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Abstract

Automated fault detection (FD) methods are essential for safe and profitable operation of complex engineered systems. Both data-
driven and model-based methods have been extensively studied, and some are widely used in practice. However, distinguishing
faults from acceptable process variations remains a critical challenge, making both false alarms and missed faults commonplace. In
principle, set-based FD methods can rigorously address this challenge. However, existing methods are often much too conservative,
particularly for nonlinear systems. Moreover, few if any published comparisons clearly demonstrate the supposed advantages of
set-based methods relative to conventional methods. This paper first presents a new set-based FD method based on discrete-time
differential inequalities and demonstrates increased fault sensitivity through several case studies. Next, a detailed comparison of set-
based methods with representative data-driven and model-based approaches is presented. The results verify some key advantages

of the set-based approaches, but also highlight key challenges for future work.
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1. Introduction

Due to the level of complexity, integration, and automation in
modern engineered systems, equipment malfunctions and other
abnormal events are frequent and unavoidable. These events,
termed faults, often have serious economic, safety, and envi-
ronmental consequences if not detected quickly (Venkatasubra-
manian et al.,[2003b). At the same time, false alarms (i.e., fault
declarations during normal operation) caused by benign distur-
bances can lead to shut-downs or other operational changes that
also do significant economic harm. Thus, automated meth-
ods for detecting faults quickly and accurately are essential.
This paper introduces a new set-based fault detection algorithm
based on discrete-time differential inequalities and presents a
detailed comparison of set-based fault detection methods with
conventional data-driven and model-based approaches.

To date, the theory and practice of fault detection (FD) has
been dominated by data-driven approaches (Chiang et al., 2000j
'Venkatasubramanian et al., [2003b)). In these methods, histori-
cal data is analyzed to identify important statistics, and the vari-
ability of these statistics under normal operating conditions is
quantified in terms of thresholds. Online, new measurements
are compared with the historical data and a fault is declared if
the current statistics violate the computed thresholds. In ideal
cases (e.g., stationary Gaussian data), well-established statisti-
cal methods such as principal component analysis (PCA) can
be used to identify appropriate statistics and set thresholds to
achieve any desired rate of false alarms (Chiang et al., [2000).
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These methods are simple, scalable, and widely used in indus-
try (Joe Qin, 2003). However, for general non-Gaussian data,
these simple methods can result in inappropriate statistics or
thresholds, often leading to high false alarm rates. Several ad-
vanced data-driven methods based on independent component
analysis (ICA), dynamic PCA, kernel PCA, and other machine
learning techniques have been developed to address this, but
these have considerably higher costs and are not well estab-
lished in practice (Lee et al.,[2006; Ku et al., 1995} |Choi et al.}
2005; |Lee et al.,|2007). Another significant disadvantage of all
data-driven methods is that they require historical data that is
appropriate for the current operating point. If the current op-
erating point is different from that of the historical data, either
intentionally or due to a persistent disturbance or transient, the
process statistics can deviate significantly from historical val-
ues, leading to persistent false alarms that render the method
unusable (see experiments in §5).

To address these limitations, another class of FD meth-
ods makes use of process models in place of historical data
(Venkatasubramanian et al., 2003b; |Isermann, [2005; |Patton and
Chen, 1997). The most standard approach is to use an observer
(i.e., state estimator) to predict the most likely output values at
the next sampling time. A fault is then declared if the measured
outputs deviate from the predictions by more than a prescribed
threshold (Patton and Chen,|1997). This eliminates the need for
historical data at the current operating point and naturally han-
dles non-steady operations. In principle, the model also pro-
vides a means to completely characterize the output statistics
under fault-free conditions, which is crucial for setting thresh-
olds that accurately distinguish faults from disturbances. How-
ever, this requires both an accurate model and accurate knowl-
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edge of the disturbance probability distributions, which is of-
ten impractical. Moreover, even when these distributions are
available, propagating them through a nonlinear model to ob-
tain output distributions is extremely difficult. Thus, significant
approximations are needed, such as the use of linearization and
Gaussian distributions in methods based on extended Kalman
filters (Patton and Chen, |1997). In general, this can lead to in-
accurate output statistics and, as a result, fault insensitivity or
excessive false alarms (see experiments in §5).

A third class of FD methods called set-based methods at-
tempts to address the shortcomings of observer-based methods
by modeling all disturbances and measurement noises in terms
of deterministic bounds rather than probability distributions.
Specifically, these inputs are assumed to be bounded within
known compact sets, but nothing is assumed about their distri-
butions. Set-based computations are then used to rigorously test
if a new measured output is consistent with the process model
given these bounds, and a fault is declared if not. This ap-
proach is attractive because obtaining bounds on disturbances
and measurement noises is often easier than obtaining accurate
probability distributions. Moreover, model uncertainty can be
easily incorporated using bounded time-invariant parameters,
which lessens the need for a highly accurate model. Finally,
these methods completely eliminate false alarms provided that
the input bounds are valid. However, accurate set-based com-
putations are required to achieve high fault sensitivity, which
remains a major challenge.

Many set-based FD methods are available for linear sys-
tems using computations with intervals (Seron and De Dond,
2009; |[Efimov et al., [2013), polytopes (Blesa et al., 2012), el-
lipsoids (Reppa and Tzes| 2011), zonotopes (Scott et al., 2013}
Ingimundarson et al., [2009; [Tabatabaeipour et al., 2012), and
constrained zonotopes (Scott et al., 2016). However, testing
the consistency of a measured output with a nonlinear model is
significantly more difficult. One approach is to use set-based
parameter estimation, wherein measurements are used to com-
pute an enclosure of the set of consistent model parameters. A
fault is then declared when this enclosure has no overlap with
a known set of possible parameter values. In (Jauberthie et al.,
2013)), this is done using a differential algebraic approach and
interval-based set inversion techniques. However, the compu-
tational cost scales exponentially with the number of uncertain
parameters. This method is extended to systems with proba-
bilistic noises using a Bayesian framework in (Fernandez-Canti
et al., 2013), but this does not provide rigorous bounds.

Another approach to set-based FD is to apply set-based state
estimation. At each sampling time, a set-based state estimator
provides a guaranteed enclosure of the set of states consistent
with the model, the bounded uncertainties, and all past mea-
surements. This is then used to compute an enclosure of the
possible model outputs, and a fault is declared if the measured
output is outside of this set. The key challenge is to compute
sufficiently accurate enclosures fast enough for online fault de-
tection. A method for continuous-time systems based on up-
per and lower Luenberger observers and cooperativity theory is
proposed in (Raissi et al.,2010). In (Combastel, [2016), an Ex-
tended Zonotopic and Gaussian Kalman Filter is proposed for

discrete-time systems with uncertainties composed of bounded
and unbounded parts. However, both methods rely on conser-
vative linearizations of the dynamics over the entire state do-
main, which can lead to weak enclosures compared to adaptive
linearizations such as those in (Alamo et al., 2005; |Combastel,
2005). The FD method in (Rostampour et al.,[2017) also uses a
set-based state estimator, but forgoes rigorous enclosures in fa-
vor of smaller sets based on a prescribed false alarm rate. Thus,
this method is not guaranteed to avoid false alarms. More-
over, it requires the solution of nonlinear chance constrained
optimization problems at each sampling time, which is pro-
hibitive. To reduce conservatism and increase efficiency, some
approaches use approximate models with simpler structure. In
(Wang and Puig, 2016), nonlinear models are linearized be-
fore constructing the observer, as in the extended Kalman fil-
ter. Similarly, (Chai et al.| 2013)) approximates nonlinear input-
output models using a Takagi-Sugeno fuzzy neural network that
is linear in the uncertain parameters. Ellipsoidal (Chai et al.|
2013)) and zonotopic (Wang and Puig,|2016) enclosures are then
computed for the approximate models and used for fault detec-
tion. However, these enclosures are not necessarily valid for the
original system. Finally, (Tulsyan and Barton, 2016) proposes
a set-based FD method for continuous-time systems using ad-
vanced reachable set bounding techniques based on differen-
tial inequalities. However, measurements are not used to refine
the predicted enclosures as in a true set-based state estimator,
which is a serious limitation.

Despite this prior work, performing set-based computations
with sufficient accuracy for effective fault detection remains a
major challenge for nonlinear systems. Moreover, although the
potential advantages of set-based FD methods have been articu-
lated in many prior studies, to the best of our knowledge, no de-
tailed studies comparing set-based FD methods to more conven-
tional data-driven and observer-based methods are available in
the literature. In this context, this article makes two main contri-
butions. First, we present a new set-based FD algorithm based
on the set-based state estimator recently developed in (Yang and
Scott, [2018a). This estimator computes interval enclosures us-
ing the theory of discrete-time differential inequalities (DTDI)
and has been shown to produce significantly more accurate en-
closures than other state-of-the-art set-based state estimators for
nonlinear test cases in (Yang and Scott, 2018a). However, this
method has not previously been applied for FD. To this end,
we develop a new FD algorithm using DTDI and demonstrate
through case studies that it offers significantly improved fault
sensitivity.

Second, we present a detailed comparison of set-based FD
methods with more conventional data-driven and observer-
based methods using three case studies. Specifically, we com-
pare against the standard PCA method described in (Joe Qin}
2003)) and the extend Kalman filter (EKF) method from (Fathi
et al.,1993). These methods were chosen because they are rep-
resentative of the state-of-practice in data-driven and observer-
based FD, respectively. We acknowledge that many alterna-
tive methods exist and may perform better in specific scenar-
ios. Yet, none are as well established or widely used, and so it
seems most informative to first understand how set-based meth-



ods compare to these classical benchmarks.

Comparing data-driven, observer-based, and set-based FD
methods is challenging and somewhat ill-posed because they
are based on fundamentally different assumptions about the
process noises and require different information about the pro-
cess that may not be accurately known in practice. Thus, any
comparison necessarily involves applying the methods in cases
that violate some of their assumptions. Yet, this is exactly the
case when applying these methods to real systems, so it is im-
portant to study how they perform in such circumstances. To
this end, we develop a framework for comparing data-driven,
observer-based, and set-based FD methods using simulated sys-
tems with various noise distributions, various types of model
uncertainty, various fault-free scenarios representing different
operating conditions, and various types of faults. In every case,
we make the most sensible approximation of how each method
would be applied in practice without knowledge of the actual
process and noise distributions used in the simulation.

The remainder of this paper is organized as follows. Section
gives a formal problem statement. Section [3| describes the
representative data-driven and observer-based FD methods se-
lected for our comparisons. Section {4|introduces the set-based
FD paradigm, describes existing methods we compare against,
and presents our new set-based FD algorithm. In Sections [3]
[6] and[7] detailed comparisons of all FD methods are provided
using three case studies. Finally, Section[§]provides further dis-
cussion and concluding remarks.

2. Problem Statement

This paper considers FD algorithms for uncertain nonlinear
discrete-time systems of the form

Xp+1 = f(k9 Xk» Wk), (1)
Vi = gk, Xk, Vi) )

Above, x; € R™ is the state, y, € R™ is the output, w; €
R™ is the disturbance, v; € R™ is the measurement noise, and
k € K = {0,...,K}. The functions f and g have the form f :
KxR®xR™ - R™and g : K x R x R"™ — R™,

Different FD methods make different assumptions about the
nature of the noises w and v and the required properties of the
functions f and g. The assumptions for the conventional FD
methods are discussed in §3| while those for the set-based meth-
ods are given in §4| In our numerical comparisons, different
kinds of noises are used in different test cases. The system is
said to be fault-free if equations (1)) and (2) hold and the noises
w; and v; obey their specified bounds or probability distribu-
tions over the entire time horizon. Faults are modelled by dis-
crete changes in either the governing equations or the nature
of the noises at some time k. The objective of fault detection
methods is to detect this situation as quickly as possible. If a
fault is not detected by a particular method, we call it a missed
fault. In contrast, if the simulated system is fault-free but a fault
is declared by a method, we call it a false alarm. These two in-
dices plus the detection speed are used for comparing methods
in the numerical examples.

3. Conventional Fault Detection Methods

This section describes the basic principles of the conven-
tional FD methods compared in §5H7}

3.1. Principal Component Analysis (PCA) Method

PCA is widely used for fault detection in industrial processes.
The standard PCA-based FD method is described in (Chiang
et al., 2000) and is chosen here as a representative of conven-
tional data-driven methods. This approach does not assume a
system model or any information about the noises w; and vy.
Instead, it assumes that we have a historical dataset Y € R
composed of m measured output vectors y; € R™ collected dur-
ing some period when the process was operating at steady-state
without faults. Moreover, these outputs are assumed to obey
a multivariate Gaussian distribution. This will hold when (I)—-
are linear and w; and v; are serially uncorrelated Gaussian
noises, but not necessarily otherwise.

The offline portion of the method involves first normalizing
Y so that each column has zero mean and unit standard devia-
tion, and then computing the eigendecomposition of the covari-
ance matrix S = ﬁYTY. The eigenvectors are sorted by their
eigenvalues, which indicate how much of the variance in the
data is explained by each eigenvector. The eigenvectors corre-
sponding to large eigenvalues (enough to describe a prescribed
percentage of the total variance) are called loading vectors and
define the principal component subspace, while the rest consti-
tute the residual subspace.

When detecting faults online, each new measurement y; is
first normalized in the same way as the columns of Y, and then
two statistics are computed that are used as residuals for fault
detection. For the first, the component of y; along each load-
ing vector is computed. The resulting vector is called the score
vector and, once each component is normalized by the corre-
sponding eigenvalue, should obey a multivariate Gaussian dis-
tribution with zero mean and identity covariance matrix in the
fault-free case. The residual for fault detection is defined as the
squared two-norm of this vector, which represents the devia-
tion from the mean. A threshold containing this statistic with a
specified probability is calculated using the fact that the residual
follows the T2 distribution. Online, a fault is declared whenever
this residual crosses the threshold, and the specified probability
determines the probability of a false alarm (Joe Qin,2003). The
second residual used in the PCA method is the squared predic-
tion error (SPE), which is the square of the Euclidean distance
from y; to the principal component subspace. Since the SPE
obeys the Q statistic, a threshold can also be generated by spec-
ifying a desired probability of false alarms. Compared with 72,
SPE is more robust to the inaccuracy of small eigenvalues.

Since the comparisons in this paper are done by simulation,
historical datasets are synthesized using 60,000 output vectors
from the simulated fault-free system starting at the nominal
steady state. The principal components are chosen by retaining
the k eigenvectors with largest eigenvalues such that the sum-
mation of their eigenvalues exceeds 90% of the total eigenvalue
summation. For all of the test cases in this heuristic re-
tained all eigenvectors (i.e., no dimension reduction was neces-



sary), so fault detection was done with the 77 statistic only. A
95% confidence level was selected for the T2 threshold. Thus,
we expect a 5% false alarm rate for systems with normally dis-
tributed outputs. However, the systems we consider are non-
linear and sometimes have non-Gaussian distributions, so this
confidence level is only approximate.

3.2. Extended Kalman Filter (EKF) Method

Extended Kalman Filters are used extensively in industry for
state estimation of nonlinear systems. Accordingly, we chose
the EKF-based FD method in (Fathi et al., [1993) as a repre-
sentative of conventional observer-based FD methods. In this
method, a standard EKF is applied to (I)—(2) assuming that f
and g are continuously differentiable and w; and v, are serially
uncorrelated Gaussian noises. At each sampling time, the EKF
furnishes an innovation vector € defined as the difference be-
tween the predicted outputs and the measured values. A fault is
declared if any component of € has a significant bias away from
0. For each dimension i, this is determined using a sequential
probability ratio test (SPRT) that compares the likelihoods of
the following hypotheses: (i) ¢ is Gaussian with mean 0 (fault-
free), and (ii) € is Gaussian with mean a for some specified
a # 0 (faulty). Note that the first hypothesis is true of the fault-
free system if w; and v, are serially uncorrelated zero-mean
Gaussian noises and (I)—(2)) are linear, but not necessarily oth-
erwise. Moreover, the assumption that a fault merely causes a
shift in the mean may not be accurate in practice. Thus, the use
of the SPRT for fault detection should be considered heuristic.

The test statistic of the SPRT is the logarithm of the joint
likelihood ratio (LLR) function, /;;, which can be generated by
a simple recursion under the assumption of Gaussian innova-
tions. In hypothesis testing, /;x typically has both negative and
positive thresholds. Hypothesis (i) is deemed correct if /;; falls
below the negative threshold, while Hypothesis (ii) is deemed
correct if /;; exceeds the positive threshold. However, for fault
detection it is only of interest to confirm Hypothesis (ii). There-
fore, the following modified recursion is used to minimize de-
tection time (Chen and Adams,|1976):

li,k = max{l,-,k_l + a[é,k —0.54],0}. (3)

The innovation & above is normalized by the standard devi-
ation of ¢ (as estimated by the EKF) so that a can be chosen
as +1 to detect positive and negative biases (Fathi et al.,|{1993)).
Given a specified probability of false alarms @ and missed faults
B, the threshold A for /;x is computed by solving

B _1q
e”—/l—lz—(B+A ) )

A=/~ ),
B=In((1-p)/a).

In our implementation, fault detection is done using two
residuals for each i, one with ¢ = 1 an another with a = —1.
However, in our numerical results, we only plot a single resid-
ual for each scenario. In fault-free scenarios, methods are com-
pared according to their false alarm rates, so we select the resid-
ual with most false alarms. In faulty scenarios, we select the

residual that indicates the fault earliest. To compare with PCA,
the false alarm and missed fault probabilities are selected to be
95%. However, since the innovations are not guaranteed to be
Gaussian in our examples, this threshold is only approximate.

4. Set-based Fault Detection

In this section, we present a generic algorithm for set-based
FD that makes use of a set-based state estimator. We then de-
scribe five distinct methods that arise from applying this algo-
rithm with different state estimators.

In set-based methods, the initial conditions, disturbances,
and measurement noises are assumed to be bounded by known
compact sets:

X0, Wi, Vi) € Cox WXV, Vkek. 5)

Let yo.x = (¥o,-...,Yx) denote an observed output sequence.
The goal of set-based state estimation is to characterize the
sets Xy (Yox) and X,k (Yo.x) defined as the sets of all possible
states at step k and k + 1, respectively, that are consistent with
the model (I)—(2), the bounds (5], and the measurements up
to step k. Unfortunately, these sets can be arbitrarily complex
and cannot be computed directly. Instead, set-based methods
aim to compute guaranteed enclosures of these sets, denoted by
)A(k|k(y0;k) and }A(k+1|k(yo;k). Toward this end, a key observation
is that Xyx(Yo.x) and X 1x(Yo:x) satisfy a recursive relationship.
Specifically, for any y € R™, define the measurement set

X'(y) ={xeR™ :y=gkx,v), ve V}. (6)

Then, the following recursion holds (Le et al., 2013):
Xo-1 = Co, )
X (o) = Xik—1(Yox) N X7 (Yi)s (8)

X1 (Yox) = £k, x, W) : (X, W) € Xpe(yo) X W} (9)

Although (7)—(9) cannot be implemented algorithmically due
to the complexity of the sets Xyx(yox) and Xy 1x(yox), these
relations suggest a recursive procedure for computing the en-
closures )A(k‘k(y():k) and )?k+1|k(y0;k). To write this procedure in
a sufficiently general form for our purposes, suppose that an a
priori enclosure satisfying the following assumption is known.

Assumption 1. A set G C R™ is known such that x; € G for all
k € K provided that (5) holds.

This assumption is not restrictive since we may always
choose G = R™. However, the solutions of many systems
are known to be positive, satisfy conservation laws, or lie in
more general invariant sets (Scott and Barton, 2013} Shen and
Scott, 2017). This information can be used to define nontrivial
choices of G, which can then be exploited by some state estima-
tion methods to obtain tighter enclosures. Under Assumption
enclosures }A(k|k(y0:k) and X, 11k(Yo:x) can be computed by any
recursive procedure that satisfies the following inclusions:

Xo-1 > Co, (10)
Xk (o) D Xipe—1(Yor-1) N X7 (y) N G, (11

X1k (Yox) D 1k, x, w) 1 (X, W) € (Xip(yor) N G) x W) (12)



The inclusions and are called the correction and
prediction steps, respectively. Specific set-based state estima-
tors differ in the details of how the sets )A(k|k(yo;k) and )A(k+1|k(y0;k)
are represented computationally and how each set is computed
from the last so as to satisfy (I0)—(12). This is discussed further
below and illustrated by the example in §4.1]

The set-based FD methods we consider attempt to detect
faults by checking if the real output is consistent with the fault-
free model in each time step. Define the set of possible output
vectors at time k given yo.x—1 by

Yie-1(Yor—1) = {g(k, X, v) : (X, V) € Xpp—1(You-1) X V). (13)

A measured output sequence Yo is inconsistent with the fault-
free model if and only if yx ¢ Yiy—1(Yo:x-1)- If this happens, then
a fault must have occurred. Since Yy (Yo.x—1) is also generally
impossible to compute, set-based FD methods instead compute
an enclosure f/k|k_1(y0;k_1) satisfying

Yieo1(Your-1) O {8k, X, V) 1 (X, V) € Kim1 (You—1) N G) X V.

(14)
Ifyc ¢ 7, k-1 (Yo:k-1), then yo.x is inconsistent with the fault-free
model and a fault must have occurred. However, this is now
a one-sided guarantee and nothing can be concluded if y; €
f/;dk_] (Yo:x-1)- A general FD algorithm based on this concept is
given in Algorithm |1} This concept is also illustrated in Figure
which shows an example of a complex set Yy—1(Yo:x-1) (blue)
along with two simple enclosures f/k|k—1(YO:k—1) representing the
results of two different set-based FD methods (orange interval
and green polytope). If the observed measurement y; is one
of the triangular markers, then it is consistent with the fault-
free model. Since it also lies inside of the enclosures, neither
method will declare a fault. Thus, set-based FD methods never
give false alarms. If y; is one of the square markers, then a
fault has occurred but neither method can detect it. Finally, if
¥i is one of the circles, then a fault has occurred, the interval
method can detect it, but the polytope method cannot. Clearly,
fault sensitivity depends critically on how tight the enclosure
Yigk-1(Youk—1) is to the true set Vi1 (Yox—1)-

Algorithm 1 Set-based FD using a set-based state estimator
1: function SETBASepFD(Cy,W,V,G)

2: )?0‘_1 D Cy

3: for k=0to K do

4: Vit D {gk, %, v) : (x,V) € K1 N G) X V)
5: Measure yj

6: if Vi € ?klk—l then

7: break (Fault detected)

8: end if

9: Xk\k D )A(]dk_] N X;c"(yk) NG
10: Xioiw 2 {F(k, x, w) 1 (x, W) € (X N G) X W)

11: end for
12: end function

We now describe the specific set-based FD methods com-
pared in this paper, all of which use Algorithm [[|with different
set-based state estimators satisfying (10)—(12) and (14). The
sets Cy, W, and V are assumed to be intervals throughout.

Figure 1: Illustration of the set of all possible outputs Yi—i(Yox-1)
(blue) along with two enclosures Yk‘k, 1(Yox—1) representing the results
of two different set-based FD methods (orange interval and green poly-
tope). The markers represent the measured output y, in different fault-
free (A) and faulty ([J,0) cases.

The first three methods are based on standard set-based state
estimators from the literature (Kieffer et al.|[1998;|Alamo et al.,
2005; (Combastel, 2005). None of them make use of a priori
information; i.e., G = R". In the first method, called the stan-
dard interval method, the sets }A(k‘k, Xk|k_1, and f/k|k—1 are inter-
vals, the intersection in (11)) is computed exactly, and the im-
ages in and are computed by simply evaluating f and
g in interval arithmetic. This method is simple, but is known to
lead to very conservative bounds. Much sharper bounds can of-
ten be achieved by representing }A(k\k, Xk|k_1, and flk\k—l as zono-
topes. Thus, we also compare against two state-of-the-art zono-
topic methods (Alamo et al.} 2005; (Combastel,[2005). Although
these methods are well-known, to our knowledge they have not
previously been used for set-based fault detection. The func-
tions f and g are assumed to be continuously differentiable in
(Alamo et al., 2005) and twice continuously differentiable in
(Combastel, |2005). In the prediction step, both methods com-
pute )A(;m‘k by linearizing f, using standard zonotope computa-
tions for linear mappings, and then adding a rigorous bound on
the linearization error. This is done using the mean-value theo-
rem in (Alamo et al., 2005) and via Taylor expansion in (Com-
bastel, [2005). The computation of f/;dk_l is done analogously by
conservative linearization of g. The condition y; ¢ f/k‘k_l can be
checked exactly by solving a linear program, or conservatively
but more cheaply by checking if y; lies outside of the interval
hull of f’k|k_1. We do the latter in all numerical experiments here
since the former did not result in improved fault detection. For
the correction step (11)), the procedure in (Bravo et al.}[2006) is
used for both methods because it was found to give consistently
tighter enclosures. This procedure first encloses X"(yx) by an
intersection of n, strips and then conservatively bounds the in-
tersection of )?k|k_1(y0;k_ 1) with each strip successively. Even
when X;"(yx) is an interval, its intersection with )A(Hk_](yo;k_l)
is not necessarily a zonotope, so this step can lead to signifi-
cant overestimation. Applying these prediction and correction
procedures recursively produces zonotopes of increasing com-
plexity. Therefore, conservative order reduction techniques are



needed to maintain computational efficiency (Yang and Scott,
2018b). In our numerical experiments, we reduced the order of
X[H.]‘k(y();k) to 10 after the prediction step for every k using the
reduction method in (Alamo et al., [2005)).

Next, we describe two new FD methods based on recent ad-
vances in set-based state estimation in (Yang and Scott, [2018a,
2020). Since this requires several definitions and concepts from
set-based computing that may be unfamiliar to some readers,
we also demonstrate the computations involved for a tutorial
example in Let Z = [z%,zY] denote the n-dimensional
interval {z € R" : zI < z < zU}. Denote the space of all such
intervals by IR". For any h : R" — R, an interval function
[h] : IR" — TR™ is an inclusion function for h if

h(Z) = {h(z):z€eZ} c[h](Z), YZeIR".  (15)

We assume that functions [f] : K x IR™ x IR™ — IR™ and
[g] : K x IR™ x IR™ — TR™ are available such that [f](k, -, -)
and [g](k, -, -) are inclusion functions for f(k, -, -) and g(k, -, ),
respectively, for all k£ € K. These can be readily obtained from
interval arithmetic (Moore et al.,[2009). Next, given any set A C
R"x, let the interval refinement operator I[-,A] : IR™ — IR™
satisfy

(ZNA)cC I[Z,A], VZelR™. (16)

In words, I[Z, A] attempts to shrink the interval Z by eliminat-
ing regions that are outside of A, resulting in a new interval. We
assume such an operator is available for the set A = GN X" (yx),
Vk € K. Methods for refining a given interval enclosure based
on a set of constraints have been widely studied. Methods ap-
propriate for this application are discussed in detail in §IV in
(Yang and Scott, 2020). For the examples considered in this
paper, both G and X" (yj) are expressible in terms of linear con-
straints, so we define 7[-,G N X;'(yr)] exactly as in (Yang and
Scott, [2018a) using Algorithm 1 from (Yang and Scott, 2018c).
Finally, for every i € {1,...,n,}, define the face selection oper-
ators B, pY : IR™ — IR™ by

Bz 2" ) = (z e [2",2"] : 5 = 7). (17)
Bl(z"2") = (z e (282" sz = ). (18)

The state estimator developed in (Yang and Scott, 2018a) de-
scribes all sets as intervals and is defined as follows. Given

)A(k‘k,l and a new measurement y; at time k, the correction step
is given by

X = I Xui-1, G 0 X7 (yo)]. (19)

The prediction for k + 1 is then computed componentwise as
follows, where [ f~, £V] denotes the i component of [f]:

o = fE (T [BF(Ru) .G 0 XPyo)] W), (0)
o = £ (T [,B,U (Ri).G X,’C"(yk)] W),
This is the same as the standard interval method except that
LU is evaluated at T L/U(Xk ©)» G N X" (y)| rather than ka.
i i | k |

The resulting bounds are therefore significantly tighter, but re-
main valid by Theorem 3 in (Yang and Scott, 2020) provided

that 7 satisfies a Lipschitz condition and f satisfies a certain
monotonicity condition. The Lipschitz requirement is estab-
lished for our choice of 7 in (Yang and Scott, 2018a) and for
several other choices in (Yang and Scott, |[2020). Moreover, by
Corollary 4 in (Yang and Scott, 2020), the monotonicity re-
quirement holds whenever f takes the Euler-discretized form
fk, X, Wi) = X + hf'(k, Xy, W) with any locally Lipschitz con-
tinuous f and any step size & below a simple upper bound given
in (Yang and Scott, 2020). These conditions have been verified
in (Yang and Scott, 2020) for all of the examples considered
here. The prediction step is motivated by similar meth-
ods for continuous-time reachability analysis based on the the-
ory of differential inequities (DI). Consequently, this method
is referred to as discrete-time differential inequalities (DTDI).
In the comparisons herein, we further distinguish two specific
DTDI methods. The first, termed standard DTDI (sDTDI), uses
the trivial a priori enclosure G = R™, and hence replaces
I [-,G N XZ’(yk)] with I[',X,’C"(yk)] everywhere. This is often
much more effective than the standard interval method due to
the use of ,BiL/ U, but still results in weak bounds in many cases
(Yang and Scott, [2020). The second, termed redundancy-based
DTDI (rDTDI), results from choosing a nontrivial a priori en-
closure. Such an enclosure is sometimes known from physical
insights. More generally, one can be manufactured by lifting the
system into a higher-dimensional state space. This procedure is
described in (Shen and Scott,2017) and is demonstrated by ex-
ample in §5H7|here. Examples in (Shen and Scott,[2017; |Yang
and Scott, 2020) show that this often results in much tighter
bounds than alternative methods.

Although DTDI shows promising state estimation results, it
has not been previously applied for fault detection. To adapt
the sDTDI and rDTDI methods to FD, we simply use the cor-
responding state estimator in Algorithm (I} To perform the test
Vi € f’k‘k_l, the predicted output interval is computed as

P = [g] (k, T[Ri1, G1, V). @1)

Remark 1. Since the use of G significantly improves the perfor-
mance of DTDI, it is reasonable to consider whether it would
similarly enhance the standard interval and zonotope methods.
As shown in (Yang and Scott, [2020), the answer is negative for
the standard interval method. Specifically, the use of the face
selection operators ,6’1.” Y makes refinement based on G much
more potent in DTDI. However, methods for refining zonotopic
enclosures using G have very recently been developed in (Rego
et al.,|2021) and show promising results. Applying these meth-
ods to fault detection is a worthwhile project, but is beyond the
scope of this article.

4.1. Interval-based FD Methods Tutorial

This section demonstrates the computations required for the
interval-based FD methods described above using a simple ex-
ample. We cover the standard interval, sSDTDI, and rDTDI
methods. The zonotope methods are not covered as they are
not the main contribution of this paper and require significant
additional background. The reader is referred to (Kiihn, [1998;



Alamo et al., 2005; [Bravo et al., 2006) for further details on
computations with zonotopes.
Consider the following two-dimensional system:

= 0.9X1!k + 0.1)61*)62‘1(, (22)
= 0.9)(?2’1( — O.lxl,k)Q,k,

X1,k+1
X2, k+1
Yk = X1k + Vk.

Assume that vy € V = [-0.1,0.1], Yk € K. To illustrate a
single step of the interval FD methods, assume that at time k we
have the initial enclosure Xk|k_| = ([0, 11,10, 1]). This notation
is intended to indicate that Xk|k_1 is a two-dimensional interval
vector with both components equal to [0, 1].

Let fi, f>, and g denote the right-hand sides of the dynam-
ics and output equation in (22). All three interval FD meth-
ods require inclusion functions for these functions, which can
be constructed using interval arithmetic. We require the stan-
dard interval rules for addition, subtraction, and multiplication,
which are as follows:

[a,b] + [c,d] =[a+c,b+d], (23)

[a’b] - [C,d] = [Cl _dab - C],

[a, b] X [c,d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)].
Applying these rules, the inclusion functions [f;] = [fF, fY]
and [g] = [g%, gY] are defined for an arbitrary argument X =
(Ixk, xV1, [x5, xY']) by,

FEX) = 0958 + 0.1 min(xfxd, xixy, xVxb, xVxd),  24)
FLX) = 0.9xY + 0.1 max(xbad, xixd, xVad, xVxY),
£ X) = 0.9x5 — 0.1 max(xfxs, xpxy, xV xh, xVxd),

£ X) =0.9xY — 0.1 min(xfxh, xbxd, xVod, xVxY),
g (X, V) = xp +VF,
X, v) =V +)Y.

For the standard interval method, a single iteration of Al-
gorithm (1| is computed as follows. Starting with Xk|k 1 =
([0, 11, [0, 1]), the interval Yk|k 1 in hnells computed as

Yot = [g1Kapu1, V) = [0, 1]1+[-0.1,0.1] = [-0.1, 1.1]. (25)

Next, a measurement y; is taken and compared to f/k\k-p If
Yk € Yip—1, the algorithm terminates. Assume that y; = 0.5 so
that yx € Yi—1. Then, the algorithm proceeds to line@ where,

by (6),

X!'(v) = {(x1,x2) : 0.4 < x; <0.6). (26)

The correction set X is then computed using (19). This
step requires the refinement operator 7, which we have de-
fined as Algorithm 1 in (Yang and Scott, |2018c) throughout
this paper. Since G = R™ for the standard interval method
and X]"(y¢) is a simple interval in this case, it can be shown
that the refinement step here simply reduces to the intersec-
tion Xis—1 N X7"(y). Thus, we obtain Xy = ([0.4,0.6], [0, 1]).
To compute the new prediction set in line we compute

Xk+1|k = [f](f(;dk) using with X = Xk|k. The result is
Xir1i = ([0.36,0.6],[-0.06,0.9]).

The computations for the sDTDI method are exactly the same
as for the standard interval method until line[10] resulting again
in }A(k‘k = ([0.4,0.6],[0, 1]). However, line s computed via

(20). For example, to compute the second lower bound )Acé,k e
we first compute ﬁé(f(k‘k) = ([0.4,0.6],[0,0]). Next, this inter-
val is refined to compute 7 [ﬂé ()A(k‘k> ,GN Xl’f(yk)]. Since we
choose G = R™ in sDTDI, this refinement again reduces to a
simple intersection with X;"(yy), which gives

T[B5 (). G N X' (yo)] = (10.4,0.61,[0,0D.  (27)

In this case, this intersection accomplishes nothing that wasn’t
already accomplished by the intersection with X;"(yy) in line |2}
This is a consequence of the fact that X;"(y,) is an interval in this
example and is not the case in general. Note that the intervals
B5 ()A(Mk) and I[ %()A(;dk) ,GN X,T(Yk)] computed here are not
intended to be valid encloses of the true state x;. Their only
purpose is to be used in to compute X[H.]‘k, which is a valid
enclosure of x;,1. The fact that they can be used for this purpose
despite not enclosing X; is the central result of the DTDI theory
in (Yang and Scott, 2020). Finally, the interval is given as
input to f;(X) in (24). This gives &7, ,, = 0, which is better
than the value —0.06 obtained by the standard interval method
due to the use of the face selection operator ,Bé. The remaining
three bounds are computed analogously and happen to all yield
the same results as the standard interval method in this case.
The final result is Xz, 1 = ([0.36,0.6], [0,0.9]).

To apply the rDTDI method, we first need to define an a prior
enclosure G. Since this system does not satisfy any known in-
variants, we will manufacture one by lifting the system into a
higher dimensional state space as proposed in (Shen and Scott,
2017). The first step is to introduce new redundant state vari-
ables defined as functions of the original states. For reasons
discussed below, in this case we choose to define a single new
variable x3 by

X3k = X1k + Xok. (28)

Combining equations in (22)), it can be shown that this variable
satisfies the difference equation

X3 1 = 0.9x3;. (29)

Augmenting (22) with this new equation, we obtain a three-
dimensional system whose solutions lie in the following set by
design:

G = {(x1 4, X2, X3 4) T X1k + X2 — X34 = O}, (30)

We will apply Algorithm [I]to this lifted system.

In the procedure above, we could have defined x3 as any
function of x; and x,, with different choices yielding different
lifted systems and different sets G. The rationale for defining
x3 as we did is that it results in the relatively simple differ-
ence equation . In particular, the nonlinear term x; X2,
which is likely to cause much of the overestimation in sDTDI,
is completely cancelled out. Such simplifications often enable



accurate bounds on the right-hand sides of the new states to
be computed even using simple interval arithmetic. If so, then
DTDI will produce accurate bounds on the new states (x3; in
this case), which can then be used to refine the bounds on the
original states (x;x and x, ) using the manufactured invariants
. When this is done in each time step, as in rDTDI, it can
strongly mitigate the accumulation of overestimation error over
time. The reader is referred to (Shen and Scott, 2017} |Yang
and Scott, |2020) for more details on the mechanisms by which
manufactured invariants can lead to improved bounds, strate-
gies for choosing the new states effectively, and numerous ex-
amples showing the generality of this approach.

We now proceed with the steps of Algorithm I]for a generic
step k of the rDTDI method. For the previous methods, we
assumed the initial enclosure Yk|k_1 = ([0, 1],]0, 1]). Since Al-
gorithm [1]is applied to the lifted three-dimensional system for
rDTDI, we instead assume that Xk|k_1 = ([0,1],10,1],10,2).
The bound x3; € [0,2] is directly inferred from (28) via
X3,k|k—1 = ,\Xl’klk_l + XZ,klk—l = [0,1] + [0,1]. This is al-
ways how Xjy—_; is computed at k = 0 when manufactured in-
variants are used. However, at later time steps )A(;dk_] comes
directly from the steps of Algorithm [I] and may not satisfy
)A(3,k|k,1 = )A(l,,dk,l + )Afz,/dk,l (see the results at k + 1 below).
Although we consider a generic step k here, defining Xk|k_1 as
([0, 11,0, 11, [0, 2]) makes for a fair comparison because it en-
sures that, at the beginning of the step, rDTDI does not have
any information that was not available to the other methods.

Given )A(k‘k,l, the first step is to compute ?k|k,1 in line
This is done using (21)), which requires that we first compute
I [)A(;dk_l, G1]. In this case, the operator J defined in (Yang and
Scott, |2018a) essentially attempts to infer tighter bounds on
each individual state x;; using the relation (28)) and the known
bounds on the other two states in Xk|k,1. Because of the way the
third component of X}dk,l was defined above, the refinement
has no effect here. As a result, yields f/k|k_1 =[-0.1,1.1],
exactly as in the previous two methods. Next, the correc-
tion set Xklk is computed using (19), which requires the set
T Xip-1, G N X"(v)], where

Xi k) = {(x1,x2,x3) : 0.4 < x1 < 0.6}. (31)

The behavior of the refinement operator in this case is to first
intersect )A(k‘k_l with X]"(yx) to obtain ([0.4,0.6], [0, 1], [0,2])
and then refine this set based on (28). In the latter step, the
combination of with the improved bound x; ; € [0.4,0.6]
obtained from intersection with X;"(y;) allows us to infer that
x3x € [0.4,1.6], which is better than the original bound [0, 2].
However, the bound on x;; cannot be improved. The final result
of the correction step is )A(k‘k =([0.4,0.6],[0,1],[0.4,1.6)).
Finally, the new prediction set Xk+1|k in line is
computed via (20). For example, to compute the sec-
ond lower bound fcik s We first compute B X)) =
([0.4,0.6],[0,0],[0.4,1.6]). Next, this interval is refined to
compute 7 [,8% (Xk|k),G ﬂX,’(”(yk)]. The behavior of the re-
finement operator here is again to first intersect ,Bé‘(f(klk) with

X, which has no effect, and then refine this set based on
(28). In the latter step, the combination of with the bound

X2 € [0, 0] obtained through the use of the face selection oper-
ator allows us to infer that x3 € [0.4,0.6]. Therefore,

7 (85 (Zie) - G 0 X{"(yw)] = (104,0.61.[0,01,[0.4,0.6]). (32)

As with SDTDL g (Xyy¢) and T [ (R) . G 0 X7 (y1) ] are not
intended to be valid encloses of the true state x;. Their only
purpose is to be used in to compute X]H.”k, which is a valid
enclosure of x;,; as shown in (Yang and Scott, 2020).

In the last step, (32) is given as input to fZL(X) in
. This gives fcé’k Tk = 0. Following the same pro-
cedure for the remaining five bounds results in X]H.]‘k =
(10.36,0.6],[0,0.9],[0.4, 1.44]). The results for x; and x, are
no better than sDTDI for this single step. This is in fact guar-
anteed by the way we initialized the third component of Xk|k_1.
However, the computed bounds for x3 at kK + 1 now contain new
information that )A(3,k+1\k = [0.4,1.44] is tighter than what can
be inferred from via )?l,k+1|k + YZ,k+1|k =[0.36, 1.5]. These
bounds can now be used to improve the bounds on x; and x;
in the next step through the use of the refinement operator, ulti-
mately leading to a better result than sDTDI. Indeed, the bounds
Xk+2|k+1 obtained in the next step (assuming yx+; = 0.5) for the
standard interval, sDTDI, and rDTDI methods, respectively, are
([0.3564,0.594],[-0.108,0.8136]), ([0.36,0.594],[0,0.774]),
and ([0.36,0.5904], [0,0.774],[0.36,1.296]).  Thus, rDTDI
provides a slightly tighter upper bound for x; than sDTDI. In
general, such small improvements tend to compound, leading
to significant differences in accuracy over longer time horizons.

5. Fault Detection in a CSTR

Consider the following model of a continuous stirred tank
reactor (CSTR) from (Shen and Scott, [2017):

Xtget = X1g + hl—uz g1 gxop — koxi s + 7 (g — 2x101,
Xoget = Xog + h[—uz pxi pxop + 77 o g — 22001,
X3get = Xag + Alus g g — koxyexs g — 207 xa g,
Xaget = Xag + hlkoxygxs, — 277 xa gl
Vik = X2k + Vik,
Yok = X3kt Vo,
V3x = Xag + Vig (33)

Above, x; is the concentration (M) of species i, y; is the mea-
surement of x;, u; and v; are disturbances and measurement
noises (specified further in each scenario considered below),
h =0.015 min, 7 = 20 min, and k, = 0.4 M 'min~".

The states of this system do not satisfy any known a prior
enclosure G. Therefore, to apply rDTDI, we manufacture in-
variants by lifting the system into a higher dimensional state
space similarly as in §4.1| Here, we choose to introduce four



Table 1: Plot markers for set-based FD methods

Index  Method Description Marker
@) Standard interval method O
(i) Zonotope method (Combastel, 2005)
(iii) Zonotope method (Alamo et al.,2005) o
@iv) sDTDI A
W) rDTDI *
new states defined specifically by
1 1 1
Ak = Tk T 3 X (34)
1 1 1
Dk = _gxl,k - §x3,k + §x4,k,

3k = —X1k + 2X04 + X34,
Uk = X1k — X2k + X4 k-

Next, we augment the original system with difference equations
for these new states derived by combining (33) and (34):

1
-1 -1
g+l = 2k + hluspxpxor — 37 (Wi +uog) — 277 z14],

-1 -1
k+1 = 22k + hlkox1 g x3 5 — 3T Uk 2t 204], (35)

-1

g+l = 34 T AT [2(uzp — z30) — Ukl
-1

kel = Zap AT [ — uo g — 2244

By design, the solutions of this augmented system satisfy (34),
regardless of the values of the disturbances. Therefore, the
rDTDI method described in §4|can be applied with

G={kx2)eR®: holds}. (36)

The specific definitions were chosen such that some uncer-
tain and nonlinear terms in cancel out when forming (33).

In the following subsections, the conventional and set-based
FD methods described in §3H4] are compared in several fault-
free and faulty scenarios. Each set-based method is assigned a
consistent marker in all plots. These are collected in Table
for easy reference. The fault-free and faulty scenarios for this
example are listed in Table @ In addition to these scenarios,
we also consider different possibilities for how the disturbances
u; and measurement noises vy are distributed in the simulation
of the real system (both prior to a fault and after a fault unless
otherwise specified in the fault description in Table [2). These
cases are organized into subsections [5.TH5.5] To mimic the sit-
uation that occurs when applying FD methods to real systems,
these distributions are not precisely known to the FD methods
and may violate some of their underlying assumptions. The im-
plementation of the EKF and set-based methods in such cases
are discussed below. For PCA, historical data is always gener-
ated from fault-free steady-state simulations using the specified
distributions for u; and vy, so this data is different in each sub-
section.

5.1. Truncated Gaussian Disturbances
We first consider the case where the system disturbances u
(M), u (M), and u3 (M~'min™"), and the measurement noises

Table 2: Fault-free and faulty scenarios for the CSTR example. Unless
otherwise specified, all scenarios begin from the nominal steady-state
xo = (0.036,0.038,0.36,0.052) and the uncertainties u; and v, obey
the probability distributions specified in Sections[5.145.5.

Index Scenario Description

(a) (Fault Free) Normal operation

(b) (Fault Free) x( is perturbed away from the nominal
steady state by 10% to (0.032,0.034,0.32,0.047)

(©) (Fault Free) Starting from ¢ = 6 min, all disturbances
take constant values far from their means but within
their bounds: u; = 1.05, u, = 0.95 and u3 = 45

(d) (Faulty) Starting from ¢ = 6 min, the inlet concentra-
tion takes a constant value outside its bounds: u; = 0.5

(e) (Faulty) Starting from ¢ = 6 min, the residence time
decreases by 40% to 7 = 12 min

vi M), vo (M), and v3 (M) are all serially uncorrelated trun-
cated Gaussian random variables. Specifically, Gaussian dis-
tributions with means y; and standard deviations o; are trun-
cated to [u; — 307, u; + 30;]. This case is considered first be-
cause it most closely satisfies the assumptions of all methods
at once. Specifically, u; and v; are bounded, as required by
set-based methods, and (very nearly) Gaussian, as assumed by
EKF and PCA. The EKF method is given the means and stan-
dard deviations of u; and vi: py = (1.0,0.9,30), iy = (0,0,0),
ou = (%, %, 2) and oy = (125,197, 197) The set-based
methods are given the truncation bounds: u;; € [0.9,1.1],
Uyp € [0.8,1.0], Uz € [10, 50], Vik € [—10_2, 10_2], and
Vasvax € [-1073,107%]. Both methods are given the exact
initial condition in Table[2l

Figure [2| shows the performance of all methods in the fault-
free Scenario (a). The top subfigure shows the 72 values gener-
ated by PCA (black). The middle subfigure shows the residuals
generated by EKF from (blue). For both methods, a fault
is detected if the residual exceeds the threshold (red dashed).
Although EKF generates a distinct residual for each measured
variable, we consistently plot only the one with the most false
alarms (fault-free scenarios) or the one that detects the fault
fastest (faulty scenarios), in this case, /4. In the bottom subfig-
ure, each pair of lines represents the upper and lower bounds of
the predicted output set ¥;_; from computed by one of the
set-based methods (see Table . For brevity, bounds are only
shown for a single measured variable, in this case, y;. The mea-
sured value of y; is the solid yellow curve in the middle. Under
fault-free operation, this curve should stay within the bounds
generated by each method. If it goes outside the bounds, then a
fault is declared by that method.

Figure |2 shows that the set-based methods never generate
false alarms, while both PCA and EKF generate false alarms
fairly often. This is a major advantage of the set-based ap-
proaches and is guaranteed because u; and v; are bounded.

Among the set-based methods, rDTDI provides the tight-
est output bounds, followed closely by sDTDI. The zonotope
methods outperform the standard interval method, but are still
very conservative. This is largely caused by the correction
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Figure 2: Results of the PCA (top), EKF (middle), and set-based (bot-
tom) methods (markers defined in Table [1) for the CSTR example in
Scenario (a) with truncated Gaussian noises.

step, which is more challenging for zonotopes. The algorithm
used for this step involves discrete choices (Bravo et al.| |[2000),
which also accounts for the erratic oscillatory behavior of the
zonotope bounds. The sDTDI bounds are a drastic improve-
ment over the standard interval method, showing the value of
the DI approach. The use of manufactured invariants in rDTDI
leads to even tighter prediction sets. This difference appears
small in Figure 2] because the widths of the sDTDI and rDTDI
bounds are dominated by the measurement error. Moreover,
since the sDTDI and rDTDI bounds are made similar again af-
ter the correction step, the difference in prediction sets does not
accumulate over time. Nonetheless, the improved accuracy of
rDTDI proves to be very significant for FD (see Scenarios (d)
and (e) below).

In Scenario (b), no fault occurs, but the system starts away
from steady-state and operates transiently for a short time. Both
EKEF and the set-based methods are given the exact initial con-
dition. Figure [3] shows that PCA gives a clear false alarm in
this case. In contrast, EKF and the set-based methods oper-
ate normally, with the set-based methods giving no false alarms
and EKF giving false alarms about as often as in Scenario (a).
This is because both EKF and the set-based methods are based
on dynamic models that can explain the data from this scenario
without asserting a fault, whereas PCA is trained using steady-
state data, which makes the transient data appear anomalous. It
is arguable that this scenario should be considered a fault be-
cause it violates the assumptions of PCA. However, in prac-
tice, faults are defined by the application rather than by the FD
method (e.g., as those events needing intervention), and it is
clearly desirable to have methods that are flexible with regard
to the range of fault-free behaviors they can model. Thus, we
consider this to be a negative result for PCA, indicating that, at
least in the standard form implemented here, it is not appropri-
ate for systems with transients.

Scenario (c) considers a large, persistent disturbance. Specif-
ically, uy, u,, and us obey their usual distributions until # = 6,

10

residuals

time (min)

Figure 3: Results of the PCA (top), EKF (middle), and set-based (bot-
tom) methods (markers defined in Table |1) for the CSTR example in
Scenario (b) with truncated Gaussian noises.

but afterwards take constant values that deviate significantly
from their means but remain within their interval bounds. Be-
cause these values remain within their bounds, the set-based
methods do not consider this a fault and give no alarms, as
shown in Figure E[ In contrast, both PCA and EKF regard
this as a fault. As in Scenario (b), it is debatable which con-
clusion is correct. The value of u, after t+ = 6 still satisfies
the basic assumptions of the set-based methods, while it vio-
lates those of EKF and shifts the system to a new operating
point that is inconsistent with the historical data used by PCA.
Thus, all methods are correct in the sense that they properly
identify whether their notion of fault-free behavior has been vi-
olated. Yet, again, faults should be defined by the application
rather than the method. In practice, moderate shifts in the oper-
ating point of a plant, either due to disturbances or intentional
changes, are common, and FD algorithms should be able to dis-
tinguish these from more significant shifts that warrant alarms.
To investigate this, we deliberately designed Scenarios (c) and
(d) as, respectively, fault-free and faulty persistent disturbances.
We argue that the ability of set-based methods to encode such
distinctions precisely by setting the allowable range of uy is a
significant advantage. In contrast, the inconsistency of new op-
erating conditions with historical training data is a well-known
limitation of purely data-driven FD methods (Venkatasubrama-
nian et al.,[2003a).

Scenario (d) considers another large, persistent disturbance.
Specifically, u;, uy, and u3 obey their usual distributions until
t = 6, but afterwards u; takes a constant value that deviates sig-
nificantly from its mean and falls outside of its interval bound.
In contrast to Scenario (c), this scenario should be regarded as a
fault in all methods. Figure [5]shows that PCA detects the fault
earliest at r = 6.45, followed by EKF at t = 6.57. Among the
set-based methods, rDTDI is the only one to detect the fault and
does so at r = 7.47. This is observed in the bottom subfigure as
the yellow curve leaving the blue bounds.

Scenario (e) considers another fault arising from a change in



£30 ‘ ‘

S20 1

'g 18 - e 1 T T d

= 12
I B —

N107 Al |

time (min)

Figure 4: Results of the PCA (top), EKF (middle), and set-based (bot-
tom) methods (markers defined in Table [1) for the CSTR example in
Scenario (c) with truncated Gaussian noises.
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Figure 5: Results of the PCA (top), EKF (middle), and set-based (bot-
tom) methods (markers defined in Table|1) for the CSTR example in
Scenario (d) with truncated Gaussian noises.

the model rather than the disturbances. Starting from ¢ = 6,
the residence time decreases by 40%, which could result from
channeling in the reactor. Figure [6] shows that PCA and EKF
detect the fault at # = 6.06 and ¢ = 6.15, respectively. Again,
rDTDI is the only set-based method able to detect the fault and
does so att = 6.72.

Although we only show the results for one run in Scenar-
ios (a)—(e), we actually ran all of our numerical tests over 100
times with different randomly generated disturbance and mea-
surement noise sequences to ensure stability of the results. In
particular, in Scenarios (d) and (e), rDTDI is the only set-based
method to detect the fault in all runs. This method is more sen-
sitive to faults because it generally provides tighter enclosures
f/k|k—1 of the true set of outputs consistent with the fault-free
model, Yk|k—1 .

We conclude that rDTDI is the most effective set-based FD
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Figure 6: Results of the PCA (top), EKF (middle), and set-based (bot-
tom) methods (markers defined in Table |1) for the CSTR example in
Scenario (e) with truncated Gaussian noises.

method tested. It is also very efficient. The average computa-
tional time of rDTDI per step is 0.0013 s, which is much faster
than the sampling time for this problem, less than the 0.0033
s and 0.0023 s required by the zonotope methods (ii) and (iii),
respectively, and only about 10 times slower than the standard
interval method. Although all set-based methods eliminate the
false alarms suffered by PCA and EKF, most of them failed to
detect any faults. In contrast, the fault sensitivity of rDTDI is
competitive with PCA and EKF, although rDTDI is slower.

5.2. Unbounded Disturbances

We now consider the case where w; and v, are serially un-
correlated Gaussian random variables. We use the same means
and variances as in §5.1| but the distributions are no longer trun-
cated, so w; and v, are unbounded. This matches the assump-
tions of PCA and EKF exactly, but violates the basic assump-
tion of the set-based methods. To apply these methods, W and
V are specified using 99.7% confidence intervals of the form
[t — 30, u+ 307] for each variable. Thus, all methods are imple-
mented exactly as in §5.1| but the simulated system is different.

In Scenario (a), PCA and EKF perform exactly as before.
However, rDTDI generates false alarms in 12% of the nominal
trajectories simulated. In theory, the other set-based methods
can also generate false alarms in this case, but their bounds are
too conservative. Specifically, when the bounds V and W are
not truly valid enclosures, a false alarm will occur if a mea-
surement is observed that lies in Yy—; but not f/;dk,l. Clearly,
this is much more likely if flk\k—l is smaller, which is the case
for rDTDI here. The results for Scenarios (b)—(e) are also very
similar to those in §5.1|except for the generation of false alarms
by rDTDI (figures omitted for brevity).

While it is reasonable to assume that w;, and v; are bounded
in any real system, it is unreasonable to assume that rigorous
bounds W and V will always be known or used, especially since
choosing W and V very conservatively degrades fault sensitiv-
ity. Therefore, it is important to consider how set-based meth-



ods will behave when the inclusions w;, € W and v; € V only
hold with high probability. This reality is seldom if ever dis-
cussed in the set-based FD literature, yet our experiments show
that there are some critical issues to resolve. First, even if it is
very unlikely that w; ¢ Wor v, ¢ V in any given time step (e.g.,
0.3% in our experiments), the probability that at least one such
violation will occur over a horizon £ = 0,..., K compounds
with increasing K. Therefore, if the set-based state estimator is
accurate, false alarms can be quite common. This alone is not
necessarily a serious problem since the false alarm rate might
still be much lower than in conventional methods. However,
restarting a set-based method after a false alarm is nontrivial.
In particular, resetting the set-based state estimator requires an
enclosure of the possible states at the current time, which is no
longer available. For observable linear systems, such an enclo-
sure can be inferred from future measurements (Meslem and
Ramdani, 2020). However, aside from the trivial case of full
state measurement, no such method has yet been proposed for
nonlinear systems. Thus, at present, there is no way to con-
tinue a set-based FD method once a false alarm has occurred.
Until this deficiency is addressed, it must be concluded that set-
based FD methods are not usable when the inclusions w, € W
and v, € V are not certain, which puts their practical utility in
serious doubt.

To gain further insights into the potential advantages of
the set-based approach relative to conventional approaches, all
following experiments consider cases where w; and v; are
bounded, and hence the set-based methods function as intended.

5.3. Uniformly Distributed Disturbances

To investigate how PCA and EKF perform with non-
Guassian distributions, we now consider the case where wy, is
uniformly distributed within the same interval W used in §5.1]
and v, follows the truncated Gaussian distribution from
PCA is implemented with historical data generated with these
distributions, EKF is given the correct means and standard de-
viations of w; and v, and the set-based methods are given W
and V.

In the fault-free Scenarios (a)—(c), the results for all meth-
ods are very similar to those in §5.1} except that PCA exhibits
fewer false alarms. This is shown for Scenario (a) in Figure
In the faulty Scenarios (d)—(e), PCA and EKF both detect the
faults at 6 min with almost no delay, even more rapidly than
in §5.1| The set-based methods perform similarly to §5.1| with
rDTDI detecting both faults at around 7 min (competitive with,
but slower than, PCA and EKF), and all other methods failing to
detect the faults at all. Figures for Scenarios (b)—(e) are omitted
for brevity.

5.4. Other Non-Gaussian Disturbances

To further investigate the impact of non-Gaussianity, we con-
sider several other distributions for the elements of wy, includ-
ing asymmetric and bimodal distributions. In all cases, the
distributions are truncated to the same bounds as in and
the distribution of v, remain as in §5.1} Again, PCA is imple-
mented with historical data generated with these distributions,
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Figure 7: Results of the PCA (top), EKF (middle), and set-based (bot-
tom) methods (markers defined in Table E]) for the CSTR example in
Scenario (a) with uniformly distributed disturbances.

EKF is given the correct means and standard deviations, and the
set-based methods are given W and V. The results are very sim-
ilar to those in §5.1] so the details are omitted for brevity. This
indicates that all methods are insensitive to moderate deviations
from Gaussianity. This was expected for set-based methods, but
somewhat surprising for PCA and EKF. Using non-Gaussian
distributions consistently cause PCA and EKF to give slightly
fewer false alarms in Scenario (a) relative to §5.1| suggesting a
potential reduction in fault sensitivity. However, the detection
times in faulty Scenarios (d) and (e) are essentially unchanged
because the residuals rise so sharply in those cases.

5.5. Time-Invariant Uncertainties

So far, we have assumed that all uncertainties are time-
varying, serially uncorrelated random variables. However, in
practice, many uncertainties are time-invariant, or vary only
over time-scales much longer than the sampling time. To in-
vestigate FD performance in such cases, we now assume that
the reaction rate constant u3 is a time-invariant uncertain pa-
rameter with the same upper and lower bounds as in §5.1| The
remaining disturbances and measurement noises obey the same
truncated Gaussian distributions as in §5.1

This situation is easily handled by set-based methods since
they only depend on the bounds of the uncertain variables. In
contrast, to apply EKF, u3 must be approximated as a time-
varying Gaussian disturbance. The most sensible approach is to
choose a Gaussian distribution centered on the midpoint of the
u3 bounds and with most of the probability density contained
in those bounds. Therefore, EKF is implemented with the same
mean and standard deviation as in §5.1f Implementing PCA
correctly in this situation requires a bit more clarity about the
nature of u3. If u3 is truly time-invariant, then the value of us
during the time when the historical data was collected would
be the same as the value describing the system in the present,
when the fault detection algorithms are applied. This is good
for PCA because the method will not be affected at all by the



uncertainty in u3. In contrast, if u3 varies slowly, e.g., as would
occur from catalyst deactivation, then the value of u3 during
the time that the historical data was collected may be different
than the present value. Indeed, historical data may have been
collected with multiple values of u3. To delineate these cases,
we consider the case of truly time-invariant u3 in §5.5.1|and the
case of long-term time invariant u3 in §|5.5.2[ In the former,
the historical data from PCA was generated with same value of
u3 used to simulate the system during the fault detection tests.
In the latter, the historical data was generated with random but
fixed values of u3 in different trajectories.

5.5.1. Truly time-invariant uncertainties

For this test, u3 is set to 40 for all simulations. This value falls
within the bounds [10, 50], but is significantly different than the
midpoint 30 assumed to be the mean by EKF. The results for
Scenario (a) are shown in Figure 2] PCA works normally with
a false alarm rate similar to that in Since u3 has the same
value in both the historical data and the current trajectory, the
fact that this value is unknown has no effect on PCA. In con-
trast, the EKF residual rapidly diverges, giving a clear false
alarm. Since EKF expects a mean value of u3 = 30, the fact
that u3 = 40 causes a significant error between the EKF pre-
dicted output and real output. In the time-varying case, this will
not be problematic because this error will not persist in future
time steps, and will in fact be negated with high probability.
However, when u3 is time invariant, this error occurs with the
same sign in every time step, causing a steady accumulation in
the EKF residual. We conclude that the EKF method cannot
be used for systems with uncertain time-invariant parameters,
which is a significant drawback. In contrast, the set-based meth-
ods perform normally as expected, since they are not sensitive
to the distribution of u3.

In Scenarios (b)—(e), EKF fails in the same way as in Sce-
nario (a), while the results for PCA and the set-based methods
are similar to §5.1| The details are omitted for brevity.

5.5.2. Long-term time-invariant uncertainties

For this test, u3 is assumed to remain constant on the time-
scale of fault detection but vary over longer times. Accord-
ingly, the historical data for PCA was generated by simulat-
ing 1000 different trajectories starting from the nominal steady-
state, each with a single u3 value randomly sampled from the
truncated Gaussian distribution in and then held constant
throughout the simulation.

In this case, EKF fails by the same mechanism described in
§5.5.1] while the set-based methods still perform normally, as
expected. Figure[9]shows the PCA results in Scenario (a). Two
cases are considered. In the top subfigure, the constant value
of u3 during the FD test is the midpoint of its interval bounds,
30. The residuals generated by PCA are always significantly
below the threshold, indicating a slight loss of sensitivity rela-
tive to §5.1 This is because the threshold is set using historical
data that has more variance than the current process data since
multiple u3 values are used in the historical data. At the same
time, the current value of u3 is the mean value, which generates
relatively small residuals. In contrast, in the bottom subfigure,
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Figure 8: Results of the PCA (top), EKF (middle), and set-based (bot-
tom) methods (markers defined in Table E]) for the CSTR example in
Scenario (a) when u; is a truly time-invariant parameter taking value
40 and u; and u, are truncated Gaussian noises.
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Figure 9: Results of the PCA method for the CSTR example in Sce-
nario (a) when u; is a long-term time-invariant parameter taking the
value 30 (top) and 50 (bottom), while u; and u, are truncated Gaussian
noises.

the constant value of u3 during the FD test is its upper bound,
50, which is far from the mean value. In this case, PCA gen-
erates nearly constant false alarms, despite the fact that us is in
its normal range. In the faulty scenarios (d) and (e), the PCA
residuals rise sharply for both u3 = 30 and u3 = 50 cases, as in
§5.1| (not shown). Thus, the faults are detected properly when
u3 = 30, but not when u3 = 50 since the system is already in an
alarm state. These results indicate that PCA is not effective for
systems with slowly varying uncertainties without some means
to match the training data to the current uncertainty value.

6. Fault Detection in a Batch Reactor

The following dynamics describe a six-species enzymatic re-
action in a batch reactor, where x; represents the concentration



(M) of species i (Scott and Barton, [2013):

Xijgr1 = Xk + A=k g X1k X2k + ko X3k + ke Xe k],

X2 k1 = Xog + Al=kipxipxox + kogxax + k3 gxs g,

X3prl = X34 + kX pxor — kopxsx — kagxael,  (37)
Xajr1 = Xag + ks X3 g — kg XapXs g + ks X ],

Xs g1 = X5k + Al—ka X xs i + ks pxex + ke xXe ],

Xek+1 = Xk + hlkagXapxsp — ks xXer — ke xXox]-

The rate constants k = (k,--- , k) are taken to be uncertain
and modelled as disturbances w;. The initial condition is xg =
(34,20,0,0, 16,0) and the step size is h = 9 X 1073 h. Every
state is measured with error, so y; = X; + Vy.

As a batch reactor, this system does not operate at steady-
state, which poses new challenges for fault detection. It has
already been shown in the previous example (§5.1, Scenario
(b)) that PCA is not usable for non-steady operation. There-
fore, we only compare EKF and set-based methods in this
section. Moreover, we only consider the case where w; and
vi are serially uncorrelated truncated Gaussian uncertainties.
Experiments with other distributions lead to the same con-
clusions already discussed in §5|and do not provide new in-
sights. The bounds for the measurement noises are chosen
as [-0.2,0.2] and for the rate constants as [R, IOR], where
k = (0.1,0.033,16,5,0.5,0.3). The distribution for each of
these variables is formed by truncating the Gaussian distribu-
tion with mean yu equal to the midpoint of the bounds and stan-
dard deviation o such that the bounds equal [u — 30, u + 307].

To implement rDTDI, we use a nontrivial enclosure G de-
rived from species conservation principles. Specifically, it is
known that this reaction network satisfies the following reac-
tion invariants (Scott and Barton, [2013)):

x + x3 = 20, (38)
X5 + x¢ = 16,
X1 — Xy + X4 — X5 = —2.

In addition, the states are known to satisfy the natural bounds
X = (x1,...,%) € Xnar = [0,34] x [0,20] x [0,20] x [0,34] x
[0, 16] x [0, 16]. Thus, we apply rDTDI with

G={x€Xpu: holds}. (39)

Table 3: Fault-free and faulty scenarios for the batch reactor example

Index Scenario Description

(a) (Fault Free) Normal operation

(b) (Faulty) Starting from # = 0.009 h, a sensor fault in-
creases the variance of v3. The new distribution is a
Gaussian with g = 0 and o = 0.1 truncated to the
99.7% confidence interval [—0.3, 0.3].

(c) (Faulty) Starting from # = 0.009 h, k3 takes a constant
value outside its bounds: k3 = 8.

(d) (Faulty) Starting from ¢ = 0.009 h, k; takes a constant
value outside its bounds: k; = 0.08.

0.036

time (h)

Figure 10: Results of the EKF (top) and set-based (bottom) methods
(markers defined in Table[1) for the batch reactor example in Scenario
(a) with truncated Gaussian noises.

The fault-free and faulty scenarios considered for this exam-
ple are listed in Table[3]

Under normal operation (Scenario (a), Figure @), EKF
raises a small number of false alarms, while the set-based meth-
ods give no false alarms as expected. The rDTDI method pro-
vides the tightest output bounds, followed closely by sDTDI
and the standard interval method. The standard interval method
performs much better than in This is attributed to the fact
that all states are measured in this example, so the correction
step prevents conservatism in the prediction step from accumu-
lating over time. The two zonotope methods are the weakest
due to the conservatism introduced in the correction step.

In Scenario (b), a sensor fault occurs at + = 0.009 that sig-
nificantly increases the variance of vs. As shown in Figure
this immediately increases the variance of the EKF resid-
ual /5. However, since v3 is serially uncorrelated and still has
zero mean, the increased measurement errors do not cause the
residual to accumulate over time, and hence /3 does not shift
definitively above its threshold. The end result looks more like
an increased false alarm rate rather than a clear fault signature.
In contrast, all set-based methods are very sensitive to this fault,
detecting it quickly and almost simultaneously at = 0.00918.

In Scenario (c), a fault occurs at r = 0.009 that causes k3 to
take the constant value 8 ¢ [16, 160]. Figureshows that EKF
detects this fault immediately, while all set-based methods fail
to detect it within the simulated time horizon. EKF is very sen-
sitive to this fault because k3 deviates sharply from its pre-fault
mean. This drives the states away from their expected mean
values, causing accumulating residuals. However, the deviation
of k3 from the interval [16, 160] known to the set-based meth-
ods is small relative to the width of this interval (~ 5%). Thus,
this fault does not produce states that are significantly different
from those achievable with k3 € [16, 160], making it difficult
for set-based methods to detect.

In Scenario (d), a fault occurs at + = 0.009 that causes k;
to take the constant value 0.08 ¢ [0.1,1]. Figure IEI shows
that EKF is very sensitive to this fault as well, detecting it at
t = 0.0954. However, in this case the set-based methods are
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Figure 11: Results of the EKF (top) and set-based (bottom) methods
(markers defined in Table[1) for the batch reactor example in Scenario
(b) with truncated Gaussian noises.
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Figure 12: Results of the EKF (top) and set-based (bottom) methods
(markers defined in Tablem) for the batch reactor example in Scenario
(c) with truncated Gaussian noises.

sensitive as well, albeit slower. The rDTDI method detects the
fault earliest at r = 0.01962, followed by sDTDI at r = 0.02565
and the standard interval method at r = 0.027.

7. Fault Detection in a Sewer System

The following dynamics describe a sewer system with three
tanks (Tornil-Sin et al.,[2012):

X1+l = X1 + hlug g + uz g — kx4, (40)
Xog+1 = Xog + ALk X1k — K2 X2 k],
X3x41 = X34 + hlka Aok + us g — k3x3pl,

Yik = X2k +Vik,

Yok = X3kt Vok.
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Figure 13: Results of the EKF (top) and set-based (bottom) methods
(markers defined in Table[1) for the batch reactor example in Scenario
(d) with truncated Gaussian noises.

Above, x; is the water volume in tank i (m?), y; is the measure-
ment of x;, v; is the measurement noise, u; is the inlet flowrate
of rain (m3s7!), «; is the outlet valve constant, and & = 30 s.
We assume that u; = d; + w;, where d = (1,2, 1) specifies the
nominal inflows and w; is a disturbance. The disturbances and
measurement noises are taken to be serially uncorrelated trun-
cated Gaussian random variables with bounds w; € [-0.1,0.1],
vi € [-50,50], and v, € [-100, 100]. The corresponding distri-
butions are generated by truncating Gaussian distributions with
mean zero and standard deviations chosen so that the bounds
above are equal to [u — 30, u + 307]. The valve constants «; are
assumed to be long-term time-invariant uncertain parameters as
explained in The interval bounds are | € [4.8,6.8]x107%,
ky € [1.99,2.01] x 1072, and k3 € [9.9,10.1] x 10™*. Each «;
obeys a truncated Gaussian distribution constructed over these
bounds in the usual way. For each trajectory simulated (either
for generating PCA data or for fault detection tests), a single
value of each «; is drawn from its distribution and then held con-
stant throughout the trajectory. The PCA data consists of 1000
such trajectories. The initial condition is the nominal steady-
state xo = (5180, 22500, 4000).

As discussed in EKEF is generally unusable for systems
with time-invariant uncertain parameters. Thus, we only com-
pare PCA and the set-based methods in this section. More-
over, we only consider the case where w; and v, obey trun-
cated Gaussian distributions. Experiments with other distribu-
tions lead to the same conclusions already discussed in §5|and
do not provide new insights.

The states of this system do not satisfy any known a prior
enclosure G. Thus, to implement rDTDI, we manufacture in-
variants in the same way as in §5| Here, we define a single new
state variable, zx = x14 + X4 + X34, and augment the original
system with the redundant difference equation

Tt = 2+ hlugg +uo g +uz g — k3x31].
Then, rDTDI is applied with

G={x2eR": z2=x +x +x3}. 41)
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Figure 14: Results of the PCA (top) and set-based (bottom) methods
(markers defined in Table for the sewer example in Scenario (a).

The fault-free and faulty scenarios studied for this example
are listed in Table

Table 4: Fault-free and faulty scenarios for the sewer system

Index Scenario Description

(a) (Fault Free) Normal operation.

(b) (Fault Free) The initial condition is perturbed away
from the steady state to xo = (5000, 20000, 3500).

(c) (Fault Free) Starting from ¢ = 3000, w; takes a con-
stant value far from its mean but within its bounds:
wy = 0.08

(d) (Faulty) Starting from ¢ = 3000, w3 takes a constant
value outside its bounds: wz = 0.2.

(e) (Faulty) Starting from ¢ = 3000, a leak happens in

the second tank which leads to a change of dynamics:
X1 = Xok + hlKkix1x — (k2 +0.005) /x24]

Figure |14] shows the results under normal conditions (Sce-
nario (a)). PCA does not give any false alarms in this case.
This is attributed to the presence of long-term time-invariant
parameters. Since these parameters take a range of different
values in the historical data, but just a single value during the
FD test, PCA expects a larger variance under normal opera-
tions than is actually observed (see further discussion in §5.5.2).
The set-based methods also give no false alarms as usual. The
rDTDI method again provides the tightest output bounds, fol-
lowed closely by sDTDI and the zonotope methods. The stan-
dard interval method yields much weaker bounds. As in §5| the
superior bound accuracy of rDTDI relative to sDTDI proves to
be significant for fault detection in later scenarios, although it
is hardly perceptible on the scale of Figure [14]

In Scenario (b), no fault occurs, but the system starts away
from steady-state and operates transiently for a short time. Set-
based methods are given the exact initial condition. Consistent
with our findings in §5] PCA exhibits severe false alarms in
this scenario, while the set-based methods handle the transient
without issue, giving no false alarms. Figures are omitted for
brevity.
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Figure 15: Results of the PCA (top) and set-based (bottom) methods
(markers defined in Table for the sewer example in Scenario (d).

Scenario (c) considers a large, persistent disturbance. Specif-
ically, all uncertainties obey their usual distributions until =
3000, but afterwards wy takes a constant value that deviates sig-
nificantly from its means but remains within its interval bounds.
As discussed in detail in (Scenario (c)), this is not consid-
ered a fault. Even so, the PCA residual increases sharply at
t = 3000 and exceed the threshold at t+ = 3240. In contrast,
none of the set-based methods declare a fault, as expected. Fig-
ures are omitted for brevity.

Scenario (d) considers another large, persistent disturbance.
Specifically, all uncertainties obey their usual distributions until
t = 3000, but afterwards w; takes a constant value that falls
outside of its interval bound. In contrast to Scenario (c), this
scenario is considered a fault. Figure[T5|shows that PCA detects
the fault quickly at # = 3300, while rDTDI, sDTDI, and the two
zonotope methods all detect it later at # = 4800. The standard
interval method fails to detect the fault.

Scenario (e) considers a leak in the second tank starting at t =
3000. As detailed in Table[d] this fault changes the model rather
than the disturbances. As shown in Figure PCA detects
the fault very quickly at # = 3210. The rDTDI method is the
only set-based method able to detect the fault and does so at
t = 5850.

8. Conclusions

In this paper, we introduced two new set-based fault detec-
tion (FD) algorithms based on the sDTDI and rDTDI set-based
state estimators recently developed in (Yang and Scott, 2018a).
We then studied the performance of these methods compared to
both existing set-based FD methods and classical data-driven
and observer-based FD methods using three detailed examples.

Among the set-based methods, rDTDI consistently provided
the most accurate output bounds, followed by sDTDI. As a re-
sult, rDTDI also had the highest fault sensitivity, detecting most
faults quickly and often being the only set-based method to de-
tect the fault at all. The superiority of rDTDI was most pro-



N
o

10} |

residuals

0 5000 10000 15000

time (s)

Figure 16: Results of the PCA (top) and set-based (bottom) methods
(markers defined in Table for the sewer example in Scenario (e).

nounced when not all states were measured, as in the CSTR
and sewer examples. Due to the high incidence of missed faults,
we conclude that the other set-based methods were not accurate
enough for effective fault detection in any of our examples. In
contrast, the combination of DI with the use of model redun-
dancy in rDTDI showed potential for significantly more effec-
tive set-based FD.

A critical weakness of the conventional PCA and EKF meth-
ods was the occurrence of frequent false alarms. Although the
false alarm rates were reasonable in ideal circumstances, in sev-
eral cases they were severe enough to render the methods unus-
able. For example, brief transients were found to cause severe
false alarms in PCA, while the presence of time-invariant un-
certain parameters caused them in EKF. Similarly, both PCA
and EKF gave severe false alarms in the presence of persistent
disturbances within the normal range. Since all of these situ-
ations occur commonly in practice, the inability to distinguish
them from true faults that require intervention is a significant
limitation. In contrast, all of these situations were handled eas-
ily by the set-based methods with no false alarms, provided that
the bounds W and V were valid. Thus, the set-based approach
showed significant potential to enable more robust fault detec-
tion for uncertain nonlinear systems.

On the other hand, in cases where false alarms were not
prohibitive, PCA always detected faults the fastest, followed
closely by EKF, and only then by rDTDI. Although rDTDI de-
tected nearly all faults detected by PCA or EKF, the detection
time was often significantly longer. It is presently unclear how
much of this delay is due to inaccuracy in the rDTDI bounds
and how much is inherent in the set-based approach (i.e., would
persist even with exact bounds). Thus, while the fault sensitiv-
ity of rDTDI is competitive with classical methods, there is still
substantial room for improvement.

Besides, we found that set-based approaches, including
sDTDI and rDTDI, are not usable in their current form when
the bounds W and V are not rigorous (i.e., they only contain wy
and v; with high probability). This includes all cases where wy,
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and v, are in fact unbounded. In such cases, set-based methods
are likely to give false alarms, which calls into question one of
their main advantages. Moreover, general methods do not yet
exist for restarting a set-based method once a false alarm oc-
curs, since this requires a guaranteed enclosure of the current
states. Since obtaining rigorous bounds W and V is difficult in
practice, these issues must be addressed before the set-based
approach can be effectively applied in many real applications.

Finally, we note that the case studies used here are rela-
tively small. While data-driven methods have been successfully
demonstrated on much larger systems (Chiang et al., [2000),
observer-based and set-based methods have not, largely due to
the difficulty in developing high-quality models. Moreover, it
generally becomes more difficult to obtain accurate enclosures
as system size increases, which is likely to lead to lower fault
sensitivity for larger test cases. Thus, future research towards
tighter enclosures is also needed to improve the applicability of
set-based methods to larger systems.
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