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ABSTRACT

The visualization of a network influences the quality of the mental
map that the viewer develops to understand the network. In this
study, we investigate the effects of a 3D immersive visualization
environment compared to a traditional 2D desktop environment on
the comprehension of a network’s structure. We compare the two
visualization environments using three tasks—interpreting network
structure, memorizing a set of nodes, and identifying the structural
changes—commonly used for evaluating the quality of a mental map
in network visualization. The results show that participants were
able to interpret network structure more accurately when viewing
the network in an immersive environment, particularly for larger
networks. However, we found that 2D visualizations performed
better than immersive visualization for tasks that required spatial
memory.

Index Terms: Human-centered computing—Visualization—
Visualization techniques—Graph drawings; Human-centered
computing—Visualization—Empirical studies in visualization

1 INTRODUCTION

Networks are commonly used for representing relational data found
in diverse domains, such as social networks, biological networks,
communication networks, and power grids. A non-graphical rep-
resentation of a network makes it very difficult for humans to un-
derstand its structure. Thus, network visualization is widely used
to make sense of the structural information in the data. The visual-
ization of a network helps to form a mental map of the data, which
is the internal representation of the information inside the viewer’s
mind that is formed by looking at the visualization.

Most existing studies on mental maps in the context of network
visualization have focused on dynamic network data [1–4, 27, 29–
31]. More specifically, a significant body of the above research has
investigated the effect of different layout methods on mental map
preservation, which is often interpreted as drawing stability [1]:
minimizing positional changes of nodes and edges of the network
in the visualization between successive time periods. While mental
maps in network visualization have frequently been studied in the
context of dynamic network data, the quality of the mental map is
also important for interactive visualization [1], as the interactions
performed by the user often changes the visual representation of the
data. In the context of this work, we define the quality of a mental
map as that which helps the viewer form an accurate understanding
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of the structure, connectivity, and content of the network. The quality
of the mental map is thus influenced by the visual representation of
the network.

When designing interactive visualizations, one needs to consider
various factors such as input devices and display environments. In
recent years, new input and display technologies (e.g., large wall
displays, table top displays with touch and pen input devices, and
immersive 3D virtual/mixed reality environments) have become
ubiquitous enough that researchers can consider these technologies
for general visualization designs [12]. Immersive visualization and
analytics is an emerging field that aims to leverage the many benefits
of mixed reality technology to information visualization, such as
spatial immersion, multi-sensory presentation, and increased en-
gagement [12]. In the context of network visualization, immersive
technologies have been used for facilitating novel visualization and
interaction techniques [15, 19, 23, 24, 26].

In this study, we investigate the effects of an immersive 3D visu-
alization environment on the quality of a mental map for compre-
hending network data. Specifically, we conduct a controlled user
study to compare (1) a 3D immersive visualization environment
with a head-mounted display and hand-tracker controllers and (2)
a traditional 2D desktop environment with standard monitor and
mouse. We study three tasks that are commonly used for evaluating
the quality of a mental map in network visualization [4]: interpreting
network structure, memorizing a set of nodes, and identifying the
structural changes.

The results show that participants completed the tasks faster, and
recalled changes to the network more accurately in the desktop
environment. However, they interpreted network structures more
accurately in the immersive environment, and reported the task as
easier to complete in the immersive environment. An overwhelming
majority of participants (85%) favored the immersive environment
over the desktop environment. The results indicate that immersive
environments mitigate confusion caused by edge crossings and node
overlaps that are commonly found in 2D representations, while tra-
ditional 2D representations provide a better spatial overviews. We
discuss the implications of these results for future network visualiza-
tion designs in immersive environments.

2 RELATED WORK

Immersive environments, such as CAVEs [13] and head-mounted
displays (HMDs), have been proven effective for various applica-
tions. Ball and North [5] have shown that high resolution tiled
displays improve perception and navigation for visual tasks. Mania
and Chalmers [25] have studied memory in immersive and non-
immersive spaces and found that immersion significantly improved
recall for simple memory tasks. Krokos et al. [21] have recently
shown that recall can be improved with virtual reality (VR) through
techniques such as the memory palace metaphor. Additionally,
Kwon et al. [24] have shown that immersive network visualization
has clear potential user performance on network interpretation tasks.
While immersive technology may have been eschewed in the past,
studies such as these in tandem with improvements in stereoscopic
displays mark the clear entrance of immersive visualization into the

1

2020 IEEE Pacific Visualization Symposium (PacificVis)
978-1-7281-5697-2/20/$31.00 ©2020 IEEE

20
20

 IE
EE

 P
ac

ifi
c 

V
is

ua
liz

at
io

n 
Sy

m
po

si
um

 (P
ac

ifi
cV

is
) 9

78
-1

-7
28

1-
56

97
-2

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 1
0.

11
09

/P
ac

ifi
cV

is
48

17
7.

20
20

.4
72

2

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on December 28,2022 at 17:46:44 UTC from IEEE Xplore.  Restrictions apply. 



realm of practicality [19].
While keyboard and mouse is the ubiquitous standard for desktop

interaction, recent studies show intuitive interaction in VR environ-
ments can outperform traditional interaction systems, such as the
work by Huang et al. [19] to create a VR gesture system for network
visualization. This is no surprise, as Büschel et al. [7] state, intuitive
and low-effort interaction is key to leveraging the benefits of immer-
sion, and keeping users invested in the environment. With different
methods of interaction, however, different methods of visualization
are also in order.

There has been a significant amount of research adapting virtual
reality and other immersive technology to applications in a wide
breadth of fields, including biomedical imaging [33], scientific visu-
alization [6, 9, 34], education [17, 32, 36, 38], and collaboration [8].
These studies primarily focused on the application in their respective
fields. While immersive scientific visualization was quick to estab-
lish itself, the impact of immersion on abstract data visualization
remains largely unexplored. Indeed, very few studies have consid-
ered the mental map in immersive network visualization. In the past
year, however, more research into immersive visualizations with
abstract data has been completed. Drogemuller et al. [11] evaluate
navigation techniques for 3D network visualizations in virtual reality.
Greffard et al. [15] introduced an immersive visualization designed
to preserve the mental map. The work in this paper differs from the
works above in that we instead investigate the impact of immersion
on the mental map.

Mental maps are typically used to measure the quality of a dy-
namic network layout [2, 10, 27, 29, 30], and the importance of
mental map preservation in dynamic layouts has been investigated
by several studies [30, 31]. Previous work by Archambault and
Purchase [3] investigates mental map preservation in a traditional
(non-immersive) environment to show it can help users orientation
with tasks such as location and path finding. Herman et al. [18]
emphasize the importance of considering predictability which is
also referred to as preserving the mental map in dynamic network
layouts. As mentioned above, immersive environments also improve
navigation and orientation [5, 8], but no study has yet combined
these techniques.

3 EXPERIMENT

The main purpose of our study is investigating the difference in
mental map qualities between two network visualization conditions:
immersive 3D visualization and traditional 2D visualization. We
designed a within-participant experiment: 2 visualization conditions
× 3 tasks × 3 networks. The two visualization conditions are com-
pared in terms of task completion time and accuracy. This section
describes the considerations and design of the experiment.

3.1 Visualization Conditions

There are many different factors in designing a network visualization,
such as the layout of the network, color scheme, and interaction
techniques. To remove possible confounding factors, we need to
focus on certain key factors that we wish to compare, while keeping
other factors the same. In this study, we focus on the dimensionality
(2D and 3D) of a visualization environment. For this, we designed
the following two visualization conditions:

• 2D: This condition visualizes a network using a 2D layout in a
traditional desktop display. In this condition, users use a mouse
for interactions: highlight and select nodes, and navigate (pan
and zoom) a network.

• 3D: This condition renders a network using a 3D layout in
an immersive head-mounted display (HTC Vive Pro). Users
use controllers for interactions, as shown Fig. 1. Room-scale
tracking is used for tracking position and rotation of the HMD
and controllers.

Figure 1: A user interacts with an immersive 3D network visualization
using a head-mounted display and controllers. A virtual laser pointer
is implemented for highlighting and selecting nodes in a network.
In addition, users can scale and relocate the network visualization
using pinch-to-zoom interaction with both controllers. The wall display
behind the user mirrors the user’s view. We compare this immersive
network visualization with traditional desktop 2D network visualization
to determine how it affects users’ mental maps. This figure shows the
karate network in a 3D layout, which was used in the training session.

3.1.1 Layout
The layout of a network is one of the most critical factors in design-
ing a network visualization with a node-link diagram. While several
layout methods are designed specifically for immersive network
visualization (e.g., spherical layout methods [23, 24]), they often
use additional design factors that are outside of the scope of this
study (e.g., edge bundling). In addition, different layout methods
can produce greatly varying layout results [14, 22]. Therefore, we
use the same layout method (FM3 layout method [16]) with the same
parameter setting for both conditions. In both conditions, nodes are
drawn as spheres and edges are rendered as thin cylinders with the
same color scheme. The network visualizations used in the experi-
ment are shown in Fig. 3 and the supplementary material. For 2D,
the network is initially laid out to utilize the majority of a 30-inch
display, with an aspect ratio of 16:10. For 3D, the network is ini-
tially scaled to fill a 1 m3 cube and placed in front of the user in the
room-scale area.

3.1.2 Interaction
Several interaction techniques are required to carry out the tasks
in the experiment. For example, basic navigation techniques (e.g.,
zoom and pan) are needed to explore the structure of a network in
the visualization. In addition, users need to select several nodes to
complete the tasks (e.g., Fig. 2).

Most users are already familiar with the basic interaction tech-
niques in a desktop environment using mouse and keyboard, such as
click-to-select and scroll-to-zoom. Thus, it is important to design
intuitive interaction techniques for the immersive environment to
reduce the effect of interaction techniques for completing the tasks,
which is not the main focus of this study.

Selection in a traditional 2D desktop display with keyboard and
mouse is a well-established interaction, which most commonly im-
plemented as a left-click with the mouse. However, designing an
effective selection interaction for an immersive display environment
is not as straightforward as the desktop environment. Since motion
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Figure 2: Highlighting and selecting nodes. (a) The orange node is
being highlighted over by the user, ready to be selected. The edges
connected to the highlighted node are also highlighted in orange while
the user is pointing it with the controller. (b) The yellow nodes are
the selected nodes by the user. (c) The light green nodes are pre-
highlighted by the system to show task information to the user. This
figure shows a path task. The goal is to find a shortest path between
the light green nodes (c), where the nodes in the path needs to be
selected (b). Participant can inspect the connected edges of a node
by highlighting the node (a) with the virtual laser pointer. This figure
shows the lesmis network in a 3D layout.

tracking is a common feature of commercially available stereoscopic
displays, such as the HTC Vive and Oculus Rift, we leverage the
ability to select objects by pointing with a tracked controller.

Users can select a node by first pointing the target node and then
pressing a button. This virtual laser pointer technique is one of the
most common ways to implement selection in virtual reality. We use
this technique because of its intuitiveness and familiarity to most
people with any amount of experience in VR or laser pointers.

Our virtual laser pointer implementation does have two minor
improvements to make the experience better. The first is to reduce
clutter in the visualization, the laser pointer is only visible while
the user touches lightly on the touch-pad of the controller (Fig. 1)
and a selection is counted when the user presses the touch-pad until
an audible “click” is heard. The other improvement is an error
tolerance for selecting distant objects. This helps significantly, as
it is possible with our system to have nodes that take up less than
half a degree of the user’s field of view, making them very difficult
to select with a simple ray casting. In our pilot study, we found that
a cone of approximately two degrees at the apex made selection of
distant objects much easier without causing the opposite problem of
unintentionally selecting objects far from the pointer.

To match the ease of use to scale the network with the mouse
scroll wheel in the traditional desktop environment, we implement a
pinch-to-zoom technique for the immersive environment. To activate
the pinch-to-zoom, the user must press a button on both tracked hand-
held controllers, then stretch or contract the distance between the
two controllers to scale the network by an equivalent factor. In
addition, users can move the network by clicking and dragging in the
desktop environment, and by dragging the controllers with the pinch-
to-zoom button held in the immersive environment. This design is
also motivated by intuitiveness and popularity. The pinch-to-zoom
technique is widely used in many touch-based systems that most
users are already familiar with, such as smartphones and tablets.

In the 2D condition, rotating the network is not necessary for
completing the tasks used in this study. However, the ability to
look at the network from different directions is necessary with the
3D layout to address possible occlusion issues. Thus, while we
exclude the rotation interaction from both conditions, we leverage
the physical tracked space allowed by the immersive technology we
use in the 3D condition. By walking around the space, users can
view the network from any angle, even though they cannot rotate the
network itself.

3.2 Tasks

Existing studies have measured the quality of the mental map in
the user’s mind by human-computer interaction experiments using
various tasks. Archambault and Purchase [4] have grouped the tasks
into three broad categories: interpretation, memory, or change tasks:

• An interpretation task asks a question that requires the user
to understand the structure information of a network. An
example task would be to ask the user about node degree or
paths between two nodes in a network.

• A memory task requires the user to recall information about
the network after viewing the visualization. For example,
reconstructing the network on paper from the user’s memory.

• A change task asks how the network changes; possible changes
are changes in the degree or changes in the overall size.

Considering the above task categories by Archambault and Pur-
chase [4], we design three tasks for the experiment:

• Path: “Highlight nodes that form the shortest path from node
A to node B.” This is an interpretation task [4]. The par-
ticipant is shown a network with two pre-highlighted nodes.
Participants are asked to find a shortest path between the two
pre-highlighted nodes by selecting a set of nodes that forms the
shortest path. Participants can inspect the connected edges of
a node by highlighting the node using the virtual laser pointer
(Fig. 2 and Sect. 3.1.2). For each network, the same two nodes
are pre-highlighted in both visualization conditions. While
there can be multiple shortest paths, the participant only needs
to find one.

• Memory: “Select the five nodes that were previously high-
lighted.” Participants are given 30 seconds to memorize five
pre-highlighted target nodes in a network visualization. The
visualization is then removed, and the participants are shown
a blank screen for 10 seconds because immediately showing
the network again was found to be too easy in our pilot study.
After that, the network reappears with the same position and
scale, but without highlighting the target nodes. The goal is
to select the five target nodes that were previously highlighted
(Fig. 4a–b). For each network, the same five nodes are as-
signed as the target nodes across all visualization conditions
and participants. As we use the same layout method (FM3 [16])
for both 2D and 3D conditions, the location of target nodes
are relatively similar between the two conditions, as shown
in Fig. 4a–b. This allows a fair comparison between the two
conditions by reducing the effect of the target node location.

• Change: “Select nodes that were not a part of the network.”
Participants are given 30 seconds to explore a modified net-
work, where five target nodes and associated edges are removed
from the full network. Then, participants are shown a blank
screen for 1 second since immediately showing the new net-
work was found to be too easy in our pilot study. After that,
the full network is shown, where the five target nodes and
corresponding edges are added back to the network. The goal
is to identify the five target nodes (Fig. 4c–d). We removed the
same five nodes from the full network to create the modified
network for both visualization conditions and all participants.
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(a) karate (2D) (b) karate (3D) (c) lesmis (2D) (d) lesmis (3D)

(e) netsci (2D) (f) netsci (3D) (g) power (2D) (h) power (3D)

Figure 3: The 2D and 3D layouts of the networks used in the experiment. All layouts are computed using FM3 layout method [16]. The 2D layouts
were shown in a 30-inch desktop display (2,560 × 1,600 px). The 3D layouts were rendered in a head-mounted display (2,880 × 1,600 px, 1,440
× 1,600 px per eye). To provide multiple views of a 3D layout from different viewpoints, the supplementary material includes videos of the 3D
layouts. Since we used the same layout method (FM3 [16]), both 2D and 3D layouts of a network show similar spatial proximity between nodes,
while their dimensionalities are different. This allows a fair comparison between the two visualization conditions (2D and 3D) by reducing the effect
of spatial proximity between nodes.

We use the layout of the full network for the modified network
as well, i.e., we did not use a separate layout for the modified
network. This design decision makes our experiment differ
from existing experiments on the mental map quality of dy-
namic network visualization, where different layouts are used
per time step of a dynamic network. However, it allows this
study to focus on the effect of the two visualization conditions,
not the drawing stability that is outside of the scope of this
study.

The participants are given a written description of the objective at
the start of each task. The duration of exploration and blank screen
stages in the memory and change tasks are determined based on a
pilot study. For the path task, we compute the accuracy of a selected
path based on the ratio between the length of the selected path and
the length of the shortest path(s). For the memory and change tasks,
the accuracy of selected nodes by participants is computed based
on the graph-theoretic distance from the correct target nodes (more
detail in Sect. 4.2).

3.3 Networks

We use three different networks with varying sizes (i.e., number of
nodes and edges) with one additional network that was used for the
training session.

• Karate: This is the well-known Zachary karate club net-
work [37], which consists of 34 nodes and 78 edges. This
network is used in the training session.

• Lesmis: A co-occurrence network of the characters in Victor

Hugo’s novel Les Misérables [20], This network has 77 nodes
and 254 edges.

• Netsci: A co-authorship network in the field of network sci-
ence [28]. We use the largest component of the full network,
which consists of 379 nodes and 914 edges.

• Power: The power grid of western states of the United
States [35]. This network has 4,941 nodes and 6,594 edges.

3.4 Participants

We recruited 20 participants (11 female, 9 male) for our user study.
The mean age of participants was 24.35, ranging from 18 to 34 years.
Every participant was familiar with the concepts of virtual reality,
and 16 participants had used a virtual reality device before this
study. Of those 16, two participants said they had used virtual reality
devices extensively. Additionally, every participant was familiar
with the concept of a network, and 14 said they were familiar or
experienced with network data structures. Four participants were
in an undergraduate degree program, while the remaining 16 all
possessed undergraduate degrees. 14 of the 16 were also pursuing
postgraduate degrees.

Five participants had normal vision, while 15 had corrected vi-
sion. Of the 15, 13 wore glasses, and all but one were able to wear
their glasses comfortably within the HTC Vive Pro HMD. The one
participant that had to remove his/her glasses reported that he/she
was still able to read text and see the nodes/edges clearly in the
immersive environment. One participant had deuteranopia vision
(self-reported), but reported that all colors used in the study were
easily distinguishable.
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(a) memory task with the lesmis net-
work in the 2D condition

(b) memory task with the lesmis net-
work in the 3D condition

(c) change task with the karate network
in the 2D condition (before change)

(d) change task with the karate network
in the 2D condition (after change)

Figure 4: Examples of memory and change tasks. For the memory task (a and b), participants explore the visualization for 30 seconds and are
asked which nodes were highlighted. Since the same layout method (FM3 [16]) was used for computing both 2D and 3D layouts, the location of
target nodes are relatively similar in both 2D and 3D layouts. This allows a fair comparison between the two visualization conditions by reducing
the effect of the target node location. For the change task, a modified network with five missing nodes (c) is first shown for 30 seconds. Then,
participants are asked which nodes were missing when shown the full network (d) without any missing nodes. The highlighted nodes in (d) are the
missing nodes in (c). We used the layout of the full network (d) for the modified network (c) as well since this study focuses on the effect of the two
visualization conditions (2D and 3D), not the drawing stability of the layout method we used.

3.5 Apparatus

Both visualization conditions are implemented as Unity3D appli-
cations. For the 3D condition, participants use the HTC Vive Pro
HMD and are instructed to stand in the middle of the room-scale
environment at the start of each task, facing toward the area where
the networks would be presented. The HTC Vive Pro HMD has a
2,880 × 1,600 px (1,440 × 1,600 px per eye) AMOLED display
with a 90 Hz refresh rate. The immersive environment was driven
by a desktop computer with an Intel i7 6900K CPU and dual (SLI
enabled) NVIDIA GeForce GTX 1080 GPUs. The environment was
consistently rendered at 90 frames per second. The tracked physical
space for room-scale configuration measures 3.0 m by 3.1 m. The
HTC Vive lighthouses are positioned 3.2 m off the ground. The
virtual environment is a simple space with a floor indicating the
boundary where users can walk. Participants use a 30-inch desktop
display with 2,560 × 1,600 px for the 2D condition.

3.6 Procedure

After ensuring the participants are aware of possible VR/HMD is-
sues such as sickness or disorientation, we adjust the HMD fit and
interpupillary distance (IPD) for each participant to provide optimal
viewing conditions. Participants were allowed as much time as nec-
essary to ensure the HMD was fit comfortably without issue. None
of the participants experienced any issue with the HMD. Participants
then completed a pre-study questionnaire, followed by training, the
full experiment, and a post-study questionnaire.

Questionnaire. All participants answered a two-part question-
naire. The first part covered participant demographics, including
age, gender, education, colorblindness, perceived spatial reasoning
skills, and VR/visualization experience levels. The second part cov-
ered perceived task difficulty (7-point Likert scales) as well as free
response questions about participant preference.

Training. Participants were allowed up to 10 minutes to familiar-
ize themselves with the visualization conditions and their respective
interfaces, in a guided tour of the features of both applications. Each
participant received training before performing each task for the first
time. This training consisted of performing the same set of tasks
with the karate network, with the correct answer available at the
end.

Procedure. The order of the tasks was the same for each partic-
ipant: path, memory, and change tasks. The networks were ordered
from smallest (lesmis) to largest (power) within each task. The order
of the visualization conditions was counterbalanced such that half
the participants started with 2D and the other half started with 3D
to prevent learning effects. For example, a participant that starts
with 2D would perform tasks in order of 2D-path-lesmis, 2D-path-
netsci, ..., 2D-memory-lesmis, 2D-memory-netsci, ..., then repeating
everything with 3D.

Participants were encouraged to take short rests between tasks,
for as long as they needed. The visualization was fully reset between
tasks. For the 3D condition, the participants were instructed between
tasks to re-orient themselves in the middle of the space and face the
same direction so that movement in previous tasks does not affect the
completion time or success rate of subsequent tasks. We informed
the participants about their right to stop the experiment at any time.

3.7 Hypotheses
We expected the following results from the user study:
H1: Task completion time will be shorter with traditional display

(2D) than with immersive display (3D).
H2: 3D will outperform 2D in terms of accuracy.
H3: Participants will prefer 3D over 2D for exploring network data.

4 RESULTS

The summary of results are shown in Fig. 5, where the colored
bars show that the difference between 2D and 3D was statistically
significant for the corresponding task and network. The gray bars
in Fig. 5 show that the difference was not statistically significant.
In addition, Fig. 6 shows the distribution of task difficulty ratings
reported by participants.

Overall, participants performed faster with the 2D condition than
the 3D condition for all three tasks, confirming H1. In terms of
accuracy, participants performed better with the 3D condition than
the 2D condition for the path task, as in H2. However, for the
memory task, participants’ responses were more accurate with the
2D condition than with the 3D condition, opposed to H2. Participants
reported that the path task was easier in the 3D condition than the 2D
condition. An overwhelming majority of participants (85%) favored
the 3D condition over the 2D condition, as we expected in H3.
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Figure 5: Summary of completion time (left) and accuracy (right) of the experiment. Each row of bar charts represents one of the three tasks (path,
memory, and change). Each column corresponds to one of the three datasets (lesmis, netsci, and power ) or all the datasets (all). Each bar
represents the mean value of the corresponding responses. The error bars represent 95% confidence intervals. The colored bars show that the
difference between the 2D and 3D conditions was statistically significant. The gray bars mean that there was no statistical significance in the
difference between 2D and 3D.

4.1 Task Completion Time

Task completion time is measured with a timer built into the system
created for this experiment. The timer starts when the user is able to
start interacting with a network, and it ends when the user pressed
the “continue” button to proceed to the next task. None of the tasks
directly indicate that a user has chosen the correct answers, and so
some users chose to be more meticulous than others when checking
their work. As a result, there is high variance in the time required to
complete all of the tasks. We compare each task and also network
separately because the completion time varies depending on task
and network.

Path task. On average for both conditions, participants com-
pleted the path task in 58.53s (SD = 36.51). They completed the
path task faster with the 2D condition, taking 49.26s (SD = 24.77),
and slower with the 3D condition, taking 67.81s (SD = 43.60). A
paired t-test showed that this difference is statistically significant
(t(59) = 3.744, p = 0.0004, 95% CI of the difference = 8.637 to
28.467). Cohen’s d using the pooled standard deviation (SDpool)
suggested that the effect size is medium (d = 0.523).

When we analyzed the completion time of path task for each net-
work, there was a significant difference only for the power network
(t(19) = 3.359, p = 0.003, 95% CI of the difference = 13.487 to
58.076), where participants took 58.22s (SD = 23.79) with 2D but
took 94.00s (SD = 51.80) with the 3D condition. Cohen’s d using
SDpool showed that the effect size is large (d = 0.888). We did not
observe a significant difference between 2D and 3D conditions for
lesmis (p = 0.092) and netsci (p = 0.229).

Memory task. On average for both conditions, participants
completed the memory task in 41.31s (SD = 28.25). They com-
pleted the memory task faster with the 2D condition, taking 31.92s

(SD = 21.42), and slower with the 3D condition, taking 50.70s
(SD = 31.18), which is shown by t-test to be statistically signifi-
cant (t(59) = 5.847, p = 2.318× 10−7, 95% CI of the difference
= 12.356 to 25.206). Cohen’s d using SDpool suggested that the
effect size is medium to large (d = 0.702).

The differences between the 2D and 3D conditions for each
network were also significant. For the lesmis network, partici-
pants completed the memory task significantly faster (t(19) = 4.887,
p = 0.0001, 95% CI of the difference = 7.339 to 18.333) with the
2D condition (mean = 19.41s SD = 11.88) than with the 3D condi-
tion (mean = 32.25s, SD = 18.12). Cohen’s d using SDpool showed
that the effect size is large (d = 0.838). For the netsci network,
participants completed the memory task significantly faster with the
2D condition than with the 3D condition, having mean completion
times of 27.38s (SD = 13.54) and 54.59s (SD = 30.30), respectively
(t(19) = 3.959, p = 0.0008, 95% CI of the difference = 12.824 to
41.596). Cohen’s d using SDpool showed that the effect size is large
(d = 1.160). Participants also completed the memory task signifi-
cantly faster (t(19) = 2.714, p = 0.014, 95% CI of the difference
= 3.729 to 28.856) with the 2D condition than with the 3D condition
for the power network, having mean completion times of 48.96s
(SD = 24.65) and 65.26s (SD = 34.26), respectively. Cohen’s d
using SDpool suggested that the effect size is medium (d = 0.546).

Change task. On average for both conditions, participants
completed the change task in 65.28s (SD = 46.16). They completed
the change task faster with the 2D condition (mean = 58.86s SD =
34.54) than with the 3D condition (mean = 71.69, SD = 54.97).
A paired t-test shows that this difference is statistically significant
(t(59) = 2.397, p = 0.020, 95% CI of the difference = 2.118 to
23.546. However, Cohen’s d using SDpool showed that the effect
size is small (d = 0.280). In addition, there was no significant
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difference between the 2D and 3D conditions when we analyzed the
completion time of the change task for each network individually.

4.2 Accuracy

We define the accuracy of a response according to each task.

Path task. For the path task, the accuracy (Equation 1) is based
on the ratio between the length of the selected path and the length of
the shortest path(s). The participants were asked to find the shortest
path between two pre-highlighted nodes, and so the correct answer
would be any complete path that is the same length as the shortest
path between those two nodes. Thus, we use the shortest path length
as a fraction of the participant’s selected path when the participant
makes a valid path, and an accuracy of zero is used for invalid paths
(e.g., disconnected nodes), shown in the following equation.

accuracy =
the length of the shortest path
the length of the selected path

(1)

With this definition, the best accuracy score a participant can receive
is 1, and any path that is valid but contains extra nodes will be
between 0 and 1, approaching 0 as more redundant nodes are added.

Overall, participants succeeded in making a valid path in 89.17%
of all responses, and that path was shortest in 80.83% of all responses.
Participants performed significantly better in the 3D condition with
the mean accuracy of 0.950 out of 1.0 (SD = 0.185), compared to
the mean accuracy in the 2D condition, at 0.806 (SD = 0.387). A
paired t-test confirms that this difference is statistically significant
(t(59) = 2.820, p = 0.0065, 95% CI of the difference = 0.042 to
0.248). Cohen’s d using SDpool suggested that the effect size is
small to medium (d = 0.478).

When we analyzed the accuracy for the path task per network
separately, there was a significant difference only for the power
network (t(19) = 2.970, p = 0.008, 95% CI of the difference =
0.116 to 0.670), where the mean accuracy was 0.500 (SD = 0.513)
with 2D but was 0.893 (SD = 0.307) with the 3D condition. Cohen’s
d using SDpool suggested that the effect size is small to large (d =
0.929). We did not observe a significant difference between 2D and
3D conditions for lesmis (p = 0.330) and netsci (p = 0.479).

Memory task. If we only consider whether a selected node
is a target node or not, it is not possible to measure how close the
selected node is to a target node. Thus, we define the accuracy of a
response for the memory task based on the graph-theoretic distance
between a selected node by participants and the closest target node:

accuracy = 1− the distance from the selected node
the diameter of the network

(2)

We normalize the distance by the diameter of a network, which is the
maximum distance between any pair of nodes in the network. Using
this definition, the accuracy of a correctly selected node is 1, and the
accuracy of an incorrectly selected node will be between 0 and 1. We
use the mean of this accuracy score of participant’s responses. Some
participants provided fewer than five responses (i.e., the number
of target nodes). In that case, we considered the accuracy of the
remaining responses is 0 as they could not remember some target
nodes at all. For example, if a participant exactly identified three
target nodes (accuracy of 1) but did not provide any more responses
(accuracy of 0), the accuracy of the responses by this participant
is 0.6. A single target node can be the closest one to multiple selected
nodes, which can lead to incorrect accuracy scores. However, there
were no responses that had this issue.

Although Euclidean distance is a possible option for measuring
the accuracy of a response instead of graph-theoretic distance, the
physical sizes of the 2D and 3D conditions are quite different. Also,
due to different dimensionalities of 2D and 3D layouts of a network,
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Figure 6: User responses to questions about the difficulty of each task
and visualization condition.

it is not clear to define a normalization scheme for comparing Eu-
clidean distances in the two visualization conditions. Thus, we use
the graph-theoretic distance for measuring the accuracy of response.

For all conditions and networks, the mean accuracy of responses
was 0.937 (SD = 0.053) for the memory tasks, where partici-
pants exactly identified 62.67% of the target nodes. The accu-
racy of responses were higher in the 2D condition (mean = 0.951,
SD = 0.048) than the 3D condition (mean = 0.923, SD = 0.056).
A paired t-test revealed that the difference is statistically signifi-
cant (t(59) = 4.2086, p = 8.88× 10−5, 95% CI of the difference
= 0.014 to 0.040). Cohen’s d using SDpool showed that the effect
size is medium (d = 0.527).

Comparing memory task accuracy per network separately shows
that the differences in mean accuracy between the 2D and 3D condi-
tions were significant for the netsci and power networks, but not for
the lesmis network (p = 0.316). For the netsci network, the mean
accuracy of responses with the 2D condition was 0.981 (SD= 0.017)
while the mean accuracy with 3D was 0.952 (SD = 0.031), and the
difference was statistically significant confirmed by a paired t-test
(t(19) = 3.940, p = 0.0009, 95% CI of the difference = 0.014 to
0.044). Cohen’s d using SDpool showed that the effect size is large
(d = 1.146). For the power network, a paired t-test showed that
the difference of the mean accuracy between 2D (mean = 0.921,
SD = 0.045) and 3D (mean = 0.880, SD = 0.052) conditions was
statistically significant (t(19) = 3.058, p = 0.0065, 95% CI of the
difference = 0.013 to 0.069). Cohen’s d using SDpool suggested that
the effect size is large (d = 0.852).

Change task. We use the accuracy definition of the memory
task (Equation 2) for the change task as well. Overall, the mean
accuracy for all networks and conditions were 0.780 (SD = 0.196).
The mean accuracy was higher in the 2D condition (mean = 0.804,
SD = 0.153) than the 3D condition (mean = 0.756, SD = 0.231).
However, the difference was not statistically significant (p = 0.458).
Moreover, there were no significant differences between 2D and 3D
conditions when we analyzed for each network individually.

4.3 User Feedback
Participants were asked to complete post-study questionnaires that
provide more insight into what each person experienced between
the two visualization conditions.
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We asked participants to rate the perceived difficulty of each
task with each condition on a 7-point Likert scale, where 1 meant
“very difficult” and 7 meant “very easy.” The overall distribution
of the responses is shown in Fig. 6. Participants reported that the
path task was easier using the 3D condition (median = 6, IQR
= 2) than 2D (median = 5, IQR = 1.25). A Wilcoxon signed-rank
test (a non-parametric test equivalent to the paired t-test) showed
that the difference was statistically significant (V = 11, p = 0.007).
However, participants reported that the 2D and 3D conditions are
not different in terms of difficult for memory (V = 78, p = 0.306)
and change (V = 25, p = 0.478) tasks.

It is clear, however, that the path task was the easiest task (me-
dian = 5.5, IQR = 1), the change task was the hardest (median = 1,
IQR = 1), while the memory task was somewhere in between (me-
dian = 3, IQR = 1). A Friedman test (non-parametric alternative
to one-way repeated measures ANOVA) showed that the difference
is statistically significant (χ2(2) = 71.563, p = 2.886×10−16)

85% of the participants (17 out of 20) reported that they preferred
3D over 2D, showing a clear majority. To the question of what
they liked about either 2D or 3D, the following lists some of the
participants’ most common and insightful responses, starting with
most the frequent sentiments:

• “3D makes it easier to grasp the structure.”
• “3D networks are easier and/or more interesting to explore”
• “Edge occlusion was much easier to resolve within 3D than

2D space.”
• “Node selection is too much effort in 3D
• “2D layout is better for quick overview and memory”

5 DISCUSSION

The results suggest that one visualization condition did not consis-
tently outperform the other. Although participants took more time
to complete tasks with the immersive 3D visualization, they inter-
preted the structure of a network more accurately (path task). The
traditional 2D desktop visualization environment was better for the
memory task, where participants performed better in terms of both
task completion time and accuracy than the immersive 3D condition.
In addition, the two visualization conditions performed similarity in
the change task except for the overall task completion time.

Finding the shortest path was significantly easier and more ac-
curate with the immersive 3D visualization than the traditional 2D
desktop environment. A significant portion of this can be attributed
to the nature of 3D layouts having much fewer edge crossings. Since
the 3D layouts used in the immersive space were almost completely
devoid of any crossed edges, it was never the case that a user would
be unable to tell whether the path they had highlighted was complete
or not, as each edge was easy to follow through the environment
from start to finish. Even with unavoidable occlusions in 3D, par-
ticipants could separate the edges by simply moving their head to
change the viewpoint. Several participants commented on this:

• “Easy to see the links between the nodes (3D)”
• “Better sense of the topological structure (3D)”
• “3D makes it easier to grasp more of the structure of the

graph”
• “It looked like they overlapped and it was harder to tell where

the nodes were on the 2D display.”
• “It felt easier to see and understand the structure of the graph

in 3D.”
• “VR version takes advantage of depth to make graph clearer.”
• “Edge overlapping was a lot easier to resolve in VR than in

2D space”

In the case of the traditional 2D environment, and especially with the

largest network (power), it was common for edges to not only cross
other edges, but also travel through nodes, making it unclear whether
it was a single edge that went through the node, or two edges that
happened to connect to the same node at opposite sides. If not for the
edge-highlighting that was built into the system, it would be obvious
that a 3D layout should do much better and any other factors would
likely be insignificant. However, there is likely more at play here.
The edge-highlighting allowed participants to see very precisely
if two nodes were connected simply by hovering over it, and all
participants were instructed in the use of this feature. In spite of this,
participants with the 2D condition still marked incomplete paths and
complete but non-optimal paths more frequently than participants
with the 3D condition. In short, the immersive experience helped
participants complete the path finding task more accurately beyond
the 3D nature of the layout. This could be evidence of the natural
formation of a 3D mental map that helped participants understand
the structure of a network and connections between nodes better
than could happen in the 2D traditional display environment.

Participants performed slower with the immersive 3D environ-
ment in most regards compared to the traditional 2D setup. Part of
this may have been due to participants’ lack of familiarity with the
controls and virtual environment. In addition, the ability to show
a better overview of the 2D condition seems to affect the overall
completion time. Some comments from participants are related to
these findings:

• “Selecting a node is much easier in 2D”
• “Selection of nodes was easier with a mouse than the immer-

sive 3D controller due to a mouse being more precise and not
prone to unintended movements.”

• “For very precise applications, I might find it useful to use the
VR display in conjunction with traditional mouse+keyboard
controls.”

• “The desktop gave me more familiarity in terms of viewing the
graph and how to maneuver it.”

• “A graph can fit within a window size well in 2D”
• “2D is easy to remember the positions”
• “It is easier to have an overview with the desktop”

Since the 2D condition did not require any rotation, we also exclude
the rotation interaction in the 3D condition to remove a possible
confounding factor. In addition, many participants in the pilot study
were disoriented after a few rotations of the network. Thus, we let
users view the network from different angles by walking around
the space rather than directly rotating the network. However, the
observations on participants’ movement during the experiment and
the feedback from participants suggest that the physical movements
required for finding good viewpoints might lead to taking more time
in the immersive environment. Two participants specifically com-
mented that rotating the network visualization with the controllers
will be helpful:

• “I felt that having the ability to rotate the graph in VR would
have been helpful.”

• “Add rotation to VR especially.”
However, these two participants reported that they are moderately or
highly experienced with virtual reality technologies. Investigating
the effect of spatial awareness in immersive visualization can be an
interesting research topic for future study.

In addition, participants in the immersive environment took more
time not necessarily because they didn’t find answer as quickly, but
because they often spent extra time exploring the network or having
fun with the visualization before continuing to the next task, some-
thing they did not do with the traditional visualization conditions.
Here are several related comments from participants:

• “It’s fun to zoom in and zoom out in VR settings”
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• “3D was more fun and it is easier to visualize where the nodes
were.”

• “I liked the 3D version because it allowed me to step inside
the graph and see the nodes hidden in the back.”

• “3D makes it easier to explore.”

The mental maps formed through this experiment seem to be limited
due to the short time frame of all the tasks. Since participants were
given only 30 seconds to scrutinize each visualization (memory and
change tasks), they only had time to construct a relatively immature
mental map. This mental map was too fragile for immersive space,
based on the overall lower accuracy in immersive 3D for the memory
task. Participants mentioned on several occasions that after having
changed their perspective in the immersive environment, they lost
their track of the locations of target nodes in the memory task. The
difficulty of the change task seems to have contributed to some
unexpected results. Participants answered overwhelmingly that this
task was the hardest. While all participants finished the entire set
of trials, a few participants gave up on completing the task for the
largest network (power), by either selecting randomly or selecting
less than five nodes. We believe the results can be different if more
time was allowed for explore and memorize a network for both
memory and change tasks.

Another way to reduce the difficulty of the change task is al-
lowing users to see both structures (before and after adding nodes),
similar to the experiments of drawing stability in dynamic network
visualization techniques. However, this could make the task too easy,
which is what we found during our pilot study. In dynamic network
visualization, different layouts are used for each time step, while we
used a single layout for both steps as our focus was not the drawing
stability. This leads to another research question: would immersive
environments be helpful for dynamic network visualization?

To achieve high internal validity, we have carefully designed the
two visualization conditions by (1) keeping the factors that are not
the focus of the study the same in both conditions (i.e., the same
layout algorithm, interaction paradigm, and color scheme) and (2)
counterbalancing the order of visualization conditions. In addition,
the user’s performance is measured using well-defined tasks and
measurements to have high construct validity.

However, our study has limitations in terms of external validity
(generalizability). Since we considered the entire visualization en-
vironment as a single condition, our study only shows the effect
of the combination of multiple factors of each environment, but
not the effect of individual factors. Thus, the results can vary, for
example, with different display and interaction devices. Moreover,
different data and tasks can lead to different results. Further studies
are needed to evaluate various factors of network visualization.

6 CONCLUSION

Literature on the mental map in network visualization is substantial
but sparsely populated when it comes to the immersive visualization
design, despite the rapid development of immersive technologies.
This work investigates the mental maps of viewers under different
visualization conditions. The immersive 3D network visualization
proved to be more helpful for interpreting the structure of a network.
It suggests that immersive technology may allow deeper and more
intuitive understanding of abstract data structures, though it is more
carefully considered and must be precisely designed. The traditional
2D visualization has proven superior for spatial memory as they
provide a better overview of the entire network.

To further investigate the use of immersive technology in under-
standing abstract data structures, such as networks, the next step is
to delve deeper into the individual processes for observing and un-
derstanding immersive environments with longer and more detailed
experiments. These are processes such as how users mentally store
relative positions and directions, and how they are able to turn that

into an understanding of the data presented. Investigating the mental
capacity of humans in immersive environments will help us design
better systems that leverage human perception more effectively.
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