2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC) | 978-1-6654-5258-8/22/$31.00 ©2022 IEEE | DOI: 10.1109/SMC53654.2022.9945075

2022 IEEE International Conference on
Systems, Man, and Cybernetics (SMC)

Learning Hierarchical Traversability Representations for Efficient
Multi-Resolution Path Planning *

Reza Etemadi Idgahi'

Abstract—Path planning on grid-based obstacle maps is
an essential and much-studied problem with applications in
robotics and autonomy. Traditionally, in the AI community,
heuristic search methods (e.g., based on Dijkstra, A*, or random
trees) are used to solve this problem. This search, however,
incurs a high computational cost that grows with the size
and resolution of the obstacle grid and has to be mitigated
with effective heuristics to allow path planning in real-time.
This work introduces a learning framework using a deep
neural network with a stackable convolution kernel to establish
a hierarchy of directional traversability representations with
decreasing resolution that can serve as an efficient heuristic to
guide a multi-resolution path planner. This path planner finds
paths efficiently, starting on the lowest resolution traversability
representation and then refining the path incrementally through
the hierarchy until it addresses the original obstacle constraints.
We demonstrate the benefits and applicability of this approach
on datasets of maps created to represent both indoor and
outdoor environments to represent different real-world appli-
cations. The conducted experiments show that our method can
accelerate path planning by 40% in indoor environments and
65% in outdoor environments compared to the same heuristic
search method applied to the original obstacle map, which
demonstrates the effectiveness of this method.

I. INTRODUCTION

Path planning on a static grid is a well-known and common
problem in AI and Robotics for which a large variety of
solution methods have been proposed. These methods can be
divided broadly into two categories. One is global path plan-
ners that compute a complete path before starting navigation,
such as Dijkstra, A*, or Rapidly Exploring Random Trees
(RRT). The other is local path planners, which determine
local navigation actions without first computing a complete
path, such as potential fields or reactive navigation strategies.

Local path planning generally requires less computation
time and is able to work while only having knowledge of
the local environment around the current position. However,
these methods are prone to fail and get stuck in local minima
and thus may not be able to find a path.

On the other hand, global path planners rely on heuristic
search in the state-space induced by the grid cells and can
guarantee to find a path given sufficient information about the
environment. However, since they require significantly more
information, these methods often struggle to find a path in a
reasonable amount of time as the size of the maps increase.
While efficient heuristics can accelerate path construction
in these algorithms, the derivation of effective heuristics
for a specific environment is a significant challenge. Most
traditional approaches thus use generic heuristics that are
largely independent of the environment, such as Cartesian

*This work was supported in part by NSF under grant I1S-1724248

1Reza Etemadi Idgahi and Manfred Huber are with the
Department of Computer Science and Engineering at the
University of Texas at Arlington, Arlington, TX, 76019-

0015. reza.etemadiidgahi@mavs.uta.edu,
huber@cse.uta.edu

978-1-6654-5258-8/22/$31.00 ©2022 IEEE

and Manfred Huber!

Distance or Search Node Density, thus still requiring large
amounts of time in cluttered and ill-structured environments.
This huge drawback makes these methods challenging for
applications with stringent time constraints.

This work introduces a novel method to derive a hier-
archical traversability representation using a stackable con-
volutional neural network architecture that can serve as an
efficient heuristic for global pathfinding approaches. The pro-
posed approach finds a path between two positions on a large
map while reducing the time of path planning. To do this, we
translate the obstacle grid map into a directional traversability
representation. We then learn a model in a supervised fashion
that can reduce the resolution of traversability grid maps
and create a new set of traversability maps of smaller
size that preserves most navigation information. This model
is created using a convolutional neural network that can
be expanded without retaining variable-size inputs while
achieving a constant factor size reduction. This enables us to
stack the learned convolutional kernel an arbitrary number of
times without additional re-training, yielding an increasingly
deep network and creating a growing hierarchy of abstracted
maps of increasingly smaller size. On this hierarchy, we then
apply a global path planner in a multi-resolution framework,
starting by finding a path in the smallest size (i.e., coarsest
resolution) abstracted map and then incrementally refining it
on the increasingly higher resolution maps on each level of
the hierarchy, including the original grid map which results
in the final path. The use of the traversability hierarchy
here ensures that paths found on low-resolution maps retain
most aspects of the true path and can thus be easily refined,
yielding faster overall planning times than planning on the
full resolution map. To demonstrate this, we show results
using both Dijkstra’s algorithm and A* for path planning
and refinement.

The main contribution of this work is to demonstrate that
the model is able to learn a new hierarchical representation
of physical features in a map in terms of obstacle and
non-obstacle cells. The learned model allows the algorithm
to reduce the maps’ resolution accurately to perform path
planning in a shorter time. Furthermore, our experiments
show that our algorithm is more efficient than the plain
Dijkstra or A* and can significantly reduce the overall time
of finding a path in a grid map.

II. RELATED WORK

A variety of search algorithms have been proposed in the
context of path planning, such as A* [1], Anytime Repairing
A* [2], Rapidly-exploring Random Tree (RRT) [3], Hybrid-
A* [4], and two-stage RRT [5]. Generally, these methods
use generic, handcrafted heuristics, such as Manhattan dis-
tance, Euclidean distance, and length of Reeds-Shepp paths.
Additionally [6] shows that cost functions can be created

2520

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 28,2022 at 16:18:55 UTC from IEEE Xplore. Restrictions apply.



from the topology of the state and can be learned from
demonstration [7]. Although it is possible to achieve optimal
solutions with a well-founded heuristic, the complexity of the
environments can make these methods unpractical, especially
when the length of the path or the dimension of the state
space increases. ARA* [2] reduces the complexity by using
a scaling factor and adjusting the upper bound of the cost of
a path. Hybrid A* [4] uses the maximum of two different
heuristics to guide grid cell expansion; however, it neither
preserves completeness nor guarantees an optimal solution.
Two-stage RRT [5] utilizes two RRTs where an upper RRT
produces waypoints, which guide the other lower RRT to
address the robot kinematics.

Researchers have developed several hierarchical path plan-
ning methods to improve the quality of the planned path in
complex environments [8], [9], [10], [11], [12]. Fujimura
and Samet [11] proposed a hierarchical system for path
planning in an environment with moving obstacles, in which
time was included as one of the dimensions of the model
world. However, this approach leads to having a large search
space. In [12], a hierarchical approximate cell decomposition
method was introduced where different resolution decompo-
sitions were used. Additionally, path planners based on fuzzy
systems and optimization methods have been introduced to
overcome the challenging properties of environments such
as unknown and dynamic areas [8], [13]. In [13], a multi-
objective path planner based on particle swarm optimization
is proposed for navigation in uncertain environments. By
contrast, [8] proposed a hierarchical planning strategy with
two layers, where fuzzy logic was used for motion planning.
However, the optimization and generalization abilities of
these planners still need to be improved.

Fueled by the increasing popularity of artificial neural
networks, the Al community has started to utilize these
computational models in path planning and to use their
powerful features such as strong function approximation.
In particular, deep reinforcement learning [14] which is a
machine learning framework for sequential decision making,
has been used to learn a policy that can generate the
shortest path. Prior RL algorithms, like Q-learning and Sarsa
[14], work well with discrete state spaces. Konar et al.
[15] have applied Q-learning to path planning of a mobile
robot. However, if the state spaces become very large or
continuous, these algorithms will be computationally expen-
sive and impractical. In [16], [17], [18], [19] researchers
introduced various approximation methods to deal with large
or continuous state spaces. Inspired by the least-squares
temporal difference learning algorithm [16], Lagoudakis and
Parr [17] proposed least-squares policy iteration (LSPI), in
which linear architectures were used to approximate the value
functions in continuous state spaces. In [20] a hierarchical
planning approach based on A* and LSPI is presented in
which a two-level structure was used. In the first level, the
A* algorithm was used to find several path points as subgoals
for the next level and in the second level, LSPI was used to
learn a near-optimal local planning policy. However, these
methods require significant training in order to be practical
for real-world applications.

In contrast, the approach presented here uses deep neural
networks to explicitly learn reductions of the world model

that can be used as a heuristic by a path planner to reduce
complexity. The goal here is to combine the benefits of a
global path planner in terms of completeness and correct-
ness with the advantages of machine learning to identify
traversability patterns that indicate successful path attributes.

I1I. METHOD

The method developed here attempts to provide efficient
guidance to a hierarchical path planning and refinement
approach by creating a cascade of increasingly lower res-
olution representations of the environment that maintain
its main characteristics in terms of path construction with
minimal refinement requirements. For this purpose, the maps
must maintain broad traversability characteristics rather than
obstacle locations or densities. For example, while an orchard
of trees and a field with walls might have the same average
obstacle density, the traversability of the orchard is relatively
universal (i.e., there is a path through the orchard in any
direction), in contrast to the traversability of the walled field
which is severely limited. To abstract these two pieces of
environment in a way that maintains approximate paths, they
need to be represented in a way that their characteristics
are preserved. To capture this, we propose the concept of
directional traversability maps and utilize supervised learning
with convolutional networks to identify the features that
indicate particular traversability characteristics.

To address varying size maps, the developed learning
approach utilizes a convolutional kernel that reduces the
resolution of the traversability maps by a constant factor.
Using a convolutional kernel allows us not only to expand the
layer to arbitrary input sizes but also to stack the same kernel
to form a deeper network, producing increasingly coarser-
resolution traversability maps with each additional layer.

Using this hierarchy of representations, path planning
works back up the hierarchy, starting by constructing a path
in the lowest resolution (and thus smallest size) map and
then incrementally refining it by considering the next higher
resolution representation. Figure 1 shows an overview of the
heuristic construction and path planning approach.

The obstacle map (top left) is translated into a set of
directional traversability maps, which are then transformed
into incrementally smaller size representations by applying
the convolutional network until the desired smallest size is
reached (illustrated left to right at the top). Once this repre-
sentation hierarchy is formed, the path planner is executed at
the bottom of the hierarchy (bottom right), and the result is
incrementally refined as moving back up the hierarchy until
a path is derived on the original obstacle map (illustrated
right to left at the bottom).

A. Directional Traversability Maps

Obstacle maps represent the environment in a grid, where
each cell can be either 0, meaning obstacle, or 1, mean-
ing non-obstacle. We introduce the concept of directional
traversability maps as a new way of representing the envi-
ronment where each cell can have a value between 0 and
1, representing its traversability score. Each obstacle map
can be converted to 6 traversability maps, each representing
traversability scores in a specific direction, namely horizon-
tal, vertical, top-left, top-right, bottom-left, and bottom-right.

2521

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 28,2022 at 16:18:55 UTC from IEEE Xplore. Restrictions apply.



Conv Conv Conv
—_— —_— —_— —_— —_—
Model Model Model
Final Path Path Path Path Path Path Path Path
Refiner Refiner Refiner Planner
Fig. 1. Overview of the proposed hierarchical, multi-resolution path planning approach. Construction of the reducing resolution directional traversability

cascade (top from left to right) is followed by bottom-up path planning and refinement (bottom from right to left).

The traversability score for each direction represents the
degree to which a path exists that traverses the underlying
patch of the environment in the corresponding direction.
Figure 2 shows an example of an obstacle map region and
the corresponding traversability representations.

Vertical Horizontal

Top-Left Top-Right

Bottom-Left  Bottom-Right

Fig. 2. Obstacle map and corresponding directional traversability represen-
tations for the six traversal directions. Purple, yellow, and green colors show
obstacles (non-traversable), free (fully traversable), and partially traversable
areas, respectively.

Obstacle Map

0

To manually convert an obstacle map to equal-sized
traversability maps, we calculate the traversability scores for
each cell in the obstacle map. If the cell is an obstacle,
then traversability scores in all directions are 0. Otherwise,
we look at the pair of adjacent neighbors of that cell in
each direction. For example, the left and right neighbors
are considered for horizontal, while the top and bottom
for vertical traversability. The traversability score in each
direction is set to O if both neighbors are obstacles, 1 if
both are non-obstacles, and 0.5 if one is an obstacle and the
other is a non-obstacle.

B. Dataset

To evaluate the approach in varied settings and derive
training data for the learning approach to hierarchical res-
olution reduction of directional traversability maps, an en-
vironment generator was developed that constructs arbitrary
worlds with particular characteristics. We created two sets
of 256x256 resolution maps to represent indoor and outdoor
environments. Indoor maps consist of rooms and hallways
with few random obstacles representing furniture or other
items in a building. By contrast, outdoor maps consist of
forest, field, and jungle patches which are large numbers
of small obstacles scattered through an area with different
densities, as well as random walls and obstacles of a bigger
size. During dataset creation, parameters such as the size of
hallways, the number of random obstacles, and the size and
density of the jungles were specified randomly to represent
a variety of settings. Figure 3 shows one example map for
each of the two sets.

1°°DI]I__'ImE|m

250 I _I [T] I_I_"I '"'I_T. ﬂ_'

[ 100 150 200 250 o 50 100 150 200 250

50

Fig. 3. Examples of obstacle maps for indoor environments (left) and
outdoor environments (right).

C. Model for Map Size Reduction

a) Model Architecture: The core of the proposed work
is the construction of a cascade of resolution (and thus size)

2522

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 28,2022 at 16:18:55 UTC from IEEE Xplore. Restrictions apply.



reduced directional traversability maps representing the same
environment. To achieve this, we trained a convolutional
kernel to reduce 4x4 patches of the traversability maps to
abstracted 2x2 patches while preserving the main traversabil-
ity characteristics. The convolution kernel can be replicated
in a variable-size convolution layer covering the entire input
map, making it flexible to train and apply on arbitrarily large
maps. To avoid underfitting, the proposed model utilizes two
convolutional layers. The first layer has three 4x4 filters with
a stride of 2 and relu activation functions for each directional
traversability map. The outputs of this layer are then stacked,
and as a result, the input traversability maps with a size
of WxHx6 are converted to W/2xH/2x18 maps. The second
layer is a 3D convolutional layer with six 1x1x18 filters with
a stride of 1 and clipped relu as the activation function to
generate valid traversability scores between 0 and 1. In the
end, the output of this model is six directional traversability
maps with half resolution of the input. Figure 4 shows the
architecture of the proposed model.

Conv2D 4x4
K=3, s=2

Vertical —

Conv2D 4x4
K=3,5=2

|

Horizontal

Conv2D 4x4
K=3, s=2

|

Top-Left

Conv3D
1x1x18
Conv2D 4x4 K=6, s=1
K=3, s=2

|

—
Top-Right

W/2xH/2x 18

Conv2D 4x4
K=3, s=2

l

Bottom-Left W/2xH2x6

WxHx6
Conv2D 4x4

K=3, s=2

|

Bottom-Right

. . . . . -

=
=
=
*

Fig. 4. The CNN model architecture used to reduce the resolution of the
traversability maps.

b) Training Data Generation: To train the convolu-
tional network for one step of size reduction, we generated a
training set of obstacle maps and their traversability represen-
tation (as explained in III-A), with corresponding resolution-
reduced traversability labels provided by an automated label-
ing process. As mentioned in Section III-B, the obstacle maps
in this work are 256x256 grids. Therefore, the generated
labels are six 128x128 maps, where each cell represents
the traversability score of the corresponding 4x4 patch on
the obstacle map in the given direction. Each patch shares
two columns or rows with its neighbor patch. Having this
overlapped area ensures that the traversability across multiple
patches is reflected in their traversability scores. This score
is a real number between 0 and 1, where 0 means there is no
path in the specified direction in that patch and 1 means there
are paths from any point on one side to any point on the other
side in the specified direction. Values in between represent
the fraction of location pairs on the entrance and exit side
of the area that can be connected through the area with a
collision-free path. Loosely this corresponds to a measure
indicating how easy it would be to find a path traversing the
area in the given direction.

c) Hierarchical Scale Reduction: Using the derived
training data, we train a convolutional kernel that can effi-

ciently derive a traversability representation of the same area
but with half the resolution. The convolution kernel can be
replicated in a variable-size convolution layer covering the
entire input map, making it flexible to train and apply on
arbitrarily large maps. This, together with the convolutional
kernel utilizing the same input and output representation
in terms of six traversability values, enables us to stack
multiple layers with identical kernels to achieve an incre-
mental reduction in size down to the desired target size.
Therefore we can train the model once and then use it for all
levels of abstraction, minimizing the training required while
obtaining an approach that is applicable to arbitrary size
maps. The concept of this multi-layer application is shown as
an overview in Figure 1 and on an example map in Figure 5.

D. Hierarchical Path Planning

After creating the dataset, the supervised learning ap-
proach is used to train a model to convert traversability maps
to lower resolution maps while maintaining the essential
features for path planning. This model enables us to use it
on a map multiple times in a hierarchy to reach a very small
map where a global path planner can perform reasonably
well. In this paper, we use Dijkstra’s algorithm to explain
the planning and refinement principles and then employ
both Dijkstra and A* in the experiments to demonstrate the
generality and benefit of the approach. After a path at the
lowest resolution has been found, it is incrementally refined
in the context of the higher resolution traversability maps
until a path in the original environment is found. For this,
it is necessary to have a version of the path planner that
can be executed on the traversability maps. We developed
a modified version of Dijkstra that can find a path in the
traversability maps and then refine it at the next hierarchy
level, where more map details are available.

a) Modified Dijkstra: Dijkstra is used here with mod-
ifications to allow the use of traversability maps. The input
is six directional traversability maps with values between
0 and 1. To cope with this multi-dimensional input, the
following heuristic function is introduced in order to include
the traversability scores:

Cair = d 4+ A1 — tair) (D

where cg;,- 1s the traversal cost of the current cell in direction
dir, d is the length of the current shortest path from the
start to the entry of the current cell, ¢4;,. is the traversability
score of the current cell in this direction, and A specifies
the importance of the traversability score compared to the
length of the path. If the traversability score is O, that cell
will not be considered for path planning because it is either
unreachable or untraversable, meaning we can reach it from
one side but not exit from the other side. This rule has an
exception at the start and end where we only want to reach
the cells and not traverse them.

b) Path Refinement: After a path is found on a low-
resolution map, it should be refined on the next higher-
resolution map to become a valid path. The method we
used for path refinement consisted of reducing the search
space and re-running the path planner. As such, instead
of searching the entire map, the path planner only scans
a small portion of it corresponding to the found path to

2523

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 28,2022 at 16:18:55 UTC from IEEE Xplore. Restrictions apply.



Obstacle Map

Vertical Traversability Map

Horizontal Traversability Map

I Resolution  * F

Reduction
»

Vertical Traversability Map Horizontal Traversability Map

Resolution
Reduction
—

r.
m

Masked Obstacle Map

Masked Vertical Traversability Map

Search
Mask
—

T =

Path
Planning

Masked Horizontal Traversability Map

Vertical Traversability Map
—————————
Search

Horizontal Traversability Map

r

Level 0

Level 1

Level 2

Fig. 5. Example of the hierarchical path planning approach. Hierarchical scale reduction of directional traversability maps is shown at the top (left to
right) with corresponding path construction and refinement at the bottom (right to left). Traversability scores are indicated by yellow, green, and brown
colors, and the refined path is shown in red. The search space used for path refinement is highlighted on the masked maps, which acts as a heuristic
showing a path most likely exists in that area based on the information from previous level. For example, in the last step at level O, the path planner only

searches 9.8% of the map and will quickly find the path.

quickly refine it according to the newly available details.
Since the map dimensions are reduced by two at each level,
each pixel at level [ + 1 corresponds to a 2x2 window at
level [. Therefore, to form the search area, for each pixel
and its surrounding pixels on the path at level [ + 1, the
corresponding 2x2 windows at level [ are added to the search
area. The number of surrounding pixels considered for the
search area is controlled by a hyper-parameter called margin.
Having a large margin helps mitigate the path errors caused
by the loss of detail in the low-resolution maps. However,
it makes the search area larger and can slow down the path
planner. The search area is represented in the form of a mask
that sits on the maps and restricts the search space. After that,
the path planner is executed to find a path in the specified
space. If there is no path, the mask will be removed, and it
continues to search the entire map until it finds a valid path.
An example of the search mask is shown in Figure 5 on the
bottom left map, where the highlighted and shadowed areas
represent the inside and outside of the search space.

Algorithm 1 presents a coarse description of the over-
all approach to hierarchical traversability map-based multi-
resolution path planning, and Figure 5 shows an example
of the map cascade and hierarchical path refinement with 3
levels.

IV. RESULTS

In this section, we discuss the experiments and the re-
sults. A time comparison between our method and the most
common path planning algorithms is performed, and the
effectiveness of our method is shown in this section. Also,
a full breakdown of the failure cases and wasted time on
different levels of hierarchical path planning are mentioned
at the end of this section.

Our hierarchical path planner (HPP) is evaluated on 2000
indoor maps and 2000 outdoor maps with different numbers

Algorithm 1 Hierarchical Path Planning

1: function HPP(obstacle M ap, maz Level)

2 Produce traverse map from obstacle map

3 Append traverse map to traverse list

4 for level < 1 to maxLevel do

5: traverseMap <+

6 convModel(traveseList[level — 1])
7 Append traverse map to traverse list

8
9

path < pathPlanner(traverseList[max Level])
: for i < maxLevels —1to 1 do
10: path < pathRefiner(path, traverseList[i])
11: path < pathRe finer(path, obstacle Map)
12: return path

of reduction levels in order to measure the saved time as
the levels are increased. The results are shown in Table I,
where we can see the improvement in performance up to
4 levels, and from that point, adding more levels does not
make a significant difference. Additionally, we tested the
4-level HPP using Dijkstra and A* against their baseline
algorithms, respectively, and measured the execution time (in
seconds) until a valid path was found. Table II demonstrates
the advantage of the heuristic provided by our method
and the resulted speedup in path planning, leading to 40%
improvement in indoor environments and 65% in outdoor
environments.

However, due to the fact that at each level of resolution
reduction, some of the details are removed, there are some
cases in our experiment where at some level, the path refiner
fails to refine the given path on the map with more details.
The path planner finds a path on the lowest resolution map
in these cases. However, the path is not feasible because the
map is abstracted multiple times, and some essential features

2524

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 28,2022 at 16:18:55 UTC from IEEE Xplore. Restrictions apply.



TABLE I
AVERAGE TIME OF PATH PLANNING USING HPP WITH DIFFERENT
NUMBERS OF LEVELS

Indoor Outdoor
2-Level HPP 0.92951 0.762387
3-Level HPP 0.802333 0.56627
4-Level HPP 0.603032 0.448267
5-Level HPP 0.611608 0.433787
6-Level HPP 0.624602 0.434019
TABLE II

AVERAGE TIME OF PATH PLANNING USING DIFFERENT ALGORITHMS

Indoor Outdoor
Dijkstra 1.033163 1.313872
HPP using Dijkstra 0.603032 0.448267
A* 0.846951 1.398034
HPP using A* 0.459444 0.392725

for path planning may be lost during the process. If the path
refinement fails, the path planner has to plan a new path at
the failing level, thus wasting time and potentially consuming
longer than the base path planner would. While the data in
Table II includes both the cases with and without failures, it
would be beneficial to analyze the cost of failures at different
levels in order to obtain a better estimate of the expected best
and worst-case speedups and slowdowns that can occur.

Table III shows the percentage of failure of the path refiner
(number of maps with failure among 2000 maps) at each
level and the average wasted time. The wasted time is the
time that our method has spent finding a path and refining it
before reaching the level at which the failure happens. That
path is not feasible, and we have to run the path planner
to search the whole map and find a new path on that level.
After that, the regular operation continues, and the new path
is given to the following levels for refinement.

TABLE III
PERCENTAGE OF FAILURE AND AVERAGE TIME LOSS AT EACH LEVEL

Indoor Outdoor
Failure(%) Wasted Time  Failure(%) Wasted Time
Level 0 0.8% 0.36504 0% 0
Level 1 3.2% 0.07783 0.55% 0.08055
Level 2 3.8% 0.02024 0.8% 0.02302

From Table III, it can be seen that this phenomenon has a
more significant effect in indoor environments as the number
of failures is higher than the outdoor environments. In these
maps, doors are small features that provide access between
hallways and rooms and play a major role in forming the
path. Combining this with random obstacles around these
areas can create challenging situations that our model may
not accurately represent on a reduced-sized map, leading to
finding an infeasible path in abstracted maps. However, the
number of failures is still relatively small, and the excess
time needed to correct, especially for lower-level failures, is
relatively limited, still resulting in competitive performance
even in failure cases and significant gains on average, as
indicated in Table II.

In the end, we also compared the quality of the paths
found by our method against the plain path planners. Since

the agent in this work is a point entity that moves in a grid
world, we only consider the length of the paths to measure
quality, and the optimal solution is defined as the shortest
path. Our experiments show that our method can find the
shortest path on about 84% of the indoor maps and 64%
of the outdoor maps. Although our method may return a
longer path than the optimal solution in some cases, the
difference in length is relatively small. Table IV demonstrates
this comparison in detail. The percentage of the maps that
our method returns an optimal solution is shown in the first
column labeled as “optimal solution frequency”, and in cases
that our method returns a non-optimal solution, the average
difference in path length compared to the optimal solutions
is shown in the second column labeled as “average length
difference”. As this table shows, even though our method
returns a longer path in 35% of the outdoor maps, it is
only 2% longer than the optimal solution. In contrast, our
method can find optimal solutions in more indoor maps, but
errors have higher penalties, leading to 11% longer paths
in the case of non-optimal solutions. This is mainly due
to the fact that indoor environments have a more coherent
structure because of the walls and hallways, so going through
a different hallway may significantly increase the length of
the path. However, on the outdoor maps, the obstacles are
scattered throughout the map, and there is less penalty for
taking the wrong direction.

TABLE IV
PATH COMPARISON

Indoor Outdoor
Optimal Average Optimal Average
Solution Length Solution Length
Frequency Difference Frequency Difference
HPP using  83.55% -11.4% 62.7% -2.17%
Dijkstra
HPP using 84.3% -11.15% 64.45% -2.17%
A*

V. DISCUSSION & CONCLUSIONS

We have presented a novel method for path planning
in a hierarchical manner. We introduced the concept of
directional traversability maps and how we can represent
an obstacle map in the form of directional traversability
scores. To create the hierarchy, a convolutional model was
trained using supervised learning to learn the traversability
function as a convolutional kernel and reduce the resolution
of its input. This convolutional kernel is replicated into
convolutional layers and stacked in a deep network that
can derive a cascade of incrementally resolution reduced
traversability representations of the environment. On this, a
modified Dijkstra and A* was used to find and refine a path
throughout the hierarchy and return the final path.

We demonstrated the potential for complexity reduction
of our method in experimental results in both indoor and
outdoor environments and showed that our method out-
performs the raw Dijkstra and significantly improves path
planning time in both types of environments. Similarly, we
showed that an A* based path planner could achieve the
same benefits. Additionally, we discussed the drawback of
our method where some of the details of the maps are omitted
during resolution reduction, which leads to finding a path that

2525

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 28,2022 at 16:18:55 UTC from IEEE Xplore. Restrictions apply.



is either infeasible on higher resolution maps or longer than
the optimal solution.

One interesting future direction is to replace the pre-
coded concept of traversability and supervised learning with
reinforcement learning to derive its own representation of an
abstracted map which can be more useful and further improve
the performance while reducing the number of failures in
the path refiner. Moreover, we are planning to utilize the
hierarchical traversability heuristic in the context of RRTs to
study its potential in larger environments further.

(1]

(2]

3

—

[4]

[5

[t}

(6]

3
|

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.
M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Anytime a* with
provable bounds on sub-optimality,” Advances in neural information
processing systems, vol. 16, pp. 767-774, 2003.

S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search
techniques in path planning for autonomous driving,” in Proceedings
of the First International Symposium on Search Techniques in Artificial
Intelligence and Robotics (STAIR-08), 2008.

Y. Wang, D. K. Jha, and Y. Akemi, “A two-stage rrt path planner for
automated parking,” in 2017 13th IEEE Conference on Automation
Science and Engineering (CASE), 2017, pp. 496-502.

S. Mahadevan and M. Maggioni, “Proto-value functions: A laplacian
framework for learning representation and control in markov decision
processes.” Journal of Machine Learning Research, vol. 8, no. 10,
2007.

N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin
planning,” in Proceedings of the 23rd international conference on
Machine learning, 2006, pp. 729-736.

X. Yang, M. Moallem, and R. Patel, “A layered goal-oriented fuzzy
motion planning strategy for mobile robot navigation,” IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 35,
no. 6, pp. 1214-1224, 2005.

X.-C. Lai, S. S. Ge, and A. A. Mamun, “Hierarchical incremental path
planning and situation-dependent optimized dynamic motion planning
considering accelerations,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 37, no. 6, pp. 1541-1554, 2007.
D. Dolgov, M. Montemerlo, and J. Diebel, “Path planning for au-
tonomous vehicles in unknown semi-structured environments,” 1. J.
Robotic Res., vol. 29, pp. 485-501, 04 2010.

K. Fujimura and H. Samet, “A hierarchical strategy for path plan-
ning among moving obstacles (mobile robot),” IEEE Transactions on
Robotics and Automation, vol. 5, no. 1, pp. 61-69, 1989.

D. Zhu and J.-C. Latombe, “New heuristic algorithms for efficient
hierarchical path planning,” IEEE Transactions on Robotics and Au-
tomation, vol. 7, no. 1, pp. 9-20, 1991.

Y. Zhang, D.-W. Gong, and J.-H. Zhang, “Robot path planning
in uncertain environment using multi-objective particle swarm
optimization,” Neurocomput., vol. 103, p. 172-185, Mar. 2013.
[Online]. Available: https://doi.org/10.1016/j.neucom.2012.09.019

R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
Ist ed. Cambridge, MA, USA: MIT Press, 1998.

A. Konar, I. Goswami Chakraborty, S. J. Singh, L. C. Jain, and A. K.
Nagar, “A deterministic improved g-learning for path planning of a
mobile robot,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 43, no. 5, pp. 1141-1153, 2013.

S. J. Bradtke and A. G. Barto, “Linear least-squares algorithms for
temporal difference learning,” Machine learning, vol. 22, no. 1, pp.
33-57, 1996.

M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” The
Journal of Machine Learning Research, vol. 4, pp. 1107-1149, 2003.
X. Xu, C. Liu, S. X. Yang, and D. Hu, “Hierarchical approximate
policy iteration with binary-tree state space decomposition,” IEEE
Transactions on Neural Networks, vol. 22, no. 12, pp. 1863-1877,
2011.

X. Xu, Z. Hou, C. Lian, and H. He, “Online learning control using
adaptive critic designs with sparse kernel machines,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 24, no. 5, pp.
762-775, 2013.

2526

[20] L. Zuo, Q. Guo, X. Xu, and H. Fu, “A hierarchical path planning

approach based on ax and least-squares policy iteration for mobile
robots,” Neurocomputing, vol. 170, pp. 257-266, 2015.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 28,2022 at 16:18:55 UTC from IEEE Xplore. Restrictions apply.



