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ARTICLE INFO ABSTRACT

Keywords: Ambitious renewable portfolio standards motivate the mass deployment of energy storage resources (ESR)
Electricity markets as sources of flexibility. As such, the design of electricity markets that properly remunerate the provision of
Virtual links flexibility services by ESRs is under active development. In this paper, we propose a new market clearing

Electricity storage

- > framework that incorporates ESR systems. Compared to existing market designs, our approach models ESR
Price volatility

systems using the concept of virtual links (VLs), which capture the transfer/shift of power across time. The VL
representation reveals economic incentives available for ESR operations and sheds light into how electricity
markets should remunerate ESRs. Our framework also allows us to explore the role of ESR physical parameters
on market behavior; specifically, we show that, while energy and power capacity defines the amount of
flexibility each ESR can provide, charge/discharge efficiencies play a fundamental role in ESR remuneration
and in the ability of the power grid to mitigate market price volatility. The new market design is also
computationally attractive in that it is a linear program and thus avoids mixed-integer formulations and
formulations with complementarity constraints (used in current designs to capture binary charge/discharge
logic). We use our market framework to analyze the interplay between ESRs and market operators and to
provide insights into optimal deployment strategies for ESRs in power grids.

1. Introduction (centralized) markets where ESRs act as price takers; this framework
forms the basis for CAISO electricity market regulations (Parvar et al.,

The power grid in the United States is undergoing significant 2019). Chen and Jing proposed a market clearing formulation that
changes driven by increasing adoption of renewable energy. Multiple captures ESRs with flexible terminal charge conditions that enables

states such as California, Colorado, and Virginia have set ambitious higher flexibility potential (Chen and Jing, 2020). Taylor (2014) and
renewable portfolio standards of 100% by 2050 or earlier (Anon, 2022).

Shioshansi et al. and Lund have shown that electricity storage resources
(ESR) offer significant flexibility potential (Sioshansi et al., 2009; Lund,
2020) that can facilitate the adoption of renewables; however, current
electricity markets managed by independent system operators (ISOs)
are not explicitly designed to enable participation of ESRs. In 2018,
the Federal Energy Regulatory Commission (FERC) released Order 841 ESR systems where, instead of being managed by the market operator,
that aimed to remove barriers limiting ESR participation in wholesale ESRs sell their energy, power capacities, and dispatch actions to other
electricity markets (Commission, 2018); a detailed analysis of FERC market participants (He et al., 2011; Brijs et al., 2016; Thomas et al.,
Order 841 provides more background on the order (Smith, 2019). Since 2020). Liith et al. explore the incorporation of ESR systems in smart

Mufioz-Alvarez and Bitar (2017) introduced the concept of financial
storage rights (FSR) in coordinated market settings, with the former
using the dual prices of ESR physical constraints and the latter loca-
tional marginal prices (LMPs). The concept of physical storage rights
(PSRs) has also been proposed as an alternative market product for

this FERC order was issued, ISOs have proposed various participation grids operated on a peer-to-peer basis (Liith et al., 2018).
models and market rules for ESRs in different energy markets (Chandra, One major computational challenge associated with incorporating
2020). ESR models in optimization models (e.g. energy clearing models) is

Incorporating ESRs into market clearing procedures has been the
subject of recent interest in the power systems literature. This inter-
est is driven by the potential for large-scale ESR incorporation into
energy infrastructures in the near future, and the need to understand
how this will influence operational feasibility and electricity market
prices. Parvar et al. presented a modeling framework for coordinated

the need to capture charge/discharge logic. Specifically, this logic
involves binary logic that prevents simultaneous charging and discharg-
ing (which is economically inefficient and thus do not make practical
sense). Existing market clearing models incorporate this logic by using
complementarity constraints or mixed-integer formulations, which are
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computationally challenging to handle (Choi et al., 2017; Parisio et al.,
2014). To bypass this problem, one usually has to restrict the ESR
to be ideal (no loss in charging and discharging) (Dall’Anese et al.,
2016), or apply relaxations. For instance, Garifi et al. propose a convex
relaxation that removes the complementarity constraints and apply a
penalty term, which enforces suboptimality of solutions that violate the
complementarity constraints (Garifi et al., 2020). However, the value of
the penalty parameter is dependent on the problem parameters, which
can be challenging to determine in market settings where the bidding
parameters are always subject to change by participants.

A significant body of research explores bi-level programs describing
the price-making behavior of ESR systems. Pandzi¢ et al. use a bi-level
programming model where the ESR and ISO each have strategies to
achieve their objectives, with the ESR (upper level) selecting a storage
strategy, subject to the (lower lever) market clearing problem in which
the ESR strategy is treated as a fixed decision (Pandzi¢ and Kuzle,
2015). Their results demonstrate that ESR systems stand to profit the
most when acting as price takers, selecting locations and bidding strate-
gies that do not incur large changes in market prices. Hartwig et al.
apply a similar bi-level framework to study the effect of ESR ownership
arrangements (Hartwig and Kockar, 2015). Mohsenian-Rad proposes a
bi-level programming framework for large-scale geo-distributed ESRs
operating under coordination (Mohsenian-Rad, 2015). Huang et al.
conduct a comparative analysis of market mechanisms for ESR systems
operating under different levels of coordination (Huang et al., 2017),
showing that coordinated ESRSs do benefit from economic bidding
when their operator faces electricity market uncertainty.

In this work, we propose a new energy market design that aims
to incentivize flexibility provided by ESR systems. The market design
applies a robust bound on ESR operations that bypasses the need to
capture charge/discharge logic (our formulation is a linear program
that indirectly enforces this logic). We discuss conditions under which
charge/discharge logic is satisfied in traditional market formulations
for ESRs; moreover we demonstrate that our new market formula-
tion ensures that the logic is satisfied but at the expense of reducing
operational space for ESRs. Our framework is scalable in that it
enables the incorporation of a large number of ESRs in market clearing
procedures (which would be challenging to do with mixed-integer
formulations or formulations with complementarity constraints). In
addition, a key feature of our market design is that decomposes ESR
charging and discharging operations into temporal energy transfer
and net-charging/discharging components. The charging operation is
treated as a paid service instead of utility gained by the ESR (as is done
in load modeling). Energy transfer is captured using virtual links (VLs),
which are pathways that capture transfer/shifting of power across
time. Our framework reveals that VLs exploit temporal price differences
(volatility) by storing and discharging power at strategic times in order
to maximize profit. We also show that our framework ensures that
ESRs are remunerated consistently as a part of the market clearing
process. We also use our framework to explore the effect of different
physical parameters on the flexibility provision of each ESR and on
market outcomes. Specifically, we show that ESR roundtrip efficiencies
play a fundamental role in the ability of the ISO to mitigate market
volatility. Using numerical experiments, we explore optimal investment
and operational strategies for ESRs and their interplay with ISO goals.

The paper is structured as follows. In Section 2 we provide the
operational ESR model that is incorporated into the market clearing
formulation. In Section 3 we provide the basic market clearing model,
and show how ESRs can be incorporated into this model with different
features, building complexity with successive formulations. We present
illustrative numerical experiments in Section 4, and provide analysis to
interpret the results. Section 5 concludes the paper.
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Fig. 1. Schematic of the ESR operational model at a given time point 7.

2. ESR operational model

We first lay out the operational ESR system model that we use in
this paper. The operational model is based on work by Parvar et al.
(2019) and captures key constraints relevant to the modeling of ESRs
in market settings. Fig. 1 summarizes our model notation. We also refer
readers to Section B in the Appendix for a complete nomenclature.

The ESR operational model keeps track of the charge states and
operations of an ESR system indexed b € B over a discretized time
horizon 7 := {1,2,...,T}; the model aims to ensure that it obeys
physical constraints including charge/discharge status, capacity limits,
and terminal charge requirements. Specifically, we define s,, € R to be
the state-of-charge (SOC) at the end of time interval t € T, pzy S R, be
the charging power of ESR b during time interval t € 7, and p‘b’,t eR,
be the discharging power of ESR b during time interval + € 7. Each ESR
system b € B is characterized by a set of key physical parameters.

'IZ € [0, 1]: charging efficiency

n €10, 1]: discharging efficiency

s, € R,: minimum SOC

5, € R,: maximum SOC
sp0 € sy, 3]: SOC at time 0
P € R, : power capacity for charging/discharging

The storage model is formulated by the following set of constraints:

1

Spi = Spam1 F WPy, — rl—dPZ,,, b, 1)ye BXT (2.1a)
b

5, < Sy, <5 (b EBXT (2.1b)

Py, + Py, <Py (b)) EBXT 2.10)

0<ps, Lpl >0, (bneBXT (2.1d)

Spr = Spo, bEB (2.1e)

Eq. (2.1a) captures dynamics of SOC over time and associated
energy losses. We implicitly assume that the charging and discharging
time is 1 h (so the time increment A¢ is not included in the model).
Constraint (2.1b) captures the SOC capacity constraints. Constraint
(2.1¢) captures power capacity constraints. Constraint (2.1d) is the
complementarity constraint that captures charging/discharging logic
(at each time interval, an ESR must be either charging or discharging,
but not both). We note that, while physically possible to charge
and discharge an ESR simultaneously, the complementarity constraint
is enforced in ESR modeling for economic and efficiency reasons.
Specifically, it does not make economic sense to charge and discharge
simultaneously (due to energy losses). Constraint (2.1e) captures the
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terminal condition for SOC, which is not physically necessary but rather
a market operation requirement.

One can capture the charging/discharging complementarity by us-
ing binary variables or directly as complementarity constraints, which
will make the model mixed-integer or nonconvex in nature. We thus
see that the presence of complementarity makes the storage operational
model computationally challenging in nature, which limits the ability
to capture large numbers of ESRs in market clearing models.

Eq. (2.1a) can be written in the following equivalent form:

t
Sha = Sp0 F 15 D P — Z vl 2.2)

=1 b t'=1
This allows us to write the storage model (2.1) purely in terms of p©
and p?:
t

t
> Py <45, 1€T

1
s, <1f Z Py - = (2.32)
=1 b t'=1
: g
Pyt Py <Py 1ET (2.3b)
0<p;, Lp), >0, 1eT (2.30)
where 4s,, =5, — sy for t < T, 4s, ;. = 0, and 45, := 5, — 5.

Inequahty (2 le) is merged into the left-hand side of (2.3a) via the
definition of 4s,,.. Note that from a computational perspective, the
aggregated formulation (2.3) has a dense Jacobian and thus might slow
down linear solvers. However, as we will show later, this formulation
allows us to reveal how energy capacity becomes a key resource that
defines the amount of flexibility an ESR can provide. In other words, the
aggregated formulation is introduced simply for theoretical analysis; if
one desires to avoid dense Jacobians, one can simply write down the
dynamic constraints explicitly.

3. Market formulation with storage

The market clearing formulations that we propose apply the concept
of VLs to model ESR systems. Virtual links were first proposed to
capture load-shifting flexibility from data centers (Zhang et al., 2020;
Zhang and Zavala, 2021) and are not standard in the power systems lit-
erature; as such, we introduce a family of formulations with increasing
complexity.

3.1. Notation and terminology

We begin our discussion by introducing basic notation for a space—
time network without considering ESR systems. The detailed setup
and derivation for the space-time clearing formulation is discussed
by Zhang and Zavala (2021). Here, we provide a brief review of the
setup. The market considers, over time horizon 7 := {1,2,...,T}, a
set of suppliers (owners of power plants) S and consumers (owners
of loads) D. Each participant is connected to a transmission network
comprised of geographical nodes N and transmission lines £ (owned
by transmission service providers).

Each supplier i € S is connected to node n(i) € N in the network.
The supplier bids into the market by offering power at bid price (often
simply referred to as “bid”) o], € R, and offers available capacity
Pi; €10,00) for each r € 7. We def1ne S, :={ieS|n@i)=n} CS (set
of suppliers connected to node n). The cleared allocation for supplier
i € S (load injected) are denoted as p;, and must satisfy p;, € [0, j; ].
We use p to denote the collection of all cleared allocations.

Each consumer j € D is connected to node n(j) € N'. The consumer
bids into the market by requesting power at bid price aﬁ , € R, and
requests a maximum capacity d;, € [0, ) for each + € 7. We define
D, :={j € D|n(j) = n} C D (set of consumers connected to node n).
For simplicity, we assume that there is only one consumer at a given
node (D, are singletons). The cleared allocation for consumer j € D
(load withdrawn) is denoted as d it and must satisfy d;, €10, d; 1. We
use d to denote the collection of all cleared allocations
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The transmission owner owns the whole network, where each (undi-
rected) line / € £ is defined by its sending node snd(/) € N and
receiving node rec(!) € N. For the purpose of linearizing the market
clearing problem (the details of which are provided by Zhang and
Zavala (2021)), we decompose each line / into a couple of directed
edges: It := (snd(/),rec(!)) and [~ := (rec(l),snd(!)). The set of all
directed edges from such decomposition is K := U, {I*,/7}. For each
node n € N, we define its set of receiving lines K¢ = (ke K|n=
rec(k)} C K and its set of sending lines ICS““l :={k e K|n=snd(k)} C
K. Each line offers a bid price ak € R, and capacity f;, € [0, o).
Each cleared flow f, , must satisfy the bounds £, , € [-f; . f;,] and the
collection f must obey the direct-current (DC) power flow Egs. (3.4)

Sres = Fi-0 = BiOsnay s —

where B, € R, is the line susceptance and ¢, € R is the phase
angle at node n € N. The DC power flow model is a linear model
and requires small phase angle differences across transmission lines
Osnd(iy.s — Orecnys € [—467;,, 40", ,]. The limits on phase angle differences
and the capacity constraints for flows are captured by Eq. (3.5)

grec(l)ft)’ (3'4)

— 40, < 0540y — Brecys < 40, 3.5

where 46, := min{f; B} !, 40, ,}.

We use 7z, € R, to represent the clearing price at the space-time
node (n,f) € N x T. The collection of clearing prices is denoted as
r; these are also known as nodal prices or locational marginal prices
(LMPs) and are used to remunerate market stakeholders. We observe
that in a typical market, suppliers and transmission owners offer a
service to the grid, while consumers request a service from the grid.
Making this distinction is important because we will see later that there
are multiple ways to capture ESRs in a market clearing framework,
which differ in whether ESR is treated as a pure service provider or
as a prosumer (a simultaneous service provider and consumer). This
standard market clearing process is illustrated in Fig. 2.

3.2. Base electricity market formulation

We begin our discussion with a space-time market clearing formu-
lation with no ESR presence formulated in Eq. (3.6)

mr DG Tl 3 o) (362)
teT i€S
s.t. Z Jra+ Z Piy = Z fk,t + Z djp (mny)
kekree i€S, ke)Cf,nd JED,
neEN,teT (3.6b)
Srea = fi=1 = BiOsnaqys — Orecys)» 1ELHET (3.6¢)
d,p,0)ec (3.6d)
where C := C? x C? x C? captures the capacity constraints for all
variables:
Cyi={d|d;, €0.d;,]VjeD, 1eT) (3.7a)
={plp; €10,p;,]ViES €T} (3.7b)
9 1= 10| Orectons — Osndios € [—40,,, 40, 1V ke K, 1 €T} (3.70)

The objective (3.6a) is the negative social surplus or total welfare,
which captures the value of the demand served (to be maximized) and
the cost of total supply and transmission services (to be minimized).
The transmission cost is typically not included in the market clearing
literature; this cost is included here to highlight an important analogy
between transmission costs and power-shifting costs of ESR systems (to
be discussed later). Constraint (3.6b) is the power balance constraint
at each node n (Kirchhoff’s current law). Constraint (3.6¢) is the DC
power flow equation for each line /.
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Fig. 2. Sketch of base (standard) market clearing framework with no ESRs.

The solution of (3.6) gives the primal allocations (p,d, f) and the
dual allocations (prices) z. The dual allocations are the optimal so-
lutions of the dual variables associated with the power balance con-
straints (3.6b). These dual allocations are electricity LMPs that clear
the market. This market clearing process is illustrated in Fig. 2. Most
often, prices will vary across locations and times (thus giving rise to
space-time volatility).

We use (p,d, f,r) to denote the primal-dual allocation obtained
from the solution of the clearing formulation. Under this market clear-
ing mechanism, each supplier i is cleared at the price =z, , for each
unit of power provided at time ¢, and each consumer j pays at the price
7,(j, for each unit of power consumed at time ¢. Each transmission line
I is remunerated by the price difference |7g,q(;); = #rec(), | at time z. The
profit function for each participant (and at each time) is defined as a
function of the LMPs and the primal allocations:

¢f,, = @ugys = “f,,)Pi,z (3.8a)
be = (), = m),0d (3.8b)
¢£,r = (Trec(ty,r = Fsnd(iyr — a{)f k (3.80)

3.3. Base market formulation with ESR

We now extend the space-time market formulation to capture ESR
systems as a new type of market participant denoted by the set 3. Each
ESR b € B is connected to the power grid at node n(b) € N. The ESR
bids into the market by offering charging service at bid price @ and
discharging service at bid price a;d for each timer e 7.

The clearing formulation for markets with ESR participants is pre-
sented in (3.9).

minch(Za,,Pn+zakxfkr Z Jf/t

d.p.f0.0°.0% [ TF N igs

+ Y o, + X i, ) (3.92)
beB beB
z S+ Z bigt z y,
kexee = beB,
Y fet Xd+ Y B InENtET (3.9b)
ke ICZ“d JED, beB,
fivy = fim 1 = BiOsndaqys = Orecys) | ELTET (3.909)

t
b,_anpb,,—ideZ’,,SM,,, beBIET (3.9d)
1'=1 My =1
Py, +p, <Py bEBIET (3.9¢)
Py, 20, bEBIET (3.90)
d,p.o)ecC (3.98)

The social surplus (3.9a) captures the charging and discharging
costs of ESRs over the entire time horizon. The nodal power balances
(3.9b) capture ESR charging and discharging dynamics. Constraints
(3.9d)—(3.9f) capture the operational constraints of each ESR partici-
pant. Note that (3.9d)—(3.9f) are equivalent to (2.3) except for (3.9f),
where the complementarity constraint in (2.3c) is relaxed. This means
that it is possible for the market to deliver power allocations and
prices that result in infeasible operations for ESRs (simultaneous charge
and discharge). However, we will show that the optimal solutions of
(3.9) satisfy the complementarity constraints (2.3c) under non-negative
prices (which is a key insight obtained from our theoretical analysis).

The objective function (3.9a) is different from most market clearing
formulations that capture ESRs in which the charging terms of ESR are
not treated as a cost but a consumer surplus (i.e., they are assigned the
same sign as the load term). There are a couple of disadvantages with
these types of formulations; from the modeling perspective, treating
the charging terms as a consumer surplus implies that ESR participants
benefit only from the charging actions in the market because they are
obtaining electricity. This is not consistent with reality because energy
arbitrage requires both charging and discharging actions (so charging
without discharging does not add value to ESR). In addition, from the
computational perspective, assigning opposite signs for charging and
discharging leads to optimal solutions with simultaneous charging and
discharging, which makes complementarity constraints necessary.

We now establish the market properties of (3.9) to demonstrate how
to remunerate ESR participants. The partial Lagrange function is:

L(d,p,f,e,Pc»Pd,ﬂ')=z(Za,,Pn"'zak,fkt Z /tjt

teT i€eS kek Jj€D
+ Z Py, + Z 5}, )
beB beB
- Z Z fk,t+zpi,t+ ZPZ,,

neN 1T kekiee i€S, bEB,
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2 fk,r_ Z dj,t_ Z P;),)

keksnd J€D, beB,

_ d »
== Z { Z (@, = mujy)d + Z(”n(i),r - ®)Pi;
€T U jeN, i€S

;
+ 2 (”rec(k) + Tendk) + akyt)fk,t
ke

2

beB

(7py — aZi’)pZ, = (s + ab )pbt] } (3.10)

and the Lagrange dual problem is:

maxD(z) ;= min L(d,p,f,0,p,p% n) (3.11a)
= d.p.f.0.p¢.p¢
S.L.fi+ 1 = fi- ¢ = BiOsnday,e — Orecy.)s
lel,teT (3.11b)
t
s, <y Z Phy = Z Py < ASp:
=1 r’ 1
beBteT (3.11¢)
0<py, +p), <pp bEBIET (3.11d)
P, 0l >0, beBteT (3.11e)
T
n Y P~ 7 Zp,,,, >0, beB (3.11f)
=1 b V=1
d.p.0)eC (3.11g)

The Lagrange dual function D(r) can be decomposed into individual
profit maximization problems. The ESR profit maximization problem
for each b € B is:

max D hs = DR, = + 3P, (3.12a)
Py ”b teT
s.t.ds,, < i Z p;t, - d Z Py < A5, teT (3.12b)
=1 My =1
0<p, +p}, <hp t€T (3.120)
Py, 20, 1ET (3.12d)
T
n oy P~ p Zp,, g2 (3.12¢)

=1 My v=1

Inspection of the ESR profit maximization problem (3.12) provides
an intuitive reason for the optimal dispatch of ESR to satisfy the com-
plementarity constraint under non-negative prices. We observe that, for
any non-negative value of z, the objective will not incentivize charging
and discharging at the same time. Specifically, at each time interval
t € T, discharging is 1ncent1v1zed when z,, > a;d > 0, and charging
is incentivized when 7,, < —a;° < 0; importantly, under non-negative
prices, the latter condition w111 never occur. However, this does not
mean ESR will not charge at all: the lower bound on the SOC(the first
inequality of (3.12b)) will prompt the ESR to charge enough power to
satisfy the terminal condition for SOC at times with lower prices. This
also implies that, with non-negative prices, the ESR will not charge
more than necessary for the terminal condition requirement. This is
consistent with the notion that charging is part of the service that ESR
offers to transport (shift) electricity over time. The structure of the ESR
profit problem thus highlights the consistency of our market clearing
formulation.

With the profit maximization problem (3.12), we are now able
to establish satisfaction of the complementarity condition rigorously.
Let (d*, p*, f*,0%, p°*, p?*), z* denote the optimal primal-dual solution
of (3.9). A sufficient condition for satisfaction of complementarity is
provided in the following theorem.
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Theorem 1. For any b € B,t € T, we have that o

d — .
'pb,f_()lf

(3.13)

1
Ty 2 T s +
: 1—n, : :

Proof. See Appendix. [

Condition (3.13) provides a lower bound for prices so that ESR
will not benefit from charging and discharging simultaneously. The
bound is violated by negative prices, where there is local excess power
and ESR is encouraged to charge and discharge simultaneously in
order to consume this excess power without violating the SOC con-
straints. In practice, various inflexible components of power systems
may lead to negative prices, including renewable energy generation
(with its stochastic availability) and ramp-constrained generation units
(e.g., coal and natural gas).

We also note that, if ESR has ideal performance with no losses (1, =
1), the market formulation always recovers an optimal solution that
satisfies complementarity (regardless of the prices). This is a key insight
that reveals interplay between efficiency and market incentives. We
also note that (3.13) is a sufficient but not necessary condition because
other constraints (e.g. SOC bounds) may prevent simultaneous charging
and discharging despite negative prices. We will show that this result
will allow us to design an alternative market formulation that ensures
charge/discharge complementarity without enforcing complementarity
constraints explicitly (thus facilitating computational tractability).

3.4. Alternative market formulation with robust bound

So far we have shown that simply relaxing the complementarity
constraints may lead to allocations for ESRs that are not economically
efficient. To tackle this issue, we propose an alternative formulation
based on the robust battery dispatch formulation recently proposed
by Nazir and Almassalkhi (2021). The idea (in brief) is to approximate
the charge and discharge operations of ESR w1th a series of net-charge

decisions Py, = pb , with a net-charge eff1c1ency . Instead of including

an exact upper bound for SOC as in (3.9d), ‘we replace it with a
conservative upper bound function as shown on the right-hand side of
constraint (3.14).

! c
M X Py~ 2 Z (Z Py - p,,,,> (3.14
=1 b t'=1 M, \s

This leads to the market clearing formulation:

min dZ(Z"‘xl’H"'Zaktf’” Z Gl

dp.f 0000 (57 N igs

+ Z i+ Z airf, ) (3.15a)
Z fkr+2pzt+zph, 2 fkt+2dj7+2phta(”ny)
kelC“’C i€S, beB, kelCS“d JED, beB,
neN,teT (3.15b)
fra=fra= B,(esnd(,), ~Orecty) ELIET (3.15¢)
t
oY P, - 7 Z P, 245, beEBIET (3.15d)
=1 My =1
n,
= Zpb,, o, ) <45, beBieT (3.15¢)
"b =1
Py +py, <Py bEBIET (3.15f)
d
PPy, 20, bEBIET (3.15g)
d,p.0)eC (3.15h)

Note that the only difference between our baseline ESR clearing model
(3.9) and (3.15) is that the robust SOC upper bound (3.15e) replaces
the exact SOC upper bound in (3.9d). Also, the inequality (3.14) implies
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that the feasible region of (3.9) is a subset of the feasible region of
(3.15) (it is a tightening constraint). This means that the clearing
formulation (3.15) compromises the optimal total welfare value in
exchange for guaranteeing a feasible operation for ESRs. Importantly,
the compromise between total welfare and feasible operation is a
function of ESR efficiency (the higher the charging and discharging
efficiencies, the less the compromise is). Specifically, note that there
is no compromise if n; = nl‘j =1 and the inequality (3.14) becomes an
equality. This again highlights the key role of efficiencies.

Since we only changed one of the ESR constraints, we can easily
obtain the profit maximization problem for each ESR using the same
Lagrangian dual analysis to obtain:

max Z(ﬂb., - aZﬂ )pZJ = (mp + @ )Py, (3.16a)
PPy €T
t
s.t. I Z - 7 z P, 24s,, t€T (3.16b)
My 1=
s < 45 T 3.16
Zp,,,, pb,, 5 1E (3.16¢)
”b =1
By + Py, <y tET (3.16d)
PPy, 20, 1€T (3.16e)

Let (d*, p*, f*, 6%, p°*, p?*), z* denote the optimal primal-dual solu-
tion of (3.15). Using the previous definitions, we can establish the
following result.

Theorem 2.  Formulation (3.15) delivers allocations that satisfy the
complementarity pbt pbr =0forany be B,teT.

Proof. See Appendix. []

This theorem is significant because it guarantees that we can satisfy
the complementarity charging/charging constraints without explicitly
including them in the market clearing formulation. Such constraints
are difficult to handle computationally, as they introduce nonconvexity.
Moreover, we note that this result allows us to formulate the market
clearing problem as a linear program and to incorporate many ESRs.

3.5. Market formulation with virtual links

Intuitively, each ESR participant aims to make profit via energy
arbitrage (exploit price differences across time). In addition, ESR flexi-
bility can help electricity markets =mitigate price volatility. However,
none of these intuitive advantages is obvious from formulation (3.9).
This motivates us to propose a mathematically-equivalent formulation
that models flexibility of ESR using VLs ; this approach will show that
charging and discharging of power can be seen as a temporal transfer
(transport) of power from the charging time to discharging time. This
approach will also reveal proper strategies to remunerate ESRs for the
provision of their flexibility and will help highlight the key role of
efficiencies.

In the formulation, we view ESR operations in a different way.
Instead of modeling operations as a series of charging and discharging
decisions over time, we model operations using the concept of net
charging and discharging, as well as energy transfer, capturing the
exchange of electricity between the grid and ESRs. We break down
the operations of ESRs into the following three categories for modeling
purposes:

1. Net-charging: buying an amount of electricity from the market at
a time period and storing it for the rest of the period.

2. Net-discharging: selling an amount of electricity to the market at
a time period that will not be replaced by electricity purchase
later.
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3. Energy transfer: transporting certain amount of energy from one
time to another time. This captures charging/discharging certain
amount of electricity at one time and discharging/charging it
later.

We note that energy transfer operations have no effect on the net
change of state of charge for the ESR over the whole time period of
market clearing, while net-charging and net-discharging operations do
affect the charge state.

The ESR modeling of the alternative formulation is illustrated in
Fig. 3. We define decision variables py; € Ry, pbd € R, to capture
the net-charging and net-discharging operations of each ESR b € B at
time t+ € 7. To model energy transfer, we extend the concept of VLs
proposed in the market design work by Zhang and Zavala (2021). In
that work, VLs were proposed to capture non-physical (meaning not via
the physical transmission network) and lossless shift of electricity loads
enabled by geo-distributed computing infrastructure. Here, we extend
this concept to capture non-physical and lossy energy transfer in time
enabled by ESRs.

Let V be the set of all VLs ; each VL v = (b(v),1.(v),74(v)) € V has
an associated ESR b(v), charging time 7.(v), and discharging time 7, (v).
We require that ¢,(v) # t,4(v) for all v € V. Implicitly, each VL v is also
associated with a location n(v) := n(b(v)) from the associated ESR. We
define V}f; = {v € V|t;(v) = t,n(v) = n}, VZ‘Ilt = {v € V|t (v) =
t,n(v) = n} as the set of discharging and charging VLs at space-time
node (n, 1), respectively. These sets form two partitions of VLs on the
dimension of space-time nodes: V = U, nex'x7 Vit = YnneN'xT V;‘,“. We
also define Vm = {v e V|ty(v) =1,b(v) = b}, VO‘“ ={veV|t@) =
t,b(v) = b} as the set of discharging and chargmg VLs for ESR b at time
t, respectively. These sets further form partitions for the sets v;;} and
VUL VI = Upep, Vi, VI = Upes, Vyy'- Each VL v is also associated
with a bid price for the power shift.

The cleared power shifts (virtual flows) are defined as 6, € R,. Note
that shifting power via ESR systems incurs loss of power due to charging
and/or discharging efficiency (i.e., 5,,%,; < 1). This means the amount
of power discharged may be strictly less than the amount of power
charged for each VL . For consistency, we define §, as the amount of
power charged by VL v at time 7,(v); the amount of power discharged at
time #,(v) by v can be calculated as 1,5, where 7, : =y nb " is the
aggregated (round-trip) efficiency of a pair of charging and discharging
actions for ESR b(v). We now can compute the charging and discharging

d
power pz P, as

pb, 2 6, +p (3.17a)
bevOUt

Pl= D M)y + B (3.17b)
vev}:‘r

The total amount of power charged and discharged by all ESRs at
space-time node (n,7) can be expressed in terms of § as:

Yor= 2 Y s+p|= D 6+ ) P (3.18a)
beEB, beB, Lev"“t uev;",‘t beB,
d d d
Z = z 2 ’7b(u>5u+l’z,t z M0y + 2 p" (3.18b)
beB, beB, [ peyin veyin beB,
X3 nt
The clearing formulation with VLs is formulated as:
; s
d.ﬁ‘}%,(sz(zar!’:ﬁ Zakrfk' Z r !'> 2{7%‘% (3.19a)
ve
Z Jra Z Pig + Z () Oy + Z Pb’t
kekree i€S, vevin beB,
n.
S fut Tt B ok B mameNaeT
keksnd Jj€D, vEVOUt  bEB,

(3.19b)
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Fig. 3. Alternative formulation for ESR systems using VLs (ESR index b is omitted in notations).

Srvq = fi=1 = BiOsnaqys = Orecys)» [€ELHET (3.19¢)

t

t
A DIEIDIE S 2A§,,,,+”id2pgff,, beBreT (3.19d)

=1 peypout in b t'=1
b! VeV,

< e .
= D b= Y, mb | SAS—ni Y p, beBieT (3.19)
My 11=1] pepout vepin t'=1
bt bt
PP+ Y S+ ) mb, <P, bEBIET (3.190)
UEV;'I" UGV})‘}
§>0 (3.199)
d,p.0)eC (3.19h)

With these formulations laid out we can now establish the following
result, which establishes that the clearing formulations with VLs is
mathematically-equivalent to the clearing formulation (3.15).
Theorem 3. Let al = %)+ '7b<v)“1iflv)gd(u) for each v € V. Then,
formulations (3.15) and (3.19) are equivalent.

Proof. See Appendix. []

Theorem 3 shows the equivalence between the market formulations
when each VL is assigned a proper bid. The bid assigned for each
VL covers the cost for the corresponding charging and discharging
operations. Also, the bid is a function of the round-trip efficiency
to account for lost power in the transfer process. Fig. 4 illustrates
the market clearing process with VLs modeling the flexibility of ESR
systems.

A key advantage of the VL-based framework, compared to (3.9) or
(3.15), is the ability to allow for more sophisticated bidding procedures
by ESRs. In Theorem 3, the equivalence between the formulations
require that each VL has the same bid. More generally, however, each
ESR is allowed to submit different bids for its VLs (for its shift of power
across time). For instance, ESRs can submit a higher bid for VLs that
span a longer period of time, as the energy transferred via those VLs will
occupy the charge storage space for a longer time, compared to those
transferred via other VLs . This bidding behavior cannot be captured in
(3.15), as bidding is made for charging and discharging operations as
a whole.

Under the market clearing framework with VLs, each ESR makes a
payment for every unit of electricity it purchases, and is remunerated
for every unit of electricity sold to the market, as well as every unit of
energy transfer via its VLs . The total remuneration for each ESR is:

2 T+ X myry — Y, 8w~ Y my )

VEY) teT VEV, teT
= Yl =708, + Y 7 (D} = P (3.20)
VEV) teT
d ._ — . .
where 7 = Ty, T T Taeeneer O = Boleey,, By 1=

() Yiers P} = {P}9}ier- This reveals the different elements of the
service remuneration.

The profit maximization problem for each ESR b under the VL
framework is provided Eq. (3.21). This problem reveals how the market
clearing formulation with VLs (3.19) remunerates flexibility of ESRs.
The objective function (3.21a) shows that each ESR maximizes the total
profit from VLs (shifting) and net-charging/discharging. On the first
term, each VL is remunerated by a “discounted” price difference #,z¢ —
#¢ across time, where the price at the discharge time is multiplied by
the round-trip efficiency of the ESR. This results from the fact that each
ESR has less electricity to sell than it buys when the efficiency is strictly
less than one (if the originally stored electricity is not considered).

max | 3yl s = a3, + 3, [(my, = a3t — (o + i
Py Py veD, er
(3.21a)
t 1 t
d
sty 2| D b= D 8|2 s, +— DA (3.21b)
1'=1] veyout veyin My 11=1
bl bt ]
n, ! t
b -
i 22 8- X me, SAs,,—n;Zpi,, (3.21¢)
My 11=1 vevout vevin, 7=l
X bt ]
P+ Y S+ Y mb, <Py 1ET (3.21d)
eV pepin
8 i P >0 (3.21e)
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Fig. 4. Market clearing framework with ESR using VLs .

Importantly, in order to make a VL v profitable (thus activating the
VL in the market), the price difference needs to satisfy:
nbzzg—zrz—af, 20:>7rf—7r2 > ﬂn:g+io:g

My My
The bound reveals some interesting properties of the market design
and how it incentivizes temporal shifting. The bid plays a key role
for defining the minimum price difference; a higher bid means larger
price difference is needed to activate the VL . We also observe that a
higher round-trip efficiency #, shrinks the minimum price difference
need for activation if the charging price is non-negative, but expands
the difference if the charging price is very negative. In other words,
ESRs with higher efficiencies will be more likely to be cleared in the market
(have a competitive advantage).

To state the previous result more formally, we let #, := I;iﬂ'2+niag
define the minimum price difference. We can compute the "derivative
of this difference with respect to efficiency as follows:

on,

ony

(3.22)

(3.23)

= —']—lg(zrs + af,).
We can see that, when z{ > —ag, more efficient ESR systems provide
VLs that can be activated with smaller price differences; when z{ <
—ai, less efficient ESR systems provide VLs that can be activated with
smaller price differences. This also provides the interesting insight that
less efficient ESRs might be preferred in the event of negative market prices,
as they can process the excess energy more easily knowing that more
of it will be lost due to their lower storage efficiency.

Finally, we observe that the value of price z{ also affects the
minimum price difference #,. When the ESR is not ideal (, < 1), %,
monotonically increases with z¢. This shows that, in order to activate
a VL shift, the price difference must be larger if the clearing prices are
higher. On the other hand, when clearing prices are negative, even a
negative price difference could be enough to incentivize the VL . All
these insights demonstrate how VLs can be used to understand market
conditions that incentivize temporal power shifts (which is difficult to
do with formulations in the literature).

The second term in the objective function (3.21a) represents the
remuneration rate for net-charging and discharging, and is identical to
the remuneration rate shown in Eq. (3.16). At each time interval t € T,

net-discharging is incentivized when z,, > “Z,d, > 0, and net-charging
is incentivized when r,, < —a;7 < 0. The key difference between net-
charging/discharging in this VL formulation and charging/discharging
in (3.16) is that net-charging/discharging variables (p,; and pgﬁ) only
account for the amount of power charged/discharged that impact the
net change of SOC. Charging/discharging variables (r3, and PZ;) in
(3.16) account for total charging/discharging power at each time,
including the contribution from energy transfer over time. Indeed,
formulation (3.21) reveals different ways in which ESRs react to the
prices. If the prices are volatile within the time frame, an ESR generates
profits by transferring power over time using VLs ; if the prices are not
volatile, an ESR can choose to buy/sell power if the prices are low/high,
or if there is a need to satisfy the lower and upper limits for SOC. These
market properties are thus consistent with rational economic behavior.

We now inspect the constraints in the profit maximization formu-
lation (3.21). The constraints show that there are two key resources
that each ESR exploits to maximize profit: power capacity and charge
capacity. The notion of power capacity is more straightforward to
explain and is shown in (3.21d); at each time, the sum of power for all
operations must be upper-bounded by the power limit j,. The notion
of charge capacity is bit complex to explain under the VL formulation.
Specifically, the parameters 45,/4s, define the maximum amount of
net charge that can be accumulated/depleted from the ESR. The key
observation is that net-charging/discharging operations consume these
resources permanently within the time period, while VLs only use
these resources temporarily. This is reflected on the right-hand side
of constraints (3.21b) and (3.21c), where the summation terms of p"
and p"¢ variables have the effect of tightening the bound of SOC for
future times. This implies that ESRs will be more reluctant to do net-
charging/discharging at earlier times in the horizon as doing so might
reduce the marginal profit obtainable from VLs later in the horizon.
Again, this highlights that the proposed formulation is consistent with
rational economic behavior.

4. Case studies

In this section, we present a couple of studies to demonstrate the
properties of the proposed market design. Julia code and data for
reproducing the results can be found at https://github.com/zavalab/
JuliaBox/tree/master/StorageVirtualLink.


https://github.com/zavalab/JuliaBox/tree/master/StorageVirtualLink
https://github.com/zavalab/JuliaBox/tree/master/StorageVirtualLink
https://github.com/zavalab/JuliaBox/tree/master/StorageVirtualLink
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Table 1
Parameter table for single-node case study. 4p:
maximum ramp limit; s,: Initial SOC level.

Scenario Ap (MW) so (MWh)
1 25 50
2 15 50
3 15 95
4 5 50

4.1. 3-Time, single-node system

We consider a simple hourly market with a single spatial node (no
transmission network) operated over a 3-hour time period. The purpose
of this small case is to demonstrate theoretical properties that we have
established, and to highlight some empirical observations that will be
relevant for our second case (which will be more difficult to isolate in
the more complex setting).

The single node is connected to one load, one generator, and one
ESR system. The amount of load requested is d = [25,100,25] MWh
over the time period, with bids a“ = [30, 60,40] $/MWh. The generator
has a capacity of p = [50,50,50] MWh and bids o = [5,20, 10] $/MWh.
In order to create cases with negative prices, we enforce a ramping
constraint for the generator of the form:

|Piy1 =il < 4Ap (4.24)

where 4p is the maximum ramp limit. The ESR we consider has charg-
ing efficiency #° = 0.9, discharging efficiency n? = 0.8, SOC bounds
5, =0 MWh, 5, = 100 MWh, and 5, = 10 MW.

To demonstrate the properties of our market design, we consider
four different scenarios with varying ramping capability of the gen-
erator and with different initial SOC values. The parameter values
of each scenario are tabulated in Table 1. In scenario 1, we assume
the generator has ample ramping capability (25 MW) and the ESR
starts with half of its charge capacity (50 MWh). In scenarios 2 and
4, we reduce the ramping capability to 15 MW and 5 MW to induce
negative prices and observe how the ESR system reacts. In scenario 3,
we increase the s, value so that the SOC upper bound could potentially
be hit at the optimal solution.

We solve formulations (3.9) (base market formulation) and (3.19)
(VL-based market formulation) over the four scenarios. The optimal
solutions are shown in Table 2. Here, ¢ denotes the total welfare
value, 7 the optimal prices, p°/p? the charging/discharging power,
and s the SOC level. Note that they do not necessarily correspond to
decision variables in the formulations, and might be calculated from
optimal solutions; for instance, for the VL formulation (3.19) p¢/p? are
calculated from optimal values of 6 and p™ /p" via (3.17)

We observe that scenario 1 produces a series of positive prices that
are commonly seen in real settings. Here, the ramping constraints are
not active, and both market formulations produce the same optimal
solution that satisfies the complementarity constraints for ESRs. Same
observations can be made in scenarios 2 and 4, where the optimal
solutions of the models agree and both satisfy the complementarity
constraints. As the generator becomes more inflexible (with less ramp-
ing capability), more negative prices occur, leading to higher price
differences that the ESR can exploit to increase its profits. As a result,
the ESR fully uses its power capacity to do price arbitrage and to buy
extra electricity.

In scenario 3 we start to observe differences in the primal optimal
solutions between the market formulations. Model (3.9) delivers an
optimal solution that does not satisfy the complementarity constraint
at time ¢t = 1, where the price become quite negative (-35 $/MWh).
The reason is that, under market formulation (3.9) (without the com-
plementarity constraint) the ESR will take advantage of the negative
price by charging and discharging simultaneously to consume extra
electricity (which is not economically efficient). On the other hand, the
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robust bound developed for model (3.9) rules out this possibility, and
therefore the optimal solution satisfies the complementarity constraint.
The robust bound is also reflected at the value of s at + = 1, which
is 100 for (3.9) but 99 for (3.19), showing that the robust bound on
SOC is active in this case (it is preventing a solution where s = 100 is
reached). This case demonstrates that, unlike the base market formula-
tion (3.9), the VL-based formulation (3.19) finds optimal solutions that
are economically efficient for ESRs.

A simple comparison with the other scenarios show that the robust
bound will only be active when the ESR operates near the SOC upper
bound. As a result of the robust bound being active, the total welfare
value becomes smaller. These results verify the theoretical limitations
of formulation (3.9) identified in Theorem 1, where large and negative
prices are likely to lead to infeasible operations for ESRs. Note that
scenario 4 shows how Theorem 1 provides a sufficient but not necessary
condition for guaranteeing feasible operations, as negative prices that
breaks the bound in (3.13) may still co-exist with feasible operations
in the primal space.

4.2. 30-Node system with one ESR

We now consider the IEEE 30-node system with Active Power
Increase (API) conditions from PGLib-OPF library (Babaeinejadsarooko-
laee et al., 2019). The network topology is shown in Fig. 5(a). We
ran the market over this system for a period of T = 24 hours. The
original case file contains physical parameters for transmission lines
and generators, as well as the cost function of generators. The bid of
each generator is selected as the linear term coefficient of the cost
function. The file also specifies a load level at a fixed time. To run the
market over multiple hours, for each load we sample a load level for
each time from a uniform distribution between 0.75 and 1.25 times
of the specified load level. Each load j is assigned a constant bid cost
of a;.{ , = 200 $/MWh, which resembles the value-of-loss-load (VOLL)
penalty for load curtailment (note that in real life the VOLL value could
be significantly higher than the 200 $/MWh).

In this market, we consider three identical ESR systems distributed
at nodes 5, 15, and 24 (green nodes in Fig. 5(a)). Each ESR has charging
efficiency #° = 0.95 and discharging efficiency n? = 0.85. To consider
the effect of varying energy and power capacity, we define an integer
multiplier K for the other parameters (K = 0 are base conditions).
Thus, each ESR has SOC bounds s, =0 MWh, 5, = 4K MWh, initial
SOCs, = 2K MWh, and power capacity p, = 1K MW. The multiplier
K takes values {0, 1,5, 10, 15,20,25,50}. The baseline scenario (K = 0)
corresponds to the case with no ESR installed.

Fig. 5(b) shows the temporal standard deviation of nodal prices at
each node under base conditions. We observe that nodes 5 an 15 have
the highest temporal price volatility over all nodes, while node 24 only
exhibits medium level of volatility. In addition, we also run the case
where each ESR participates individually with 3 times the capacity.

Table 3 tabulates the total market welfare values for different K
values in the case where all three ESRs participate in the market,
using the base market formulation (3.9) and the virtual-link-based
formulation (3.19). We note that the two market models attain the same
solutions for all cases. The reason is that this case study does not suffer
from negative prices as scenario 3 in Section 4.1.

Fig. 6 shows the total remuneration for each ESR for different
multiplier values K. First, we observe that the choice of location has a
significant effect on the economic benefits of ESR. We observe that the
economic benefits of offering flexibility varies by location. Moreover,
an interesting observation is that ESR 3 gains higher remuneration than
ESR 2 for all cases, despite the fact that the node of ESR 2 has the
highest temporal price volatility while the node of ESR 3 has only
medium temporal price volatility. This implies that placing an ESR at a
node where prices are volatile at the base case does not necessarily
lead to high economic benefits. In fact, ESRs 1 and 2 are located
at nodes with similar price volatility, but the economic potential of
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Numerical results of the 3-time, single-node case study. ¢: total welfare; z: LMP; p¢: charging power; p?: discharging power; s: SOC. Results
other than total welfare ¢ are concatenated over time; (3.9) and (3.19) are base market formulation and virtual-link-based market formulation,

respectively.
Model Scenario ¢ ($) 7z ($/MWh) ¢ (MW) ¢ (MW) s (MWh)
1 3883.72 [5, 60, 10] [10, 0, 3.89] [0, 10, 0] [59, 46.5, 50]
3.9) 2 3822.0 [-0.1, 60, —0.1] [10, O, 10] [0, 10, 0] [59, 46.5, 55.5]
’ 3 3708.60 [-35, 60, 10] [8.14, 0, 8.33] [1.86, 10, 0] [100, 87.5, 95]
4 3422.0 [-24.9, 60, —0.1] [10, O, 10] [0, 10, 0] [59, 46.5, 55.5]
1 3883.72 [5, 60, 10] [10, 0, 3.89] [0, 10, 0] [59, 46.5, 50]
(3.19) 2 3822.0 [-0.1, 60, —-0.1] [10, 0, 10] [0, 10, 0] [59, 46.5, 55.5]
’ 3 3633.72 [-35, 60, 10] [4.44, 0, 9.44] [0, 10, 0] [99, 86.5, 95]
4 3422.0 [-0.1, 60, —24.9] [10, 0, 10] [0, 10, 0] [59, 46.5, 55.5]
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Fig. 6. Total remuneration of each ESR for different multiplier values K. Solid lines are obtained from the solution where all ESRs simultaneously participate in the market, and
dashed lines (“Single” in legend) are obtained from solutions where each ESR solely participates in the market with 3 times higher capacity.

ESR 1 is consistently higher than that of ESR 2, in both individual
and simultaneous participation cases. This gives rise to the interesting
question of optimal placement of flexible technologies from an investor
perspective (how to maximize economic returns).

In Fig. 6 we observe that bidding a high capacity value does
not necessarily means higher remuneration. In most cases, the total
remuneration tends to increase at smaller multiplier values and then

10

decrease at larger multiplier values. To shed more light on this issue,
Fig. 7 shows the temporal price volatility at the three buses equipped
with an ESR over different multiplier values. We observe that each
node has a breaking point where price volatility sharply drops, and the
break points for nodes 15 and 24 come at much smaller multiplier value
compared to that of node 5. As a result, high multiplier values wipe out
the economic incentives for price arbitrage that ESR system can benefit
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Fig. 7. Temporal standard deviation of nodal prices at nodes 5, 15, and 24 for different values of multiplier K. All ESRs participate in the market simultaneously.

Table 3
Total welfare values (in $10°) for different values of multiplier K with all three ESRs
under base market formulation (3.9) and the virtual-link-based formulation (3.19).

Model K=0 K=5 K=10 K=15 K =20 K=25 K =50
3.9) 1.839 1.843 1.845 1.847 1.848 1.848 1.848
(3.19) 1.839 1.843 1.845 1.847 1.848 1.848 1.848

from. This explains why ESR 1 receives much higher remuneration in
the simultaneous participation case, as shown in Fig. 6.

All these observations demonstrate the trade-off that ESR stakehold-
ers face when bidding in the market: bidding a small amount of flexibility
might miss the chance to sell more flexibility (and get paid more), while
bidding too much flexibility reduces the economic incentives and hurts the
received remuneration. Therefore, ESRs need to be strategic in how much
flexibility to offer.

Fig. 8 shows the temporal price volatility at different nodes for the
case of K = 0, K = 20, and K = 20 with individual ESR participation.
We observe that K = 20 case leads to the lowest price standard devi-
ation, while K = 0 case leads to the highest price standard deviation.
Cases of K = 20 with individual ESR participation exhibit volatility
between K = 0 and K = 20. Spatial price volatility also follows the
same trend. This demonstrates that from the ISO’s perspective, it is
more beneficial to have a larger number of smaller ESRs distributed
at different locations than to have a few large (centralized) ESRs at
a single location, if the goal is to reduce system-level price volatility.
Interestingly, our market does not make any assumption about the
ownership of ESRs, meaning that the market framework gives the same
solution regardless of the ownership of ESRs.

If each ESR belongs to a different entity, we can observe that mul-
tiple small ESRs will compete with each other to offer more flexibility,
leading to a higher reduction in price volatility with cheaper cost
(less remuneration for ESRs). This can be verified in Fig. 6, where at
some multiplier values (e.g., K = 5), the remuneration for all ESRs
combined in the simultaneous participation case is even lower than the
remuneration for a single large ESR in the individual participation case.
On the other hand, if all the ESRs belong to the same entity, the results
imply that ESR investors may be incentivized to reduce distribution of
ESR units across different locations, in order to avoid possible reduction
in remuneration.
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5. Conclusions and future work

Recent trends of renewable energy absorption calls for much higher
needs for flexibility resources. New FERC orders and regulations call
for ISOs to implement new markets to allow ESR participation, but
research work in this area is lacking. In this paper, we propose a
new energy market clearing framework that models ESR flexibility
using VLs . We discuss the application of a robust bound for ESR
operations that helps satisfy charge/discharge complementarity condi-
tions without using mixed-integer formulations. We prove a theoretical
lower bound for prices where the robust bound might be needed.
In this way, the market clearing model is able to run with a large
number of ESRs without delivering clearing solutions that do not satisfy
complementarity. Our market framework decomposes the operations
of ESRs to reveal the incentives for ESR operations. Specifically, the
concept of VLs clearly reveal how ESRs are incentivized by temporal
price differences. By applying the concept of VLs and Lagrangian dual
analysis, we show that load shifting is remunerated via temporal price
volatility, and efficiency of ESR plays a key role in the economic
benefits of the load-shifting flexibility. We also demonstrate that the
SOC capacity and power capacity are the real resources that determine
how much load-shifting flexibility an ESR can provide.

The case studies reveal several interesting directions for future
work. From an investor perspective, the capacity sizing and optimal
placement of ESR resources can be done via a bilevel programming
formulation that embeds our market clearing framework. This is feasi-
ble as our market clearing framework avoids mixed-integer formulation
from complementarity. From the ESR operator perspective, it is worth
exploring the optimal bidding strategy in detail. In this work we assume
truthful bidding, i.e. the bid price and capacity perfectly reflect the
operating cost and capacity of the ESR system. However, the case
studies identify possible incentives for ESRs to bid less capacity than
their actual capacity. In addition, bids are a lower bound on the profit
of VLs as found by Zhang and Zavala (2021), which provides another
motivation for the submission of higher bids. From the ISO perspective,
it is worth exploring how to extend our market framework for multi-
scale markets. The current market is formulated on a day-ahead basis,
and thus VLs only incentivize load shifting in short period of time.
The incentives for long-term load-shifting will have to be provided
in another layer of market as real-life electricity markets work on
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Fig. 8. Temporal standard deviation of nodal prices for K =0, K =20, and K =20 with individual ESR participation. The solid line with K = 20 denotes the case where all ESRs
participate simultaneously, and the dashed lines denote the case where only one ESR participates (participating ESR is denoted in legend).

multiple time scales. One possible approach is to design another market
at a higher scale (e.g., seasonal or monthly scale) that determines
the operating SOC level (which is a parameter in the current market
framework). The change of SOC levels at different seasons/months can
also be capture via the concept of VLs .
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Appendix A. Proofs

Proof of Theorem 1. We inspect the profit maximization problem
(3.12) for each ESR b € B. Given =, let (PZ»PZ) be a feasible solution
of (3.12). For convenience, let w(p;, pg) denote the objective function
(3.12a). Define ¢, := mi“{l’i,wﬁl’z‘f.t} > 0 for everyt € 7, and € :=
{€,},er- First, we observe that (p —e, pf —
to (3.12) because

npe) is also a feasible solution

Np€rr)

d Z(pbt’ -

My =1

t
ny >0, — €)=

=1

12

M_.

:’7; bt’_ Y Zpbt’-'—an(e’/ €r)
=1 My =1 =1
t

— 5C _

= Zpbr’ Zpbx’

4

b t'=1

holds or every t € 7. Next, we observe that (g — e, pZ — ne) satisfies
the complementarity condition. This is true because, by definition of ¢,
at every time ¢t we have that either pb =0or ph = 0. In the end, we
show that (p{ —e, ph nye) produces a better objective value than (pj, ph)
under the condition of (3.13):

w(p;, — €, Py — mye) — wip5, p)
=Dy, — WL, = myer) — (my + )P, — €) — (my, — 3D,
teT

+ (7, + agct)pzr

= Z r[,,abre, + abte, +e,(1 - nb)n’b,,
teT

>3
teT
=0

-1 ] ]
<r/ba +ap+(1- )7 p (mpay + >
)

meaning that the optimal solution must satisfy the complementarity
condition. []

Proof of Theorem 2. We inspect the profit maximization problem
(3.16) for each ESR b € B. Given =, let (p;,pz ) be a feasible solution
of (3.16). For convenience, let w(p;, p‘;) denote the objective function
(3.16a). Define ¢, := mi“{PZ,r’pZ,t} >0foreveryt€7,and € := {€},cr-
First, we observe that (p;—e, pZ —npe) is also a feasible solution to (3.12)
because

I3 I3 1
1
ny Y, —en)—— DL, —e) =5 b, -

=1 My =1 =1

t
+ Z(id d lebt’
t

=1 "lp

Zpbr’

b =1
t
— ey 21, Z Py~
t'=1

holds for every ¢ € 7. Next we observe that (p; — e, p‘,f — ¢) satisfies the
complementarity condition. This is true because, by definition of ¢, at
every time ¢ we have that either p; =0 or pZ , = 0. In the end we show
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that (r — e p‘; — ¢) produces a better objective value than o, p‘;):

w(p, — €.p —e) —w(p.p})
=D (= g HPl, = €) = (my + A)BE, — €) = (7, —
teT
+ Gy + 08,
= Z(otbt + abt)e,

teT

>0

sdy d
)

meaning that the optimal solution must satisfy the complementarity
condition. [

Proof of Theorem 3. To establish equivalence, we show the solution
of one formulation can be obtained from some solution of the other
formulation with the same objective value. To do this, we inspect the
linear system (3.17). For convenience, we write the system as y = Ax,
where y : [pb,pb] captures the solution of (3.15), and x := [§, Py 4]
captures the solution of (3.19). Trivially, one can obtain y from an
optimal x following (3.17). Thus, for the rest of the proof we focus on
how to obtain a solution x given y. Let X, be the set of solutions to the
system (3.17) given y. Note that matrix A is full row rank as the identity
matrix Iy, is a submatrix of A. This implies that given an arbitrary
y, the solution set X, is non-empty (one trivial solution would be to set
Py =5, ppd =pi).

We now show that there exists x € &, that is feasible to constraints
(3.19d)—(3.19g) given y from a feasible solution of (3.15). (3.19f) holds
naturally for every x € X, as implied by the fact that y satisfies
constraint (3.15f). To show how x can be guaranteed to satisfy other
constraints, we write down a procedure of how to find the solution. We
first compute the net change of SOC given y:

t
d
Z Py
=1

If ASOC = 0 then the ESR is purely shifting energy within the time
window, meaning that we can set p}° = 0 and p = 0. If 4SOC >
0/4SOC < 0 then solution y 1nduces a net- chargmg/dlschargmg be-
havior, so some of the pgc /p are set with strictly positive values.
The values are assigned such that p”" = 0 and m, Dier pﬁj = ASOC
if ASOC > 0, or p;, = 0 and Z,GT pbr = —A4SOC if 4SOC < 0. Once

1
: 1
480C :=nf Y p, - —
=1 b

/8 pb , are determined, we are left with a time graph, where each time
node is either a source node defined by pb .~ pZ‘ or a sink node defined
by ph = pbd By construction, we have that

- <sz,, —pz;) = 2 i
teT teT

so the charge into and out of the ESR is balanced. Then, a feasible
6 can be found by repetitively pairing source and sink nodes until
all nodes have zero net energy. With this procedure, one can verify
that the resulting solution x satisfies constraints (3.19d)-(3.19g) by the
feasibility of y in (3.15).

To conclude, we show that the new solution gives the same objective
value. Let (x, y) be a pair of solutions to y = Ax. We have that:

s sd .d
Z“bprx T X Py,
teT

— sc ne sd nd
= Z Y, Z Oy + Py [+, Z M) + Py
1T veyput vevin
D,i X

d nd d
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teT veY

This concludes the proof. []

Computers and Chemical Engineering 168 (2022) 108019

Appendix B. Table of nomenclature

Type Notation Description
B Set of ESRs
T Discretized time horizon, {1,2,...,T}
N Set of nodes (buses)
S(S,) Set of suppliers (connected to node n)
D(D,) Set of consumers (connected to node
Sets n)
L Set of transmission lines
c(Keree/ snd) Set of directed (receiving/sending)
transmission lines
v(vr/out) Set of VL (going into/out of
space—time node (n, 1)
Te0,1] Charging/discharging efficiency of
ESR b
n, € [0,1] Aggregated (round-trip) efficiency of
ESR b
5,/3, E R, Minimum/maximum state of charge
of ESR b
spo € [s,,5,]  State of charge of ESR b at time 0
ppeR, Power capacity of ESR b for
charging/discharging
a;'f  ER, Bid price of supplier i at time ¢
Parameters  p;, € R, Available capacity of supplier i at
time ¢
ajf.‘”t eR, Bid price of consumer j at time ¢
di, R, Available capacity of consumer j at
time ¢
a/{ LER, Bid price of directed transmission
line k at time ¢
fis €R Available capacity of directed
transmission line k at time ¢
0, €R Phase angle limit across directed
transmission line k at time ¢
aZ;/ 4 eRr + Charging/discharging bid price of
ESR b at time ¢
o’ eR, Bid price of VL v
Type Notation Description
spr ER, State of charge of ESR b at time ¢
pz/td eR, Charging/discharging power of ESR b
at time ¢
pis ER, Cleared allocation for supplier i at
time ¢
d, R, Cleared allocation for consumer j at
time ¢
Sii ER, Cleared allocation for directed
Variables transmission line k at time ¢
0, €R Phase angle of node n at time ¢
7, €ER Local marginal price of node n at
time ¢
q.')ﬁ ,ER Profit function of supplier i at time 7
q% eR Profit function of consumer j at time
t
q.’)i LER Profit function of directed
transmission line k at time ¢
"E/ " e R +  Net-charging/net-discharging power
of ESR b at time 7
5, e R, Cleared allocation of VL v
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