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Abstract

This paper presents a new formulation for the H,, static output-feedback
(OPFB) control problem that guarantees stability, Ly gain boundedness, and
optimal stabilizing gain solutions for a Linear Time-Invariant (LTI) system.
Then, based on the developed formulation, it reveals an integral reinforce-
ment learning algorithm (IRL) that employs Kleinman’s method and achieves
stabilizing optimal control strategies without requiring any knowledge of the
system state, control, and disturbance matrices. The standard approaches
to the H,, static OPFB control problem result in sub-optimal and non-Nash
gain solutions for guaranteed stability. They propose an offline algorithm that
may converge to only a sub-optimal stabilizing gain solution. On the other
hand, this paper proposes a novel augmented Hamiltonian functional to solve
the global Nash equilibrium solutions for a game of this kind. Based on the
augmented Hamiltonian’s stationarity conditions, we provide novel necessary
and sufficient conditions for Nash equilibrium gain solutions that inherently
stabilize the system dynamics while also guaranteeing L, gain bound by a
prescribed attenuation level. To obtain the Nash solution without knowledge
of system parameters, two off-policy IRL algorithms are developed based on
Kleinman’s algorithm. In the first IRL algorithm, the convergence to the
Nash gain solution is provided assuming system state data is available. Then,
a second novel IRL algorithm is developed that does not require system state
data and learns the Nash equilibrium gain solution online. Simulation results
are provided to show the validity of the proposed methods.
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1. Introduction

One of the primary objectives in control system design is often to seek
a stabilizing controller to regulate the output of a system that experiences
disturbances. However, stability is not the only requirement in control system
design. An L, gain bound of the system, optimality of the control method,
and detectability of unknown system parameters are other common design
specifications. Existing solutions of H, static output-feedback (OPFB) yield
stability and bounded L5 gain, but employee non-Nash equilibrium solutions.
In the two-player zero-sum game context, the Nash equilibrium consists of
optimal strategies for both players. Based on this, the new formulation of
H, static OPFB control method is developed in this paper, which is a key to
meet these requirements since it guarantees Lo gain bound of the system by
a prescribed attenuation level, asymptotic stability of equilibrium point, and
also Nash equilibrium solutions. Then, based on the new formulae, the IRL
algorithm is developed that iteratively solves H., static OPFB Lyapunov
equation, and deals with unknown system parameters.

H, control methods has been widely studied in the literature, [1], [2], [3],
[4], [5], [6] due to their applicability in variety of engineering areas. Some
of these methods guarantee stability and bounded L, gain, but an extra
condition is required to yield Nash equilibrium. [1] uses this method to
design a gain-scheduled normal acceleration control loop for an air-launched
unmanned aerial vehicle. Authors of [2] apply this control method on an
industrial-type mass spring damper system. The efficacy of control law and
the disturbance accommodation properties are shown on a rotor-craft design
example in [7]. Moreover, [8] develop an autopilot controller for an F-16
aircraft by using the H,, static OPFB control method on a linear discrete-
time system.

During the last few years, reinforcement learning (RL) algorithms [9],
[10] has been used extensively to replace model parameters with a collected
system’s data [11], [12], [13], [14], [15], [16]. Particularly, offline iterative
RL algorithms were studied in [17], [18], and [19]. The work by [17] con-
siders the two-player policy iterations to solve for the feedback strategies
of a continuous-time zero-sum game [20] in a sub-optimal manner that re-
quires complete knowledge of system parameters. [12] presented an online RL
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algorithm to solve the linear quadratic tracking (LQT) problem for partially-
unknown continuous-time systems. In [21], the authors prove the convergence
of IRL algorithm to a sub-optimal OPFB solution without considering the
disturbance term when the drift dynamics are unknown. The optimal av-
erage cost learning framework is introduced to solve the output regulation
problem for linear systems with unknown dynamics is studied in [22].

To design an efficient RL algorithm and achieve data-driven optimal con-
trol, the RL-based controller designs with neural networks (NNs) in an actor-
critic structure [23], critic-only form [24] are proposed. In the off-policy RL
algorithm, the system data, which are used to learn the solution of the corre-
sponding Hamiltonian, can be generated with arbitrary policies rather than
the evaluating policy. This approach is suitably implemented using NNs in
[25] and [13].

The standard existing solutions to the static OPFB regulator problem [1],
[21], [26], [27], [28] require some additive gain matrix to prove the stability
of equilibrium, origin. Unfortunately, this results in the non-Nash equilib-
rium solutions. Consequently, the IRL algorithms developed based on these
approaches [28], result in sub-optimal, non-Nash solutions. In this paper,
we propose a novel augmented Hamiltonian, and develop new iterative al-
gorithms based on stationarity conditions of the augmented Hamiltonian to
obtain Nash equilibrium solutions. The salient contributions of this paper
are summed up into four categories:

e This paper presents a new solution of the H,, static OPFB control
problem. This solution guarantees not only stability and bounded Lo
gain but also Nash equilibrium solutions considering the corresponding
min-max game.

e The existing methods employ an offline algorithm that does not have a
convergence guarantee. Further, if the algorithm converges, it only con-
verges sub-optimal stabilizing gain solutions. Our new solution rigor-
ously yields Nash gain solutions given the novel necessary and sufficient
conditions.

e To develop an IRL algorithm based on the augmented Hamiltonian’s
stationarity conditions, two off-line iterative solution algorithms are
given. The first algorithm is based on Kleinman’s algorithm and up-
dates the disturbance gain term. A second algorithm modifies Klein-
man’s algorithm and gets the first algorithm in the IRL applicable form



that only updates the control gain.

e Two off-policy IRL algorithms are developed based on the modified
Kleinman’s algorithm. The first IRL algorithm learns the Nash gain
solution online without requiring any knowledge of system dynamics’
state, control, and disturbance matrices assuming the system state date
is available. The second IRL algorithm assumes only the output data
is available and develops a model-free observer to learn the Nash gain
solution.

The rest of the paper is organized as follows. In Section 2, preliminaries
on control design requirements are introduced, and the formulation of H.,
static OPFB control is presented. A new solution of optimal H., control
problem and corresponding offline iterative solution algorithms are given in
Section 3. In Section 4, an online off-policy IRL algorithm is developed based
on stationarity conditions obtained in Section 3. Finally, we have shown the
effectiveness of the proposed algorithms by applying them to the linearized
lateral dynamics of the F-16 aircraft at a particular flight condition in Section
D.

Notations. We use the following notations throughout this paper I,, €
R™ ™ ig the identity matrix. The condition A > 0 (> 0) denotes the positive
(semi) definiteness of a matrix. The operator ¢r() denotes trace of a matrix.
C* = CT(CCT)~1 is the right-inverse of the full row-rank matrix C and the
Kronecker product operator is denoted by ®. The determinant of a square
matrix is denoted by [.|. vec(A) stands for the mn-vector formed by stacking
the columns of A € R™™ on top of one another, i.e., vec(A) = [al ... al]"
where a; € R™ are the columns of A. Lastly, diag((;) represents a diagonal
matrix with ¢; Vi € 1,..., N on its diagonal.

2. Preliminaries and problem formulation

In this section, preliminaries on Linear Time Invariant (LTI) system, and
the corresponding controller design requirements are first introduced. Then,
the problem description is presented.

2.1. System description and definitions

This section introduces system dynamics and performance specifications
that are of interest. Consider the state-space representation of the continuous-



time LTT system as
@ = Ax + Bu + Dd

Y= Cu (1)

where A € R™", B € R"™, D € R"*P are system-state, input, disturbance
matrices, and C' € R?" is assumed to be a full row-rank output matrix to
avoid redundant measurements. The corresponding vectors x(t), u(t), d(t),
and y(t) stand for the state, input, disturbance and output respectively.

Assumption 1. The pair (A, B) is stabilizable and the pair (A,C) is
detectable.

Assumption 2. The system (1) is OPFB stabilizable because the row-space
of output matrix C' contains the sub-space spanned by the right eigenvectors
corresponding to the unstable modes of A.

Assumption 3. The non-zero columns of the output matrix C' are linearly
independent.

Remark 1. The Assumption 2 can be interpreted such that all unstable
modes are measured by the output matrix C that represents the sensors
installed in the system (1). The Assumption 3 enables us to recover a state

element x; precisely from the output vector y once it is left multiplied with
ct.

Now, define the fictitious performance output z(t) that satisfies
||z||§ =27Qzx + u'Ru (2)

where Q > 0 and R > 0 are symmetric design matrices with appropriate
dimensions. We assume that @ is selected such that the pair (A,/Q) is
observable, which is a standard assumption [29]. Using the property ||d||§ =
d¥d, a realization of the following inequality Vd € [0, 00) implies that the
system Lso-gain is bounded by a prescribed disturbance attenuation level
denoted by ~

| sl < [ e s ®)
0 0

for any non-zero energy-bounded disturbance input d [30] where 3 is a non-
negative constant. The condition (3) is also called as non-expansivity con-
straint in [31]. Call 4* the minimum gain for which this occurs. In [32] and



[33], an algorithm to find v* is given, and a formulation for explicit v* that
depends on Riccati equation solution is derived for LTI systems under some
assumptions. This paper assumes that the attenuation level is prescribed
and satisfies v > ~*.

A static OPFB control to regulate the system (1) is

u=-Ky=-KCxzx (4)

where K € R™*7 is the gain matrix. Note that main objective of H.
control using OPFB is to find the stabilizing K in an optimal manner while
satisfying the condition (3), which can be achieved by solving corresponding
Hamilton-Jacobi-Isaacs (HJI) equation.

2.2. Problem formulation and existing solution of static OPFB Problem

In this section, we relate zero-sum differential game theory to the static
OPFB regulation problem in a global optimal manner by revealing various
definitions. To satisfy Lo-gain bound (3) with the stabilizing gain in (4), an
objective functional defined as

J(u,d) = /000 (7 Qx + u Ru — +*d*d)dr. (5)

Now H,, control problem can be represented as a two-player zero-sum differ-
ential game by treating u(t¢) as a minimizing player, whereas d(¢) maximizing
player of (5). Then, the game can be formulated as

V(x(0)) = J(u*,d") = min max J(u,d) (6)
where V(x) denotes the value functional corresponding to (5) such that
V(x) = / (2T Qx + u Ru — +*d*d)dr. (7)
t

and the pair (u*,d") denotes the game theoretic saddle point. The game
of this kind admits a unique solution pair (u*,d"), if the following Nash
condition holds

mgn max J(u,d) = max mgn J(u,d). (8)

The next theorem recalls the necessary and sufficient conditions for the
sub-optimal H,, OPFB control method [1].
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Theorem 1. The system (1) is OPFB stable using the control ut = —KSy
with Ly gain bounded by v > v* if and only if

1. (A, B) is stabilizable and (A, C) is detectable.

2. There exists KS and L such that
K:=R ' B"™P+L)C* (9)
where P = PT > 0 is the solution of Riccati equation

PA+ AP -PBR 'B"P+Q ++*PDD*P+LTR'L=0.
(10)

Proof. See [1] and [30] for the same proof. O

Remark 2. On the one hand, introducing the additive gain matrix L pro-
vides the extra design freedom. Note that if L = 0 there may not be a
stabilizing solution to (9),(10) (See Theorem 1 in [1]). On the other hand,
this results in a sub-optimal solution for the gain K*® (9). The Nash equilib-
rium gain occurs if the Theorem 1 holds with L = 0.

The following lemma recalls the Nash equilibrium solution for the stan-
dard H,, control problem.

Lemma 1. The pair (u*, d") constitutes the Nash equilibrium of the game
(8) such that

u* = -K*z = —-R 'B" Pz, (11)
d* =y DT Pzx. (12)

Proof. Begin with deriving the Hamiltonian to solve the game theoretic
saddle point or Nash equilibrium strategy of the game (8) as

H(Vy,u,d) = 2"Qx + u"Ru — v*d¥d + V,(Ax + Bu+ Dd) (13)

where V,, = 0V/0x is the co-state vector. Using the quadratic form V(x) =
T Pz, and applying the stationarity conditions OH(Vy,u,d)/0u = 0 and
OH (V,,u,d)/0d = 0 yields the optimal control and disturbance respectively
as (11) and (12).



Notice that the sign of Hessians, 0 H (Vg, u, d)/0u® > 0 and 0°H(V,,,u, d)/0d? <
0, along with unboundedness of the limits limg_,o, J(u*, d), lim,_,, J(u, d*)
indeed show that (11) and (12) are the global optimal minimizing and max-
imizing extrema respectively [34]. This indeed verifies that the pair (u*,d")
denotes the Nash equilibrium point, which completes the proof. O

Remark 3. The HJI equation, H(V,,u*,d*) = 0 with the boundary con-
dition V(0) = 0 can be obtained by substituting the expressions (11)-(12)
into Hamiltonian (13), which also verifies the sub-optimality of gain expres-
sion (9). Additionally, from the HJI equation H(V,,u*, d*) = 0, the Game
Algebraic Riccati Equation (GARE) can be obtained as

PA+ AP -PBR'B"P+Q+~*PDDTP =0. (14)

If there is no K* to satisfy (9) and (10), the OPFB H,, control problem
may not have even a sub-optimal solution. In the next section, we rigorously
analyze this and reveal some novel results.

3. New solution of H,, OPFB Game

Notice that Theorem 1 provides necessary and sufficient conditions for
static OPFB in a sub-optimal manner. Thence, this does not yield a Nash
equilibrium solution unless L = 0. Moreover, there may not even exist a
static OPFB solution to the equations in Theorem 1. In this main section,
two methods are proposed to solve H,, OPFB problem. The first method
parameterizes the state feedback gains by using the Nash strategies and ap-
plies them to the OPFB design. The second method derives the new optimal
H,, OPFB regulator formulation by introducing an augmented Hamiltonian.
This method is introduced by [29], but is highly overlooked in the literature.
However, it appears to be instrumental in H,, regulator design.

3.1. Necessary and Sufficient Conditions for the Stabilizing Nash Gain

Herein, we first parameterize static state feedback gains and then explain
how to apply them to the H,, OPFB design.

Theorem 2. Given the necessary conditions in the Assumption 1 and the
sufficient condition BR™*BT > v 2DDT. The system (1) is asymptotically
stable using the control u* = —R™1BTPx (11) with d = 0, and Ly gain
bounded by v V ||d||, € (0, 00).



Proof. To prove L, gain bound condition (3), first re-write the Hamil-
tonian (13) by completing the squares as

H(Vy,u,d) =H(Vg,u*,d*) + (u — u*)" R(u — u*)
—77*(d—d")"(d—-d). (15)

Then, the objective functional can be re-expressed as
J(u,d) :/ (H(Vm7 u*, d*) + (u — u*)" R(u — u”)
0
—2(d— d)(d— d*))dt + V(2(0)). (16)

Realize that the non-expansivity constraint (3) implies that J(u,d) < g.
Select f = V(x(0)), w = u*, and note that HJT equation H(V,,u*,d*) =0
holds with the boundary condition V(0)=0. Then, (16) reduces to

J(u*,d) = — /Ooo v 2(d — d)T(d — d)dt + V((0)),
< V(2(0), Vldll, € (0,00). (17)

This proves that the Ly gain bound condition (3) holds with 8 = V(x(0)),
u = u*. Additionally, the value of game (8) with w = u* and d = d" is
V(x(0)) by (16).

To verify asymptotic stability, consider Lyapunov function V() = =7 Pz
where P is solution of the GARE (14). Note that for BR™!BT > 42D DT,
the GARE (14) has a unique stabilizing solution P = P which is indeed
positive definite. This is illustrated in the following realization

V =dTPx + 2T P
=a" (- PBR'B"P - Q-+~ °PDD"P)x
<-x'Qxr <« BR 'BT>+*DD". (18)
Then, the observability of (A, Q) verifies that the undisturbed system (1),
1

(
i.e., d = 0, is asymptotically stable by LaSalle’s invariance principle [31].
This completes the proof. 0

Corollary 1. To verify asymptotic stability of the disturbed system, benefit
from gain margin [¢jpwer, 00) With Cioper < % property of the H, control [31].
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Note that the H., has gain margin less than 1 by Chapter 10 in [31] but the
lower bound ¢;ye, is not precisely defined. Then, if the sufficient condition in
Theorem 2 is strengthened as BR™!BT > 242D DT the disturbed system
(1) with d = d*, becomes asymptotically stable. Thence, the closed-loop
matrix A — BR™'BTP + v~ 2DDTP becomes Hurwitz.

Till now, we actually parameterize all the stabilizing static state-feedback
gains since we used the Nash strategies (11) and (12) in the proof of Theorem
2. Note that for the OPFB design, the Assumptions 2 and 3 are missing in
the papers [1], [2], [7], and [30]. Therefore, the offline algorithm given in
these works do not have a guaranteed convergence. In this manuscript, we
use Assumptions 2 and 3 to apply state feedback gains to the OPFB design.
The following Remark explains how to apply static state feedback gains to
the H,, OPFB design.

Remark 4. Instead of Nash strategies (11) and (12), assume that the control
and disturbance are selected as

u*=—(R'BTPCH)C(Cty)=—(R'BTPC™")y (19)

o 7

-~

K3

d: = (v *DTPCt)C(Cty). (20)

Note that if C is an invertible matrix, then all states would be regulated
optimally by Theorem 2. On the other hand, if it is not square but full
row-rank, then only the states spanned by row space of the output matrix C
would be regulated optimally given the Assumption 3, and the fact that C*C
projects R™ onto the row space of C'. Additionally, the other states would
converge to the origin given the Assumption 2. Realize that the Assumption 1
implies that there could be an unstable mode that is observable but does not
belong to the row space of C'. Therefore, the Assumptions 2 and 3 are indeed
required to apply static state feedback gains to the OPFB design. Lastly,
the system (1) is stable against the worst-case disturbance (20), which affects
only the states that belong to the row space of C if BR™*BT > 2y=2D D7
by Corollary 1.

3.2. A Direct Method to Obtain OPFB Optimal Gain Solutions

In this section, we propose a new methodology to obtain stabilizing Nash
solutions for the H,, OPFB control. This method is direct in the sense that
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it reaches the same gain solutions as the Section 3.1 but do not require two
step

Consider the optimal value obtained in the Theorem 2 that corresponds
to the zero-effort for each player such that

Jo = 2T (0)Px(0) = tr(PX,) (21)

where tr() stands for the trace of a matrix, and Xo = x(0)z*(0).
The following Lemma is an essential step before introducing the aug-
mented Hamiltonian.

Lemma 2. Given the Assumption 1, let K® be a gain that stabilizes the
system (1), and the corresponding OPFB control is u? = —K2%y. Addition-
ally, let the disturbance takes the form d% = —N,y to guarantee it does
not affect unobservable modes of the system (1). Then the corresponding
Lyapunov equation can be derived as

PA.+ATP + CTK*"RK®C — y"C"NI'N,C + Q=T (22)
where T =TT =0and A, = A — BKSC + DN,C.

Proof. Consider the quadratic form of the value functional (5) as V(x) =
2T Px, and then substitute expressions u = —K%y and dS = — N,y into
(5) to obtain

' Px = / T (CTK*"RK*C + Q — y"CTNTN,C)zdr.  (23)
t

Now, take the derivative of left-side (23) and substitute (12), u = —K*Czx
expressions. Lastly, take the derivative of integral in right-side (23) using
Leibniz’s rule, which yields

z"(ATP + PA.)x =
2T (-CTK*"RK*C — Q +vy’CTNTN,C)z. (24)
Realize that the zero equivalent is nothing but the Lyapunov equation given
in (22). This completes the proof. O
It is now clear that performing a min-max operation on (5), subject to

dynamical constraint (1) is equivalent to the algebraic problem of finding the
pair (K2, N,) that performs min-max of (21) subject to the constraint (22).
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Define the following augmented Hamiltonian to solve this modified problem
as

HY(K®, N,,S) = tr(PX,) + tr(TS) (25)

where § € R"™ ™ is a symmetric matrix of Lagrange multipliers [29] that
needs to be determined, and T is given in (22). Notice that T includes
weighting matrices @ and R.

The next main theorem is a key to find S along with a Nash equilibrium
control matrix K¢ with respect to (25).

Theorem 3. Given the Assumptions 1-3, the system (1) is asymptotically
stable using the control uy = —Kgy with dj = 0 and Ly gain bounded by

if

a;é =PA. +ATP+CTK*"RK*C — *C"NTN,C +Q =0, (26)
oH®
=SAT + A Xo = 2

P SAT + A.S + X, =0, (27)

Ha
gKa =2RK*CSCT —-2BTPSC™ =0, (28)
aHa 2 a T T T
N = 2N CSCT +2DTPSCT =o. (29)

Furthermore, the following gain expressions solves the Hy, static OPFB prob-
lem in an optimal manner
K*=K!=R 'B"PC* (30)
N, =~?DTPCt (31)
Proof. Consider (25), which is a constant along the system trajectories
since the system (1) is LTI and z(¢) in (2) is not explicit function of time.
This implies that we can apply the constraint test and check the stationarity
conditions on the augmented Hamiltonian (25) that yields the second-order
Lyapunov equation (26) and standard Lyapunov equation (27) respectively.
Define a variable X = xzxT that includes the system state information.
Taking the derivative of X using (1) yields
X =g + za”
= AxxT + :n:vTAZ

=A.X +XAT. (32)
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Now, assume that A, is Hurwitz. Then, taking the integral of both sides
(32) from 0 to oo yields (27) where S = [;° Xdt, thereby K2 should not
depend on the solution S. Therefore, the gain solutions (30) and (31) are
immediate. Realize that the stability of an LTI system does not depend on
the initial condition, i.e, local stability implies global stability. Thence, the
gain solutions (30) and (31) should not depend on S that depends on the
initial condition X,. This also verifies our reason to select gain solutions in
the given forms, which completes the proof. 0

Remark 5. The Theorem 3 gives the necessary conditions, i.e. the Assump-
tion 1 and 2, and sufficient condition BR™'BT > ~v2DD?Y to prove L,
gain boundedness by a prescribed attenuation level v (3) and OPFB stabil-
ity considering the worst-case disturbance (20). Realize that the condition
BR'BT > +2DD? is only a sufficient condition, which implies that
there may be an optimal gain solution which stabilizes (1) but does not sat-
isfy BR™'BT > v 2DDT. However, in that case, one may not achieve
a positive definite solution P for the Riccati equation (10). Additionally,
the positive definiteness of the Riccati equation solution plays a key role for
Kleinman’s algorithm in Section 3.3, and the IRL algorithm in Section 4.

Remark 6. The Theorem 3 proves that the condition BR~*BT > 42D DT
is suf ficient to obtain the stabilizing Nash equilibrium solution. The gain
K¢ in Theorem 1 is a sub-optimal stabilizing gain solution with respect to
the value functional (7). However, the gain solution K in Theorem 3 always
gives a stabilizing Nash equilibrium gain solutions with respect to the game
(8) given the Assumptions 1-3.

Remark 7. Note that the system (1) is stable in the presence of matched
disturbances with the gains (30) and (31). The unmatched disturbances are
only Ly gain bounded by Theorem 2. Thence, the control (19) is robustly
stabilizing the equilibrium origin even if the unmatched disturbances exist
given Assumptions 2 and 3.

The next section proposes an offline model-based algorithm to find the
optimal gain solution K iteratively, that plays a key role to develop the
IRL Algorithm that will be detailed later in Section 4. Note that given the
necessary and sufficient conditions in Theorem 3 and Remark 5, one does not
need an iterative solution algorithm to find optimal stabilizing gain K2 (30).
However, to develop a model-free algorithm, an iterative solution algorithm
is required.
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3.8. Offtine Iterative Solution Algorithms for Hy, OPFB

This section presents two iterative solution algorithms to obtain minimiz-
ing gain (30) by using the conditions given in (26)-(28). In the first algorithm,
we employ Kleinman’s algorithm (26) to obtain Nash equilibrium gain solu-
tions (30) and (31), whereas in the second algorithm, we use a corresponding
Lyapunov equation to not deal with the disturbance gain term IV,,.

The next algorithm performs a sequence of four-step iterations based on
the Kleinman’s Algorithm [35] to find the optimal control gains (30) and
(31).

Algorithm 1. (Offline iterative solution with Lyapunov equations. Klein-
man’s Algorithm.)

1. Initialize: Set k =1, Py = 0, Ng = 0 and given the Assumption 1 and
the sufficient condition BR™*BT > 27y 2D D7, select a gain Fy such
that A — BF, is asymptotically stable.

2. k' iteration: Solve for P
0=P,A,+ AP, + FT RF,_,+Q (33)
where Ay = A — BF}, + DN, Finally, update the gains
F.= R 'BTP,, (34)
N, =~ *DTP,. (35)
Set the cost Jp = tr(PxXo).

3. Check: If Fy_; and Fj are close enough to each other, go to step (4)
else go to step (2).

4. Terminate: Given the Assumptions 2 and 3, set the OPFB gains K =
F,.Ct, N, = N,CT and the cost J = Jj. O

Note that the closed-loop stability, and L, gain boundedness implies that
(36) has a unique stabilizing optimal solution P > 0 by Theorem 2. A
comprehensive study for the solution of generalized Riccati equations can be
found in [36]. The Algorithm 2 is based on the iterative solution algorithm
presented in [37] whose convergence is proved by establishing the connection
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between Newton’s method in [38]. Additionally, by considering the condi-
tion BR™!BT > 42DD7Y, the monotonic convergence, i.e, B, < P,_;, is
straight-forward from the Theorem 13.5.8 in [38]. A related algorithm is also
examined in Chapter 8 of the book [29].

Now, to develop an algorithm that accounts only for the optimal gain
K2, we manipulate the steps of the Algorithm 1. The resultant Algorithm 2
finds the the optimal control gain K7 (30) iteratively.

Algorithm 2. (Offline iterative solution with Lyapunov equations. Modified
Kleinman’s Algorithm.)

1. Initialize: Set k = 1, Py = 0, and given the Assumption 1 and the
sufficient condition BR™1BT > 2y72D DT select a gain Fy such that
A — BFj is asymptotically stable.

2. k' iteration: Solve for P
0=P,A,+ A, P, +F RF, 1+Q+~y " P,_1DD"P,_; (36)
where A, = A — BF}. Finally, update the gain
F, = R"'B"P,. (37)
Set the cost Ji = tr(PrXo).

3. Check: If Fy_; and Fj are close enough to each other, go to step (4)
else go to step (2).

4. Terminate: Given the Assumptions 2 and 3, set the OPFB gain K¢ =
F,,CT and the cost J = Jy. [

The next section uses the Algorithm 2 to develop model-free algorithms
considering different scenarios for the availability of system data.

4. Online Integral Reinforcement Learning Solution Algorithm for
H. OPFB

In this section, we first develop an online off-policy integral reinforcement
learning (IRL) algorithm [39], which is a model-free version of the Algorithm
2. This algorithm assumes that the system state data is available to deal with
unknown A, B, and D matrices. Then, we develop a novel IRL algorithm
that solves the optimal H., regulator problem by learning the Nash equi-
librium gain solution (30) without requiring knowledge of the system state
data.
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4.1. Online off-policy IRL algorithms

This section introduces an off-policy IRL algorithm to deal with the un-
known system matrices A, B and D. In this case, both of Algorithm 1
and 2 lose their applicability as they are model-based. However, we still
benefit from the convergence properties of Algorithm 2 while developing the
off-policy IRL method. To this end, we represent system dynamics (1) as

& = Ax + Bug + Dd + B(u — uy)
= Axx + Dd + B(u — ug) (38)

where A, = A — BFy and up = —Fpx € R™ is the control policy to be
updated with Fy, given in Algorithm 2.

Firstly, to obtain P, without information of the system matrices A, B
and D, take the derivative of value functional V(x(t)) = =T (t)Px(t) by
using the new representation of the system dynamics (38)

V= wTA;";Pk:I: + TP Az
+2d" DT Pyx + 2(u + Fypz)" BT Px. (39)

To employ the approach given in Algorithm [35], we define the following two
new variables

Gri1=7°D"P,, Fy.1 =R 'BTP,. (40)

Re-write (36) in terms of new variable (40) to get the Algorithm 2 in the
Kleinman’s form as

Q= P.Ar+ AL P, (41)

where Q = —FI'RFy, — Q — /G Gj,. Additionally, express (39) in terms
of the new variables introduced in (40) and (41) as

V =2(+’d"Gri1 + (u+ Frz)" RFey1)x + 2" Qu. (42)

Then, integrate both sides from ¢ to ¢t + T to obtain
t+T
V{t+T) - V(t) = / 2w+ Fyx)" RFp 1adr
t

t+T t+T _
+/ 272dTGk+1de~l—/ 2T Qxdr. (43)
t t
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Based on these manipulations, the online off-policy IRL algorithm can be
developed. Note that this new IRL algorithm and the Algorithm 2 are equiv-
alent. However, on the contrary offline Algorithm 2, the IRL Algorithm 3
does not require information of A, B and D matrices. It only requires an
initial stabilizing control policy uy = —Fyx (this is standard assumption in
IRL applications [14],(23],[25],[28]) and the sufficient amount of data that
belongs x(t), w(t), and d(t) vectors, which can be collected online.

Algorithm 3. (Off-policy IRL algorithm assuming @ is given.)

1. Initialize: Set k = 1, Go = 0 and given Assumption 1, start with initial
stabilizing control policy ug = —Fyz.

2. k' iteration: Use (43) to update Py, Ggy1 and Fyq simultaneously
T
2T (t + T)Pea(t + T) — 2 () Pe(t) / 2dT Gy
t
4T HT
— / 2(u + Frx)' RFyxdr = / T Qxdr. (44)
t t

Set the cost Jy = tr(PxXo).

3. Check: If Fy, and Fj 1 are close enough to each other, go to step (4)
else go to step (2).

4. Terminate: Given the Assumptions 2 and 3, set K¢ = Fi11CTt and
J = Jy. O

Remark 8. Note that right-side of the equation (44) in the Algorithm 3
consists of known terms, and hence it can be solved for Py, G+1 and Fiyq
matrices using well established least-squares technique by converting them
to the set of linear equations [25]. Since (44) does not use any system matrix
information except C, the Algorithm 3 is said to be model-free. Realize that
the output matrix C represents the sensors placed to the system (1), which
is clearly known.

Realize that the Algorithm 3 achieves the static OPFB gain assuming
system state information, x, is available. On the other hand, if we are only
given the output data y, we need to come up with a novel algorithm that
does not require system state data. Omne approach is to make use of the
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observability matrix while developing a model-free algorithm. However, this
approach indeed requires the pair (A, C) to be observable. Thence, from
now on we assume that the detectability condition in the Assumption 1 is
strengthened as an observability condition.

The next Theorem is instrumental before we develop a new Algorithm
that only need measurement of the system output data y.

Theorem 4. For any given n-dimensional observable system, there exists a
sufficiently small time interval [0 T] such that if N sampling times satisfy
0<t—iAt <TViel,.. N where At is the delayed time and assumed
fixed, then the system is N-sample observable.

Proof.: See [40] for the same proof.
To make use of the observability matrix define

z(t)' Px(t) = YT (t)PY (t) (45)

where Y (t) = [yT(t) 97 () ... y" " (1)]T = Oz, and hence P = OT PO,
with Op € R"*™ is the left-inverse of the observability matrix O € R"?*".
Note that each derivative of the output y can be obtained by making use
of the Taylor Series expansion on the collected data y(t + iAt) around y(t).
An example is § = y(HAtHyA(i;At)_zy(t) where y(t + At) = y(t) + Aty(t) +
0.5A%4j(t) and y(t — At) = y(t) — Aty(t) + 0.5A2t4(t).

Now, select Q = kCTC where k > 0 is a scalar, and define the following
variables

F) = F,0, G, = GOy, (46)

and the known term Q = —FT RFy, — Q —v*GT G}, Herein the new weight-
ing matrix selected in a form such that Q = k[I, O ... 0]%xqlIg O ... 0]gxgn.
Realize that 2" Qx = yTy = YTQY holds when Q = kCTC, and it en-
ables us to treat @ as a known term. Further, since the pair (A, C) is
observable (A, kCTC) is also observable. Based on these manipulations, a

new Algorithm 4 can be developed.

Algorithm 4. (Off-policy IRL algorithm, x is not required but the pair
(A, C) must be observable.)

L. Initialize: Set k =1, Go = 0 and start with a stabilizing control policy
u = —F()Y
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2. k' iteration: Update f’k, ék+1 and sz—i—l simultaneously
_ _ t+T _
Y't+T)PY(t+T) - YT (t)PY (t) — / 2v2dT G 1Y dr
t
t+T _ _ t+T _
— / 2(u+ FY) ' RF, .\ Ydr = / YTQYdr. (47)
t t

Set the cost J;, = tr(l-:’kXo).

3. Check: If F) and FkH are close enough to each other, go to step (4)
else go to step (2).

4. Terminate: Given the Assumptions 2 and 3, set u = —Fk+1Y and
J = J. O

Realize that the Algorithm 4 converges with the static state feedback
expression since w = —Fj, 1Y = —R"'BTP,0,0x = — R 'BT P,z (11).
Thence, it regulates not only the state elements spanned in the row-space
of C but all states. However, it creates additional complexity as it requires
more data to be collected to converge. On the other hand, the Algorithm
4 does not require system state data @, and it directly achieves the Nash
equilibrium control v by making use of the new variables Fk+1 and y instead
of calculating the OPFB gain K¢. Additionally, since the Algorithm 4 is
obtained with the change of variables in the Algorithm 3, it shares similar
convergence properties with the Algorithm 3, and hence the Algorithm 2.
The next section shows a way of solving coupled linear equations.

4.2. Data-based implementation of the IRL Algorithm

This section introduces a least-squares method to solve step (2) in Algo-
rithm 3. Although value function approximation is a popular tool and can be
employed to solve step 2 in Algorithm 3, it requires three Neural Networks
(NNs), i.e., the actor NN to approximate the value functional (7), the critic
NN to update control policy and the disturber NN to update disturbance
policy [13]. This causes a complicated NN design procedure. Instead, we use
a least-squares method to solve for Py in step (2) of Algorithm 3, however,
we first need to find Pj.
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Now, we use the Kronecker product property af Wb = (b @ aT)vec(W)
to rewrite (44) as

t+T
B+ T) — a(1)]T Py — 29 / 2T @ dT dr)vec(Grsr)
t

t+T T
- 2(/t T @ [(u + Fpx) R)dr)vec(Fiy1) = /t T Qxdr  (48)

n(n—1) n(n—1)

and P, € R™z  are defined in the following

where the vectors & € R

forms
T = [xfa 2x1$27 e ,2.’13'1.%”, :E%: R 2$n71xn7 xi]T
pk = [Pk‘(ll)7 e 7Pk‘(1n)7 Pk‘(22)7 e 7Pk‘(2n)7 e 7P1€(nn)]T' (49>
To solve Py, Gg41 and Fyyq in (48), define
d, =[2(t+T)—z(t), -, (50)
Bt +5:.T) — Bt + (s1 — )T)]T € R,
t+T
La=|[ (@odn-. (51)
t
t+s1T
/ (x® d)dT]T e Rov<mp.
t+(3171)T
+T
I, = [/ z® (u+ Fpx)dr,--- | (52)
¢
t+s1T
/ x® (u+ ka)dT]T € Rovxmm.
t+(s1—1)T
t+T _ t+s1T _
U= —[/ T Qxdr, - / T Qxdr]”, (54)
¢ t+(s1—1)T

where integer s; > 0 is the sampling data group number. Then, the solution
can be obtained by

P,
vec(Grg1) | = (®T®) @7 W, (55)
vec(Fry1)
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Remark 9. To ensure that (55) achieves the unique solution, the persistence
of the excitation condition needs to be satisfied. To this end, probing noise
should be injected to control input « in (37). This is also called as exploration
noise that does not affect the convergence [25]. In addition, the data group
number s; should be no less than w + np + nm, which is the number of

unknown parameters to be calculated by (55).

In the next section, the correct performance of the proposed methods is
validated by applying them to the lateral control of linearized F-16 dynamics.

5. Simulation Results

In this section, an example is given to verify the correct performance of
proposed algorithms that solves optimal H, static OPFB regulator problem.
We used the F-16 linearized lateral dynamics at a particular flight condition
given in example 5.3-1 of the book [41]. Parameters of the linearized F-16
lateral dynamics and the corresponding system vectors are

[—0.32 0.064 0.036 —0.992 0 0.001 ]
0 0 1 0.004 0 0
4 _ | 73065 0 368 0665 —0.733 0.132 |
~ | 854 0 —0.025 —0.476 —0.032 —0.062|°
0 0 0 0 —20.2 0
0 0 0 0 0 —20.2 |
g_[000022 o0 r
~10000 0 202" (56)
0 0 0  57.2058 0 0
c_ 0 0 572958 0 0 0]
~ 572958 0 0 0o 0 o’
|0 572958 0 0 00
e — [ﬁ O p r g (5T}T; u = [ua ur}T;
T
y=1[r p B ¢

where [ denotes the side-slip, ¢ is the bank angle, p is the roll rate, r is the
yaw rate, d, is the aileron actuator angle, ¢, is the rudder actuator angle, u,
is the aileron servo input, w, is the rudder servo input. The factor of 57.2958
in the output-matrix C' converts radians to degrees.

21



In a real-life scenario, the system states, and disturbances can be mea-
sured trough the sensors placed on the vehicle of interest. To exemplify, Iner-
tial Measurement Units (IMUs) can be used to determine attitude (pitch-roll-
yaw angles and their rates) of the vehicle, and structural health monitoring
systems can be used to measure vibrational disturbances. In addition, the
linearized model of F-16 (56) is only valid when the true speed is 502 feet/sec
and 300 psf dynamic pressure. When the aircraft changes its flight condition,
i.e., the true speed or dynamics pressure values change, the Algorithm 3 can
be used to obtain stabilizing Nash control policy without knowing the new
system parameters of the F-16 assuming the system states, x, is available. If
there is a sensor problem and all of the system states are not available, then
the Algorithm 4 can be used since it only requires the system output data y.

Additionally, the objective functional (5) parameters are selected as Q =
diag([50 100 100 50 0 0]), R = pxdiag([0.1 0.7]) with p = 0.3 for computation
of the OPFB gain. Also, select the disturbance matrix as

000 30"

D_{OOOOOJ’ (57)
and set the attenuation level v = 2.5. To examine the robustness, assume
that the system (1) experiences the worst-case disturbance (20). Realize
that all of the Assumptions 1-3, and the sufficient condition BR~*BT >
2y 2D DT are satisfied with the given parameters in (56) and (57). Now, we
first illustrate the performance of model-based Nash gain solutions (30) and
(31), and then check whether the the Algorithms 1 and 2 converges the same
game solutions as (30) and (31). After verifying the correctness of them, we
illustrate the performance of the Nash solutions obtained in the Algorithms

3 and 4 that are model-free.
The Fig. 1 illustrates the zero control-effort response of the system (1).

The Fig. 2 illustrates the optimal stabilizing gain (30) performance, which
is derived in Theorem 3. The Nash OPFB gains found by (30) and (31) are

Ko — —0.1395 —-0.8714 1.4785 —1.0000 (58)
°© |-0.1410 0.0273 —0.1070 0.0330 |’

N° — —0.0001 -0.0006 0.0011 —0.0007 (59)
~ |—=0.0005 0.0001 —0.0004 0.0001 |-

Now, to examine the performance of the Algorithms 1 and 2, we set the
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Zero — ef fort response of the system (1)
\ \ \ \ \

—r(deg/s)

20 - —p(deg/s) |
5L B(deg)
—¢(deg)

10
5
0
_5 —
-10 [ 7
-15 b
1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
time (s)

Figure 1: System response when no control is applied.

Output trajectories when K¢ = (30) and N, = (31) by Thereom 3
\ \ \ \ \ \ \

—r(deg/s)

—p(deg/s)
B(deg)

—¢(deg)

time (s)

Figure 2: System response when the Nash gains (30) and (31) are employed.
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Convergence of K% = F,Ct matriz parameters in Algorithms 1 and 2
T T

3 C T T T T T T T ]

251 — Ky — K3, 7

ol Ki; K §

+Kf4 +Ké14

1.5~ -

. i

0.5 4

(O -

-0.5 7
1

450 .

2ok i

1 1 1 1 1 | 1 1 1
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

iterations

Figure 3: Convergence of the gain matrix K2 parameters by using the Algorithms 1 and
2.

initial sub-optimal stabilizing gain as

~|—0.0888 —0.1875 0.7076  —0.2328 C (60)

Fo = —0.1382 0.0105 —0.0884 0.0141 ’

The convergence of optimal gain matrix parameters K2 can be observed
from Fig. 3. Note that their convergence properties are exactly the same
as each other and they converge to the same gain matrix (58) as expected.
Therefore, the output trajectories figure with this resultant optimal stabiliz-
ing gain K® is the same as Fig. 2. Now compare the system responses in
Fig. 1 and Fig. 2 to observe the regulation performance. The convergence
of disturbance gain matrix parameters N, is also illustrated in Fig. 4. Note
that the converged parameters of IN, are the same as the OPFB disturbance
gain given in (59) as illustrated.

Next, to show the correct performance of the model-free Algorithm 3, we
set the initial stabilizing gain Fj as the same as (60). Then, based on the state
information gathered from the system, the Algorithm 3 is employed to learn
the Nash equilibrium gain solution KZ online. Once the IRL Algorithm
converged, we applied the corresponding control uw = —KJy using to the
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«1073 Convergence of N, = N,C* matrixz parameters in Algorithm 1

ol ——Nj; —=—No1
—~Njg —Na

15 Niz — Noas
——Niy ——Noy

1- =

0.5+ J

0 ]

-0.5F B

- -

150 | | | | | | | | | 7

1 15 2 25 3 3.5 4 4.5 5 55 6

iterations

Figure 4: Convergence of the IN, matrix parameters by using the Algorithm 1.

Convergence of K¢ = Fy,1CT matrixz parameters in Algorithm 3
T T

T T T T T T
— K3 — KRl
200 - 1
150 - 1
100 - 1
50 - 1
1 1 1 1 1 4 |
1 15 2 25 3 35 4 45 5 5.5 6

iterations

Figure 5: Convergence of the gain matrix K¢ parameters by using the Algorithm 3.
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H,, OPFB regulator with u = F,1Y in Algorithm 4
I I I I I

10+ —'r(deg/s) -
—p(deg/s)
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Convergence of Fy matrixz parameters in Algorithm 4
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1 1.5 2 2.5 3 3.5 4 4.5 5

iterations

Figure 6: Performance of the Algorithm 4.

actual system (1). The Algorithm 3 is also converged to the same Nash gain
K? (58), thereby the resultant output vector states are the same as Fig. 2
as expected.

On the other hand, to check the correctness of the Algorithm 4, we select
Q = kCTC with k = 0.05 as explained in Section 4.1. The resultant output
trajectories are shown in Fig. 6. Additionally, we have calculated the Nash
state feedback gain expression K* given in (11), and also the observability
matrix O for the system (1). Then, we compared the K* with the Fy + 10.
It has been seen that the two matrices have almost the same elements and Lo
norm difference between them is calculated as 0.84, which verifies the correct
performance of the Algorithm 4.

Lastly, the critical attenuation level obtained in the Theorems 2 and 3
is v* = 0.05. Note that with this critical attenuation v* level, the sufficient
condition BR™'BT > 2(y*)72DD7 is relaxed. However, this condition
indeed required for the Kleinman based Algorithms 1-4, and the critical
attenuation level is obtained as v* = 0.49, which is also compatible with
the sufficient condition BR™*BT > 2(y*)"2DDT. Therefore, we conclude
that the model-free algorithms reduce the Ly gain performance.
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6. Summary and Conclusions

In this paper, we proposed a novel augmented Hamiltonian, and develop
new iterative algorithms based on stationarity conditions of the augmented
Hamiltonian to obtain Nash equilibrium solutions. Additionally, the corre-
sponding optimal gain solutions guarantee both stability and L, gain bound-
edness of an LTI system when the H,, static OPFB control method is em-
ployed. Convergence properties of two off-line iterative solution algorithms
are given. Then, based on the Lyapunov iterations, an online off-policy IRL
algorithm which is a model-free version of the offline Algorithm 2, is devel-
oped to solve the optimal H, regulator problem by learning the Nash equilib-
rium solution (30) without requiring system state, control, and disturbance
matrices. However, this Algorithm assumes the availability of the system
state data. Thence, we come up with a novel model-free observer-based Al-
gorithm 4 that only requires system output date to achieve stabilizing Nash
control policies but it creates additional complexity as it requires more data
to be collected to converge. Lastly, we applied the proposed algorithms to
the linearized F-16 lateral dynamics at a particular flight condition to verify
the correct performance of the proposed algorithms. Further research can
be conducted to investigate how the state and output measurement delays
affect the proposed methods.
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