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Abstract— The influence model (IM) is a discrete-time
stochastic automaton that captures spatiotemporal network
dynamics. It constitutes a reduced-order representation of
networked Markov chains and has found broad stochastic
network applications. Parameter estimation from observation
data is critical for utilizing IM in real applications. The master
Markov chain approach used in the literature incurs significant
computational cost. In this paper, we develop an efficient esti-
mation algorithm for a special class of IM, named the uniform
completely connected homogeneous influence model (UCC-
HIM), through exploiting its special network topology. Specially,
we introduce a reduced-order Markov chain representation
for the UCC-HIM, analyze its relationship with the master
Markov chain, based on which an efficient estimation algorithm
is developed. Two simulation studies verify the accuracy and
computation reduction of the proposed estimation approach.

Stochastic automaton, spatiotemporal processes, influence
model, parameter estimation, reduced-order analysis

I. INTRODUCTION

THE influence model (IM) is a discrete-time stochastic
model that captures spatiotemporal network dynamics

[1], [2]. It constitutes a reduced-order representation of
networked Markov chains through abstracting network-level
interactions and local-level update rules. IM has been used in
diverse stochastic network applications, such as power net-
works, social networks, virus spreads, and weather evolution
[3]–[6].

In order to use IM in stochastic network applications, one
critical step is to estimate underlying model parameters from
observation data. Identifiability deals with the uniqueness of
IM estimates. In [7], the identifiability conditions for ho-
mogeneous IM were recently provided. Through exploiting
the mapping structure between IM and its equivalent master
Markov chain, the identifiability analysis led to a linear
algebra-based estimator. The paper also developed a base-
line maximum likelihood estimator (MLE) for comparison.
Several other MLE based estimators have been developed in
the literature [4], [8]. Of our interest, [9] developed an IM
estimation algorithm based on its corresponding first-order
representation, i.e., the influence matrix. All of these existing
estimation algorithms have limitations of some sorts in their
performance. The computation of the linear algebra-based
approach grows exponentially with the increase of network
size. The performance of the MLE is sensitive to initial
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guesses, and local optima are difficult to avoid. Furthermore,
obtaining the influence matrix from data is complex and
prone to errors due to the coupling effect of network- and
local- level interactions. To overcome these challenges, we
here develop an IM estimation algorithm that is both accurate
and computationally effective, including for large networks.

In this paper, we take a structural approach to study
reduced-computation IM estimation methods for IM. Net-
work topology plays an important role in network dynam-
ics, and topology-based approaches have been widely used
in studies such as network identification, state estimation,
network design and control [10]–[12]. As a first step, we
here focus on a canonical class of IM, named the uniform
completely connected homogeneous influence model (UCC-
HIM). In UCC-HIM, all sites are fully connected with
common mutual influence and local status update rules.
Stochastic networks of such a topology capture agent inter-
actions in close proximity and has been used in studies in a
wide range of applications, including e.g., banking systems,
the emergence of social norms, wireless sensor networks and
protein interaction networks [13]–[16].

For this UCC-HIM, we develop an efficient estimation
algorithm that exploits its symmetric topological property.
Compared to the MLE and linear algebra-based estimators
developed for general IMs, the proposed algorithm signifi-
cantly reduces the computational complexity while maintains
accuracy.

The rest of the paper is structured as follows. The funda-
mentals of the IM and the UCC-HIM problem formulation
are introduced in Section II. In Section III, a reduced-order
Markov chain is introduced to facilitate the analysis for
UCC-HIM based on its special network topology. Then an
efficient parameter estimation algorithm is developed through
exploiting structures of the reduced-order Markov chain. In
Section IV, two simulation studies are conducted to verify
effectiveness of the proposed estimation algorithm. Section
V concludes the paper.

II. PRELIMINARIES OF THE INFLUENCE MODEL

A. The influence Model (IM)

An IM is composed of N interacting sites. Each site i
has Mi possible statuses, where i 2 {1, 2, · · · , N}. A scalar
si[k] 2 {1, 2, · · · ,Mi} indexes the status of site i at time k.
Si[k], a row vector of length Mi, also denotes site i’s status
at time k, where all entries are filled with ‘0’s except a ‘1’
at the location corresponding to the status index si[k]. For
example, Si[k] = [1 0 · · · 0] when si[k] = 1.
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At each time step, site i updates its status based on the net-
work influence matrix D 2 RN⇥N and local Markov chain
transition matrix Aji 2 RMj⇥Mi , where j 2 {1, 2, · · · , N}.
D and Aji are row stochastic matrices. The 4-step update
rule is summarized as follows.

1) Choose site j as site i’s determining site with proba-
bility di,j , where di,j is the element of D denoting the
probability that i is influenced by j.

2) Calculate pij [k + 1] 2 R1⇥Mi , the probability of site
i’s next status, based on the current status of site j
as pij [k + 1] = Sj [k]Aji, where each element am,n

of Aji is the conditional probability for site i’s next
status to be n given that site j’s current status is m.

3) Determine Pi[k + 1] 2 R1⇥Mi , the probability mass
function of site i’s next status by considering the
influence of all sites on site i as

Pi[k + 1] =
NX

j=1

di,jpij [k + 1] =
NX

j=1

di,jSj [k]Aji. (1)

4) Si[k + 1] is then obtained by realizing Pi[k + 1], i.e.,
sampling random numbers according to the distribution
Pi[k + 1].

Cascading Si[k] and Pi[k+1] into row vectors SH [k] and
PH [k + 1] of length

P
N

i=1 Mi, we have

S
H [k] =

⇥
S1[k] S2[k] . . . SN [k]

⇤
, (2)

P
H [k + 1] =

⇥
P1[k + 1] P2[k + 1] . . . PN [k + 1]

⇤
. (3)

Then the above 4-step update rule leads to the IM dynamics
succinctly captured by the two following iterative equations,

P
H [k + 1] = S

H [k]H, (4)

S
H [k + 1] = MultiRealize(PH [k + 1]), (5)

where SH [k + 1] is obtained by realizing each Pi[k + 1]
respectively, and H 2 R

PN
i=1 Mi⇥

PN
i=1 Mi is the influence

matrix defined as:

H ,

2

64
d1,1A11 . . . dN,1A1N

...
...

...
d1,NAN1 . . . dN,NANN

3

75 . (6)

If all sites have the same number of statuses, M , and
Aji = A for all i and j, the IM is referred to as the
homogeneous influence model (HIM), with the state vector
SH [k] of length MN . The dimension of state grows linearly
with network size. A state matrix SG[k] 2 RN⇥M is further
introduced to capture the HIM state in its matrix form

S
G[k] =

⇥
S1[k]

0
S2[k]

0
. . . SN [k]0

⇤0
. (7)

The corresponding influence matrix in (6) is then simplified
to H , D0 ⌦A, where ⌦ is the Kronecker product, and the
superscript 0 denotes the transpose operation.

In this paper, we focus on the HIM with a canonical
network topology, referred to as the uniform completely
connected homogeneous influence model (UCC-HIM). In
UCC-HIM, all sites are fully connected with the same
mutual influence, i.e., di,j = 1

N
8 i, j 2 {1, 2, · · · , N}. An

example of UCC-HIM is shown in Figure 1. The UCC-HIM
has practical values, e.g., it captures the voting behaviors
in leaderless social networks and other types of network
interactions in close proximity.

Fig. 1: An example of UCC-HIM of 3 sites and 2 statuses
at each site.

B. The Master Markov Chain Representation of IM
The dynamics of IM can also be captured by its equivalent

master Markov chain [1]. As the name suggests, the master
Markov chain representation uses the Markov properties of
IM and constructs a big Markov chain with states as the
combination of all site statuses. There are a total of MN

states in the master Markov chain representation. A scalar
sg[k] 2 {1, 2, · · · ,MN} is adopted to index the states based
on the statuses of all sites, i.e., si[k] 8 i 2 {1, 2, · · · , N} as

s
g[k] =

NX

i=1

(si[k]� 1)MN�i + 1. (8)

The event matrix B 2 RM
N⇥MN captures all states of

the master Markov chain [1]. The qth row of B is the state
vector SH corresponding to sg = q. For example, for the
UCC-HIM network in Figure 1 with 3 sites and 2 statuses
for each site, i.e., N = 3 and M = 2, there are 8 states
in the Markov chain in total. The state sg = 4 corresponds
to s1 = 1, s2 = 2 and s3 = 2, and hence S1 = [1 0],
S2 = [0 1], S3 = [0 1], to form SH = [1 0 0 1 0 1] in the
4th row of B,

B =

2

666666664

1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 1
0 1 1 0 1 0
0 1 1 0 0 1
0 1 0 1 1 0
0 1 0 1 0 1

3

777777775

.

The master Markov chain is characterized by its state tran-
sition matrix G 2 RM

N⇥M
N

, which gives the conditional
probability of its next state sg[k + 1] given its current state
sg[k]. Let SG

p
[k] and SG

q
[k + 1] denote the state matrices

corresponding to sg[k] = p and sg[k + 1] = q, respectively.
The elements of G can be obtained in a succinct form as:

gp,q = P (sg[k + 1] = q|sg[k] = p) =
NY

n=1

MY

m=1

zn,m, (9)

where zn,m is the nth row and mth column element of
matrix Zpq 2 RN⇥M .

Zpq =
⇣
DS

G

p [k]A
⌘�SG

q [k+1]
. (10)

The superscript � denotes the element-wise exponential
operator. In particular, for two matrices X and Y with the
same dimension, the mth row and nth column element of
the outcome of X�Y , (X�Y )m,n, is calculated as Xm,n

Ym,n .
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Let PG[k + 1] = DSG

P
[k]A, the ith row of PG[k + 1]

indicates Pi[k + 1] with i 2 {1, · · · , N} according to (1).
Zpq is constructed to obtain the probabilities of all sites at
the local statuses captured in SG

q
[k+ 1]. gp,q is obtained by

multiplying these probabilities since the statuses of all sites
evolve independently. More details can be found in [7].

The comparison between the influence model dynamics
(4) and its Master Markov chain representation (9) clearly
shows the effectiveness of the influence model. The HIM of
MN states captures the dynamics of its equivalent master
Markov chain of MN states.

C. Problem Formulation

Despite the tractability of the influence model due to its
reduced-order formulation, model estimation cannot easily
be achieved in an effective way. The master Markov chain
G has been used as a step for the estimation of the IM
[7]. However, as expected, the computation involved in the
master Markov chain-based estimation approach increases
exponentially with the network size. The large computational
cost of G limits its practical use, especially for large net-
works.

In this paper, we take a structural approach to study a
class of IM, namely, the UCC-HIM, and provide an efficient
parameter estimation algorithm. The problem is formulated
as follows.

Problem: Consider a UCC-HIM of N sites with M
statuses for each site. Given L independent observa-
tion sequences O = {O1, O2, · · · , OL} with Oi =⇥
SH [1]i, SH [2]i, · · · , SH [K]i

⇤
, where the initial network

state SH [1]i can be arbitrary, estimate the underlying local
transition matrix A with L,K ! 1.

III. PARAMETER ESTIMATION FOR THE UNIFORM
COMPLETELY CONNECTED HOMOGENEOUS INFLUENCE

MODEL (UCC-HIM)

In this section, we develop an efficient parameter es-
timation algorithm for the UCC-HIM. We first study the
identifiability. Then we construct a reduced-order Markov
chain through exploiting the symmetric network topology
of the UCC-HIM. The mapping relationship between the
reduced-order Markov chain and the master Markov chain
is illustrated next. The analysis of the reduced-order Markov
chain leads to an efficient and accurate estimation algorithm.

A. The Identifiability of The UCC-HIM

Lemma 1. [7] The influence model is identifiable from the
observation sequences O with L,K ! 1, if and only if the
underlying parameters A and D can be uniquely determined
from the master Markov chain G.

Lemma 2. [7] A can be uniquely determined from G as

am,n = N
q

gPN
i=1(m�1)MN�i+1,

PN
j=1(n�1)MN�j+1, (11)

where am,n is the mth row and nth column entry of A andP
N

i=1(m� 1)MN�i +1 is the master Markov chain’s state
with all sites in the same local status m.

Based on the above lemmas, we prove the identifiability
of the UCC-HIM in Theorem 1.

Theorem 1. Any UCC-HIM is identifiable.

Proof: For a UCC-HIM of N sites, D is determined
and takes the form of di,j = 1

N
8 i, j 2 {1, 2, · · · , N}.

Because A can be determined uniquely from G according
to Lemma 2, the theorem is proved naturally according to
Lemma 1.

B. The Reduced-order Markov Chain R

From (11), we see that the transition matrix of the master
Markov chain G is needed to obtain A. The dimension of
G is MN , making the estimation computation grow expo-
nentially with network size. To efficiently estimate A, we
introduce a reduced-order Markov chain R by first showing
its states and then the transition matrix.

The reduced-order Markov chain records the number of
sites in each status. We adopt a length-M vector SR[k] =
[r1 · · · rm · · · rM ] to denote the state of the reduced-
order Markov chain R at time k, where rm is the number of
sites whose local statuses are m. Hence 0  rm  N andP

M

m=1 rm = N . In other words, SR[k] =
P

N

i=1 Si[k]. By
counting all the possible SR[k], the reduced-order Markov
chain R has r states, where

r =

✓✓
M

N

◆◆
=

 
M +N � 1

N

!
=

(M +N � 1)!
(M � 1)!N !

. (12)

The notation ((·)) and (·) denote the multiset and combi-
nation operations, respectively. r is the number of ways to
assign M statuses to the N sites, with repetitions allowed
and ordering disregarded. See [17], p.71 for the details of
this multiset operation. To index the r states SR[k], we
introduce a scalar sr[k] 2 {1, 2, · · · , r}. Given SR[k], sr[k]
is calculated as

s
r[k] =

XM�1

i=1

XN�1�
Pi

m=1 rm

j=0

 
M � i+ j � 1

j

!
+ 1.

(13)
Note that in the summation, if a term’s upper bound is less

than the lower bound, the term is zero [18].
For the example of N = 3 and M = 2 in Figure 1,

the states of R, SR[k], are [3 0], [2 1], [1 2] and [0 3].
r = (2+3�1)!

(2�1)!3! = 4 in this case. The state SR[k] = [1 2] is
indexed with sr[k] = 3.

The transition matrix R 2 Rr⇥r of the reduced-order
Markov chain indicates the conditional probability mass
functions (PMFs) of its next state given its current state. Let
SR

p
[k] and SR

q
[k+1] denote the state vectors corresponding

to sr[k] = p and sr[k + 1] = q, respectively. R can be
obtained according to the following theorem.

Theorem 2. For a UCC-HIM with the network influence
matrix D and local transition matrix A, each element of the
reduced-order Markov chain R is calculated as

Rp,q = P (sr[k + 1] = q|sr[k] = p) = Cq

MY

m=1

(Xpqem) , (14)

where 1  p, q  r, Cq is the qth entry of length r column
vector C, Xpq is a length M row vector, and em is a length
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M column vector of zeros, except a single ‘1’ at its mth
entry.

Cq =
N !

Q
M

m=1

�
SR
q [k + 1]em

�
!
, (15)

Xpq =

✓
1
N

S
R

p [k]A

◆�SR
q [k+1]

. (16)

Proof: To obtain the conditional probability of sr[k +
1] = q given sr[k] = p, we start with the conditional
probability of individual sites’ next statuses given sr[k] = p.
Let Pi|p[k + 1] denote the conditional PMF of site i’s next
status given sr[k] = p and SR

p
[k]em indicates the mth entry

of SR

p
[k]. According to the influence model’s 4-step update

rule in Section II-A, at time k, site i chooses a site in
status m as its determining site with probability 1

N
, where

m 2 {1, · · · ,M}. Then, the probability of its next status
in n based on the status of the determining site can be
calculated as 1

N
am,n. With SR

p
[k]em sites in status m and

m 2 {1, · · · ,M}, the probability of site i’s next status
in n, P (si[k + 1] = n|sr[k] = p), can be calculated as
P

M

m=1
S

R
p [k]em
N

am,n. Hence we have

Pi|p[k + 1] =

2

664

P (si[k + 1] = 1|sr[k] = p)
P (si[k + 1] = 2|sr[k] = p)

...
P (si[k + 1] = M |sr[k] = p)

3

775

0

=

2

666664

P
M

m=1

S
R
p [k]em

N
am,1

P
M

m=1

S
R
p [k]em

N
am,2

...
P

M

m=1

S
R
p [k]em

N
am,M

3

777775

0

=
1
N

S
R

p [k]A.

(17)

Because of the symmetric network topology of the UCC-
HIM, i.e., all the elements in D are identical, each site i
shares the same conditional PMF of their next status given
sr[k] = p, which is Pi|p[k + 1].

Because the statuses of all sites evolve independently, Rp,q

can be obtained as follows. First, choose SR

q
[k + 1]e1 sites

from N sites and assign them local status 1 with probability
P (si[k + 1] = 1|sr[k] = p)(S

R
q [k+1]e1). Next, choose

SR

q
[k + 1]e2 sites from N � SR

q
[k + 1]e1 sites and assign

them local status 2 with probability P (si[k+1] = 2|sr[k] =
p)(S

R
q [k+1]e2). This process continues, and eventually, choose

SR

q
[k + 1]eM sites from the rest sites and assign them

local status M with probability P (si[k + 1] = M |sr[k] =
p)(S

R
q [k+1]eM). Hence we have

Rp,q = P (sr[k + 1] = q|sr[k] = p)

=

 
N

SR
q [k + 1]e1

!
(Pi|p[k + 1]e1)(S

R
q [k+1]e1)

 
N � S

R

q [k + 1]e1
SR
q [k + 1]e2

!
(Pi|p[k + 1]e2)(S

R
q [k+1]e2) · · ·

 
N �

M�1P
l=1

�
S

R

q [k + 1]el
�

SR
q [k + 1]eM

!
(Pi|p[k + 1]eM )(S

R
q [k+1]eM)

(18)

=
MY

m=1

 
N �

m�1P
l=1

�
S

R

q [k + 1]el
�

SR
q [k + 1]em

!
(Pi|p[k + 1]em)(S

R
q [k+1]em)

=
N !

Q
M

m=1(S
R
q [k + 1]em)!

MY

m=1

 ✓
1
N

S
R

p [k]A

◆�SR
q [k+1]

!
em

= Cq

MY

m=1

(Xpqem).

The penultimate equality is established based on the fact
that

P
M

l=1 S
R

q
[k + 1]el = N and (N �N)! = 0! = 1.

C. The mapping relationship between R and G

In this section, we show the mapping relationship between
R and its corresponding master Markov chain G. We start
with constructing the state-transfer vector T which captures
the relationship between the states of R and G, and then
show that R and G have a one-to-one mapping relationship.

Lemma 3. The MN states in the master Markov chain
G and the r states in the reduced-order Markov chain R
have a many-to-one mapping, captured by the state-transfer
vector T 2 RM

N⇥1 whose row index is sg while each
entry indicates the corresponding sr. T can be obtained by
calculating the scalar index of each row in Bu using (13)
where

Bu = B(1N ⌦ IM ). (19)

1N is an all-one column vector of length N , and IM is an
M -dimensional identity matrix.

B = [B1, · · · , Bi, · · · , BN ], (20)

Bi = 1Mi�1 ⌦ IM ⌦ 1MN�i . (21)

Proof: Each row of the event matrix B indicates one
of the MN states of the master Markov chain G. Bu is
constructed as in (19) to store the number of sites at each
local status for all the rows in B, i.e., each row of Bu

indicates one of the r states SR[k] of the reduced-order
Markov chain R with repetition. Then the entries of T , sr[k],
can be obtained using (13) given each row of Bu, SR[k].

Note that the number of repetitions of SR[k] in Bu is
captured by the length r column vector C in Theorem 2,
named as the state-count vector herein.

For example, in the N = 3 and M = 2 network shown in
Figure 1,

Bu =


3 2 2 1 2 1 1 0
0 1 1 2 1 2 2 3

�0
,

C =
⇥
1 3 3 1

⇤0
,

and
T =

⇥
1 2 2 3 2 3 3 4

⇤0
.

sg[k] = 2, 3, and 5 all correspond to sr[k] = 2.

Theorem 3. For a UCC-HIM with the network influence
matrix D and local transition matrix A, G and R have a
one-to-one mapping as:

R = WGV, (22)

G = V RU, (23)

where V 2 RM
N⇥r is constructed based on the state-

transfer vector T as

Vk,l =

⇢
1 if l = Tk

0 otherwise
1  k  M

N
, 1  l  r. (24)
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W 2 Rr⇥M
N

is obtained by transposing V and then leaving
only the left first ‘1’ in each row and setting the rest ‘1’s to
‘0’. U 2 Rr⇥M

N

is constructed based on V and the state-
count vector C by Ul,k = Vk,l

Cl
.

Proof: We show the proof by explaining the construc-
tion of the auxiliary matrices V , W and U .

Because all elements of the network influence matrix D
are identical, we find that in the state-transfer vector T , the
indices of the identical elements indicate the column indexes
and row indexes with identical state transition probabilities
in G. To obtain R based on G, V is constructed to add up
G’s columns according to T . W is constructed to delete the
repeated rows of G according to T . Equation (22) is thus
proven.

Reversely, the state transition probability in G can also be
uniquely determined by R because of the symmetric network
structure. To obtain G from R, V is constructed to duplicate
R’s rows according to T , and U is constructed to expand the
information in R’s columns according to T and the state-
count vector C. To reconstruct the columns of G, we only
need to divide the columns in R with corresponding states
by their numbers of repetitions in G which are recorded in
C. Therefore, we have (23).

According to Theorem 3, R is a reduced-order represen-
tation of G for the UCC-HIM, obtained by discarding and
merging redundant information in G. Because G is uniquely
determined from the observation sequences, it also implies
that R is unique.

The dimension of the reduced Markov chain R is r =
(M+N�1)!
(M�1)!N ! , which is far less than the dimension of master

Markov chain G, MN . Figure 2 shows a comparison between
the dimensions of the master Markov chain G and the
reduced-order Markov chain R. With the increase of network
size N and the number of statuses M , the dimension of
G increases dramatically, while the dimension growth of
R is very slow, indicating the significant dimension and
computational cost reduction using R.

Fig. 2: The dimensions of G and R with different N and M

D. The Estimation Algorithm for A based on R

In this subsection, we develop an efficient estimation
algorithm for A from observation sequences of the UCC-
HIM.

First, we show that the reduced-order Markov chain R
can be uniquely constructed from observation sequences
by counting the corresponding state transition frequencies
based on the law of large numbers [19]. Because G can
be uniquely determined from the observation sequences,
and G and R have a one-to-one mapping, R can also
be uniquely determined. This result is summarized in the
following lemma.

Lemma 4. Given the observation sequences of a UCC-HIM,
O, with L,K ! 1, the reduced-order Markov chain R can
be uniquely constructed.

The next theorem shows the estimation for A based on
the reduced-order Markov chain R.

Theorem 4. Given the reduced-order Markov chain R of the
UCC-HIM, the elements of A can be uniquely determined as

am,n = N
q

R
r+1�

PM�m
k=0 (N+k�1

k ),r+1�
PM�n

k=0 (N+k�1
k ). (25)

Proof: According to (13), r + 1 �
P

M�m

k=0

�
N+k�1

k

�

denotes the state of the reduced-order Markov chain R where
all sites are in local status m, i.e., SR[k] = [0 · · · N · · · 0],
with all positions filled with ‘0’s except an ‘N’ at the mth
position. According to (14), (16) and (15), we have

R
r+1�

PM�m
k=0 (N+k�1

k ),r+1�
PM�n

k=0 (N+k�1
k )

= 1 a
0
m,1 · · · aN

m,n · · · a0
m,M = a

N

m,n.

(26)

Therefore, (25) is derived.
Note that the estimation of A from R has the same

accuracy as the estimation from G according to (11) and
(25).

IV. SIMULATION STUDIES

To demonstrate the results developed in Section III, two
simulation studies are conducted. Example 1 verifies the
practicability and efficiency of the estimation algorithm. Ex-
ample 2 is a real-world application that models the decision
making process in a social network using the UCC-HIM.

A. Example 1: Estimation of A in the UCC-HIM
To verify efficiency of the proposed estimation algorithm,

we compare the performance of our algorithm with the esti-
mation algorithm using the master Markov chain approach.
We consider a UCC-HIM with 5 sites and 3 statuses for each
sites. The network influence matrix D has element di,j = 1

5 ,
8i, j 2 {1, · · · , 5}. The local transition matrix A is given as

A =

2

4
0.36 0.32 0.32
0.33 0.40 0.27
0.35 0.25 0.40

3

5 .

An observation sequence of length 400, 000 is generated.
Then G and R are computed by finding the state transition
frequencies respectively. According to Theorem 4, the esti-
mated local transition matrix Â through R is

Â =

2

4
0.3347 0.3395 0.3258
0.3083 0.4106 0.2812
0.3132 0.2538 0.4330

3

5 ,

which is identical to the estimation through G. The mean
squared errors (MSE) for Â is 4.6860 ⇥ 10�4, showing
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the accuracy of the estimation. The execution time of our
reduced-order algorithm based on R is about half of that
based on G, indicating the improved efficiency.

B. Example 2: Support or Oppose?
In social network models, agents interact with each other

and update their opinions based on rules that capture the
influences from other agents [20]. When no individual takes
the role of opinion leaders and all individuals exert the same
influences to the whole team, the opinion propagation can
be captured as the UCC-HIM.

In a leaderless social network, discussion and voting are
two common steps in a decision-making process. In this
example, a group of 5 people meet to discuss whether to
act on a problem. There are two statuses for each person,
support or oppose. Their opinions may change during the
discussion due to the influences they receive from others.
The mutual influences in the group are identical. The ones
who oppose have a greater impact than those who support.
After thorough discussions, people vote for the final decision.
We can model this process using a UCC-HIM. For example,

di,j = 1
5 8i, j 2 {1, . . . , 5} and A =


0.7 0.3
0.2 0.8

�
due to the

tendency to oppose.
According to Theorem 2, the reduced-order Markov chain

R has 6 states and can be computed as

R =

2

666664

0.1681 0.3602 0.3087 0.1323 0.0283 0.0024
0.0778 0.2592 0.3456 0.2304 0.0768 0.0102
0.0313 0.1562 0.3125 0.3125 0.1562 0.0313
0.0102 0.0768 0.2304 0.3456 0.2592 0.0078
0.0024 0.0283 0.1323 0.3087 0.3602 0.1681
0.0003 0.0064 0.0512 0.2048 0.4096 0.3277

3

777775
.

The state sr ranges from 1 to 6, with sr � 1 denoting the
number of people who oppose. Using the reduced Markov
chain R, we can effectively predict the final voting result.
The steady-state distribution of R is determined by the left
eigenvector of R associated with the eigenvalue ‘1’, which
is [0.0217 0.0978 0.2162 0.2976 0.2565 0.1102]. Hence,
the probability of 3 people opposing is the largest (0.2976).
The probability that more than 2 people oppose is 0.6643,
indicating that more than half of the people are more likely to
oppose this action eventually. According to the majority rule,
the final decision is more probable to be ‘oppose’. If using
the master Markov chain to obtain the steady-state results,
the eigen-analysis of a 32 ⇥ 32 Markov chain is required,
which incurs more computation.

V. CONCLUSION

In this paper, we study the reduced-order estimation of
IM. For UCC-HIM, a canonical class of IM, we prove
that it is identifiable. Then we construct a reduced-order
Markov chain R to facilitate the estimation study. The
dimension of R is far less than the master Markov chain
G. We find the one-to-one mapping between R and G.
By using R, an efficient parameter estimation algorithm for
A is developed. Compared with the master Markov chain
approach, the same accuracy is achieved but with significant
reduction of computational load. Simulation studies verify

efficiency of our proposed parameter estimation algorithm
and demonstrate its practical value in real applications. In
the future, we will explore reduced-computation solutions
for more general IMs.
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