mechanism for the
SO to control price behavior.

.4. Basic formulation with virtual links

We have seen that there is a natural incentive for flexible consumers
o offer alternative nodes to the ISO in order to access alternative nodal
rices. However, the market clearing formulation previously explored
oes not provide intuition on how DaCe flexibility is remunerated. To
ddress this issue, we propose a mathematically-equivalent formulation
hat treats DaCes as prosumers that simultaneously request power and
ffer load-shifting flexibility. To do this, we introduce the notion of
irtual links; specifically, as shown in Fig. 3, load disaggregation can
e seen as a non-physical transport (shift) of load from a reference node
o a set of alternate nodes.
Suppose the flexible consumer submits a bid for requested load 𝑑

t a hub (reference) node 𝑛ℎ ∈  with bid price 𝛼𝑑 and offers at set
f alternate nodes 𝑑 ⊆  such that 𝑛ℎ ∈ 𝑑 . We use 𝛿𝑛ℎ ,𝑛 ∈ R+ to
enote the amount of load that is shifted from the hub node 𝑛ℎ to the
lternate node 𝑛 ∈ 𝑑 ; we refer to the load-shifting pathway as a virtual
ink. This leads to the following clearing formulation:

min
,𝑝,𝑓 ,𝜃,𝛿

∑

𝑖∈
𝛼𝑝𝑖 𝑝𝑖 +

∑

𝑘∈
𝛼𝑓𝑘 𝑓𝑘 − 𝛼𝑑𝑑 (2.23a)

.t.
∑

𝑘∈rec𝑛

𝑓𝑘 +
∑

𝑖∈𝑛

𝑝𝑖

=
∑

𝑘∈snd𝑛

𝑓𝑘 +

⎧

⎪

⎨

⎪

⎩

𝑑 −
∑

𝑗∈𝑑
𝛿𝑛ℎ ,𝑗 , 𝑛 = 𝑛ℎ

𝛿𝑛ℎ ,𝑛, 𝑛 ∈ 𝑑∖{𝑛ℎ}
0, 𝑛 ∈ ∖𝑑

(𝜋𝑛) (2.23b)

0 ≤ 𝑑 ≤ 𝑑 (2.23c)

𝛿𝑛ℎ ,𝑛 ≥ 0, 𝑛 ∈ 𝑑∖{𝑛ℎ} (2.23d)

𝑑 −
∑

𝑛∈𝑑

𝛿𝑛ℎ ,𝑛 ≥ 0 (2.23e)

𝑓𝑙+ − 𝑓𝑙− = 𝐵𝑙(𝜃snd(𝑙) − 𝜃rec(𝑙)), 𝑙 ∈  (2.23f)

𝑝 ∈ 𝑝 , 𝜃 ∈ 𝜃 (2.23g)
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It is not difficult to observe that formulations (2.16) and (2.23) are
equivalent. Specifically, there exists a bijection between 𝑑𝑛 in (2.16)
nd (𝑑, 𝛿𝑛ℎ ,𝑛) in (2.23) such that each pair satisfies:

𝑛ℎ = 𝑑 −
∑

𝑛∈𝑑

𝛿𝑛ℎ ,𝑛

𝑛 = 𝛿𝑛ℎ ,𝑛, 𝑛 ∈ 𝑑∖{𝑛ℎ}.

feasible solution (𝑑, 𝑝, 𝑓 , 𝜃, 𝛿) of (2.23) implies existence of a feasible
olution (𝑑, 𝑝, 𝑓 , 𝜃) for (2.16) with the same value of (𝑓, 𝜃, 𝑝) (and
iceversa). In addition, both solutions attain the same optimal objective
alue. The partial Lagrange function for (2.23) is:

(𝑑, 𝑝, 𝜃, 𝛿) =
∑

𝑖∈
𝛼𝑝𝑖 𝑝𝑖 +

∑

𝑘∈
𝛼𝑓𝑘 𝑓𝑘 − 𝛼𝑑𝑑 − 𝜋𝑛ℎ

(

∑

𝑘∈rec𝑛ℎ

𝑓𝑘 +
∑

𝑖∈𝑛ℎ

𝑝𝑖 −
∑

𝑘∈snd𝑛ℎ

𝑓𝑘 − 𝑑 +
∑

𝑛∈𝑑

𝛿𝑛ℎ ,𝑛
)

−
∑

𝑛∈𝑑⧵{𝑛𝑑}
𝜋𝑛
(

∑

𝑘∈rec𝑛

𝑓𝑘 +
∑

𝑖∈𝑛

𝑝𝑖 −
∑

𝑘∈snd𝑛

𝑓𝑘 − 𝛿𝑛ℎ ,𝑛
)

−
∑

𝑛∈⧵𝑑⧵{𝑛𝑑}
𝜋𝑛
(

∑

𝑘∈rec𝑛

𝑓𝑘 +
∑

𝑖∈𝑛

𝑝𝑖 −
∑

𝑘∈snd𝑛

𝑓𝑘
)

=(𝜋𝑛ℎ − 𝛼𝑑 )𝑑 −
∑

𝑛∈𝑑

(𝜋𝑛ℎ − 𝜋𝑛)𝛿𝑛ℎ ,𝑛 −
∑

𝑖∈
(𝜋𝑖 − 𝛼𝑝𝑖 )𝑝𝑖

−
∑

𝑘∈
(𝜋rec(𝑘) − 𝜋snd(𝑘) − 𝛼𝑓𝑘 )𝑓𝑘,

(2.24)

nd the Lagrangian dual problem is:

max
𝜋

min
𝑑,𝑝,𝑓 ,𝜃

𝐿(𝜋, 𝑑, 𝑝, 𝜃) (2.25a)

s.t. 0 ≤ 𝑑 ≤ 𝑑 (2.25b)

𝛿𝑛ℎ ,𝑛 ≥ 0, 𝑛 ∈ 𝑑 (2.25c)

𝑑 −
∑

𝑛∈𝑑

𝛿𝑛ℎ ,𝑛 ≥ 0 (2.25d)

𝑓𝑙+ − 𝑓𝑙− = 𝐵𝑙(𝜃snd(𝑙) − 𝜃rec(𝑙)), 𝑙 ∈  (2.25e)

𝑝 ∈ 𝑝 , 𝜃 ∈ 𝜃 (2.25f)

he Lagrange function (2.24) reveals that virtual links are a service
ffered by the consumer. The market remunerates the consumer for
he provision of this service via the profit ∑𝑛∈𝑑

(𝜋𝑛ℎ − 𝜋𝑛)𝛿𝑛ℎ ,𝑛. This
highlights that load-shifting is incentivized whenever there is a nodal
price 𝜋𝑛 that is lower than the price at the hub node 𝜋𝑛ℎ . This is
analogous to how transmission is remunerated (based on nodal price
differences). The market also charges the consumer via the profit (𝛼𝑑 −
𝜋𝑛ℎ )𝑑; consequently, the flexible consumer acts as a prosumer and has
total profit:

(𝛼𝑑 − 𝜋𝑛ℎ )𝑑 +
∑

(𝜋𝑛ℎ − 𝜋𝑛)𝛿𝑛ℎ ,𝑛 = (𝛼𝑑 − 𝜋𝑛ℎ )(𝑑 −
∑

𝛿𝑛ℎ ,𝑛)
7

𝑛∈𝑑 𝑛∈𝑑
+
∑

𝑛∈𝑑

(𝛼𝑑 − 𝜋𝑛)𝛿𝑛ℎ ,𝑛 (2.26)

This is the same profit function shown in (2.17), where the profit
s determined by the difference between the bid price and the price
t the nodes where the loads are shifted to (this further reinforces
he equivalence between the load disaggregation formulation and the
ormulation with virtual links). The load disaggregation formulation
hows the total remuneration for DaCes, while the formulation with
irtual links reveals how the market remunerates the provision of
oad-shifting services. We observe that all market and price properties
stablished for the load disaggregation model hold for the virtual
ink model (since the models are equivalent); as such, these are not
stablished again.

.5. Basic formulation with general virtual links (spatial)

We now generalize the concept of virtual links as a means to
ffer spatial load-shifting flexibility services; this will reveal strong
onnections between the non-physical network formed by virtual links
nd the physical transmission network. Specifically, we will see that
irtual links form an additional infrastructure layer that is not restricted
y DC power flow laws.
We let  be the set of all virtual links; each virtual link 𝑣 ∈  has an

ssociated bid price 𝛼𝛿𝑣 ∈ R+ and capacity 𝛿𝑣 ∈ [0,∞). The cleared load
hifts (virtual flows) are defined as 𝛿𝑣 ∈ R+ and are subject to capacity
constraints 𝛿𝑣 ∈ [0, 𝛿𝑣]. We define snd𝑛 ∶= {𝑣 ∈  ∣ snd(𝑣) = 𝑛} ⊆  ,
rec𝑛 ∶= {𝑣 ∈  ∣ rec(𝑣) = 𝑛} ⊆  to be the set of sending and receiving
virtual links at node 𝑛. Each flexible consumer 𝑗 ∈  is associated
with a set of virtual links 𝑗 ⊆  . For each 𝑣 ∈ 𝑗 , snd(𝑣) = 𝑛ℎ(𝑗)
since each consumer can only bid flexibility going from its hub node to
other alternative nodes. We note that the bid price of the virtual link
can represent cost of shifting load (e.g., opportunity cost of migrating
a computing load). This can also help capture the fact that shifts to
certain nodes can be more expensive (e.g., due to distance or to capture
preferred locations by the market players). The shift cost is analogous
to the service cost of power transmission.

In a base setting with inflexible consumers, the load cleared (with-
drawn) at a node 𝑛 is 𝑑𝑛 =

∑

𝑗∈𝑛
𝑑𝑗 . This does not hold if we consider

lexible consumers, as a requested load at a given node might be
ithdrawn at another node. We thus have that the load withdrawn at
ode 𝑛 is:

𝑛̂ =
∑

𝑗∈𝑛

𝑑𝑗 +
∑

𝑣∈ 𝑖𝑛
𝑛

𝛿𝑣 −
∑

𝑣∈𝑜𝑢𝑡
𝑛

𝛿𝑣. (2.27)

As load shifting is introduced to the market clearing, the clearing
process needs to ensure that a certain DaCe does not absorb a load
that exceeds its available computing capacity. Moreover, the clearing

process needs to ensure that a certain DaCe does not shift load that
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𝑑

exceeds how much it actually possesses. This logic can be captured
using the computing capacity constraints:

0 ≤
∑

𝑗∈𝑛

𝑑𝑗 +
∑

𝑣∈rec𝑛

𝛿𝑣 −
∑

𝑣∈snd𝑛

𝛿𝑣 ≤ 𝑑max
𝑛 , 𝑛 ∈  (2.28)

where 𝑑max𝑛 denotes the capacity of the DaCe located at 𝑛.
The market clearing problem with spatial virtual links is:

min
,𝑝,𝑓 ,𝜃,𝛿

∑

𝑖∈
𝛼𝑝𝑖 𝑝𝑖 +

∑

𝑘∈
𝛼𝑓𝑘 𝑓𝑘 +

∑

𝑣∈
𝛼𝛿𝑣𝛿𝑣 −

∑

𝑗∈
𝛼𝑑𝑗 𝑑𝑗 (2.29a)

s.t.
∑

𝑘∈rec𝑛

𝑓𝑘 +
∑

𝑖∈𝑛

𝑝𝑖 +
∑

𝑣∈snd𝑛

𝛿𝑣 =
∑

𝑘∈snd𝑛

𝑓𝑘

+
∑

𝑗∈𝑛

𝑑𝑗 +
∑

𝑣∈rec𝑛

𝛿𝑣, (𝜋𝑛) 𝑛 ∈  (2.29b)

𝑓𝑙+ − 𝑓𝑙− = 𝐵𝑙(𝜃snd(𝑙) − 𝜃rec(𝑙)), 𝑙 ∈  (2.29c)
0 ≤

∑

𝑗∈𝑛

𝑑𝑗 +
∑

𝑣∈rec𝑛

𝛿𝑣 −
∑

𝑣∈snd𝑛

𝛿𝑣 ≤ 𝑑max
𝑛 , (𝜔𝑙

𝑛, 𝜔
𝑢
𝑛) 𝑛 ∈ 

(2.29d)

𝑑 ∈ 𝑑 , 𝑝 ∈ 𝑝, 𝜃 ∈ 𝜃 , 𝛿 ∈ 𝛿 (2.29e)

where the set 𝛿 ∶= {𝛿 | 𝛿𝑣 ∈ [0, 𝛿𝑣] ∀ 𝑣 ∈ } captures the capacity
constraints for virtual links. Comparing this formulation with the previ-
ous formulation (2.23), we observe that the social surplus (2.29a) now
captures the operational cost of virtual links; moreover, the balance
constraints (2.29b) now include spatial virtual shifts. The dual variables
associated with the computing capacity constraints (2.29d) are denoted
𝜔𝑙
𝑛 and 𝜔𝑢

𝑛, respectively. Note that the operational cost of virtual links
resembles that of operational costs of physical transmission and, as
the name suggest, these capture costs associated with load shifting
(e.g., data transfer costs). In this market, each consumer 𝑗 ∈  is
charged with the electricity price at the hub node and also remunerated
by the shifting service provided through virtual links. As shown in
Section 2.4, the market pays off virtual links by the price difference
between the sending and receiving nodes.

2.6. Basic formulation with general virtual links (temporal)

The concept of virtual links naturally arises from the ability of
DaCes to offer geographical load-shifting flexibility; however, this con-
cept can also be used to capture temporal flexibility. This is key because
DaCes are also able to schedule tasks over time in a way that they
find most efficient/profitable. The key is to capture temporal shifting
flexibility by using virtual links considering a time horizon as a linear
network (with nodes defining time locations). We thus have that virtual
links transport load from a given time location to another time location
in the future.

To see how to incorporate temporal virtual links in the clearing
model, we consider a time horizon given by the time nodes  =
{𝑡1, 𝑡2,… , 𝑡𝑇 }. For simplicity, we consider a network with a single
spatial node (no transmission network is present in this setting). For
each time node 𝑡 ∈  , the DaCe bids a price 𝛼𝑑𝑡 and a capacity 𝑑𝑡
that represents the amount of load requested. Similarly, we consider
a supplier that bids a price 𝛼𝑝𝑡 and a capacity 𝑝̄𝑡 at time 𝑡 ∈  . The
clearing formulation will find optimal levels for load satisfaction 𝑑𝑡 and
generation 𝑝𝑡 for each time 𝑡 ∈  .

Each virtual link 𝑣 ∈  branches from a time node 𝑡 to a later time
node 𝑡′. The virtual link bids into the market at a price 𝛼𝛿𝑣 and capacity
𝛿𝑡. The load at each time 𝑡 ∈  is associated with a set of virtual links
𝑡 ⊆  . For each 𝑣 ∈ 𝑡, we have snd(𝑣) = 𝑡 (since each consumer can
only bid flexibility going from the current time to a later time). The
market clearing process will find the optimal time shift flows 𝛿𝑣 for each
𝑣 ∈  . A distinguishing feature of temporal virtual links (compared
8

to spatial virtual links) is that they are naturally unidirectional. The
temporal model needs to establish balance constraints for each time
node. The load cleared/withdrawn at 𝑡 is:

𝑑𝑡 = 𝑑𝑡 +
∑

𝑣∈ 𝑖𝑛
𝑡

𝛿𝑣 −
∑

𝑣∈𝑜𝑢𝑡
𝑡

𝛿𝑣. (2.30)

Interestingly, we note that this power balance is similar to that of
an energy storage system. This indicates that storage systems act as
transporters/carriers of load and thus can be remunerated as flexibility
providers. This also highlights that virtual links provide a mechanism
to remunerate technologies that can provide load-shifting flexibility
(e.g., buildings, manufacturing, batteries).

The clearing formulation for this setting is:

min
𝑑,𝑝,𝛿

∑

𝑡∈
𝛼𝑝𝑡 𝑝𝑡 +

∑

𝑣∈
𝛼𝛿𝑣𝛿𝑣 −

∑

𝑗∈
𝛼𝑑𝑗 𝑑𝑗 (2.31a)

s.t. 𝑝𝑡 = 𝑑𝑡 +
∑

𝑣∈ 𝑖𝑛
𝑡

𝛿𝑣 −
∑

𝑣∈𝑜𝑢𝑡
𝑡

𝛿𝑣, 𝑡 ∈  (2.31b)

0 ≤ 𝑑𝑡 +
∑

𝑣∈rec𝑡

𝛿𝑣 −
∑

𝑣∈snd𝑡

𝛿𝑣 ≤ 𝑑max
𝑡 , (𝜔𝑙

𝑡 , 𝜔
𝑢
𝑡 ) 𝑡 ∈  (2.31c)

0 ≤ 𝑝𝑡 ≤ 𝑝̄𝑡, 𝑡 ∈  (2.31d)

0 ≤ 𝑑𝑡 ≤ 𝑑𝑡, 𝑡 ∈  (2.31e)

0 ≤ 𝛿𝑣 ≤ 𝛿𝑣, 𝑣 ∈  (2.31f)

The load at each time 𝑡 is charged at the corresponding cleared price
and also remunerated by the shifting service provided through virtual
links; the consumer flexibility is remunerated based on the price differ-
ence between the sending and receiving times. In other words, a load
shift will occur provided there is a price difference. We can see that the
temporal formulation is directly analogous to the spatial formulation;
as such, we can use virtual links to unify space–time shifting.

3. Market formulation with space–time virtual links

In this section, we establish economic properties for a general
market clearing framework with space–time virtual links (3.32). This
formulation unifies all the formulations that we have previously dis-
cussed. We will show that this clearing formulation satisfies revenue
adequacy, cost recovery, and provides a competitive equilibrium. More-
over, we explore the effect of consumer flexibility on space–time price
behavior; specifically, we will show that virtual links mitigate volatility.

Central to our results is the observation that virtual links can be used
to treat space and time load-shifting flexibility in a unified manner, as
shown in Fig. 4. In this illustration, the spatial nodes of the network
are extended into a time dimension using a set of time nodes, thus
becoming a space–time network (a graph). Each time slice of the space–
time graph represents the state of the network at the corresponding
time. This space–time network representation is analogous to those
used in dynamic network flow models.

Consider a space–time clearing setting with spatial nodes  and
temporal nodes  . A node in this space–time graph is defined as the
pair (𝑛, 𝑡) ∈  × (we refer to (𝑛, 𝑡) as a space–time node). Participation
of suppliers, consumers and transmission services is extended to include
a time dimension. Specifically, participants bid prices 𝛼𝑝𝑖,𝑡, 𝛼

𝑑
𝑗,𝑡, 𝛼

𝑓
𝑘,𝑡 and

capacities 𝑝̄𝑖,𝑡, 𝑑𝑗,𝑡, 𝑓𝑘,𝑡 at each time 𝑡 ∈  (bids are a function of time).
The cleared allocations 𝑑𝑗,𝑡, 𝑝𝑖,𝑡, 𝑓𝑘,𝑡 and 𝜃𝑘,𝑡 are also indexed in time.

Virtual links connect space–time nodes; each 𝑣 ∈  is associated
with a sending space–time node snd(𝑣) = (𝑛snd(𝑣), 𝑡snd(𝑣)) and a receiving
space–time node rec(𝑣) = (𝑛rec(𝑣), 𝑡rec(𝑣)). We define snd𝑛,𝑡 ∶= {𝑣 ∈  ∣
snd(𝑣) = (𝑛, 𝑡)} ⊆  , rec𝑛,𝑡 ∶= {𝑣 ∈  ∣ rec(𝑣) = (𝑛, 𝑡)} ⊆  to be the set of
sending and receiving virtual links at space–time node (𝑛, 𝑡). This setting
captures the special case in which 𝑣 is a spatial virtual link if it connects
nodes at different locations but same time (𝑛snd(𝑣) ≠ 𝑛rec(𝑣), 𝑡snd(𝑣) =
𝑡rec(𝑣)). Similarly, the setting captures the special case in which 𝑣 is a
temporal virtual link if it connects nodes at different times but at the

same location (𝑡snd(𝑣) ≠ 𝑡rec(𝑣), 𝑛snd(𝑣) = 𝑛rec(𝑣)). The load 𝑗 ∈  at each
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a

𝑑

Fig. 4. Illustration of space–time load shifting using virtual links.
Fig. 5. Market clearing mechanism with flexible loads using space–time virtual links.
f
f
c

space–time node (𝑛(𝑗), 𝑡(𝑗)) is associated with a set of virtual links 𝑗
nd we have  =

⋃

𝑗∈ 𝑗 .
The clearing formulation with space–time virtual links is:

min
,𝑝,𝑓 ,𝜃,𝛿

∑

𝑡∈

(

∑

𝑖∈
𝛼𝑝𝑖,𝑡𝑝𝑖,𝑡 +

∑

𝑘∈
𝛼𝑓𝑘,𝑡𝑓𝑘,𝑡 −

∑

𝑗∈
𝛼𝑑𝑗,𝑡𝑑𝑗,𝑡

)

+
∑

𝑣∈
𝛼𝛿𝑣𝛿𝑣 (3.32a)

s.t.
∑

𝑘∈rec𝑛

𝑓𝑘,𝑡 +
∑

𝑖∈𝑛

𝑝𝑖,𝑡 +
∑

𝑣∈snd𝑛,𝑡

𝛿𝑣 =
∑

𝑘∈snd𝑛

𝑓𝑘,𝑡 +
∑

𝑗∈𝑛

𝑑𝑗,𝑡

+
∑

𝑣∈rec𝑛,𝑡

𝛿𝑣, (𝜋𝑛,𝑡) 𝑛 ∈  , 𝑡 ∈  (3.32b)

𝑓𝑙+ ,𝑡 − 𝑓𝑙− ,𝑡 = 𝐵𝑙(𝜃snd(𝑙),𝑡 − 𝜃rec(𝑙),𝑡), 𝑙 ∈ , 𝑡 ∈  (3.32c)
0 ≤

∑

𝑗∈𝑛

𝑑𝑗,𝑡 +
∑

𝑣∈rec𝑛,𝑡

𝛿𝑣

−
∑

snd
𝛿𝑣 ≤ 𝑑max

𝑛,𝑡 , (𝜔𝑙
𝑛,𝑡, 𝜔

𝑢
𝑛,𝑡) 𝑛 ∈  , 𝑡 ∈  (3.32d)
9

𝑣∈𝑛,𝑡 s
(𝑑, 𝑝, 𝜃, 𝛿) ∈  (3.32e)

where  ∶= 𝑑 × 𝑝 × 𝜃 × 𝛿 captures the capacity constraints for all
variables:

𝑑 ∶= {𝑑 | 𝑑𝑗,𝑡 ∈ [0, 𝑑𝑗,𝑡] ∀ 𝑗 ∈ , 𝑡 ∈  } (3.33a)

𝑝 ∶= {𝑝 | 𝑝𝑖,𝑡 ∈ [0, 𝑝̄𝑖,𝑡] ∀ 𝑖 ∈  , 𝑡 ∈  } (3.33b)

𝜃 ∶= {𝜃 | 𝜃rec(𝑘),𝑡 − 𝜃snd(𝑘),𝑡 ∈ [−𝛥𝜃̄𝑘,𝑡, 𝛥𝜃̄𝑘,𝑡] ∀ 𝑘 ∈ , 𝑡 ∈  } (3.33c)

𝛿 ∶= {𝛿 | 𝛿𝑣 ∈ [0, 𝛿𝑣] ∀ 𝑣 ∈ } (3.33d)

The social surplus (3.32a) captures the entire time horizon. Constraints
(3.32b) are nodal balances for each space–time node (we denote the du-
als of these constraints as 𝜋𝑛,𝑡). Constraints (3.32c) are DC power flows
or all times. Constraints (3.32d) are computing capacity constraints
or DaCes at space–time node (𝑛, 𝑡). The duals associated with these
onstraints are denoted 𝜔𝑙

𝑛,𝑡 ∈ R+ and 𝜔𝑢
𝑛,𝑡 ∈ R+. The market clearing
etting is illustrated in Fig. 5.
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3.1. Market properties

Our discussion here will focus on the key results and insights;
detailed proofs for all the Theorems in this section are provided in Ap-
endix. To establish market properties for (3.32), we formulate the
artial Lagrange function of (3.32):

𝐿(𝑑, 𝑝, 𝑓 , 𝜃, 𝛿, 𝜋, 𝜔)

=
∑

𝑡∈

(

∑

𝑖∈
𝛼𝑝𝑖,𝑡𝑝𝑖,𝑡 +

∑

𝑘∈
𝛼𝑓𝑙,𝑡𝑓𝑙,𝑡 −

∑

𝑗∈
𝛼𝑑𝑗,𝑡𝑑𝑗,𝑡

)

+
∑

𝑣∈
𝛼𝛿𝑣𝛿𝑣

−
∑

𝑡∈

∑

𝑛∈
𝜋𝑛,𝑡

(

∑

𝑘∈rec𝑛

𝑓𝑘,𝑡 +
∑

𝑖∈𝑛

𝑝𝑖,𝑡 +
∑

𝑣∈snd𝑛,𝑡

𝛿𝑣

−
∑

𝑘∈snd𝑛

𝑓𝑘,𝑡 −
∑

𝑗∈𝑛

𝑑𝑗,𝑡 −
∑

𝑣∈rec𝑛,𝑡

𝛿𝑣
)

+
∑

𝑛∈ ,𝑡∈
𝜔𝑢
𝑛,𝑡

(

∑

𝑗∈𝑛

𝑑𝑗,𝑡 +
∑

𝑣∈rec𝑛,𝑡

𝛿𝑣 −
∑

𝑣∈snd𝑛,𝑡

𝛿𝑣 − 𝑑max
𝑛,𝑡

)

−
∑

𝑛∈ ,𝑡∈
𝜔𝑙
𝑛,𝑡

(

∑

𝑗∈𝑛

𝑑𝑗,𝑡 +
∑

𝑣∈rec𝑛,𝑡

𝛿𝑣 −
∑

𝑣∈snd𝑛,𝑡

𝛿𝑣
)

= −
∑

𝑗∈,𝑡∈
𝜙𝑑
𝑗,𝑡(𝜋̂𝑛(𝑗),𝑡, 𝛼

𝑑
𝑗,𝑡, 𝑑𝑗 )

−
∑

𝑣∈
𝜙𝛿
𝑣(𝜋̂rec(𝑣), 𝜋̂snd(𝑣), 𝛼

𝛿
𝑣 , 𝛿𝑣)

−
∑

𝑘∈,𝑡∈
𝜙𝑓
𝑘,𝑡(𝜋rec(𝑘),𝑡, 𝜋snd(𝑘),𝑡, 𝛼

𝑓
𝑘,𝑡, 𝑓𝑘,𝑡)

−
∑

𝑖∈ ,𝑡∈
𝜙𝑝
𝑖,𝑡(𝜋𝑛(𝑖),𝑡, 𝛼

𝑝
𝑖,𝑡, 𝑝𝑖)

(3.34)

here we define 𝜔𝑛,𝑡 ∶= 𝜔𝑢
𝑛,𝑡 −𝜔𝑙

𝑛,𝑡 and 𝜋̂𝑛,𝑡 ∶= 𝜋𝑛,𝑡 +𝜔𝑛,𝑡. The profits for
emands, virtual links, suppliers, and transmission links are (see Fig. 6):

𝜙𝑑
𝑗,𝑡(𝜋̂𝑛(𝑗),𝑡, 𝛼

𝑑
𝑗,𝑡, 𝑑𝑗 ) ∶= (𝛼𝑑𝑗,𝑡 − 𝜋̂𝑛(𝑗),𝑡)𝑑𝑗,𝑡 (3.35a)

𝜙𝛿
𝑣(𝜋̂rec(𝑣), 𝜋̂snd(𝑣), 𝛼

𝛿
𝑣 , 𝛿𝑣) ∶= (𝜋̂snd(𝑣) − 𝜋̂rec(𝑣) − 𝛼𝛿𝑣 )𝛿𝑣 (3.35b)

𝜙𝑝
𝑖,𝑡(𝜋𝑛(𝑖),𝑡, 𝛼

𝑝
𝑖,𝑡, 𝑝𝑖,𝑡) ∶= (𝜋𝑛(𝑖),𝑡 − 𝛼𝑝𝑖,𝑡)𝑝𝑖,𝑡 (3.35c)

𝑓
𝑘,𝑡(𝜋rec(𝑘),𝑡, 𝜋snd(𝑘),𝑡, 𝛼

𝑓
𝑘,𝑡, 𝑓𝑘,𝑡) ∶= (𝜋rec(𝑘),𝑡 − 𝜋snd(𝑘),𝑡 − 𝛼𝑓𝑘,𝑡)𝑓𝑘,𝑡 (3.35d)

e can thus see that the Lagrange function (3.34) is the negative
um of profit functions for all participants with price adjustment for
aCes due to the capacity constraints (3.32d). The presence of capacity
onstraints for DaCes introduces technical difficulties in the analysis (as
hey couple demands and virtual links). To see this, we note that the
otal profit for the DaCes is:

∑

𝑡∈

(

∑

𝑗∈
(𝛼𝑑𝑗,𝑡 − 𝜋̂𝑛(𝑗),𝑡)𝑑𝑗,𝑡

)

+
∑

𝑣∈
(𝜋̂snd(𝑣) − 𝜋̂rec(𝑣) − 𝛼𝛿𝑣 )𝛿𝑣

∑

𝑗∈,𝑡∈
𝛼𝑑𝑗,𝑡 −

∑

𝑣∈
𝛼𝛿𝑣𝛿𝑣 −

∑

𝑛∈ ,𝑡∈
𝜋̂𝑛,𝑡

⎛

⎜

⎜

⎜

⎝

∑

𝑗∈𝑛

𝑑𝑗,𝑡 +
∑

𝑣∈rec𝑛,𝑡

𝛿𝑣 −
∑

𝑣∈snd𝑛,𝑡

𝛿𝑣

⎞

⎟

⎟

⎟

⎠

.

(3.36)

The profit functions for the DaCes use 𝜋̂ = 𝜋 + 𝜔 as prices (instead
f the LMPs 𝜋). The dual variable 𝜔 adjusts the incentive for load-
shifting to prevent shifting that exceeds computing capacity bounds or
available loads to shift. Specifically, if 𝜔snd(𝑣) > 0, the upper bound
of 𝑑snd(𝑣) is active (meaning that local loads are reaching their upper
limit at snd(𝑣)); thus, 𝜔snd(𝑣) provides incentive to shift. If 𝜔snd(𝑣) < 0,
he local loads are exactly zero, and 𝜔snd(𝑣) eliminates the incentive
o shift. Similarly, if 𝜔rec(𝑣) > 0, the upper bound of 𝑑rec(𝑣) is active,
eaning that local loads reach the maximum at the receiving node;
hus, 𝜔snd(𝑣) eliminates the incentives to shift. If 𝜔rec(𝑣) < 0, the local
10

oads are zero at the receiving node, and 𝜔rec(𝑣) provide incentives for
hifting. An alternative way of interpreting 𝜔 is as an internal price factor
or DaCes; specifically, 𝜔 is the demand–supply relationship of loads
ithin the DaCe network. If loads are not desired at a space–time node,
hen 𝜔 > 0 (the load will be pushed away from the node and therefore
s not as valuable); if loads are desired at a space–time node, 𝜔 < 0 (the
oad will be attracted to the node and therefore it is valuable).
Because we assume that strong duality holds, an optimal solution of

3.32) can be obtained by solving the Lagrangian dual problem:

ax
𝜋,𝜔

min
(𝑑,𝑝,𝜃,𝛿)∈,𝑓∈

𝐿(𝑑, 𝑝, 𝑓 , 𝜃, 𝛿, 𝜋, 𝜔) (3.37)

here  captures the DC power flow constraints (3.32c). For fixed du-
ls 𝜋, 𝜔, the Lagrange function can be decomposed into the individual
rofit maximization problems:

max
𝑖,𝑡∈[0,𝑝̄𝑖,𝑡]

𝜙𝑝
𝑖,𝑡(𝜋𝑛(𝑖),𝑡, 𝛼

𝑝
𝑖,𝑡, 𝑝𝑖,𝑡) (3.38a)

max
𝑗,𝑡∈[0,𝑑𝑗,𝑡]

𝜙𝑑
𝑗,𝑡(𝜋̂𝑛(𝑗),𝑡, 𝛼

𝑑
𝑗,𝑡, 𝑑𝑗,𝑡) (3.38b)

max
𝑣∈[0,𝛿𝑣]

𝜙𝛿
𝑣(𝜋̂rec(𝑣), 𝜋̂snd(𝑣), 𝛼

𝛿
𝑣 , 𝛿𝑣) (3.38c)

max
𝑡∈𝜃𝑡 ,𝑓𝑘,𝑡∈𝑡

∑

𝑘∈
𝜙𝑓
𝑘,𝑡(𝜋rec(𝑘),𝑡, 𝜋snd(𝑘),𝑡, 𝛼

𝑓
𝑘,𝑡, 𝑓𝑘,𝑡) (3.38d)

We now summarize the key economic properties of the market
clearing formulation.

Theorem 3.1. The clearing formulation (3.32) provides an allocation and
prices that represent a competitive equilibrium.

Theorem 3.2. The clearing formulation (3.32) delivers an allocation and
prices that satisfy revenue adequacy.

Theorem 3.3. The clearing formulation (3.32) delivers an allocation and
prices that guarantee cost recovery for all players.

In addition to the basic market properties, one can easily show that
increasing load-shifting flexibility leads to a higher total social surplus.
The intuition is that, with more flexibility offered by DaCes, the ISO has
more options to match demand and supplies across space–time. We use
the notation ( , 𝛿) to represent the market clearing problem (3.32)
in parametric form; the problem is a function of the set of virtual links
 and virtual link capacities 𝛿. We denote the corresponding optimal
social surplus value as 𝜙( , 𝛿). The following result formalizes this
observation.

Theorem 3.4. The social surplus satisfies 𝜙( , 𝛿) ≥ 𝜙(+, 𝛿+) if  ⊆ +

and 𝛿𝑣 ≤ 𝛿+𝑣 for all 𝑣 ∈  .

3.2. Pricing properties

We now investigate how virtual links affect price behavior; this
analysis is new and non-trivial and is thus explained in detail. Detailed
proofs for all the Theorems in this section are provided in Appendix.

We begin by showing that the nodal prices are bounded by the bid
prices of cleared players. We denote (𝑝∗, 𝑑∗, 𝑓 ∗, 𝜃∗, 𝛿∗) and (𝜋∗, 𝜔∗) as
the optimal primal–dual allocation. At each space–time node, we define
the set of cleared suppliers ∗

𝑛,𝑡 ∶= {𝑖 ∈ 𝑛 ∣ 𝑝∗𝑖,𝑡 > 0}, and loads
∗

𝑛,𝑡 ∶= {𝑗 ∈ 𝑛 ∣ 𝑑∗𝑗,𝑡 > 0}.

Theorem 3.5. If ∗
𝑛,𝑡 and ∗

𝑛,𝑡 are non-empty for (𝑛, 𝑡) ∈  ×  , the
optimal prices satisfy:

max
𝑖∈∗

𝑛,𝑡

𝛼𝑝𝑖,𝑡 ≤ 𝜋∗
𝑛,𝑡 ≤ min

𝑗∈∗
𝑛,𝑡
(𝛼𝑑𝑗,𝑡 − 𝜔∗

𝑛(𝑗),𝑡) (3.39)

This result shows that cleared suppliers and consumers define the
bounds for the LMP values. On the load side, we see that the price
bound is on the adjusted price (effect of the shifting capacity con-

∗
strains). If 𝜔𝑛(𝑗),𝑡 > 0 we have that the load is not desired at the node
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Fig. 6. Payment, remuneration, and profit of market players.
nd therefore its value 𝛼𝑑𝑗,𝑡 − 𝜔∗
𝑛(𝑗),𝑡 is decreased; if 𝜔

∗
𝑛(𝑗),𝑡 < 0 we have

hat the load is desired at the node and therefore its value 𝛼𝑑𝑗,𝑡 − 𝜔∗
𝑛(𝑗),𝑡

s increased. If the computing capacity constraints are not active, the
MPs are bounded by the load bid prices.
From cost recovery for virtual links, we have (𝜋̂∗

snd(𝑣)−𝜋̂
∗
rec(𝑣)−𝛼

𝛿
𝑣 )𝛿

∗
𝑣 ≥

0 and thus:

𝛿∗𝑣 > 0 ⇒ 𝜋̂∗
snd(𝑣) − 𝜋̂∗

rec(𝑣) ≥ 𝛼𝛿𝑣 . (3.40)

This indicates that a virtual link is used only if the price difference
between the receiving node and sending node is high enough to over-
come its load-shifting cost (bid price). On the other hand, if the price
difference is lower than the bid price, the virtual link will not be used.
In short, the virtual link bid price (shifting cost) defines the minimum
incentive to activate virtual links.

We have shown that each virtual link 𝑣 ∈  solves the problem

max
𝛿𝑣∈[0,𝛿𝑣]

𝜙𝛿
𝑣(𝜋rec(𝑣), 𝜋snd(𝑣), 𝛼

𝛿
𝑣 , 𝛿𝑣). (3.41)

The optimal solution of this problem satisfies:

𝜋̂∗
snd(𝑣) − 𝜋̂∗

rec(𝑣) > 𝛼𝛿𝑣 ⇒ 𝛿∗𝑣 = 𝛿𝑣 (3.42a)

𝛿∗𝑣 ∈ (0, 𝛿𝑣) ⇒ 𝜋̂∗
snd(𝑣) − 𝜋̂∗

rec(𝑣) = 𝛼𝛿𝑣 (3.42b)

These results are analogous to congestion (friction) behavior observed
in physical transmission networks, in which transmission line conges-
tion creates price differences [40]. Specifically, the price difference
between the supporting nodes of a virtual link equals the shifting cost
when the virtual flow has not hit is capacity bound; this implies that,
when the shift cost is zero, the prices of the supporting nodes will be
the same (this helps homogenize LMPs). On the other hand, when the
virtual flow hits it capacity limit (i.e. when there is congestion in the
virtual link), the price difference is lower bounded by the shift cost
(i.e. price difference is created); since the shift cost is non-negative, we
can see that price at the receiving node will be less than (or equal)
that of the sending node. In other words, the receiving node cannot be
higher (otherwise there is no incentive to shift load).

We note that price boundedness for the case we consider in 2.3
and 2.4 is a special case of this price analysis, with one single flexible
consumer, no computing capacity constraint enforced (i.e., no 𝜔), and
zero-cost virtual links going from a hub node to other serving nodes in
𝑑 . Specifically, Theorem 3.5 shows that the price at the hub node is
bounded by the load bid price; the price differences between the hub
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node and other serving nodes are bounded by the virtual link bid price,
which is zero. As a result, the nodal prices across all serving nodes are
upper bounded by the load bid price.

A key difference between virtual flows and physical flows is that the
former are not subject to any DC network constraints; as such, the only
source of congestion for the virtual links is their capacity constraints.
Note also that virtual flows can travel in space–time; while physical
flows can only travel in space; as such, virtual flows can be used to
mitigate space–time price variability.

We note that DaCes receive the adjusted prices 𝜋 + 𝜔 (due to the
presence of computing capacity constraints); the duals 𝜔 thus play a key
role that we now explain. Because 𝜔𝑢

𝑛,𝑡 ⋅𝜔
𝑙
𝑛,𝑡 = 0 for any space–time node

𝑛, 𝑡 (they are complementary), we have the following interpretation for
possible values of 𝜔:

• 𝜔𝑛,𝑡 = 0: 𝜔𝑢
𝑛,𝑡 = 0 and 𝜔𝑙

𝑛,𝑡 = 0. The incentive for submitting or
shifting a load into space–time node (𝑛, 𝑡) is dependent on the
LMPs 𝜋 alone.

• 𝜔𝑛,𝑡 > 0: 𝜔𝑢
𝑛,𝑡 > 0 and 𝜔𝑙

𝑛,𝑡 = 0. The upper bound is active, which
means the computing resource is scarce at (𝑛, 𝑡). Loads submitted
at and shifted into (𝑛, 𝑡) will compete for this scarce computing
resource. On the other hand, virtual links flowing outward are
incentivized to shift more load.

• 𝜔𝑛,𝑡 < 0: 𝜔𝑢
𝑛,𝑡 = 0 and 𝜔𝑙

𝑛,𝑡 < 0. The lower bound is active, which
means no loads are physically cleared at (𝑛, 𝑡). The DaCe thus have
a higher incentive to submit loads at (𝑛, 𝑡), and virtual links have
a higher incentive to shift loads into (𝑛, 𝑡). On the other hand,
virtual links shifting out will compete for loads to shift.

We now explore the effect of increasing DaCe flexibility on pricing;
for simplicity, we write the Lagrangian dual problem as:

max
𝜋,𝜔

(𝜋, 𝜔), (3.43)

where:

(𝜋, 𝜔) ∶= min
(𝑑,𝑝,𝜃,𝛿)∈,𝑓∈

𝐿(𝑑, 𝑝, 𝑓 , 𝜃, 𝛿, 𝜋, 𝜔) (3.44)

To establish properties that describe the impact of adding virtual link
capacity on the prices, we inspect what happens to the solution of the
clearing problem if we increase the capacity of one virtual link 𝑣 ∈ 
by some amount 𝜖 > 0. The capacity of 𝑣 is expressed as 𝛿𝑣 = 𝛿0𝑣 + 𝜖,
where 𝛿0𝑣 is the original (base) capacity. We denote the Lagrangian dual
problem with capacity 𝛿𝑣 = 𝛿0𝑣 + 𝜖 as:

max𝜖(𝜋, 𝜔). (3.45)

𝜋,𝜔
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(

𝜋

𝜋

𝜋

𝜋

We refer to this problem as (𝜖) and denote a primal–dual solution as
𝑝∗𝜖 , 𝑑∗𝜖 , 𝑓 ∗𝜖 , 𝜃∗𝜖 , 𝛿∗𝜖 , 𝜋∗𝜖 , 𝜔∗𝜖). Note that (𝑝∗0, 𝑑∗0, 𝑓 ∗0, 𝜃∗0, 𝛿∗0, 𝜋∗0, 𝜔∗0)
is an optimal solution of the base problem (0).

Consider now the case of adding capacity to a virtual link that is not
congested. Intuitively, adding capacity to such a link should not benefit
the DaCe. Our analysis shows that, in fact, the unit profit for the shift
(price difference between its supporting nodes minus its shift cost) does
not change. The following result establishes this property.

Theorem 3.6. If 𝛿∗0𝑣 < 𝛿0𝑣 then, for any 𝜖 > 0, we have that:

̂∗𝜖snd(𝑣) − 𝜋̂∗𝜖
rec(𝑣) − 𝛼𝛿𝑣 = 𝜋̂∗0

snd(𝑣) − 𝜋̂∗0
rec(𝑣) − 𝛼𝛿𝑣 . (3.46)

We now focus on the more interesting case of adding capacity to a
virtual link that is congested. Specifically, we show that the unit profit
of a virtual link (the price difference across a virtual link) decreases
with increasing bid capacity of that virtual link.

Theorem 3.7. If 𝛿∗0𝑣 = 𝛿0𝑣 then, for any 𝜖 > 0, we have that:

̂∗𝜖snd(𝑣) − 𝜋̂∗𝜖
rec(𝑣) − 𝛼𝛿𝑣 ≤ 𝜋̂∗0

snd(𝑣) − 𝜋̂∗0
rec(𝑣) − 𝛼𝛿𝑣 . (3.47)

Furthermore, for any 𝜖2 > 𝜖1 > 0,

̂∗𝜖2snd(𝑣) − 𝜋̂∗𝜖2
rec(𝑣) − 𝛼𝛿𝑣 ≤ 𝜋̂∗𝜖1

snd(𝑣) − 𝜋̂∗𝜖1
rec(𝑣) − 𝛼𝛿𝑣 (3.48)

Theorem 3.7 indicates that increasing virtual link capacity has the
effect of reducing the price difference between space–time nodes that
support the virtual links. We note, however, that the ability of virtual
links to reduce price volatility might be affected by computing capacity
constraints (as the duals 𝜔 might distort the prices in a manner that
is difficult to predict). Moreover, we note that Theorem 3.7 does not
guarantee convergence of the price difference to a specific value. To
address these issues, we now proceed to show that, when the capacity
of a virtual link is sufficiently large, the price difference between the
supporting nodes is bounded by the link shift cost. As such, we have the
key result that the price difference can be made arbitrarily small as the
load shift cost is made arbitrarily small.

We recall that minimizing the Lagrange function with respect to
allocation variables is equivalent to individual profit maximization; we
exploit this property to write out the optimal profit of each player as a
function of (𝜋, 𝜔):

𝜙𝑑∗
𝑗,𝑡 (𝜋̂𝑛(𝑗),𝑡) = max{(𝛼

𝑑
𝑗,𝑡 − 𝜋̂𝑛(𝑗),𝑡)𝑑𝑗,𝑡, 0} = |𝛼𝑑𝑗,𝑡 − 𝜋̂𝑛(𝑗),𝑡|+𝑑𝑗,𝑡

(3.49a)

𝜙𝑝∗
𝑖,𝑡 (𝜋𝑛(𝑖),𝑡) = max{(𝜋𝑛(𝑖),𝑡 − 𝛼𝑝𝑖,𝑡)𝑝̄𝑖,𝑡, 0} = |𝜋𝑛(𝑖),𝑡 − 𝛼𝑝𝑖,𝑡|+𝑝̄𝑖,𝑡 (3.49b)

𝜙𝛿∗
𝑣 (𝜋̂snd(𝑣), 𝜋̂rec(𝑣)) = max{(𝜋̂snd(𝑣) − 𝜋̂rec(𝑣) − 𝛼𝛿𝑣 )𝛿𝑣, 0} (3.49c)

= |𝜋̂snd(𝑣) − 𝜋̂rec(𝑣) − 𝛼𝛿𝑣 |+𝛿𝑣 (3.49d)

𝜙𝑓∗
𝑡 (𝜋) = max𝑓𝑡∈𝑡

∑

𝑘∈
(𝜋rec(𝑘),𝑡 − 𝜋snd(𝑘),𝑡 − 𝛼𝑓𝑘,𝑡)𝑓𝑘,𝑡 (3.49e)

where | ⋅ |+ ∶= max{⋅, 0}. The Lagrangian dual function is thus:

(𝜋, 𝜔) = −
∑

𝑡∈

(

∑

𝑗∈
𝜙𝑑∗
𝑗,𝑡 +

∑

𝑖∈
𝜙𝑝∗
𝑖,𝑡 + 𝜙𝑓∗

𝑡

)

−
∑

𝑣∈
𝜙𝛿∗
𝑣 . (3.50)

We now establish the effect of increasing shift capacity; in short, the
virtual link capacity has a critical point beyond which the difference of
𝜋 + 𝜔 between the connected space–time nodes will be bounded by its
bid shift price. Once the virtual link capacity reaches this critical point,
additional capacity will not be used by the market. The details of the
analysis rely heavily on subgradient analysis of (3.50), which can be
found in Appendix.

Theorem 3.8. Assume 𝜕𝜋𝑛,𝑡𝜙
𝑓∗
𝑡 is bounded for any 𝜋; then, for any 𝑣 ∈  ,

∃ 𝑀𝑣 > 0 such that, if 𝜖 > 𝑀𝑣:
∗𝜖 ∗𝜖 𝛿
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̂snd(𝑣) − 𝜋̂rec(𝑣) ≤ 𝛼𝑣
This theorem shows that the price difference is eventually bounded
by the shift cost in the limit of high virtual link capacity. This result
is key, as it shows that virtual links can help homogenize prices (by
controlling price differences). It is important to highlight that the price
differences exploited by virtual links traverse space and time and thus
spatial and temporal price variability can be mitigated. The ability
to control price differences across space and time is a key benefit
over power transmission (which only exploits spatial price differences).
Moreover, one could argue that it is easier to expand virtual link capac-
ity (by installing more DaCes) than it is to install more transmission
lines.

A rigorous proof of price convergence is established here for the
market clearing formulation (3.32), which is quite general but also does
not account for other features encountered in practice (e.g., ramping
constraints and AC power flows). A rigorous analysis of more sophis-
ticated formulations is challenging and is left as a topic of future
work. However, we have observed empirically that similar properties
are observed in more complex formulations (in the next section we
illustrate how temporal virtual links mitigate price volatility introduced
by ramping constraints).

4. Computational studies

In this section we present case studies to demonstrate the theoretical
and results of our market clearing formulation based on virtual links.
All models were implemented in JuMP v1.1 [41] with Julia v1.7 and
solved using Gurobi v9.1. We first analyze a small-scale model to
illustrate the key results and then analyze a large-scale model to show
that the results and insights are scalable. All scripts needed to reproduce
the results can be found in https://github.com/zavalab/JuliaBox/tree/
master/VirtualLinks. We run similar case studies as in [36] but pro-
vide more detailed results on the theoretical properties and empirical
behavior of the market formulation.

4.1. 7-bus spatial system

We consider a 7-bus system at a fixed time, sketched in Fig. 7.
Four DaCes, owned and operated by a single market player, are dis-
tributed at nodes {1, 3, 6, 7}. Their bid prices and capacities are {10, 10,
15, 15} $∕MWh and {13, 17, 17, 13}MWh, respectively. Each DaCe has
a computing capacity of 20MWh and is co-located with a small and
expensive generator with bid price 𝛼𝑝 = 3 $∕MWh and capacity 5MWh.
In addition, nodes 2 and 4 are connected to a large generator with bid
price 𝛼𝑝 = 1 $∕MWh and capacity 20MWh. The transmission network
topology is highlighted using solid lines in Fig. 7. Each line has a
capacity of 10MWh and a bid cost 0.1 $∕MWh.

We considered three scenarios with different virtual link capacity
levels. The results are summarized in Table 1. Scenario 1 represents
the base case in which no virtual links are used. Scenario 2 accounts
for virtual links (1, 7) and (7, 1), both with capacity 5MWh and bid cost
0.3 $∕MWh. Scenario 3 is a replicate of scenario 2, except the capacity is
set as 10MWh. Scenario 4, on top of virtual links in scenario 2, includes
additional virtual links (1, 3) and (3, 1), both with capacity 5MWh and
bid cost 0.3 $∕MWh. Scenario 5 is a replicate of scenario 4, except the
capacity is set as 10MWh. Scenario 6 is a replicate of scenario 5, except
that the computing capacity for each DaCe is increased from 20MWh
to 25MWh. Scenario 7 is a replicate of scenario 6, except that the bid
costs of all virtual links are reduced to 0.

Results for price behavior are summarized in Table 1. Here, 𝜙
represents the social surplus in units of USD ($). In the base case, the
LMPs show clustered patterns, where nodes in the same cycle share
similar prices. We also observe a large price difference between nodes
in the separate cycles. In scenarios 2 and 3, the virtual link connects
across the two cycles (via node 1 and node 7) to exploit the price
difference in between. We see that the price gap between node 1 and
node 7 is reduced to 0.3 $∕MWh in scenario 3, exactly the bid price

https://github.com/zavalab/JuliaBox/tree/master/VirtualLinks
https://github.com/zavalab/JuliaBox/tree/master/VirtualLinks
https://github.com/zavalab/JuliaBox/tree/master/VirtualLinks
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Fig. 7. Scheme for 7-bus system (small generators co-located with DaCes not shown).
Table 1
Results for 7-bus system. Symbol 𝜙 denotes the social surplus. The surplus and dual variables are in units of USD ($).
Scenario 𝜙 [𝜋1 , 𝜋2 , 𝜋3] 𝜋4 [𝜋5 , 𝜋6 , 𝜋7] [𝜔2 , 𝜔3 , 𝜔6 , 𝜔7]

∑

𝑑𝑗 (MWh)

1 522 [3, 1, 2] 1 [14.9, 15, 15] [0, 0, 0, 0] 50
2 577.36 [5, 1, 3] 2.9 [14.87, 15, 14.93] [0, 0, 0, 0] 55
3 605.533 [10, 1, 5.5] 1 [10.233, 10.367, 10.3] [0, 0, 0, 0] 56
4 582.467 [3, 2.4, 2.7] 2.6 [14.867, 15, 14.933] [0, 0, 0, 0] 55
5 618.133 [10, 1, 5.5] 5.4 [10.233, 10.367, 10.3] [0, 4.2, 0, 0] 57.5
6 639.133 [3.3, 2.7, 3] 2.9 [3.533, 3.667, 3.6] [0, 0, 0, 0] 60
7 644.533 [3, 1, 3] 1 [2.933, 3.067, 3] [0, 0, 0, 0] 60
o
c
b
c
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r
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Table 2
DaCe load payments and revenues for different players (in $).
Scenario Total load

payments
Transmission Suppliers Virtual

links
Total
revenue

1 373 180 193 0 373
2 490.13 181.8 258.67 49.67 490.13
3 493.63 273.8 216.83 3 493.63
4 459.03 133.8 264.67 60.57 459.03
5 508.63 185.8 306.33 16.5 508.63
6 203.03 17.8 179.83 5.4 203.03
7 181.13 80.8 100.33 0 181.13

Table 3
Profit for market players (in $, S# denotes supplier at node #).
Scenario DaCe load Virtual links Transmission S2 S4

1 50 0 175 0 0
2 55 48.17 176.77 0 38
3 56 0 268.33 0 0
4 55 58.17 128.67 28 32
4 57.5 0 180.33 0 88
4 60 0 12.33 34 38
5 60 0 75.33 0 0

of the virtual link, as predicted by the pricing properties. We also run
scenario 3 with 𝛿 = 1000MWh, which gives back the same primal and
dual optimal solutions except for the price at node 4 due to degeneracy.
We note that the LMP at node 3 also approaches the LMPs of the other
cycle even though there is no virtual link connected at node 3 yet.
Similarly, the LMPs of nodes 5 and 6 come down to around 10 $∕MWh
with node 7 without virtual links directed connected. Because of the
DC power flow constraints, the addition of virtual links alter the LMPs
of not just the connected nodes, but also neighboring nodes in the
same cluster. The values of 𝜔 for scenarios 1 and 2 are zero, meaning
that computing capacity constraints are inactive. Scenario 5 shows a
case where the addition of a virtual link within cluster {1, 2, 3} does
13

(

not change the prices (compared with scenario 3), even if the price
difference between the connected nodes is much higher than the bid
cost. The reason is that computing capacity constraint is active at the
destination node of the newly added virtual link (node 3), as shown by
the nonzero value of 𝜔3. However, if the computing capacity constraints
are not binding (as in scenarios 6 and 7), the price difference within the
cluster {1, 2, 3} becomes much smaller. In scenario 6, the price gaps
across virtual links (|𝜋1 − 𝜋3| and |𝜋1 − 𝜋7|) are exactly the bid cost
f the virtual links, meaning that the price gaps converge to the best
ase. As an extreme case, scenario 7 shows that the prices [𝜋1, 𝜋3, 𝜋7]
ecome homogeneous when the bid costs are zero. These results are
onsistent with the pricing properties established and show how virtual
inks provide a mechanism to help mitigate spatial variability of prices.
Table 2 summarizes results for load payments and revenues. These

esults verify that revenue adequacy holds for our proposed market
learing formulation. Table 3 summarizes results for profits for different
arket stakeholders. The results verify that the clearing formulation
atisfies cost recovery in all scenarios. Furthermore, we notice that
irtual link profits are strictly positive and comparable to profits of
oad clearing in scenarios 2 and 4, but zero otherwise. This shows that
irtual links provide an extra revenue stream when price volatility is
igh (there exist large price differences to exploit). Another interesting
bservation from scenarios 2 and 4 is that, when the amount of total
leared load is the same, more flexibility leads to lower load payments
nd higher virtual link revenue because the extra flexibility from a new
irtual link provides more ways to clear the DaCe loads. This is not
ecessarily true when the total amount of cleared loads is different,
hough, because clearing more load might need to use more expensive
ower suppliers from the grid. When too much flexibility is provided,
owever, DaCes could benefit from a lower price, as shown by scenarios
and 7 in Table 2, but will lose the virtual link revenue streams

because of low price volatility).
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Table 4
Results for one-bus network with temporal shifting flexibility.
Scenario 𝛿 (MWh) 𝜙 ($) 𝜋 ($/MWh) 𝑑 (MWh) 𝑝 (MWh) 𝛿 (MWh)

1 [0,0,0,0] 4400 [30,−30,40,15] [40,25,40,40] [40,25,40,40] [0,0,0,0]
2 [8,0,0,0] 4856 [30,−30,40,15] [56,25,48,40] [48,33,48,40] [8,0,0,0]
3 [10,0,0,0] 4970 [30,20,40,15] [60,25,50,40] [50,35,50,40] [10,0,0,0]
4 [21,0,0,0] 5040 [23,20,40,15] [70,25,50,40] [50,45,50,40] [20,0,0,0]
5 [21,20,0,0] 5040 [23,20,40,15] [70,25,50,40] [50,45,50,40] [20,0,0,0]
6 [11,0,11,0] 5090 [23,20,40,20] [70,25,50,40] [50,35,50,50] [10,0,10,0]
7 [11,0,11,10] 5197 [30,20,40,27] [61,25,60,40] [50,36,50,50] [11,0,0,10]
8 [11,0,11,20] 5197 [30,20,40,37] [61,25,60,40] [50,36,50,50] [11,0,0,10]
9 [21,0,11,20] 5260 [23,20,40,37] [70,25,60,40] [50,45,50,50] [20,0,0,10]
s
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Fig. 8. Scheme for 4-time system.

Table 5
Total payments and revenue for market players (in units of $).
Scenario Load payments Suppliers Virtual links Total revenue

1 2650 2650 0 2650
2 3450 2970 480 3450
3 4900 4800 100 4900
4 4710 4650 60 4710
5 4710 4650 60 4710
6 4910 4850 60 4910
7 5810 5570 240 5810
8 6210 6070 140 6210
9 5990 5900 90 5990

4.2. 1-bus temporal system

We now consider a single DaCe co-located with one generator over
a time horizon of 4 points. The setup is a modification of the temporal
case shown in [36]. The system is sketched in Fig. 8. At each time
nterval, the DaCe can receive loads shifted from the previous time
nterval and delay loads to some later time interval, thus providing
emporal flexibility (similar to that of a storage system). As boundary
onditions, the DaCe does not receive loads at 𝑡 = 𝑡1, and does not
elay loads at 𝑡 = 4. The load capacity and bid costs of loads and
upplies change with time. The system thus has 𝑇 = 4 time nodes
nd we consider 4 virtual links  ∶= {(1, 2), (1, 3), (1, 4), (3, 4)}. The
supplier capacities are set to 𝑝̄ = {50, 50, 50, 50}, load capacities to
𝑑 = {70, 25, 70, 40}, supplier bidding costs to 𝛼𝑝 = {10, 20, 10, 15}, and
load bidding prices to 𝛼𝑑 = {30, 60, 40, 50}. We fix the bidding cost
for virtual links as 𝛼𝛿 = {3, 3, 3, 3}. To create extreme temporal prices
differences (often seen in real systems), we also incorporate a set of
ramp limit constraints |𝑝𝑡+1 − 𝑝𝑡| ≤ 15.

Nine scenarios with different temporal shifting capacities are pre-
sented in Table 4. The results are analogous to those observed in the
spatial 7-bus case and highlights how virtual links facilitate treating
space and time dimensions in a unified manner. Specifically, the social
surplus and the total amount of delivered loads increase with increasing
shifting capacity. Price variability also becomes smaller with increasing
shifting capacity. In the limit of high shifting capacity, prices converge
and the differences between time nodes are bounded by the shifting
cost, similar to the results of scenario 3 in the 7-bus system. Note that
scenarios 1 and 2 has a negative LMP caused by the ramping limit,
14

which is relieved by virtual links in other scenarios. Another interesting
Table 6
DaCe loads and virtual link and supplier profits (in units of $).
Scenario Loads profit Virtual links profit Suppliers profit

1 3650 0 750
2 3650 456 750
3 2400 70 2500
4 2890 0 2150
5 2890 0 2150
6 2690 0 2400
7 1920 177 3100
8 1520 77 3600
9 2010 0 3250

observation arises from scenarios 1 to 3, where a virtual link between
𝑡1 and 𝑡2 increases the amount of load cleared at 𝑡3. These results
how how temporal flexibility is able to relieve ramping constraints
analogous to how spatial flexibility relieves network transmission con-
traints). However, because temporal shifts only move in the direction
f increasing time, their effects on price gaps are also unidirectional.
pecifically, temporal shifts can only exploit lower prices in later times;
or instance, scenarios 4 and 5 show that adding virtual link (1, 3) does
not change the solution since the price at node 2 is higher than that at
node 3.

Table 5 summarizes the payment and revenue results for the tempo-
al case. We observe that revenue adequacy is satisfied for all scenarios.
able 6 summarizes the profit results for the temporal case. We observe
hat the clearing formulation satisfies cost recovery, since no partici-
ant incurs a negative profit in any scenario. Furthermore, similar to
he spatial system, the revenues and profits generated via virtual links
ecome larger when there is more price volatility in the system.

.3. Space–time IEEE-30 bus system

We now consider a modified version of the IEEE 30-bus system. The
etwork topology is presented in Fig. 9. Each square node is connected
o a load with varying demand capacity in time. The loads bid with
he same price (200 $/MWh) and different capacity levels. A total of
ix of these loads are DaCes owned by the same entity, distributed at
different nodes as shown in Fig. 9. We run the space–time market

clearing model over 𝑇 = 24 h. Virtual links are assigned as follows: a
virtual link is assigned from one DaCes at one time, either to itself at
a later time, or to another DaCe at the same time or a later time. Each
virtual link has a bid price of 0 $∕MWh and capacity of 20MWh. The
two suppliers are designated with a fixed cost and capacity over the
time horizon.

The LMPs of the 30-bus system over the time horizon are plotted
in Fig. 10. We observe that virtual links are able to drastically reduce
both spatial and temporal price volatility. Specifically, with no virtual
links, we can observe prices reaching 200 $/MWh in 8 out of 24
time intervals, and negative prices at 4 time intervals. Table 7 provide
summarizing statistics for LMPs for both cases. The range, standard
deviation and average deviation are all much smaller for the case with
virtual links than the case with no virtual links. In addition, the case of

no virtual links has a mean value that is much higher than its median
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Fig. 9. Scheme of IEEE 30-bus system. Squared nodes are connected to a load. Dashed curves are virtual links (not all virtual links are shown for clarity).
Fig. 10. Price trajectories of all buses over time. Dashed lines denote nodes with DaCes.
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Table 7
Summarizing statistics for LMPs of IEEE 30-bus case study (in units of $/MWh).
LMP Statistics No virtual links With virtual links

Mean 56.6 43.77
Median 44.21 44.22
Maximum 200.0 55.95
Minimum −5.85 18.42
Standard deviation 31.36 5.29
Average deviation 21.3 2.32

value, meaning that the LMP distribution is positively skewed when
there are no virtual links. The price convergence behavior can also be
observed from the LMP distribution shown in Fig. 11. With virtual links,
the LMPs become have less spread and exhibit a higher frequency at
around 50 $/MWh, compared to the case with no virtual links. In the
end, to give some perspective on the computational performance, the
space–time case has a total of 13 992 variables and 28536 constraints
for each instance. Gurobi is able to solve the space–time instances in
less than 1 s.

5. Conclusions and future work

We have presented a market clearing formulation to capture space–
time, load-shifting flexibility provided by data centers. Load-shifting
15

t

Fig. 11. Space–time LMPs distribution.

lexibility is captured using the concept of virtual links, which are
on-physical pathways that can transfer power geographically and
ver time. We show that the proposed market clearing formulation
atisfies fundamental properties (it provides a competitive equilibrium
nd satisfies revenue adequacy and cost recovery). Our analysis reveals
hat DaCes act as prosumers that are remunerated for their provision
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of flexibility; this remuneration is analogous to that of transmission
service providers (based on nodal price differences) but is unique in
that it can traverse space–time. Moreover, we show that load-shifting
flexibility can help mitigate space–time price volatility; specifically, we
show that prices can be made homogeneous as we increase flexibil-
ity. This new feature can be achieved because virtual links provide
alternative pathways that can help relieve physical transmission con-
gestion. We present case studies that illustrate these effects. As part
of future work, we are interested in understanding how data center
flexibility could be used to mitigate risk and maximize reliability. To
do so, it is necessary to develop stochastic market clearing formu-
lations. Another interesting future work question is how to extend
the flexibility remuneration framework to market formulations with
integer variables (e.g. unit commitment), where the pricing method
used in our analysis suffer from the ‘‘missing money’’ problem as integer
commitment costs (e.g., generator start-up costs) cannot be recovered.
While various pricing scheme for non-convex market formulations have
been proposed [42], it is not obvious how load-shifting flexibility (in
the form of virtual links or other form) can be embedded. Moreover,
we are interested in understanding the effect of load-shifting flexibility
on AC power flow systems and in understanding strategic bidding by
DaCes that help exploit space–time price differences.
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Appendix. Proofs of theorems

Proof of Theorem 3.1. The market is cleared by construction, be-
cause the balance constraints (3.32b) are satisfied at any solution.
Furthermore, (3.38) shows that the market clearing formulation (3.32)
delivers an optimal price and allocation that maximize the profit for all
players. □

Proof of Theorem 3.2. The following power balance holds at each
space–time node:
∑

𝑘∈rec𝑛

𝑓𝑘,𝑡 +
∑

𝑖∈𝑛

𝑝𝑖,𝑡 +
∑

𝑣∈snd𝑛,𝑡

𝛿𝑣 −
∑

𝑘∈snd𝑛

𝑓𝑘,𝑡 −
∑

𝑗∈𝑛

𝑑𝑗,𝑡 −
∑

𝑣∈rec𝑛,𝑡

𝛿𝑣 = 0

Multiplying both sides by the corresponding space–time nodal price and
summing over all space–time nodes, we obtain:

∑

𝑛∈ ,𝑡∈
𝜋𝑛,𝑡

(

∑

𝑘∈rec𝑛

𝑓𝑘,𝑡 +
∑

𝑖∈𝑛

𝑝𝑖,𝑡 +
∑

𝑣∈snd𝑛,𝑡

𝛿𝑣

−
∑

𝑘∈snd𝑛

𝑓𝑘,𝑡 −
∑

𝑗∈𝑛

𝑑𝑗,𝑡 −
∑

𝑣∈rec𝑛,𝑡

𝛿𝑣
)

= 0.
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This can be rewritten as:
∑

𝑗∈,𝑡∈
𝜋𝑛(𝑗),𝑡𝑑𝑗,𝑡 =

∑

𝑖∈ ,𝑡∈
𝜋𝑛(𝑖),𝑡𝑝𝑖,𝑡 +

∑

𝑛∈ ,𝑡∈
𝜋𝑛,𝑡

×
(

∑

𝑘∈rec𝑛

𝑓𝑘,𝑡 +
∑

𝑣∈snd𝑛,𝑡

𝛿𝑣 −
∑

𝑘∈snd𝑛

𝑓𝑘,𝑡 −
∑

𝑣∈rec𝑛,𝑡

𝛿𝑣
)

=
∑

𝑖∈ ,𝑡∈
𝜋𝑛(𝑖),𝑡𝑝𝑖,𝑡 +

∑

𝑘∈,𝑡∈
(𝜋rec(𝑘),𝑡 − 𝜋snd(𝑘),𝑡)𝑓𝑘,𝑡

+
∑

𝑣∈
(𝜋snd(𝑣) − 𝜋rec(𝑣))𝛿𝑣

The summation on the left-hand side represents the total payment
by all loads, while the summations on the right-hand side repre-
sent the revenue for suppliers, transmission service provides, and vir-
tual links (service providers), respectively. This establishes revenue
adequacy. □

Proof of Theorem 3.3. Consider the allocation (𝑝∗, 𝑑∗, 𝑓 ∗, 𝛿∗𝑣 ) and duals
(𝜋∗, 𝜔∗); we need to show that

𝜙𝑝
𝑖,𝑡(𝜋

∗
𝑛(𝑖),𝑡, 𝛼

𝑝
𝑖,𝑡, 𝑝

∗
𝑖,𝑡) ≥ 0 (A.51a)

𝜙𝑑
𝑗,𝑡(𝜋̂

∗
𝑛(𝑗),𝑡, 𝛼

𝑑
𝑗,𝑡, 𝑑

∗
𝑗 ) ≥ 0 (A.51b)

𝜙𝛿
𝑣(𝜋̂

∗
rec(𝑣), 𝜋̂

∗
snd(𝑣), 𝛼

𝛿
𝑣 , 𝛿

∗
𝑣 ) ≥ 0 (A.51c)

∑

𝑘∈
𝜙𝑓
𝑘,𝑡(𝜋

∗
rec(𝑘),𝑡, 𝜋

∗
snd(𝑘),𝑡, 𝛼

𝑓
𝑘,𝑡, 𝑓

∗
𝑘,𝑡) ≥ 0. (A.51d)

For the inner problem of (3.37), (𝑝, 𝑑, 𝑓 , 𝜃, 𝛿) = (0, 0, 0, 0, 0) is a feasible
point (for any (𝜋, 𝜔)). For fixed (𝜋, 𝜔), the inner problem is equivalent
to maximizing individual profit functions in (3.38); therefore, (A.51)
hold. □

Proof of Theorem 3.4. Let (𝑑, 𝑝, 𝑓 , 𝜃, 𝛿) be a feasible solution of
( , 𝛿); the nodal balance constraints, and capacity constraints for
𝑑, 𝑝, 𝜃 remain unchanged for (+, 𝛿+) and therefore are satisfied by
(𝑑, 𝑝, 𝑓 , 𝜃, 𝛿). The solution 𝛿𝑣 satisfies the virtual link capacity con-
straints of (+, 𝛿+) because 𝑣 ∈  ⊆ +, and 0 ≤ 𝛿𝑣 ≤ 𝛿𝑣 ≤
𝛿+𝑣 . Therefore, (𝑑, 𝑝, 𝑓 , 𝜃, 𝛿) is feasible for (+, 𝛿+) and 𝜙(+, 𝛿+) ≤
𝜙( , 𝛿). □

Proof of Theorem 3.5. From Theorem 3.3 we have that: 𝜙𝑑
𝑗,𝑡

(𝜋∗
𝑗(𝑛),𝑡, 𝛼

𝑑
𝑗,𝑡, 𝑑

∗
𝑗,𝑡) ≥ 0, 𝜙𝑝

𝑖,𝑡(𝜋
∗
𝑖(𝑛),𝑡, 𝛼

𝑝
𝑖,𝑡, 𝑝

∗
𝑖,𝑡) ≥ 0 holds for any 𝑗 ∈ 𝑛,𝑡, 𝑖 ∈ 𝑛,𝑡;

consequently,

(𝛼𝑑𝑗,𝑡 − 𝜋̂∗
𝑛(𝑗),𝑡)𝑑

∗
𝑗,𝑡 ≥ 0

(𝜋∗
𝑛(𝑖),𝑡 − 𝛼𝑝𝑖,𝑡)𝑝

∗
𝑖,𝑡 ≥ 0.

For any 𝑗 ∈ ∗
𝑛,𝑡 we have that 𝑑∗𝑗,𝑡 > 0; we thus have 𝛼𝑑𝑗,𝑡 − 𝜔∗

𝑛(𝑗),𝑡 ≥ 𝜋∗
𝑛,𝑡.

Similarly, 𝜋∗
𝑛,𝑡 ≥ 𝛼𝑝𝑖,𝑡 for any 𝑖 ∈ ∗

𝑛,𝑡 and thus:

max
𝑖∈∗

𝑛
𝛼𝑝𝑖,𝑡 ≤ 𝜋∗

𝑛,𝑡 ≤ min
𝑗∈∗

𝑛
(𝛼𝑑𝑗,𝑡 − 𝜔∗

𝑛(𝑗),𝑡) □

Proof of Theorem 3.6. If 𝛿∗0𝑣 < 𝛿0𝑣 , then 𝜋̂∗0
snd(𝑣) − 𝜋̂∗0

rec(𝑣) ≤ 𝛼𝛿𝑣 , and thus:

𝜙𝛿∗0
𝑣 = (𝜋̂∗0

snd(𝑣) − 𝜋̂∗0
rec(𝑣) − 𝛼𝛿𝑣 )𝛿

∗0
𝑣 = 0.

This means 𝜖(𝜋∗0, 𝜔∗0) = 0(𝜋∗0, 𝜔∗0) since all other profit values
remain unchanged, which implies that (𝑝∗0, 𝑑∗0, 𝛿∗0, 𝑓 ∗0, 𝜃∗0) also solves
of 𝜖(𝜋∗0, 𝜔∗0). We now look at an arbitrary (𝜋, 𝜔) ≠ (𝜋∗0, 𝜔∗0).
By optimality of (0), we have that 𝜖(𝜋∗0, 𝜔∗0) = 0(𝜋∗0, 𝜔∗0) ≥
0(𝜋, 𝜔). For any (𝜋, 𝜔), any feasible point of 0(𝜋, 𝜔) is feasible
for 𝜖(𝜋, 𝜔). This implies 𝜖(𝜋, 𝜔) ≤ 0(𝜋, 𝜔) ≤ 𝜖(𝜋∗0, 𝜔∗0); thus,
(𝑝∗0, 𝑑∗0, 𝑓 ∗0, 𝜃∗0, 𝛿∗0, 𝜋∗0, 𝜔∗0) solves (𝜖). This implies that (3.46)
holds. □

Proof of Theorem 3.7. If (3.47) holds, then (3.48) holds by setting
𝛿𝑣 = 𝛿0𝑣 + 𝜖1 as the base case, and setting 𝜖 = 𝜖2 − 𝜖1. We now prove

∗ ∗0 ∗0 𝛿
(3.47); let 𝛥𝑣 ∶= 𝜋̂snd(𝑣)− 𝜋̂rec(𝑣)−𝛼𝑣 > 0 be the unit profit of virtual link
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𝛥
t
f

𝑣 in the base solution. Assume that (𝜋, 𝜔) satisfies 𝛥𝑣(𝜋̂) > 𝛥∗
𝑣, where

𝑣(𝜋̂) ∶= 𝜋̂snd(𝑣) − 𝜋̂rec(𝑣) − 𝛼𝛿𝑣 is the unit profit of 𝑣 at price 𝜋̂. We show
hat (𝜋, 𝜔) is not optimal. By optimality of(0), 0(𝜋∗0, 𝜔∗0) ≥ 0(𝜋, 𝜔)
or any (𝜋, 𝜔). At (𝜋∗0, 𝜔∗0), 𝛿∗0𝑣 = 𝛿0𝑣 + 𝜖 since 𝛥∗

𝑣 > 0, and the optimal
values of all other profit terms remain unchanged. Thus,

0(𝜋∗0, 𝜔∗0) −𝜖(𝜋∗0, 𝜔∗0) = 𝛥∗
𝑣(𝛿

0
𝑣 + 𝜖) − 𝛥∗

𝑣𝛿
0
𝑣 = 𝛥∗

𝑣𝜖

The same reasoning holds for (𝜋, 𝜔) that satisfies 𝛥𝑣(𝜋̂) > 0; we have:

0(𝜋, 𝜔) −𝜖(𝜋, 𝜔) = 𝛥𝑣(𝜋̂)𝜖,

then we have:
𝜖(𝜋∗0, 𝜔∗0) −𝜖(𝜋, 𝜔) =(0(𝜋, 𝜔) −𝜖(𝜋, 𝜔)) − (0(𝜋∗0, 𝜔∗0)

−𝜖(𝜋∗0, 𝜔∗0)) + (0(𝜋∗0, 𝜔∗0) −0(𝜋, 𝜔))

=𝛥𝑣(𝜋̂)𝜖 − 𝛥∗
𝑣𝜖 +0(𝜋∗0, 𝜔∗0) −0(𝜋, 𝜔)

=(𝛥𝑣(𝜋̂) − 𝛥∗
𝑣)𝜖 +0(𝜋∗0, 𝜔∗0) −0(𝜋, 𝜔)

>0

where the last inequality holds because 𝛥𝑣(𝜋̂) > 𝛥∗
𝑣, 0(𝜋∗0, 𝜔∗0) ≥

0(𝜋, 𝜔), and (𝜋∗0, 𝜔∗0) solves(0). Since this holds for arbitrary (𝜋, 𝜔)
such that 𝛥𝑣(𝜋̂) > 𝛥∗

𝑣, we conclude that:

𝜋̂∗𝜖
snd(𝑣) − 𝜋̂∗𝜖

rec(𝑣) ≤ 𝜋̂∗0
snd(𝑣) − 𝜋̂∗0

rec(𝑣),

which implies (3.47). □

Before writing out the proof for Theorem 3.8, we define some
more tools that enable this discussion. Using linearity of subdifferential
operator, we calculate the subgradient of the Lagrange dual function
(3.50) with respect to each element of an arbitrary price 𝜋 as follows:

𝜕𝜋𝑛,𝑡 = −

⎛

⎜

⎜

⎜

⎝

∑

𝑗∈𝑛

𝜕𝜋𝑛,𝑡𝜙
𝑑∗
𝑗,𝑡 +

∑

𝑖∈𝑛

𝜕𝜋𝑛,𝑡𝜙
𝑝∗
𝑖,𝑡 +

∑

𝑣∈rec𝑛,𝑡 ∪
snd
𝑛,𝑡

𝜕𝜋𝑛,𝑡𝜙
𝛿∗
𝑣 + 𝜕𝜋𝑛,𝑡𝜙

𝑓∗
𝑡

⎞

⎟

⎟

⎟

⎠

.

Here, + denotes the Minkowski sum and the individual subgradient
terms are:

𝜕𝜋𝑛(𝑖),𝑡𝜙
𝑝∗
𝑖,𝑡 =

⎧

⎪

⎨

⎪

⎩

{0}, 𝜋̂𝑛(𝑖) < 𝛼𝑝𝑖
{𝑝̄𝑖}, 𝜋̂𝑛(𝑖) > 𝛼𝑝𝑖
[0, 𝑝̄𝑖], 𝜋̂𝑛(𝑖) = 𝛼𝑝𝑖

𝜕𝜋𝑛(𝑗),𝑡𝜙
𝑑∗
𝑗,𝑡 =

⎧

⎪

⎨

⎪

⎩

{−𝑑𝑗}, 𝜋𝑛(𝑗) < 𝛼𝑑𝑗
{0}, 𝜋𝑛(𝑗) > 𝛼𝑑𝑗
[−𝑑𝑗 , 0], 𝜋𝑛(𝑗) = 𝛼𝑑𝑗

𝜕𝜋rec(𝑣)𝜙
𝛿∗
𝑣 =

⎧

⎪

⎨

⎪

⎩

{0}, 𝜋̂snd(𝑣) − 𝜋̂rec(𝑣) − 𝛼𝛿𝑣 < 0
{−𝛿𝑣}, 𝜋̂snd(𝑣) − 𝜋̂rec(𝑣) − 𝛼𝛿𝑣 > 0
[−𝛿𝑣, 0], 𝜋̂snd(𝑣) − 𝜋̂rec(𝑣) − 𝛼𝛿𝑣 = 0

𝜕𝜋snd(𝑣)𝜙
𝛿∗
𝑣 =

⎧

⎪

⎨

⎪

⎩

{0}, 𝜋̂snd(𝑣) − 𝜋̂rec(𝑣) − 𝛼𝛿𝑣 < 0
{𝛿𝑣}, 𝜋̂snd(𝑣) − 𝜋̂rec(𝑣) − 𝛼𝛿𝑣 > 0
[0, 𝛿𝑣], 𝜋̂snd(𝑣) − 𝜋̂rec(𝑣) − 𝛼𝛿𝑣 = 0

It is difficult (if not impossible) to derive an analytic form for
𝜕𝜋𝑛,𝑡𝜙

𝑓∗
𝑡 (due to the presence of DC constraints). For the following

analysis, however, we only need to assume that 𝜕𝜋𝑛,𝑡𝜙
𝑓∗
𝑡 is bounded.

Proof of Theorem 3.8. Consider an arbitrary virtual link 𝑣, the
optimality conditions require that:

0 ∈ 𝜕𝜋snd(𝑣)
𝜖(𝜋∗𝜖 , 𝜔∗𝜖)

0 ∈ 𝜕𝜋rec(𝑣)
𝜖(𝜋∗𝜖 , 𝜔∗𝜖)

Each term in the subgradient is an interval of possibly zero length.
When the capacity of 𝑣 increases, all terms remain constant except
for the subgradient terms 𝜕𝜋snd(𝑣)𝜙

𝛿∗
𝑣 and 𝜕𝜋rec(𝑣)𝜙

𝛿∗
𝑣 . This allows us to
17

write the sum of all other terms as constant intervals, which we denote
[𝑎−, 𝑎+] for 𝜕𝜋snd(𝑣)
𝜖 and [𝑏−, 𝑏+] for 𝜕𝜋rec(𝑣)

𝜖 , respectively. Then the
subgradients can be expressed as

𝜕𝜋snd(𝑣)
𝜖 = −

(

[𝑎−, 𝑎+] + 𝜕𝜋snd(𝑣)𝜙
𝛿∗
𝑣

)

𝜕𝜋rec(𝑣)
𝜖 = −

(

[𝑏−, 𝑏+] + 𝜕𝜋rec(𝑣)𝜙
𝛿∗
𝑣

)

Let 𝑀𝑣 = max{−𝑎− − 𝛿0𝑣 , 𝑏
+ − 𝛿0𝑣 , 0} and suppose 𝜖 > 𝑀𝑣. Given

arbitrary duals (𝜋, 𝜔) that satisfy 𝜋̂snd(𝑣) − 𝜋̂rec(𝑣) > 𝛼𝛿𝑣 , we show that
𝜋 does not satisfy the optimality condition for (𝜖) if 𝜖 > 𝑀𝑣. If
𝜋snd(𝑣) + 𝜔snd(𝑣) − 𝜋rec(𝑣) − 𝜔rec(𝑣) − 𝛼𝛿𝑣 > 0, then the subgradients at the
supporting nodes become:

𝜕𝜋snd(𝑣)
𝜖 ⊆ [−𝑎+ − 𝛿0𝑣 − 𝜖,−𝑎− − 𝛿0𝑣 − 𝜖]

𝜕𝜋rec(𝑣)
𝜖 ⊆ [−𝑏+ + 𝛿0𝑣 + 𝜖,−𝑏− + 𝛿0𝑣 + 𝜖]

By definition of 𝑀𝑣, we have:

−𝑎− − 𝛿0𝑣 − 𝜖 < −𝑎− − 𝛿0𝑣 + 𝑎− + 𝛿0𝑣 = 0

−𝑏+ + 𝛿0𝑣 + 𝜖 > −𝑏+ + 𝛿0𝑣 + 𝑏+ − 𝛿0𝑣 = 0

This means that the lower bound of 𝜕𝜋rec(𝑣)
𝜖 is strictly positive, and the

upper bound of 𝜕𝜋snd(𝑣)𝑔 is strictly negative. Therefore, 0 ∉ 𝜕𝜋rec(𝑣)
𝜖 , 0 ∉

𝜕𝜋snd(𝑣)𝑔, which implies (𝜋, 𝜔) is not optimal. □
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