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Abstract: Future real-world applications will consist of robots and human workers collaborating
with each other in a shared environment to increase productivity. In such scenarios, it is
necessary to guarantee the safety of humans while maintaining precise control of the robots
performing tasks. Probabilistic movement primitives (ProMPs) are a powerful tool for defining
a distribution of trajectories for dynamic systems. However, they have been solely used for
determining robot trajectories. In this paper, we utilize ProMPs to predict the probabilistic
motion of humans in the environment. To achieve this, we propose a combination of model
predictive control (MPC) and control barrier functions (CBFs) to guide a robot along a
predefined trajectory while guaranteeing it always maintains a desired distance from a human
worker motion distribution defined by a ProMP. A case study is provided to demonstrate the
efficacy of our methods.
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1 INTRODUCTION

Cooperation between humans and robots has increased
in many applications such as industry and in the home
(Kanazawa et al. (2019); Fishman et al. (2020)). In these
scenarios, robots may perform repetitive and simple jobs,
as well as physically demanding tasks outside the abili-
ties of humans. Currently, human workers are typically
responsible for tasks that are challenging for robots, such
as situation assessments. To have an efficient and united
human-robot system, their advantages must be integrated
in a collaborative manner. One of the main challenges for
realizing a seamless, combined system is to guarantee the
safety of human workers in the environment (Kimmel and
Hirche (2017)). Two important aspects for accomplishing
safe cooperation are the following: (i) modeling human-
motion trajectories in a way that captures humans’ rela-
tively low-levels of repeatability in the environment; (ii)
synthesizing an appropriate controller for a robot to avoid
collisions with human trajectories.

1.1 Human Motion Prediction

Successful human-robot collaboration requires models of
human behavior (e.g., motion). This problem has been
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Fig. 1. A worker heading towards another worker. The
motion of the moving worker is modeled as a distri-
bution generated using a ProMP and transmitted to
a mobile robot. Our controller guides the robot to its
final position and simultaneously guarantees collision
avoidance with other humans.

investigated in a variety of contexts (Bai et al. (2015);
Zhou and Wachs (2018)). Human behavior, even when
performing repetitive jobs, does not have a repeatable
and deterministic pattern. It rather depends on many
factors including fatigue, skill level, and adaptation to
various tasks. Consequently, it’s more effective to consider
probabilistic models such as Gaussian mixture models
(Wiest et al. (2012)) which can model the prediction
uncertainty. Moreover, from a control theory point of view,
it is important to have methods capable of predicting
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human motion over a future time horizon instead of just
delivering the current human dynamical states.

In this work, we use ProMPs for modeling human motion
in the environment whereby a distribution of trajectories
is learned from multiple demonstrations or observations
(Calinon and Lee (2017)). In Paraschos et al. (2018a),
the design of a stochastic ProMP feedback controller
was studied by exploiting the property of the covariance
derivatives which can be explicitly computed. A model-
free ProMP controller that adapts movements to a force-
torque sensor input was developed in Paraschos et al.
(2018b). Unlike Paraschos et al. (2018a,b) we do not design
a ProMP controller in this work, instead we utilize ProMPs
to model human motion and for defining safety barriers.

1.2 Safe Robot Control Approaches

Real-time safety in safety-critical dynamical systems is
a paramount issue (Wieland and Allgöwer (2007)). This
problem has been investigated by designing polynomial
barrier certificates/functions using offline iterative algo-
rithms based on sum-of-squares optimization to verify
safety for a given dynamical system (Sloth et al. (2012)).
The concept of barrier certificates/functions was extended
for synthesizing real-time safe control laws for dynamical
systems via CBFs (Ames et al. (2016)).

CBFs can provide verifiable control laws with safety guar-
antees. They integrate seamlessly with control Lyapunov
functions (CLFs) to offer stability while respecting limits
and safe regions of the state space (Ames et al. (2019)).
Additionally, CBF and CLF controllers typically solve a
constrained quadratic program (QP) to find an optimal
controller at runtime. This allows the system to minimize
the control effort while ensuring stability and safety. Other
tasks formulated as cost functions or constraints can be
included as well. One downside to CBFs and CLFs is
the complexity in defining the barriers and trajectories.
Efforts to automate the definition of CBFs and CLFs
include mapping temporal logic statements with respect to
performance requirements (Srinivasan and Coogan (2020))
and fitting piecewise-linear barrier functions to trained
obstacles or regions (Saveriano and Lee (2020)).

Although CBFs are effective for safe control design in
engineering systems, most existing techniques only assure
myopic short-term safety constraints for simple nonlinear
dynamical systems. On the other hand, MPC is a well-
established method for real-time control of dynamical sys-
tems subject to system constraints and has a long his-
tory in industrial applications (Qin and Badgwell (2003)).
While MPC is a useful tool for addressing various types
of system constraints, there exists some safety constraints
that cannot be adequately handled. However, MPC and
CBFs can be unified together into one optimization prob-
lem to address such challenges (Zeng et al. (2020)).

1.3 Contributions

This work investigates the concept of human-robot col-
laboration from the viewpoint of having an efficient level
of safe coexistence (Magrini et al. (2020)). For example,
this may occur when a robot and human work close to
each other in a shared workspace without requiring mu-
tual contact or the coordination of actions and intentions

(De Luca and Flacco (2012)). We present a safe human-
robot coexistence system for anticipating the surrounding
human workers’ motions based on the assumption that
there exists a centralized high-level task assignment and
observer (HLTAO) module for assigning tasks to and mon-
itoring all humans and robots in the environment.

Our goal is to design effective control strategies for robots
such that they are capable of achieving their assigned tasks
while avoiding collisions with other robots and humans.
To accomplish this objective, the possible motions of the
human workers in the environment are modeled as a set of
ProMPs. Using HLTAO, each individual robot can receive
the current location of the neighboring robots as well as
the position and distribution (represented by ProMPs)
of the surrounding humans. These human distributions
and robot positions are then used to define two sets of
CBFs. We propose an MPC/CBF control method that
simultaneously guarantees the control performance and
the safety of the system.

2 BACKGROUND

In this section we provide the essential background infor-
mation on ProMPs, CBFs, and MPC.

Notation: Given a matrix A, let A� denote its transpose.
The number of axes of the workspace is represented by
n. We denote the sample number for a discrete-time
state or parameter by subscript, e.g., Ak. Given a vector
x ∈ Rn, we indicate its jth element at the kth time step
with a subscript xj,k. j is used as a subscript throughout
Section 2.1 to refer to the axis of the workspace. The
superscript j in xj is used to denote the jth robot, human,
or task, and is also utilized throughout Section 3 in this
context for other variables.

2.1 Probabilistic Movement Primitives

ProMPs provide a parametric representation of trajectory
distributions. These parameters facilitate modulation in
both space and time, combination and co-activation with
other movement primitives, and coupling between joints
or axes to support coordinated movements. Basis functions
are used to reduce model parameters and aid learning over
demonstrated trajectories. The trajectory distribution can
be defined and generated in any space that accommodates
the system (e.g., configuration/joint or work/task spaces).
In this work, we consider tasks in the workspace.

Within a ProMP, a trajectory is represented as a set
of Cartesian positions ζj = {xj,k}, with state variable
xj,k ∈ R, axis j ∈ [1, . . . , n], and k is the time step. Let
wj ∈ R1×L be a weight matrix with L terms. A linear
basis function model is then given by

�j,k =

[
xj,k

ẋj,k

]
= Φkwj + ξxj

,

where Φk =
[
φk φ̇k

]� ∈ R2×L is the time-dependent
basis function matrix, and L is the number of basis
functions. Gaussian noise is described by ξ�j

∼ N (0,Σ�j
).

Thus, a ProMP trajectory is represented by a Gaussian
distribution over the weight vector wj and the parameter
vector θj = {µwj

,Σwj
} which simplifies the estimation

of the parameters. We marginalize out wj to create the
trajectory distribution, i.e.,

p(ζj, θj) =

∫
p(ζj |wj)p(wj; θj)dwj. (1)

The distribution p(ζj, θj) defines a hierarchical Bayesian
model over the trajectories ζj (Paraschos et al. (2018a)),
and p(wj | θj) = N (wj |µwj

,Σwj
). In a movement primitive

representation, the parameters of a single primitive must
be easy to obtain from demonstrations. The distribution
of the state p(�j,k ; θj) is

p(�j,k; θj)=N (�j,k |Φkµwj
,ΦkΣwj

Φ�
k +Σ�j

). (2)

A trajectory can be generated from the ProMP distribu-
tion using wj, the basis function Φk, and (2). The basis
function is chosen based on the type of robot (or human)
movement, which can be either rhythmic or stroke-based.
From (2), the mean µj,k ∈ R2 of the ProMP trajectory at k
is Φkµwj

and the covariance Σj,k ∈ R2×2 is ΦkΣwj
Φ�

k +Σ�j
.

Multiple demonstrations are needed to learn a distribution
over wj. We use a combination of radial basis and poly-
nomial basis functions for training. From the demonstra-
tions, the parameters θj can be estimated using maximum
likelihood estimation (Lazaric and Ghavamzadeh (2010)).
However, this may result in unstable estimates of the
ProMP parameters when there are insufficient demon-
strations. Our method uses a regularization to estimate
the ProMP distribution similar to Gomez-Gonzalez et al.
(2020). We maximize θj for the posterior distribution over
the ProMP using expectation maximization, p(θj |xj,k) ∝
p(θj)p(�j,k | θj).
For systems with multiple degrees of freedom, where n > 1,
coupling between axes of the workspace enables the robot
(or human) to exhibit coordinated behavior. To realize
this with ProMPs, we calculate the covariance of the axes
(Paraschos et al. (2018b)). In addition, we use a Normal-
Inverse-Wishart as a prior distribution p(θj) to increase
stability when training the ProMP parameters (Gomez-
Gonzalez et al. (2020)). Assuming two, single-axis ProMPs
(µj,k,Σj,k), j ∈ {1, 2}, the joint distribution is defined as

(µ̃k ∈ R4, Σ̃k ∈ R4×4). Finally, by removing the rows and
columns related to the axis velocities, (µk ∈ R2,Σk ∈
R2×2) are obtained and used as the 2D model of human
motion in the workspace as described in Section 3.

2.2 Control Barrier Functions

Consider the following discrete-time nonlinear system

xk+1 = f(xk, uk), (3)

where x ∈ X ⊂ Rn denotes the state, u ∈ U ⊂ Rp is the
control input, and f : Rn → Rn is a locally Lipschitz vector
field. It is assumed that the system in (3) is controllable.

Assumption 1: All system states xk can be measured or
estimated at each time step k.

Define a set C for which we wish to verify that x(t) ∈ C, ∀t.
C then defines a safe set. A smooth function h(x) : Rn →
R is defined to encode a constraint on the state x of the
system. The constraint is satisfied if h(x) ≥ 0, and violated
if h(x) < 0. Consider the set C defined by

C = {x ∈ Rn : h(x) ≥ 0},
∂C = {x ∈ Rn : h(x) = 0},

Int(C) = {x ∈ Rn : h(x) > 0},
(4)

where Int(C) and ∂C denote the interior and boundary of
C, respectively.

Existing approaches to define CBFs include exponential
CBFs, zeroing CBFs, and reciprocal CBFs (Nguyen and
Sreenath (2016); Ames et al. (2016)). These methods have
trade-offs in terms of ease of definition, boundedness of
velocities, speed of convergence, etc. In this work we
investigate discrete-time exponential CBFs.

Definition 1. Given the set C, the smooth function h is a
CBF if there exists a constant scalar γ such that (Agrawal
and Sreenath (2017)),
1. h(x0) ≥ 0,
2. There exists a control input uk such that

∆h(xk, uk) ≥ −γh(xk), 0 < γ ≤ 1, (5)

where ∆h(xk, uk) = h(xk+1) − h(xk). From (5) it is clear
that h(xk+1) ≥ (1 − γ)h(xk). Hence, the barrier function
h(xk) always has a lower bound (1 − γ)kh(x0), and is an
exponential function in k. Due to this fact, it is referred
to as a discrete-time exponential CBF.

2.3 Model Predictive Control

The main goal of MPC is to find a sequence of control
actions by solving a finite-horizon optimization problem
at each sampling instant. Concretely, the MPC problem is
formulated as (Grandia et al. (2020); Zeng et al. (2020))

argmin
u

V (xk+N |k) +

N−1∑
t=0

L(xk+t|k, uk+t|k) (6a)

subject to

xk+t+1|k = f(xk+t|k, uk+t|k), t = 0, . . . , N − 1, (6b)

xk+t|k ∈ X , uk+t|k ∈ U , t = 0, . . . , N − 1, (6c)

xk+N |k ∈ Xf , (6d)

xk|k = xk, (6e)

where V (·) and L(·) are, respectively, the terminal and
stage costs, and N is the time horizon. The state and input
constraints are given by (6c), and the terminal constraint
is enforced in (6d). To solve an MPC problem, at each
time step k, (6) is solved and a sequence of control actions
u∗ = [uk|k, . . . , uk+N−1|k] is generated. Then, only the first
element of u∗ is applied (as a feedback law) to the system
dynamics and the next measured state xk+1 is estimated.
Finally, the estimated state is considered as a new initial
condition for the next time step and the optimization
problem is repeated.

3 MPC/CBF FORMULATION

3.1 Problem Formulation

Consider an environment (denoted by Q ⊂ Rn), with t
tasks designated by Tasko, o ∈ T = {1, . . . , t}, m human
workers Hh, h ∈ H = {1, . . . ,m}, and l heterogeneous
robots Rr, r ∈ R = {1, . . . , l} that work in close proximity
to humans to complete a set of predefined tasks. Similar
to (3), each robot is modeled as a nonlinear dynamical
system, i.e., xi

k+1 = f i(xi
k, u

i
k), i ∈ R, with state vector

xi ∈ Rni , and control input ui ∈ Rpi .

Problem: Our primary objective is to control the robots
in real-time such that (i) they avoid collisions with human
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Gonzalez et al. (2020)). Assuming two, single-axis ProMPs
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control input, and f : Rn → Rn is a locally Lipschitz vector
field. It is assumed that the system in (3) is controllable.

Assumption 1: All system states xk can be measured or
estimated at each time step k.

Define a set C for which we wish to verify that x(t) ∈ C, ∀t.
C then defines a safe set. A smooth function h(x) : Rn →
R is defined to encode a constraint on the state x of the
system. The constraint is satisfied if h(x) ≥ 0, and violated
if h(x) < 0. Consider the set C defined by

C = {x ∈ Rn : h(x) ≥ 0},
∂C = {x ∈ Rn : h(x) = 0},

Int(C) = {x ∈ Rn : h(x) > 0},
(4)

where Int(C) and ∂C denote the interior and boundary of
C, respectively.

Existing approaches to define CBFs include exponential
CBFs, zeroing CBFs, and reciprocal CBFs (Nguyen and
Sreenath (2016); Ames et al. (2016)). These methods have
trade-offs in terms of ease of definition, boundedness of
velocities, speed of convergence, etc. In this work we
investigate discrete-time exponential CBFs.

Definition 1. Given the set C, the smooth function h is a
CBF if there exists a constant scalar γ such that (Agrawal
and Sreenath (2017)),
1. h(x0) ≥ 0,
2. There exists a control input uk such that

∆h(xk, uk) ≥ −γh(xk), 0 < γ ≤ 1, (5)

where ∆h(xk, uk) = h(xk+1) − h(xk). From (5) it is clear
that h(xk+1) ≥ (1 − γ)h(xk). Hence, the barrier function
h(xk) always has a lower bound (1 − γ)kh(x0), and is an
exponential function in k. Due to this fact, it is referred
to as a discrete-time exponential CBF.

2.3 Model Predictive Control

The main goal of MPC is to find a sequence of control
actions by solving a finite-horizon optimization problem
at each sampling instant. Concretely, the MPC problem is
formulated as (Grandia et al. (2020); Zeng et al. (2020))

argmin
u

V (xk+N |k) +

N−1∑
t=0

L(xk+t|k, uk+t|k) (6a)

subject to

xk+t+1|k = f(xk+t|k, uk+t|k), t = 0, . . . , N − 1, (6b)

xk+t|k ∈ X , uk+t|k ∈ U , t = 0, . . . , N − 1, (6c)

xk+N |k ∈ Xf , (6d)

xk|k = xk, (6e)

where V (·) and L(·) are, respectively, the terminal and
stage costs, and N is the time horizon. The state and input
constraints are given by (6c), and the terminal constraint
is enforced in (6d). To solve an MPC problem, at each
time step k, (6) is solved and a sequence of control actions
u∗ = [uk|k, . . . , uk+N−1|k] is generated. Then, only the first
element of u∗ is applied (as a feedback law) to the system
dynamics and the next measured state xk+1 is estimated.
Finally, the estimated state is considered as a new initial
condition for the next time step and the optimization
problem is repeated.

3 MPC/CBF FORMULATION

3.1 Problem Formulation

Consider an environment (denoted by Q ⊂ Rn), with t
tasks designated by Tasko, o ∈ T = {1, . . . , t}, m human
workers Hh, h ∈ H = {1, . . . ,m}, and l heterogeneous
robots Rr, r ∈ R = {1, . . . , l} that work in close proximity
to humans to complete a set of predefined tasks. Similar
to (3), each robot is modeled as a nonlinear dynamical
system, i.e., xi

k+1 = f i(xi
k, u

i
k), i ∈ R, with state vector

xi ∈ Rni , and control input ui ∈ Rpi .

Problem: Our primary objective is to control the robots
in real-time such that (i) they avoid collisions with human
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Fig. 2. A block diagram illustrating the general structure
of the proposed framework.

workers and other neighboring robots (for safety), and (ii)
they can reach to their assigned tasks (for accomplishing
the control objectives).

To solve this problem, we utilize a HLTAO module that is
capable of continuously monitoring (e.g., using cameras)
all robots and humans, estimating their current positions.
HLTAO assigns tasks to each robot or human, and it
can communicate with all robots in the environment.
Moreover, we assume that the humans’ motions in the
environment are modeled as a set of ProMPs. Transmission
of these models by HLTAO to the robots allows for the
accurate prediction of human workers’ future behaviors.
Based on these predictions, a set of MPC/CBF controllers
are designed for the robots such that control and obstacle
avoidance objectives can be accomplished simultaneously
in a unified framework. The general structure of our
proposed system is shown in Fig. 2.

3.2 Centralized HLTAO Module

The coordinated control of a network of robots is achieved
by exchanging data such as sensor measurements or in-
formation about intended actions. The HLTAO module
collects and transmits the appropriate data between dif-
ferent robots and humans in the environment. We con-
sider two types of dynamic obstacles in Q. First, a
robot’s neighboring robots are represented by NRi =
{j | distance(pRi, pR

j) < εsr, i �= j, j ∈ R}, where εsr > 0
is the sensing range of robot and pR

i = (pR
i
x, pR

i
y) ∈

xi, i ∈ R, is the current position of robot i. Second,
a robot’s neighboring human workers, represented by
NHi = {j | distance(pRi, pH

j) < εsr, j ∈ H}, where pH
i =

(pH
i
x, pH

i
y), i ∈ H is the current position of human i. We

model small static obstacles as non-moving robots.

We assume the HLTAO module can estimate the current
position of the robots, pR

i, and humans, pH
i. Based on the

current positions of the humans and robots, the module
calculates NHi and NRi for each robot. The human
motions are modeled by a set of ProMPs. To do this, we
define the finite set S = {Entrance,Task1, . . . ,Taskt} as
the set of points a human worker may traverse in order
to perform a set of tasks in Q. Then, a set of ProMPs

Fig. 3. An illustration of the structure of the proposed co-
ordination strategy based on HLTAO. SOPT denotes
“safe optimal path to task.” The dashed black circle
indicates the sensing range of each robot.

between each pair of points in S is generated and all of
these models are saved by the HLTAO module.

Assumption 2: The human worker moves at an approx-
imately constant speed in the environment.

HLTAO continuously transmits the humans’ current posi-
tion and the ProMP parameters to the neighboring robots.
Robots use this data to predict the human motion distri-
bution and the future movement of the humans in the envi-
ronment. Our high-level strategy (Fig. 3) for coordinating
robots in the environment is summarized as follows.

(1) At each time step, HLTAO receives the current posi-
tion of all the humans and robots in the environment
and calculates NHi and NRi for ith robot.

(2) When a new task (represented by a point in S) is
assigned to a human in NHi , HLTAO selects the
corresponding ProMP between the current position
of the human and the assigned task.

(3) At each time step, HLTAO transmits the current
positions of the robots in NRi as well as the positions
and ProMPs of the humans in NHi to the ith robot.

(4) For each human in NHi , robot i finds the closest
ProMP mean position to the current human position
and uses it as the initial ProMP location in its finite-
horizon optimization.

3.3 MPC/CBF Control Design

In designing an MPC/CBF controller, each robot needs to
estimate its states and the states of neighboring humans
and robots in a finite-horizon. Although each robot is
capable of predicting future human behavior using the
humans’ ProMPs, it only has access to the current location
(not future data) of the neighboring robots. Therefore, we
assume that among a group of neighboring robots only one
robot with the highest index number can move while the
other robots are stationary at each time step (i.e., they act
as static obstacles for the moving robot). Therefore, the
following switching control policy (SCP) is implemented
on each robot

Ri SCP

{
MPC/CBF controller if i > j, j ∈ NRi ,

STOP if i < j, j ∈ NRi .

For the ith robot, i ∈ R, two sets of barrier functions
(hij

1 , j ∈ NHi , hij
2 , j ∈ NRi) are defined to assure

safety in the presence of both neighboring humans and

robots. The Mahalanobis distance, as a measure of the
distance between the current robot position pR

i
k and the

current distribution of a human N j
k = (µj

k,Σ
j
k), is used to

constrain the minimal distance to the human and avoid
collisions. It is calculated as

DM (pR
i
k, µ

j
k,Σ

j
k) =

√
(pRi

k − µj
k)

�Σj
k

−1
(pRi

k − µj
k).

The Mahalanobis distance is used to define the CBFs hij
1

hij
1 = (pR

i
k − µj

k)
�Σj

k

−1
(pR

i
k − µj

k)− ε2th, j ∈ NHi , (7)

where εth acts as a safety factor by specifying a bound
for the minimal distance to the humans in the workspace.
Thus, εth can be chosen by the designer (mission planner)
based on the safety requirements of the tasks in the
environment. For example, if the job is dangerous (e.g.,
the robot is carrying a hazardous payload as part of its
task) larger values can be considered for εth to create more
distance between the robot and the humans.

Neighboring robots are modeled as circles with centroids
pR

j = (pR
j
x, pR

j
y) and fixed radii rj . Thus, the CBFs hij

2
that represent the safety constraint between robot i and
its neighboring robots are defined as

hij
2 = (pR

i
x − pR

j
x)

2 + (pR
i
y − pR

j
y)

2 − rj
2
, j ∈ NRi . (8)

Based on the results of Grandia et al. (2020) and Zeng
et al. (2020), the MPC/CBF problem is formulated as

argmin
ui

V i(xi
k+N |k) +

N−1∑
t=0

Li(xi
k+t|k, u

i
k+t|k) (9a)

subject to

xi
k+t+1|k = Aixi

k+t|k +Biui
k+t|k, t = 0, . . . , N − 1, (9b)

xi
k+t|k ∈ X i, ui

k+t|k ∈ U i, t = 0, . . . , N − 1, (9c)

xi
k+N |k ∈ X i

f , xi
k|k = xi

k, (9d)

∆hij
1 (pR

i
k+t|k, u

i
k+t|k,N

j
k+t|k) ≥ (9e)

− γ1h
ij
1 (pR

i
k+t|k,N j

k+t|k), j ∈ NHi ,

∆hij
2 (pR

i
k+t|k, u

i
k+t|k, pR

j
k|k) ≥ (9f)

− γ2h
ij
2 (pR

i
k+t|k, pR

j
k|k), j ∈ NRi .

where xi
k+1 = Aixi

k + Biui
k is the linear discrete-time

counterpart to the system in (3), corresponding to ith
robot system dynamics. The nonlinear distance constraints
for the safety criteria are given by conditions (9e) and
(9f). One option for the stage cost is Li(xi

k, u
i
k) =

(xi
k − xrefi)�Qi(xi

k − xrefi) + ui
k
�Riui

k. In this work,
xrefi = [pTaski

x , pTaski
y , 01×(ni−2)] such that the ith robot

will reach its corresponding task, Task i. Note that this
type of cost function minimizes the system input similar
to ui

k
�H(xi)ui

k in a typical CLF/CBF control design.

In the MPC/CBF control design problem, the terminal
cost V i and the terminal set X i

f ⊆ X i can be utilized
to guarantee the stability of the system along the closed-
loop trajectory. Instead of using the CLF constraints
in the conventional CLF/CBF-based QP optimization
(Ames et al. (2019)), in our formulation the terminal cost
minimizes the CLF.

The following simple procedure can be used to guaran-
tee stability using the terminal cost (Christofides et al.
(2013)). We assume a linear stabilizing feedback control

law ui
k = Kixi

k exists for the unconstrained case, i.e.,
Ai + BiKi is stable. Such a controller can be computed
using the solution of an infinite-horizon linear quadratic
regulator problem with the same weights Qi and Ri used
in the MPC optimization problem. Then, letting P i be the
solution of the Lyapunov equation

(Ai +BiKi)�P i(Ai +BiKi)− P i = −(Qi +Ki�RiKi),

the terminal cost and set are chosen to be V i(xi
N ) =

xi
N

�
P ixi

N and X i
f = {xi |xi�P ixi ≤ ci}, where ci is a

small positive value chosen such that ui
k = Kixi

k ∈ U i for
any xi ∈ X i

f . More details on the stability analysis can be

found in Borrelli et al. (2017).

Remark 1. Based on the considered stage cost in (9),
it is guaranteed that each robot safely achieves its fi-
nal position (xrefi) from its current position. However, it
might be practically interesting to have scenarios in which
robots need to follow some predefined distributions while
avoiding collisions with humans. The proposed method
can be modified in such a way that it forces robots to
move inside predefined distributions, delivered from pre-
trained ProMPs. To this end, the cost function in (9)
should behave as a ProMP-based controller for each robot.
In this case, the stage cost of the MPC is replaced with

Li(xi
k, u

i
k) = (xi

k−µi
k)

�Σi
k
−1

(xi
k−µi

k)+ui
k
�
Riui

k, where µ
i

and Σi come from pre-trained ProMPs for the ith robot.
Moreover, to avoid collisions between robot and human
distributions, the Mahalanobis distance should be replaced
with the Bhattacharyya distance. The Bhattacharyya dis-
tance, DB , measures the similarity of two probability dis-
tributions. For two normal distributions N i = (µi,Σi) and
N j = (µj ,Σj), the distance is defined as

DB =
1

8
(µi − µj)�Σ−1(µi − µj) +

1

2
ln

(
detΣ

detΣidetΣj

)
,

where Σ = Σi+Σj

2 .

4 SIMULATION RESULTS

In this section a proof of concept example is provided
to highlight the effectiveness of our methodology for a
safe human–robot coexistence system. The system models
and proposed real-time controller were simulated using
MATLAB 2019a. All computations were done on a Dell
OptiPlex 7050 machine with an Intel Core i7-7700X CPU
and 8 GB of memory.

Consider an environment Q with two robots (R1, R2), one
human (H1), and three tasks (Task1, Task2, Task3). The
positions of the tasks in the environment are, respectively,
(0.3270, 0.2535), (−0.3813, 1.6545), (−0.15, 1.8). The ini-
tial positions of the robots are R1 = (−0.1, 1.6), R2 =
(0.4, 0.1). The human is initially at Task1. The HLTAO
module has assigned Task2 to the human and Task3 to
the second robot. It’s assumed that the first robot does not
move during the mission and acts as a static obstacle to
the second robot. The goal is to control the second robot
(R2) to move from its initial position to Task3 without
colliding with the human (H1) and the other robot (R1).

The human motion between Task1 and Task2 is modeled as
a ProMP. We generated 49 different trajectories that arrive
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robots. The Mahalanobis distance, as a measure of the
distance between the current robot position pR

i
k and the

current distribution of a human N j
k = (µj

k,Σ
j
k), is used to

constrain the minimal distance to the human and avoid
collisions. It is calculated as

DM (pR
i
k, µ

j
k,Σ

j
k) =

√
(pRi

k − µj
k)

�Σj
k

−1
(pRi

k − µj
k).

The Mahalanobis distance is used to define the CBFs hij
1

hij
1 = (pR

i
k − µj

k)
�Σj

k

−1
(pR

i
k − µj

k)− ε2th, j ∈ NHi , (7)

where εth acts as a safety factor by specifying a bound
for the minimal distance to the humans in the workspace.
Thus, εth can be chosen by the designer (mission planner)
based on the safety requirements of the tasks in the
environment. For example, if the job is dangerous (e.g.,
the robot is carrying a hazardous payload as part of its
task) larger values can be considered for εth to create more
distance between the robot and the humans.

Neighboring robots are modeled as circles with centroids
pR

j = (pR
j
x, pR

j
y) and fixed radii rj . Thus, the CBFs hij

2
that represent the safety constraint between robot i and
its neighboring robots are defined as

hij
2 = (pR

i
x − pR

j
x)

2 + (pR
i
y − pR

j
y)

2 − rj
2
, j ∈ NRi . (8)

Based on the results of Grandia et al. (2020) and Zeng
et al. (2020), the MPC/CBF problem is formulated as

argmin
ui

V i(xi
k+N |k) +

N−1∑
t=0

Li(xi
k+t|k, u

i
k+t|k) (9a)

subject to

xi
k+t+1|k = Aixi

k+t|k +Biui
k+t|k, t = 0, . . . , N − 1, (9b)
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xi
k+N |k ∈ X i
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where xi
k+1 = Aixi

k + Biui
k is the linear discrete-time

counterpart to the system in (3), corresponding to ith
robot system dynamics. The nonlinear distance constraints
for the safety criteria are given by conditions (9e) and
(9f). One option for the stage cost is Li(xi
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(xi
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k. In this work,
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y , 01×(ni−2)] such that the ith robot

will reach its corresponding task, Task i. Note that this
type of cost function minimizes the system input similar
to ui
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k in a typical CLF/CBF control design.

In the MPC/CBF control design problem, the terminal
cost V i and the terminal set X i

f ⊆ X i can be utilized
to guarantee the stability of the system along the closed-
loop trajectory. Instead of using the CLF constraints
in the conventional CLF/CBF-based QP optimization
(Ames et al. (2019)), in our formulation the terminal cost
minimizes the CLF.

The following simple procedure can be used to guaran-
tee stability using the terminal cost (Christofides et al.
(2013)). We assume a linear stabilizing feedback control

law ui
k = Kixi

k exists for the unconstrained case, i.e.,
Ai + BiKi is stable. Such a controller can be computed
using the solution of an infinite-horizon linear quadratic
regulator problem with the same weights Qi and Ri used
in the MPC optimization problem. Then, letting P i be the
solution of the Lyapunov equation

(Ai +BiKi)�P i(Ai +BiKi)− P i = −(Qi +Ki�RiKi),

the terminal cost and set are chosen to be V i(xi
N ) =

xi
N
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P ixi

N and X i
f = {xi |xi�P ixi ≤ ci}, where ci is a

small positive value chosen such that ui
k = Kixi

k ∈ U i for
any xi ∈ X i

f . More details on the stability analysis can be

found in Borrelli et al. (2017).

Remark 1. Based on the considered stage cost in (9),
it is guaranteed that each robot safely achieves its fi-
nal position (xrefi) from its current position. However, it
might be practically interesting to have scenarios in which
robots need to follow some predefined distributions while
avoiding collisions with humans. The proposed method
can be modified in such a way that it forces robots to
move inside predefined distributions, delivered from pre-
trained ProMPs. To this end, the cost function in (9)
should behave as a ProMP-based controller for each robot.
In this case, the stage cost of the MPC is replaced with

Li(xi
k, u

i
k) = (xi

k−µi
k)

�Σi
k
−1

(xi
k−µi

k)+ui
k
�
Riui

k, where µ
i

and Σi come from pre-trained ProMPs for the ith robot.
Moreover, to avoid collisions between robot and human
distributions, the Mahalanobis distance should be replaced
with the Bhattacharyya distance. The Bhattacharyya dis-
tance, DB , measures the similarity of two probability dis-
tributions. For two normal distributions N i = (µi,Σi) and
N j = (µj ,Σj), the distance is defined as

DB =
1

8
(µi − µj)�Σ−1(µi − µj) +

1

2
ln

(
detΣ

detΣidetΣj

)
,

where Σ = Σi+Σj

2 .

4 SIMULATION RESULTS

In this section a proof of concept example is provided
to highlight the effectiveness of our methodology for a
safe human–robot coexistence system. The system models
and proposed real-time controller were simulated using
MATLAB 2019a. All computations were done on a Dell
OptiPlex 7050 machine with an Intel Core i7-7700X CPU
and 8 GB of memory.

Consider an environment Q with two robots (R1, R2), one
human (H1), and three tasks (Task1, Task2, Task3). The
positions of the tasks in the environment are, respectively,
(0.3270, 0.2535), (−0.3813, 1.6545), (−0.15, 1.8). The ini-
tial positions of the robots are R1 = (−0.1, 1.6), R2 =
(0.4, 0.1). The human is initially at Task1. The HLTAO
module has assigned Task2 to the human and Task3 to
the second robot. It’s assumed that the first robot does not
move during the mission and acts as a static obstacle to
the second robot. The goal is to control the second robot
(R2) to move from its initial position to Task3 without
colliding with the human (H1) and the other robot (R1).

The human motion between Task1 and Task2 is modeled as
a ProMP. We generated 49 different trajectories that arrive
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in a neighborhood of Task2 with a fixed starting position.
Using this dataset, we trained the ProMP with Algorithm
1 from Gomez-Gonzalez et al. (2020). We used L = 5 basis
functions consisting of five radial basis parameters. The
results of the ProMP training are presented in Fig. 4 with
the mean of the human demonstration shown in green, and
the mean±variance bounds shown with dotted black lines.
We assume the human moves with a constant speed and it
takes 8 seconds for the human to reach Task2 from Task1.

The robots are modeled as a linear discrete-time 2D double
integrator system xi

k+1 = Aixi
k +Biui

k, where

Ai =



1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1


 , Bi =



0.5dt2 0

0 0.5dt2

dt 0
0 dt


 . (10)

The sampling time is set to dt = 0.05. The weighting
parameters of the MPC/CBF controller are selected as
Qi = 0.1I4, R

i = I2 and P i = 100I4. The CBF parameters
γ1 and γ2 are initialized to γ1 = γ2 = 0.4. The fixed radius
in the second CBF is set to r1 = 0.05. Additionally, we
assume the robot model (10) is subject to the following
state and input constraints

X i = {xi
k ∈ Rni ,−5I4×1 ≤ xi

k ≤ 5I4×1}, (11)

U i = {ui
k ∈ Rpi ,−0.5I2×1 ≤ ui

k ≤ 0.5I2×1}. (12)

IPOPT, an open-source software package for large-scale
nonlinear optimization (Wächter (2009)), is used as the
solver for the proposed optimization problem.

Three different scenarios are considered. In scenario 1, the
safety factor εth = 0.1 and prediction horizon N = 4. For
scenario 2, εth = 0.85 and N = 4. In scenario 3, εth = 0.1
and N = 8. The results are presented in Figs. 4, 5, 6. By
comparing scenario 1 and scenario 2 in Fig. 4, it is clear
that increasing the safety factor εth increases the distance
of the robot to the human distribution. It can be seen that
a larger horizon N (scenario 3 ) causes the robot to avoid
obstacles (human H1, and robot R1) earlier. Specifically,
among all scenarios, the robot trajectory in scenario 3
is farthest from the obstacles. Moreover, the designed
controller in scenario 3 is faster than the controllers in
the other scenarios and the system starts to avoid the
obstacle earlier. This indicates that the robot is operating
within a smaller safe set, i.e., the system tends to be
safer. Furthermore, we can see that with a larger horizon
N , the system has noticeable obstacle avoidance behavior
when it is near obstacles. As can be seen from Fig. 6,
in scenario 3 robot R2 reaches the static obstacle (robot
R1) after approximately 4.15 seconds (note that h2 ≈ 0),
which is sooner than the other scenarios, with h2 ≈ 0 at
about 9 seconds. Consequently, having a larger horizon
time (scenario 3 ) is more efficient for cases where the
robot should reach its final task (goal position) in a limited
amount of time.

In the simulations, the main computational cost with
respect to the time of our controller comes from the fact
that it has to solve a nonlinear optimization problem using
IPOPT at every time step. To visualize the effect of the
prediction horizon on the computational complexity of
our proposed method, we compared the computational
times in scenario 2 (Sc2) and scenario 3 (Sc3). The
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Fig. 4. A visualization of the trajectories of robot R2 in
the presence of a 2D human ProMP in the workspace.
Increasing the safety factor εth (scenario 2 ) expands
the distance of the robot to the human distribution.
Furthermore, by considering a larger horizon N (sce-
nario 3 ) the robot avoids obstacles earlier.
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Fig. 5. The first CBF represents the safety constraint
between the robot (R2) and neighboring human (H1).
Note that the distance between robot and human
never crosses zero thus assuring collision avoidance.

average required time (Tave), maximum time (Tmax), and
the standard deviation (std) for solving the optimization
problem of these scenarios are as follows: T Sc2

ave = 0.0107,

T Sc2
max = 0.0717, stdSc2 = 0.0036, T Sc3

ave = 0.0112, T Sc3
max =

0.1571, stdSc3 = 0.0074, where the units are seconds.
Based on these results, it can be concluded that a larger
prediction horizon in the proposed MPC/CBF controller
leads to higher computational time. Furthermore, it is
clear that the expected execution time of the optimization
problems is very small (in the range of 10 ms). The
large maximum times are each a single outlier. Hence, the
controller is appropriate for a real-time implementation.

5 CONCLUSIONS

In this paper, we investigated the design of a distributed,
real-time controller for safe human-robot coexistence. We
assumed there exists a HLTAO module capable of moni-
toring and assigning tasks to all humans and robots in the
environment. Furthermore, the extent of possible human
motions as they move from one task to another were mod-
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Fig. 6. The second CBF represents the safety constraint
between the robot (R2) and neighboring robot (R1).
Note that the minimal distance between robots never
crosses zero thus assuring collision avoidance.

eled as a set of ProMPs. By transmitting these ProMPs
and the current location of the humans to the robots
through HLTAO, an MPC/CBF controller was designed
for each robot. The controller can guide the robots to reach
their assigned tasks and simultaneously avoid collisions
with other robots and humans in the workspace.
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