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SUMMARY

This paper studies discrete-time model predictive control (MPC) of continuous-time nonlinear systems
with measurement noises and exogenous disturbances. We consider the co-design of discrete-time finite
horizon optimal control problem (FHOCP) and the associated self-triggering schemes that schedule the
time instants for sampling the state and computing the FHOCP. The state-dependent nature of the self-
triggered scheduling can not only dynamically adjust the inter-sampling period according to the system
status, but dynamically discretize the model used in the FHOCP as well, in order to reduce the complexity
of the FHOCP if designed appropriately. It is shown that the system can be stabilized with uniform ultimate
boundedness, as long as the scheduling scheme matches the approximation model such that the one-step
approximation error between the predicted state and the actual state is below a threshold related to the cost
function. These results can be applied to most existing model approximation methods with either fixed or
time-varying sampling rates. Copyright c© 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Model predictive control (MPC) has been widely applied in many applications such as process

control, power grids, transportation, robotics, and manufacturing, to name a few [1, 2]. It solves

a finite horizon optimal control problem (FHOCP) at each sampling instant and applies a part of

the optimal solution to the plant as the control inputs. When implemented in computers, the MPC

algorithms are often in discrete-time, even though physical processes under control are usually

continuous-time.

This motivates the research on sampled-data MPC, focusing on how to appropriately discretize

the FHOCP and/or schedule the computation tasks of solving the FHOCPs. Early work studied

periodic approaches, where sampling and solving the FHOCP, as well as discretizing the FHOCP,

takes place in a periodic manner [3–11]. To make sure that the predicted states from solving the

FHOCP are close to the actual states of the plant, the sampling period (or the upper bound on the

sampling period) is usually very small. Such a selection could be very conservative with respect

to computation efficiency. In general, solving an FHOCP is computationally expensive by itself,

especially when it is nonlinear. A small sampling period implies frequently solving FHOCPs,

which will generate a significant number of control tasks, which could place a heavy computational
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burden on the processor and introduce significant computation delays. Consequently, the system

performance may be degraded and sometimes the system can even be unstable.

Consequently, aperiodic MPC was investigated including event-triggered and self-triggered MPC

approaches. Event-triggered MPC solves the FHOCP when a pre-defined event occurs [12–21],

while self-triggered MPC predicts the next the sampling instant in real-time [22–29]. In both

approaches, the triggering time is related to not only the system dynamics but the current state/input

information as well. Such an online determination mechanism allows the FHOCP to be solved in a

less frequent manner and therefore saves computation resources.

It is worth pointing out, however, that all the previously mentioned work on aperiodic sampled-

data MPC only focuses on when to solve the FHOCP, while leaving the FHOCP itself still

continuous-time. Recently, a Lebesgue approximation based MPC approach was proposed in [30,

31] for nonlinear systems, where the sampling time and the state transitions in the approximation

model are both aperiodic and state-dependent. It can enlarge the inter-sampling time intervals, while

reducing the number of steps in the discrete-time FHOCP to prediction the same length of horizon in

continuous-time domain. Therefore, both frequency and complexity of solving the FHOCP can be

reduced. This result was extended later to stabilize nonlinear systems with measurement noises [32].

Both works are limited to first-order discrete-time approximation model in the FHOCP.

The contributions of this paper are listed as follows.

• We relax the assumption of first-order approximation in [30–32]. Our results are suitable to

various model approximation methods with both periodic and aperiodic scheduling schemes.

• We present the mechanism to co-design the discrete-time FHOCP and the associated self-

triggering algorithm. The self-triggering scheme is used to not only schedule the computation

of the FHOCP, but determine the sampling period when discretizing the continuous-time

plant model. Different from [30–32] where the scheduling schemes adopt very specific

forms, the proposed self-triggering schemes can be quite flexible, which can potentially

reduce the complexity of the FHOCP if designed appropriately, such as converting a

complicated FHOCP into linear or convex programming.

• We develop sufficient conditions to guarantee feasibility and stability. It is shown that the

discretized model in the FHOCP that approximates the plant only requires one-step accuracy,

i.e., the approximation error between the predicted state and the real state at the next sampling

instance (according to the self-triggering scheme) must be bounded by a threshold related to

the cost function. This is an important condition that reveals the connection between the self-

triggering law, the approximation model, and the cost function in the sampled-data MPC

framework, to stabilize the system. Rigorous analysis on system stability is provided. We

show that under these conditions, the states of the resulting closed-loop system will always

stay inside a compact set and be uniformly ultimately bounded.

• We discuss the procedure to design parameters to meet the developed sufficient conditions.

An illustrative example is presented to demonstrate the co-design procedure and the system

performance. It shows that using the proposed method, nonlinear FHOCP can be converted

into linear programming for a class of nonlinear systems, which can significantly save the

computational resource.

The paper is structured as follows. The problem is formulated in Section 2 with the sampled-

data MPC framework. Section 3 presents sufficient conditions for stability. Section 4 discusses

the co-design guidelines with two illustrative examples in Section 5. Conclusions are discussed in

Section 6. The proofs are presented in the appendix.

2. PROBLEM FORMULATION

Notations: We denote by R
n the n-dimensional real vector space, by R

+ the set of real positive

numbers, by R
+
0 the set of real nonnegative numbers, by Z

+
0 the set of nonnegative integers, and
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by N the set of natural numbers. We use ‖ · ‖ to denote the Euclidean norm of a vector and the

induced 2-norm of a matrix, and | · | to denote the absolute value of a real number. Given a positive

constant d, let B(d) = {x ∈ R
n | ‖x‖ ≤ d}. Given two functions α, β : R → R, α ◦ β(s) = α(β(s)).

Given two sets X ,S ⊆ R
n, X + S is the Minkowski sum of these two sets. We use z+ = f(z) to

represent the discrete-time system z(k + 1) = f(z(k)). The symbols I and e represent the identical

matrix with appropriate dimensions and the Euler’s number, respectively.

Definition 2.1

A continuous function α : R+
0 → R

+
0 belongs to class K if it is strictly increasing and α(0) = 0.

Definition 2.2

A set X is called robust positively invariant (RPI) with respect to the system z+ = f(z, w) and

w ∈ W , if for all w ∈ W and for all z ∈ X , z+ ∈ X holds.

Definition 2.3

The state x(t) of a system ẋ = f(x) is called uniformly ultimately bounded with ultimate bound

b if there exist positive constants b and c, independent of t0 ≥ 0, and for every a ∈ (0, c), there is

T = T (a, b) ≥ 0, independent of t0 , such that ‖x(t0)‖ ≤ a implies ‖x(t)‖ ≤ b for any t ≥ t0 + T .

Consider a nonlinear continuous-time dynamical system:

ẋ(t) = f(x(t), u(t)) + v(t) (1)

x(t0) = x0

where x ∈ R
n and u ∈ U are the state and input of the system, respectively, U ⊆ R

m is the constraint

set on the input including {0}, v : R+ → R
n is the external disturbances, x0 ∈ R

n is the initial

state, and f : Rn ×R
m → R

n is a continuous, locally Lipschitz function that describes the system

dynamics satisfying f(0, 0) = 0. Assume that the disturbance v(t) is uniformly bounded by a

positive constant dv, i.e., ‖v(t)‖ ≤ dv for all t ≥ t0.

Remark 2.1

State constraints are not considered in this paper. We would like to point out, however, that the

results in this paper can be easily extended to the case with the state constraints, following the

approach in [31].

When implementing state-feedback MPC algorithms in digital environments, the controller

receives measurements in discrete-time. The basic idea is described as follows: At the time instant

tk, the system samples the state and the controller obtains the sampled state x̄(tk). Then the

controller solves an N -step discrete-time FHOCP at time tk with x̄(tk) as the initial condition.

Let {ûi,∗
k }N−1

i=0 be the optimal control inputs of the FHOCP at tk. Then û0,∗
k will be actuated in

the actual plant over the time interval [tk, tk+1), i.e., u(t) = û0,∗
k for any t ∈ [tk, tk+1). The next

computation cycle starts at the time instant tk+1.

Notice that the sampled state may contain measurement noises, i.e.,

x̄(tk) = x(tk) + w(tk) (2)

where w : R → R
n is the disturbance. So the measured initial state is x̄0 = x0 + w(t0). Assume that

the disturbance w(tk) is bounded by a positive constant dw, i.e., ‖w(tk)‖ ≤ dw for all k ∈ Z
+
0 .

Remark 2.2

Although this paper considers state-feedback systems, the results can be extended to output-

feedback systems, given an appropriately designed observer. In that case x̄(tk) can be regarded as an

estimate of x(tk) from the observer and w(tk) then becomes the estimation error. The assumption

of bounded measurement noises basically requires the estimation error to be uniformly bounded.

The discrete-time approximation model of the system in (1) is defined as follows. Suppose that at

time tk the controller receives the measurement x̄(tk). The related approximation model then takes

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
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(iii) Set tk+1 using equation (5);

(iv) Send the optimal solution û0,∗
k to the plant, i.e., set u(t) = û0,∗

k over [tk, tk+1); and

(v) Start the next computation cycle at time tk+1.

Under this framework, we will develop the conditions on the functions f̂ , ĝ, κ, Vf , and XT that

can guarantee stability of the closed-loop system defined by (1) – (5) subject to the input constraint,

i.e., u(t) ∈ U for all t ≥ t0.

3. STABILITY CONDITIONS

This section presents the conditions on the parameters in the sampled-data MPC framework with

the goal of stabilizing the system in (1). In the discussion we intend to leave f̂ and ĝ as general as

possible, so that the results can be flexible to different model approximation approaches. We start

from defining the terminal set XT .

Assumption 3.1

There exist a positive constant dx̃ and a feedback law h : Rn → R
m satisfying h(0) = 0, such that

the RPI set of the system z+ = f̂(z + x̃, h(z + x̃)) exists with x̃ ∈ B(dx̃) ⊂ R
n.

With Assumption 3.1, XT can be defined as this RPI set.

Let d0 be a large enough positive constant and

V0 = {x ∈ R
n | V (x) ≤ d0} (6)

where V (x) is defined in (4). Then we introduce the following assumptions, which actually place

requirements on the parameters in the FHOCP.

Assumption 3.2

There exist class K functions α1, α2, β1, and β2 such that

κ(x, u) ≥ α1(‖x‖), ∀x ∈ V0, ∀u ∈ U , (7)

V (x) ≤ α2(‖x‖), ∀x ∈ V0 (8)

β1(‖x‖) ≤ Vf (x) ≤ β2(‖x‖), ∀x ∈ R
n (9)

hold.

Let dx be a positive constant that satisfies

dx > α−1
1 (d0) + dw

and X
f̂

be the N -step reachable set of the system z+ = f̂(z, u) with the initial state z(0) ∈

B(dx + dw) and u ∈ U . Notice that because f̂ is continuous and U , B(dx + dw) are compact, X
f̂

must be compact.

Assumption 3.3

There exist positive constants L
f̂

, Lκ, LVf
, Lf , and Lu such that for any x1, x2 ∈ X

f̂
and u ∈ U ,

‖f̂(x1, u)− f̂(x2, u)‖ ≤ L
f̂
‖x1 − x2‖ (10)

‖κ(x1, u)− κ(x2, u)‖ ≤ Lκ‖x1 − x2‖ (11)

‖Vf (x1)− Vf (x2)‖ ≤ LVf
‖x1 − x2‖ (12)

and for any x ∈ B(dx) and u ∈ U ,

‖f(x, u)− f(0, 0)‖ ≤ Lf‖x‖+ Lu‖u‖ (13)

hold.
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Given a pair (x̄, u) ∈ V0 × U , let z(t) be the solution to ż(t) = f(z(t), u) + v(t) with z(0) =
x̄+ w and w ∈ B(dw). Based on Assumption 3.3, z(t) admits a unique solution. Then there always

exists a function ε(x̄, u) such that for any ‖v(t)‖ ≤ dv, the following inequality

‖z(ĝ(x̄, u))− f̂(x̄, u)‖ ≤ ε(x̄, u) (14)

holds. Back to our framework, this inequality actually indicates a state/input-dependent bound on

the difference between the actual state x(tk+1) and the first predicted state x̂1
k generated by the

discrete-time approximation model in (3), i.e., ‖x(tk+1)− x̂1
k‖ ≤ ε(x̄(tk), u(tk)). Then

εmax = max
x∈V0, u∈U

ε(x, u) (15)

is actually a constant upper bound on the approximation error.

Remark 3.1

In practice, finding the optimal solution in (15) might be computationally expensive. Instead, we

just need an upper bound on ε(x, u) over x ∈ V0 and u ∈ U , which will be much easier to calculate.

Assumption 3.4

For any x ∈ XT + B
(

(dw + εmax)L
N−1

f̂

)

, the function h(x) satisfies

h(x) ∈ U , and (16)

Vf

(

f̂(x, h(x))
)

− Vf (x) ≤ −κ(x, h(x)) (17)

hold.

Remark 3.2

This is a standard assumption in MPC formulation except that equations (16) and (17) must be valid

over a slightly larger set other than the terminal set XT due to system disturbances, measurement

noises, and modeling error in the FHOCP.

Assumption 3.5

There exist two positive constants ρ ∈ (0, 1) and d such that for any x ∈ V0 and u ∈ U ,

θε(x, u) ≤ ρκ(x, u) + d, (18)

where

θ =

N−1∑

i=1

LκLf̂
i−1 + LVf

L
f̂
N−1. (19)

Remark 3.3

Assumption 3.5 places a threshold on the function ε(x, u) that measures the model approximation

error. In fact, this assumption, together with inequality (14), establishes a relation between the

discrete-time approximation model (characterized by f̂ ), the self-triggering scheme (characterized

by ĝ), and the running cost (characterized by κ). It indicates that, although f̂ and ĝ can be designed

in different ways, the resulting approximation error must be bounded by a threshold related to the

running cost function.

Theorem 3.1

Consider the system in (1) with the controller defined in (4). Suppose that Assumption 3.1–3.5 hold.

If the FHOCP is feasible at t0 with x̄(t0) ∈ V0 and the following inequalities

tk+1 − tk ≤ Tmax(dx), ∀k ∈ Z
+
0 , (20)

dx̃ ≥ (dw + εmax)L
N−1

f̂
, (21)

d0 − dwθ − d ≥ max
α1(‖x‖)≤

dwθ+d
1−ρ

[V (x)− (1− ρ) α1(‖x‖)] (22)
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hold, where

Tmax(dx) =
log
(

1 +
Lf (dx−dw−α−1

1
(d0))

Lf (α
−1

1
(d0)+dw)+Lu maxu∈U ‖u‖+dv

)

Lf

(23)

then x̄(tk) ∈ V0 for all k ∈ Z
+
0 , x(t) ∈ B(dx) for all t ≥ t0, and the closed-loop system is uniformly

ultimately bounded.

Remark 3.4

Inequality (20) places an upper bound on the inter-sampling time intervals for safety reason. This

ensures that x(t) will not deviate too much from x̄(tk) over [tk, tk+1). According to Theorem 3.1,

it guarantees that x(t) stays inside B(dx). Based on the definition of Tmax(dx), it can be arbitrarily

large by simply increasing dx in linear systems. For highly nonlinear systems, however, large dx
might result in large Lf and Lu. In that case there may exist an upper bound on Tmax(dx), due to

the limitation of system dynamics. Moreover, large dx and d0 may lead to large εmax and therefore

cause issues on the existence of h(x) satisfying (16) and (17).

Remark 3.5

Inequality (21) means that the terminal set XT must be able to guarantee set invariance in

the presence of disturbances with the maximum magnitude of (dw + εmax)L
N−1

f̂
, while (dw +

εmax)L
N−1

f̂
is actually an upper bound on the accumulated prediction error after N steps.

Remark 3.6

Inequality (22) is used to ensure that the ultimate set (characterized by dwθ+d
1−ρ

) for x̄(tk) is

included in V0 such that the behavior of x̄(tk) can be limited inside V0. When dv = dw = d = 0,

inequality (22) can be removed, since in that case V (x̄(tk+1)) ≤ V (x̄(tk)) ≤ · · · ≤ V (x̄(t0)) ≤ d0
will always hold.

4. PARAMETER DESIGN

This section discusses how to co-design of the FHOCP and the scheduling function ĝ to meet the

stability conditions. One of the challenges is that it may be hard to find the function V (x) and

therefore the elements in the set V0 cannot be explicitly identified. Alternatively, in the design

procedure we usually choose κ(x, u) that satisfies (7) for any x ∈ R
n and any u ∈ U . Then we

know that for any x ∈ R
n,

V (x) ≥ κ(x, û∗) ≥ α1(‖x‖) (24)

holds, where û∗ is the first element of the optimal control inputs to the FHOCP with the initial state

x. With this inequality, we can define the set X0 as follows:

X0 = {x ∈ R
n | α1(‖x‖) ≤ d0} (25)

and obviously V0 ⊆ X0. As a result, the assumptions in Theorem 3.1 can be verified over X0. For

instance, if there exist an upper bound on V (x) over X0, inequality (8) in Assumption 3.2 can always

be satisfied [33].

Most model approximation methods [34] or numerical approaches admit explicit forms of ε(x, u)
in inequality (14). For instance, Euler forward method has the following iteration

x̂i+1
k = f̂(x̂i

k, û
i
k) = x̂i

k + Tf(x̂i
k, û

i
k)

where T is the sampling period. It is a first-order approximation with the truncation error O(T 2).
Traditional approaches with higher-order truncation error include midpoint method (O(T 3)), Heun’s
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method (O(T 3)), Runge-Kutta method (O(T 5)), and explicit Runge-Kutta method, to name a few.

All these approximation models can be used in our framework as the discrete-time approximation

model. The approximation error bound in these approaches, i.e., ε(x, u), usually can be arbitrarily

small by reducing the sampling period T . As an extension in our framework, T can be time-varying,

dependent of x̄(tk) or (x̂i
k, û

i
k) to cancel certain nonlinearity in f̂ from f(x̂i

k, û
i
k), such as

x̂i+1
k = x̂i

k + ĝ(x̂i
k, û

i
k)f(x̂

i
k, û

i
k)

using Euler method. In either case, the sampling period must be chosen in a way that the resulting

approximation error satisfies inequality (18). To do so, one can choose ĝ first to simplify the structure

of f̂ if possible and then identify κ that meets (18), or inversely, pick κ first and then select ĝ small

enough such that inequality (18) holds. Notice that there may be many ways to choose ĝ(x, u).
We must guarantee the existence of a positive lower bound on ĝ(x, u) for any x ∈ X0/{0} and

u ∈ U/{0} to avoid Zeno behavior.

The parameters h and XT must be defined together to meet Assumption 3.1 and 3.4. For

linear systems, one can use the MPT toolbox [35] to compute the maximum RPI set inside

{x ∈ R
n | h(x) ∈ U}. For nonlinear systems, we can consider input-to-state stability of the system

z+ = f̂(z + x̃, h(z + x̃)),

and design the feedback law h(z) such that

Vf

(
z+
)
− Vf (z) ≤ −κ(z, h(z)) + γ(‖x̃‖)

holds for all z ∈ X0 and x̃ ∈ B(dx̃), where γ is a class K function. Obviously, when x̃ ≡ 0,

inequality (17) is recovered. Since ‖x̃‖ ≤ dx̃, we have

Vf

(
z+
)
− Vf (z) ≤ −α1(‖z‖) + γ(dx̃).

With inequality (9), we know that the set

{

x ∈ R
n | Vf (x) ≤ max

s∈[0,α−1

1
◦γ(dx̃)]

(β2 − α1)(s) + γ(dx̃)

}

(26)

is a RPI set that meets Assumption 3.1. Then we can reduce the size of dx̃ such that XT is small

enough to guarantee inequality (16).

5. ILLUSTRATIVE EXAMPLES

This section presents two examples to demonstrate how the theoretical results can be applied to

co-design the FHOCP and the scheduling scheme.

5.1. Example 1

The nonlinear system under consideration is as follows:

ẋ1 =
(0.2e0.1(x1+x2) + 1)(0.5x1 + 5x2)

0.5x1 sin(x1) + 2
+ v1(t)

ẋ2 =
(0.2e0.1(x1+x2) + 1)(2.5x1 + 1.25x2 + 2u)

0.5x1 sin(x1) + 2
+ v2(t).

Assume that dv = 10−4, dw = 10−5, and the input constraint is |u(t)| ≤ 2.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
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Let N = 4 and the set X0 defined by

X0 = {x̄ ∈ R
n | ‖x̄‖ ≤ 1}.

Let dx = 1.15. Then Lf = 3.4561, Lu = 1.2246 over x ∈ B(dx) and Tmax(dx) = 0.0243.

Using Euler-forward method to approximate this nonlinear system, we obtain the approximation

model

x̂i+1
k = f̂(x̂i

k, û
i
k)

= x̂i
k + ĝ(x̂k)f(x̂k, u

i
k)

=








Ad
︷ ︸︸ ︷

I+

(
0.005 0.05
0.025 0.0125

)

︸ ︷︷ ︸

A








x̂i
k +

(
0

0.02

)

︸ ︷︷ ︸

B

ûi
k

where

ĝ(x) =
0.005x1 sin(x1) + 0.02

0.2e0.1(x1+x2) + 1
. (27)

Notice that with the state-dependent ĝ, the model used in the FHOCP becomes linear.

Given the set X0, we can see that ĝmax = maxx∈X0
ĝ(x) = 0.0205 < Tmax(dx). So

inequality (20) is trivially satisfied. Given the approximation model f̂ , we can calculate the

approximation error bound ε(x, u) on ‖z(ĝ(x))− f̂(x, u)‖:

ε(x, u) =

(

ĝ(x)‖f(x, u)‖+
dv
Lf

+ dw

)(

eLf ĝ(x) − 1
)

+ dw

=

(

‖Ax+Bu‖+
dv
Lf

+ dw

)(

eLf ĝ(x) − 1
)

+ dw.

Notice that this bound ε is valid for any positive function ĝ. Now we apply the definition of ĝ in (27)

into the equation above and define the cost function to guarantee inequality (18). Let ρ = 0.6225,

θ = 12.8132,

κ(x, u) = 0.08‖x‖+ 0.0302‖u‖, Vf (x) = ‖Px‖,

P =

(
−2.7502 −5.9069
−9.0017 −3.5196

)

,K = (−5.9346− 5.4436) ,

d =

((
dv
Lf

+ dw

)
(
eLf ĝmax − 1

)
+ dw

)

θ = 1.6476× 10−4,

Lκ = 0.08, LVf
= 10.9602, and εmax = 0.0053. The parameters P and K are computed using

the technique proposed in [36], such that inequality (17) holds with h(x) = Kx. With such a

setting, the FHOCP becomes linear programming and the explicit solution can be found to speed

up the computation [37]. Of course, in many cases, it is infeasible to convert the FHOCP to

as simple as linear programming. However, by appropriately choosing ĝ, it is still possible to

simplify the FHOCP, such as transforming nonconvex programming (under fixed period) into

convex programming (under ĝ).

We now can verify inequality (18) over x ∈ X0 and u ∈ U :

θε(x, u) ≤ θ

(

‖Ax+Bu‖+
dv
Lf

+ dw

)
(
eLf ĝmax − 1

)
+ dw

≤ 0.0498‖x‖+ 0.0188‖u‖+ 1.6476× 10−4

= ρκ(x, u) + d.
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To define XT , let us consider

Vf (f̂(x+ x̃, h(x+ x̃)))− Vf (x)

= ‖P (Ad +BK)(x+ x̃)‖ − ‖Px‖

≤ ‖P (Ad +BK)x‖ − ‖Px‖+ ‖P (Ad +BK)x̃‖

≤ −κ(x,Kx) + ‖P (Ad +BK)x̃‖

≤ −0.08‖x‖ − 0.1644‖x‖+ ‖P (Ad +BK)‖dx̃

So the terminal set can be defined as

XT = {x ∈ R
n | ‖Px‖ ≤ 354.9257 · dx̃}.

To ensure h(x) ∈ U for all x ∈ XT + B
(

(dw + εmax)L
N−1

f̂

)

where (dw + εmax)L
N−1

f̂
= 0.0061,

we check the bound on ‖Kx‖:

|K(x+ x̃)| ≤ ‖KPL‖‖P (x+ x̃)‖

≤ 0.7944 · (354.9257 · dx̃ + 0.0061‖P‖) ≤ 2

where PL = (P>P )−1P> and ‖x̃‖ ≤ 0.0061. Solving this inequality , we can set dx̃ = 0.0069 ≥
(dw + εmax)L

N−1

f̂
, which means that inequality (21) is satisfied.

To check the satisfaction of inequality (22), we first calculate α−1
1

(
dwθ+d
1−ρ

)

= 0.0097. So

max
‖x‖≤0.0097

[V (x)− (1− ρ)α1(‖x‖)]

= 0.0751 < 0.0797 = d0 − dwθ − d.

We first set v(t) = w(t) = 0. The top plot of Figure 2 shows the state trajectories that converge

to the origin. The input also converges to zero, as shown in the middle plot. The bottom plot

shows the history of the computation periods. It converges to 0.0167, which is consistent to the

theoretical result lim‖x‖→0 ĝ(x) = 0.0167 in this case. Figure 3 shows the history of V (x̄(tk)),
which is monotonically decreasing to zero. Figure 4 shows the history of the actual state and the

predicted state x̂1
k. Notice that x̂1

k is an approximation of x(tk+1) at tk. We can find that the states

are very close, though the approximation model is different from the actual plant.

In the second simulation, the disturbances and measure noises are added, where v(t) and w(t) are

randomly chosen over [−dv, dv] and [−dw, dw], respectively, with dv = 0.1 and dw = 0.01. In the

top plot of Figure 5 the state trajectories oscillate around the origin due to disturbances and noises.

Accordingly, the inputs and the inter-sampling time intervals vary slightly, as shown in the middle

and bottom plots. Meanwhile, V (x(tk)) also admits temporary increases in Figure (6).

5.2. Example 2

We consider a crane [38] with the horizontal trolley position x1, the trolley velocity x2, the excitation

angle x3, and the angular velocity of the mass point x4. The control u is the acceleration of the

trolley. Let x = (x1, x2, x3, x4)
> ∈ R

4. The crane model is described as follows:

ẋ = f(x, u) =






x2

u
x4

−g sin(x3)− u cos(x3)− bx4




 (28)

with the initial condition x0 = (0.5, 0, 2π
3 , 0)>, where g = 9.81m/s2, b = 0.2Js. The input

constraint is assumed to be |u(t)| ≤ 1.
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Figure 2. The state trajectories and computation periods with v(t) = w(t) = 0. The top and middle plots
show the convergence of the states and input, respectively. The bottom plot shows that the inter-sampling

intervals that converge to lim‖x‖→0 ĝ(x) = 0.0167.

To formulate the MPC framework, we set the prediction horizon N = 4. The cost function is

κ(x, u) = ‖x‖+ 0.15|u|, V (x) = 2‖x‖ (29)

The inter-sampling interval function ĝ(x, u) can be simply defined by

ĝ(x, u) = 0.01 (2− sin(x3)). (30)

The discrete-time model is then x̂i+1
k = x̂i

k + ĝ(x̂k, u
i
k)f(x̂k, u

i
k). With this setting, we set dx = 8.

Then we can numerically calculate Lf = 9.8119, Lu = 1.4142, L
f̂
= 1.2277, θ = 7.4358, εmax =

0.1398, and dx̃ = 0.2587. The approximation error is

ε(x, u) = ĝ(x, u)‖f(x, u)‖
(

eLf ĝ(x,u) − 1
)

.

We can see that ĝmax = maxx∈X0
ĝ(x, u) = 0.03 < Tmax(dx) = 0.0321. We can verify (18) with

d = 0 that

θε(x, u) ≤ 0.7491‖x‖+ 0.1080|u| < ρκ(x, u)

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
Prepared using rncauth.cls DOI: 10.1002/rnc



12 LIXING YANG, SAMUEL DAUCHERT, XIAOFENG WANG

Figure 3. The history of V (x̄(tk)) when v(t) = w(t) = 0, which monotonically decreases to zero.

Figure 4. The history of the predicted states and the actual states, which are very close. It shows that the
discrete-time model can approximate the plant at the sampling instants.

where ρ = 0.8. We leave XT = R
n since both the continuous-time and discrete-time systems can

be stabilized by the control law h(x) = −0.1x1 − 0.1x2.

With this setting, we plot the state trajectories in Figure 7. We can find that the system

asymptotically converge to the origin. Figure 8 shows that the inter-sampling time intervals vary

dramatically during transience. Since ĝ is only related to x3 in this case, when x3 reaches the steady

state, the time intervals also converges to a constant limx→0,u→0 ĝ(x, u) = 0.02. We then change the

triggering function to ĝ(x, u) = 0.01(2 + cos(x3)) with the other settings remaining the same. The

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
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Figure 5. The state/input trajectories and computation periods in the presence of disturbances and noises.
In the top plot, the states oscillate around the origin. Accordingly, the inputs and the inter-sampling time

intervals vary slightly, as shown in the middle and bottom plots.

system is still stable, though the inter-sampling time intervals are completely different as shown in

Figure 9. It demonstrates that our proposed principles can be applied to different triggering schemes.

6. CONCLUSIONS

This paper studies stability of nonlinear sampled-data systems controlled by discrete-time MPC,

in the presence of exogenous disturbances and measurement noises. It suggests the co-design of

the discrete-time FHOCP and the scheduling algorithms, where the scheduling scheme is coupled

with the design of the discrete-time FHOCP in a sense that the model approximation error at the next

sampling time instant must be bounded by a threshold function related to the running cost. Sufficient

conditions are derived to guarantee uniform ultimate boundedness of the closed-loop system. The

results are applicable to most conventional model approximation approaches and various scheduling

schemes.

There are several many open problems in this framework. For instance, the choice of the

scheduling function ĝ(x, u) is very flexible in this paper. On the other hand, however, it is not

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
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Figure 6. The history of V (x̄(tk)) in the presence of disturbances and noises, where V (x(tk)) admits
temporary increases.
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Figure 7. The state trajectories of the crane with ĝ(x, u) = 0.01 (2− sin(x3)), which converge to the origin.

very clear that, for a specific system, which choice will be the best, with respect to computation

load and the complexity of the resulting FHOCP. A more systematic approach to formulate the

design procedure is expected, which will be studied in the future work. Tracking is another potential

issue under this framework. When the reference signal is time-varying with high frequency, the

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
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Figure 8. The history of the inter-sampling time intervals with ĝ(x, u) = 0.01 (2− sin(x3)). The inter-
sampling time intervals vary dramatically during transience and eventually converge to a constant, which

is consistent to limx→0,u→0 ĝ(x, u) = 0.02.
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Figure 9. The history of the inter-sampling time intervals with ĝ(x, u) = 0.01(2 + cos(x3)). The inter-
sampling time intervals are completely different from the case when ĝ(x, u) = 0.01(2− sin(x3)).

approximation model may have to be accurate enough to capture variations in the reference signal;

otherwise, undersampling may occur. How to balance the relation between the approximation

model, the scheduling scheme, and the reference signals in this framework will be investigated

in the future.
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A. APPENDIX: PROOF OF THEOREM 3.1

First of all, we construct a sequence of control inputs for the prediction model in (3) at the (k + 1)th
computation cycle with the initial condition x̂0

k+1 = x̄(tk+1):

ûi
k+1 =

{

ûi+1,∗
k , i = 0, 1, ..., N − 2

To Be Determined. i = N − 1
(31)

With ûi
k+1 and x̂0

k+1 = x̄(tk+1), the discrete-time model in (3a) will generate the predicted states

at the (k + 1)th computation cycle as x̂i
k+1 for i = 1, 2, · · · , N − 1. Notice that x̂N

k+1 is undefined

yet because ûN−1
k+1 is not specified yet.

Then we introduce three lemmas (Lemma A.1–A.3).

Lemma A.1

Suppose that Assumption 3.2 holds. If x̄(tk) ∈ V0 and

tk+1 − tk ≤ Tmax(dx) (32)

hold, where Tmax(dx) is defined in (23), then x(t) ∈ B(dx) for t ∈ [tk, tk+1].

Proof

We prove the statement by contradiction. Suppose that x(t) 6∈ B(dx) for some t ∈ [tk, tk+1]. Because

x̄(tk) ∈ V0, we know V (x̄(tk)) ≤ d0. By Assumption 3.2,

α1(‖x̄(tk)‖) ≤ κ(x̄(tk), û
0,∗
k ) ≤ V (x̄(tk)) ≤ d0

holds. So ‖x̄(tk)‖ ≤ α−1
1 (d0) and therefore x(tk) ∈ B

(
α−1
1 (d0) + dw

)
⊆ B(dx), i.e., ‖x(tk)‖ < dx.

Since x(t) is continuous, there must exist t∗ ∈ (tk, tk+1) such that

‖x(t∗)‖ = dx, (33)

‖x(t)‖ < dx, ∀t ∈ [tk, t
∗). (34)

Consider the system in (1) over [tk, t
∗]. By inequality (34), we know x(t) ∈ B(dx) for any

t ∈ [tk, t
∗]. With u(t) = u(tk) ∈ U ,

d

dt
‖x(t)‖ ≤ ‖f(x(t), u(tk))‖+ ‖v(t)‖

≤Lf‖x(t)‖+ Lu‖u(tk)‖+ dv.

Solving this inequality yields

‖x(t)‖ ≤ ‖x(tk)‖eLf (t−tk) +
Lu‖u(tk)‖+ dv

Lf

(

eLf (t−tk) − 1
)

< (‖x̄(tk)‖+ dw)e
Lf (tk+1−tk)

+
Lu‖u(tk)‖+ dv

Lf

(

eLf (tk+1−tk) − 1
)

≤ (α−1
1 (d0) + dw)e

LfTmax(dx)

+
Lu maxu∈U ‖u‖+ dv

Lf

(

eLfTmax(dx) − 1
)

= dx.

for any t ∈ [tk, t
∗], where the last equivalence comes from the definition of Tmax(dx) in (23). The

inequality above is contradicted with ‖x(t∗)‖ = dx. Therefore, the proof is completed.
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The following lemma quantifies the error between the predicted states computed at the kth and

k + 1th computation cycles.

Lemma A.2

If x̄(tk) ∈ V0, x̄(tk+1) ∈ B(dx + dw), and Assumption 3.2–3.3 hold, then

‖x̂i−1
k+1 − x̂i,∗

k ‖ ≤ (dw + εk)Lf̂
i−1, i = 1, 2, ..., N. (35)

holds where

εk = ε
(
x̄(tk), û

0,∗
k

)
. (36)

Proof

We prove the statement using mathematical induction. By the assumption x̄(tk) ∈ V0 ⊆
B
(
α−1
1 (d0)

)
, we know that x(tk) ∈ B(dx) by equation (2). Since x(t) is the solution to the system

in (1) with u(t) = û0,∗
k over [tk, tk+1) starting from x(tk), by inequality (14),

∥
∥
∥x
(
tk + ĝ(x̄(tk), û

0,∗
k )
)
− f̂

(
x̄(tk), û

0,∗
k

)
∥
∥
∥

≤ ε
(
x̄(tk), û

0,∗
k

)
= εk.

By equation (5), we know tk+1 = tk + ĝ(x̄(tk), û
0,∗
k ) and by equation (3a), we have x̂1,∗

k =

f̂
(
x̄(tk), û

0,∗
k

)
. So the inequality above implies

∥
∥x (tk+1)− x̂1,∗

k

∥
∥ ≤ εk. (37)

So for i = 1 we have

‖x̂0
k+1 − x̂1,∗

k ‖ = ‖x̄(tk+1)− x̂1,∗
k ‖

= ‖x̄(tk+1)− x(tk+1) + x(tk+1)− x̂1,∗
k ‖

≤ ‖x̄(tk+1)− x(tk+1)‖+ ‖x(tk+1)− x̂1,∗
k ‖

≤ dw + εk.

Next we assume that inequality (35) holds for i = p− 1, i.e.,

‖x̂p−2
k+1 − x̂p−1,∗

k ‖ ≤ (dw + εk)Lf̂
p−2 (38)

and prove that inequality (35) also holds for i = p.

According to equation (3a) and the definition of ûi
k+1 in equation (31), we have

x̂p,∗
k = f̂(x̂p−1,∗

k , ûp−1,∗
k ) and

x̂p−1
k+1 = f̂(x̂p−2

k+1, û
p−2
k+1) = f̂(x̂p−2

k+1, û
p−1,∗
k ).

Therefore,

‖x̂p−1
k+1 − x̂p,∗

k ‖

=‖f̂(x̂p−2
k+1, û

p−1,∗
k )− f̂(x̂p−1,∗

k , ûp−1,∗
k )‖.

Since x̄(tk) ∈ B
(
α−1
1 (d0)

)
⊂ B(dx + dw) and x̄(tk+1) ∈ B(dx + dw), we have x̂p−2

k+1, x̂
p−1,∗
k ∈ X

f̂

for any p ≤ N . With ûp−1,∗
k ∈ U , by inequality (10) in Assumption 3.3 and inequality (38), we have

‖x̂p−1
k+1 − x̂p,∗

k ‖ ≤ L
f̂
‖x̂p−2

k+1 − x̂p−1,∗
k ‖

≤ (dw + εk)Lf̂
p−1,

which completes the proof.
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Lemma A.3

Suppose that Assumption 3.2–3.5 hold and

x̄(tk) ∈ V0, x̄(tk+1) ∈ B(dx + dw).

If inequality (21) holds and there exists an admissible optimal solution
{

x̂i,∗
k , ûi,∗

k

}N−1

i=0
to the

FHOCP in (4) at the kth computation cycle, then
{
x̂i
k+1

}N

i=0
and

{
ûi
k+1

}N−1

i=0
are admissible to

the FHOCP at the k + 1th computation cycle, where ûi
k+1 is defined in (31) for i = 0, 1, · · · , N − 2

and

ûN−1
k+1 = h(x̂N−1

k+1 ). (39)

Moreover, the following inequality

V (x̄(tk+1))− V (x̄(tk)) ≤ dwθ + d− (1− ρ) α1 (‖x̄(tk)‖) (40)

holds.

Proof

We first show that ûN−1
k+1 ∈ U and the state trajectory

{
x̂i
k+1

}N

i=0
, generated by the control sequence

{
ûi
k+1

}N−1

i=0
, is admissible to the FHOCP.

Since the assumptions in Lemma A.2 hold, equation (35) holds, which, together with

inequality (21), implies

‖x̂N−1
k+1 − x̂N,∗

k ‖ ≤ (dw + εk)Lf̂
N−1 ≤ dx̃. (41)

So there exists x̃ ∈ B(dx̃) such that

x̂N−1
k+1 = x̂N,∗

k + x̃. (42)

Notice that

x̂N
k+1 = f̂

(
x̂N−1
k+1 , ûN−1

k+1

)
= f̂

(
x̂N−1
k+1 , h

(
x̂N−1
k+1

))

= f̂
(

x̂N,∗
k + x̃, h

(

x̂N,∗
k + x̃

))

. (43)

Because
{

x̂i,∗
k , ûi,∗

k

}N−1

i=0
is admissible at the kth computation cycle, x̂N,∗

k ∈ XT holds and therefore

x̂N−1
k+1 ∈ XT + B

(

(dw + εmax)L
N−1

f̂

)

. So by equation (16) in Assumption 3.4, ûN−1
k+1 = h(x̂N−1

k+1 ) ∈

U holds. Meantime, because XT is robust positively invariant with respect to the system in (43),

x̂N
k+1 ∈ XT holds. So

{
x̂i
k+1

}N

i=0
with

{
ûi
k+1

}N−1

i=0
is admissible to the FHOCP at the k + 1th

computation cycle.
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Let J [ûk+1|x̄(tk+1)] be the cost of the FHOCP generated by ûk+1 =
{
ûi
k+1

}N−1

i=0
with the initial

condition x̄(tk+1). Consider

J [ûk+1|x̄(tk+1)]− V (x̄(tk))

=

N−1∑

i=0

κ
(
x̂i
k+1, û

i
k+1

)
+ Vf

(
x̂N
k+1

)
− V (x̄(tk))

=

N−2∑

i=0

κ
(
x̂i
k+1, û

i
k+1

)
+ κ

(
x̂N−1
k+1 , ûN−1

k+1

)
+ Vf

(
x̂N
k+1

)

− V (x̄(tk)) + Vf

(
x̂N−1
k+1

)
− Vf

(
x̂N−1
k+1

)

+ κ
(
x̂0,∗
k , û0,∗

k

)
− κ

(
x̂0,∗
k , û0,∗

k

)

= κ
(
x̂N−1
k+1 , ûN−1

k+1

)
+ Vf (x̂

N
k+1)− Vf (x̂

N−1
k+1 )

︸ ︷︷ ︸

Ψ

− κ
(
x̂0,∗
k , û0,∗

k

)
+Φ (44)

where

Φ =

N−2∑

i=0

κ
(
x̂i
k+1, û

i
k+1

)
+ Vf

(
x̂N−1
k+1

)
+ κ

(
x̂0,∗
k , û0,∗

k

)

− V (x̄(tk)).

Given x̂N−1
k+1 ∈ XT + B

(

(dw + εmax)L
N−1

f̂

)

and inequality (17) in Assumption 3.4, we have Ψ ≤

0, since x̂N
k+1 = f̂

(
x̂N−1
k+1 , h(x̂N−1

k+1 )
)
. Therefore, equation (44) implies

J [ûk+1|x̄(tk+1)]− V (x̄(tk)) ≤ Φ− κ
(
x̂0,∗
k , û0,∗

k

)
. (45)

Consider Φ. Notice that the first term in Φ can be written as

N−2∑

i=0

κ
(
x̂i
k+1, û

i
k+1

)
=

N−1∑

i=1

κ
(
x̂i−1
k+1, û

i−1
k+1

)

According to equation (4),

V (x̄(tk)) =

N−1∑

i=0

κ
(

x̂i,∗
k , ûi,∗

k

)

+ Vf

(

x̂N,∗
k

)

.

Therefore, using this equation to replace V (x̄(tk)) in Φ,

Φ =

N−1∑

i=1

κ
(
x̂i−1
k+1, û

i−1
k+1

)
+ Vf

(
x̂N−1
k+1

)

−

N−1∑

i=1

κ
(

x̂i,∗
k , ûi,∗

k

)

− Vf

(

x̂N,∗
k

)

. (46)

By equation (31), ûi−1
k+1 = ûi,∗

k for i = 1, 2, · · · , N − 1. So

Φ ≤

N−1∑

i=1

∣
∣
∣κ
(
x̂i−1
k+1, û

i−1
k+1

)
− κ

(

x̂i,∗
k , ûi,∗

k

)∣
∣
∣

+
∣
∣
∣Vf

(
x̂N−1
k+1

)
− Vf

(

x̂N,∗
k

)∣
∣
∣

≤

N−1∑

i=1

Lκ

∥
∥
∥x̂i−1

k+1 − x̂i,∗
k

∥
∥
∥+ LVf

∥
∥
∥x̂N−1

k+1 − x̂N,∗
k

∥
∥
∥ ,
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where the last inequality comes from equation (11) and (12) in Assumption 3.3, given

x̄(tk), x̄(tk+1) ∈ B(dx + dw) and therefore x̂i−1
k+1, x̂

i,∗
k ∈ X

f̂
for i = 1, 2 · · · , N .

By Lemma A.2,

∥
∥
∥x̂i−1

k+1 − x̂i,∗
k

∥
∥
∥ ≤ (dw + εk)Lf̂

i−1 for i = 1, 2, · · · , N . Therefore,

Φ ≤(dw + εk)

(
N−1∑

i=1

LκLf̂
i−1 + LVf

L
f̂
N−1

)

︸ ︷︷ ︸

θ

.

With the inequality above and inequality (18) in Assumption 3.5, inequality (45) can be further

simplified as

J [ûk+1|x̄(tk+1)]− V (x̄(tk))

≤ −κ
(
x̂0,∗
k , û0,∗

k

)
+ (dw + εk)θ

≤ −(1− ρ) κ
(
x̂0,∗
k , û0,∗

k

)
+ dwθ + d.

Therefore,

V (x̄(tk+1))− V (x̄(tk))

= min
ûk+1

J [ûk+1|x̄(tk+1)]− V (x̄(tk))

≤ −(1− ρ) κ
(
x̂0,∗
k , û0,∗

k

)
+ dwθ + d

≤ −(1− ρ) α1 (‖x̄(tk)‖) + dwθ + d,

where the last inequality comes from Assumption 3.2 and the fact x̂0,∗
k = x̄(tk).

Now we are ready to prove Theorem 3.1. It will be shown that

The FHOCP is feasible at tk+1, (47)

x̄(tk+1) ∈ V0, and (48)

V (x̄(tk+1))− V (x̄(tk)) ≤ dwθ + d− (1− ρ) α1 (‖x̄(tk)‖) (49)

hold for k = 0, 1, 2, · · · , using mathematical induction.

For k = 0, x̄(t0) ∈ V0 by the assumption. Since the hypotheses of Lemma A.1 hold for k = 0,

we have x(t1) ∈ B(dx) and therefore x̄(t1) ∈ B(dx + dw). Meanwhile, with x̄(t0) ∈ V0 and the fact

that the FHOCP in (4) admits a feasible solution at t0, the hypotheses of Lemma A.3 are satisfied

for k = 0, which implies that
{
x̂i
1

}N

i=0
and

{
ûi
1

}N−1

i=0
are admissible to the FHOCP at t1 with the

initial condition x̄(t1), and

V (x̄(t1))− V (x̄(t0)) ≤ −(1− ρ) α1 (‖x̄(t0)‖) + dwθ + d. (50)

There are two cases to be discussed. If ‖x̄(t0)‖ ≥ α−1
1

(
dwθ+d
1−ρ

)

, then V (x̄(t1)) ≤ V (x̄(t0)) ≤ d0

and therefore x̄(t1) ∈ V0. If ‖x̄(t0)‖ < α−1
1

(
dwθ+d
1−ρ

)

, then with V (x̄(t0)) ≤ α2(‖x̄(t0)‖), we have

V (x̄(t1)) ≤ α2(‖x̄(t0)‖)− (1− ρ) α1 (‖x̄(t0)‖) + dwθ + d.

By inequality (22), we know V (x̄(t1)) ≤ d0. Therefore, x̄(t1) ∈ V0 holds in either case.

Assume that the statements in (47) – (49) hold for k = p− 1. We will show that they will also

hold for k = p.

By Lemma A.1, inequality (20), together with x̄(tp) ∈ V0, implies x(tp+1) ∈ B(dx) and therefore

x̄(tp+1) ∈ B(dx + dw). Since the hypotheses of Lemma A.3 hold for k = p, we know that the
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FHOCP is feasible at tp+1 and

V (x̄(tp+1))− V (x̄(tp)) ≤ dwθ + d− (1− ρ) α1 (‖x̄(tp)‖) .

Following the previous analysis, two cases can be discussed. If ‖x̄(tp)‖ ≥ α−1
1

(
dwθ+d
1−ρ

)

, then

V (x̄(tp+1)) ≤ V (x̄(tp)) ≤ d0. If ‖x̄(tp)‖ < α−1
1

(
dwθ+d
1−ρ

)

, then with V (x̄(tp)) ≤ α2(‖x̄(tp)‖) by

Assumption 3.2,

V (x̄(tp+1)) ≤ α2(‖x̄(tp)‖)− (1− ρ) α1 (‖x̄(tp)‖)

+ dwθ + d.

By inequality (22), we know V (x̄(tp+1)) ≤ d0. Overall, x̄(tp+1) ∈ V0 holds for both cases. So the

statements in (47) – (49) hold for all k ∈ Z
+
0 .

Since x̄(tk) ∈ V0 for all k ∈ Z
+
0 , we know by Assumption 3.2 that α1(‖x̄(tk)‖) ≤ V (x̄(tk)) ≤

α2(‖x̄(tk)‖), which, together with inequality (49), implies that {x̄(tk)}
∞
k=0 is uniformly ultimately

bounded. For any t ∈ [tk, tk+1), we solve the following differential inequality

d

dt
‖x(t)− x̄(tk)‖ ≤ ‖f(x(t), û0,∗

k )‖+ ‖v(t)‖ ≤ fmax + dv,

where fmax = maxx∈B(dx),u∈U ‖f(x, u)‖, with the initial condition ‖x(tk)− x̄(tk)‖ ≤ dw. It

implies that for any t ∈ [tk, tk+1)

‖x(t)− x̄(tk)‖ ≤ dw + (fmax + dv) ĝ(x̄(tk), û
0,∗
k )

≤ dw + (fmax + dv) max
x̄∈V0, u∈U

ĝ(x̄, u).

So x(t) is also uniformly ultimately bounded.
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