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Abstract— This article focuses on the investigation of finite-time
dissipative state estimation for Markov jump neural networks.
First, in view of the subsistent phenomenon that the state estima-
tor cannot capture the system modes synchronously, the hidden
Markov model with partly unknown probabilities is introduced
in this article to describe such asynchronization constraint. For
the upper limit of network bandwidth and computing resources,
a novel dynamic event-triggered transmission mechanism, whose
threshold parameter is constructed as an adjustable diagonal
matrix, is set between the estimator and the original system to
avoid data collision and save energy. Then, with the assistance
of Lyapunov techniques, an event-based asynchronous state
estimator is designed to ensure that the resulting system is
finite-time bounded with a prescribed dissipation performance
index. Ultimately, the effectiveness of the proposed estimator
design approach combining with a dynamic event-triggered
transmission mechanism is demonstrated by a numerical
example.

Index Terms— Asynchronous state estimation, dissipativity,
dynamic event-triggered mechanism, Markov jump neural
networks.
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I. INTRODUCTION

AS A potent information processing modeling pattern,
neural networks are widely applied in various fields,

including, but not limited to pattern recognition, solving
optimization problems, associative memory, and image
processing [1]–[3]. In these applications, an interesting
problem has been detected, that is, recurrent neural networks
cannot reliably catch long-term dependencies, which implies
that the network output is less affected by the early input
when the temporal sequences increases. Noting that the
parameters of neural networks can jump in a set of stochastic
finite modes, Tino et al. [4] have investigated and proposed
an effective network framework named Markov jump neural
networks to deal with the above problem. Because of the
excellent ability to model various complex systems, Markov
jump neural networks have attracted considerable attention
from researchers, and a wealth of significant results have
been reported in [5]–[8]. The issue of extended dissipativity
analysis has been studied in [5], and a novel Lyapunov
functional has been further proposed to deal with time delay.
To handle the impact of an uncertain factor on Markov
jump neural networks, the piecewise time-varying transition
probabilities have been studied in [8].

On the other hand, most existing investigations of Markov
jump neural networks are based on an ideal assumption
that system modes can be fully accessed by filter/state esti-
mator/controller such that the filter/state estimator/controller
modes can keep working synchronously with system modes
[9]–[11]. As a matter of fact, practical systems are inevitably
affected by some disturbances, such as communication
delays, data dropouts, and missing measurements, which
may lead to losing the mode information of systems. Thus,
it is significant to study filtering/state estimation/control for
Markov jump systems with asynchronous activities [12]–[14].
In [12], the design method of the asynchronous controller
has been extended to nonlinear Markov jump systems in the
continuous-time domain. Shen et al. [13] have considered
more practical circumstances that modes of the filter and
quantizer are both asynchronous with that of Markov jump
neural networks. However, the cases of asynchronous activities
with unknown probabilities are rarely considered in the state
estimator design for Markov jump neural networks.

All the above literature deals with the control/state estima-
tion problem in the infinite-time interval. From the perspective
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of practical engineering, the states of control systems are
always expected to be convergent over a fixed time inter-
val, which signifies that achieving the control effect after
a long time is almost meaningless [15], [16]. Therefore,
the finite-time analyses of the system performance have been
actively investigated recently, such as finite-time synchroniza-
tion [17], command filtered backstepping control [18], and
finite-time stability [19]. With the help of finite-time control
technique, a new error compensation mechanism has been
proposed in [18] such that the stability of the closed-loop
systems could be guaranteed with higher tracking precision
and faster response. These significant results also motivate us
to research the asynchronous state estimation problem in the
finite-time interval.

In the above state estimation problems, the common com-
munication strategy is that all the system measurements are
transmitted by the time-triggered mechanism, which means
that the measurements must be sent to the estimator within a
fixed period, whether necessary or not. However, in practice,
both network bandwidth and the energy of battery-based
sensors are usually limited [20]–[22]; therefore, transfer-
ring data frequently will inevitably occupy more network
resources and result in a waste of finite electricity. Under
this circumstance, the event-triggered mechanism, which can
effectively reduce the frequency of data transmission by an
event-triggered condition, has gained considerable attention in
recent years [23]–[28]. In [25], the tracking controller with
an event-triggered scheme is able to effectively reduce the
communication burden while guaranteeing the property of
finite-time convergence. By utilizing the impact of transmis-
sion delay, a novel distribution-based event-triggered scheme
has been established in [28], which is helpful to reduce the
energy cost. However, the above event-triggered mechanism
cannot dynamically adapt to the operation of the system
because its triggered threshold is a prior predetermined con-
stant. In contrast to a usual event-triggered strategy with a fixed
threshold, the self-triggered strategies used in [29] and [30]
are able to adjust task periods as the variation of the system
by precomputing the next update time. However, self-triggered
conditions are more conservative than the event-triggered ones,
and more constraints on the system structure are needed for the
design or implementation of controllers in the self-triggered
form [31]. As a result, the dynamic event-triggered strategy has
received increasing attention recently. Based on a conventional
event-triggered mechanism, the dynamic event-triggered strat-
egy has been investigated in [32], which is able to further save
the communication resources with an additional dynamical
variable. Because of some unavoidable imperfections, such as
communication delays and sporadic measurements, two cus-
tomized dynamic event-triggered strategies have been designed
in [33] for updating the controller such that the desired
event-triggered control system is stable. In [34], the state
estimators under dynamic event-triggered schemes have been
presented for artificial neural networks. However, for the
Markov jump neural networks, the dynamic event-based state
estimation issues have not been fully discussed.

Based on the aforementioned observations, this article is
interested in the asynchronous state estimation problem for

Markov jump neural networks, where the measurements from
the original system to the estimator are monitored by a
dynamic event-triggered transmission mechanism. With the
help of the Lyapunov analysis approaches, an asynchronous
event-based state estimator is designed to guarantee that the
researched system reaches the expected dissipation perfor-
mance in the finite-time interval. To demonstrate the feasibility
and advantage of the proposed estimation method, an illus-
trative example is presented at the end. One thing worth
noticing is that considering the asynchronous phenomenon and
finite-time constraint may increase the complexity of designing
desired state estimator. The primary contributions are listed as
follows.

1) By refactoring the triggered threshold, a novel dynamic
event-triggered strategy for Markov neural networks is
proposed, which has the potential to strike a tradeoff
between reducing transmission burden and improving
system performance.

2) A hidden Markov model with partially inaccessible
probabilities is introduced in this article to deal with the
asynchronization constraint between the systems and the
estimator.

3) For Markov jump neural networks, the state estimation
problem in finite time is handled by combining with both
asynchronous behavior and event-triggered mechanism
in the view of practical utilization.

Notations: l2[0,∞) is the space of square-summable vector
functions over [0,∞). “∗” denotes the term that is induced by
symmetry, and diag{· · · } stands for a block-diagonal matrix.
Pr{·} stands for the probability. Besides, E{x} and E{x |y} will,
respectively, mean the expectation of x and the expectation of
x condition on y.

II. PRELIMINARY ANALYSIS

A. Plant Description

Let G � {1, 2, . . . ,G} be a finite set; the Markov process
can be described as the parameter {φ(k) ∈ G, k � 0}. For
∀μ, ν ∈ G, the related transition probability matrix�1 = {ϕμν}
subjects to

Pr{φ(k + 1) = ν|φ(k) = μ} = ϕμν (1)

where ϕμν ∈ [0, 1] and
�G

ν=1 ϕμν = 1.
Then, we consider the Markov jump neural networks with

G modes defined by⎧⎪⎨
⎪⎩

x(k + 1) = Aφ(k)x(k)+ Dφ(k) f (x(k))+ M1φ(k)o(k)

y(k) = Bφ(k)x(k)+ M2φ(k)o(k)

z(k) = Cφ(k)x(k)

(2)

where the vectors x(k) ∈ R
nx , y(k) ∈ R

ny , and z(k) ∈
R

nz are the neural state, the measurement output, and the
output signal to be estimated. The external disturbance
o(k) ∈ R

no belongs to l2[0,∞). The matrices Aφ(k) ∈
R

nx ×nx , Dφ(k) ∈ R
nx ×nx , M1φ(k) ∈ R

nx ×no , Bφ(k) ∈ R
ny×nx ,

M2φ(k) ∈ R
ny×no , and Cφ(k) ∈ R

nz×nx are known for
every φ(k). Especially, Aφ(k) � diag{a1,φ(k), . . . , anx ,φ(k)} and
Dφ(k) denotes the connection weight matrix. The functions
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f (x(k)) = [ f1(x1(k)) . . . fnx (xnx (k))]T represent neuron
activation functions of the neural networks.

Furthermore, to describe the asynchronous activities
between the estimated system and the estimator, a hidden
Markov chain ψ(k) is introduced, which belongs to H =
{1, 2, 3, . . . , H }. ∀μ ∈ G and ∀ι ∈ H, the related conditional
probability matrix is �2 = {τμι}, and ψ(k) subjects to

Pr{ψ(k) = ι|φ(k) = μ} = τμι (3)

where τμι ∈ [0, 1] and
�H

ι=1 τμι = 1. It is worth pointing out
that, in this article, we allow some conditional probabilities
τμι to be unknown. In other words, the conditional probability
matrix �2 is partly accessible, which can be described as
following form:

�2 =

⎡
⎢⎢⎣
τ11 ? ? τ14

? τ22 ? τ24

τ31 ? τ34 ?
τ41 τ42 ? τ44

⎤
⎥⎥⎦ (4)

where “?” represents that corresponding τμι is unknown. For
the sake of analysis later, we denote H = Hμ

uk



Hμ

k ∀μ ∈ G
with �

Hμ
uk �

�
ι |τμι is unknown

�
Hμ

k �
�
ι |τμι is known

� (5)

and 	̄Kμ = �
ι∈Hμ

k
τμι	μι, τ

K
μ = �

ι∈Hμ
k
τμι.

Remark 1: Due to the difficulty to obtain the information
of the hidden Markov chain completely, modeling the asyn-
chronous behavior by a hidden Markov chain with partially
inaccessible probabilities is significant. In this article, three
cases of partially inaccessible conditional probability matrices
are considered: fully accessible, partly accessible, and almost
inaccessible. The impact of different probability accessibility
on the resulting system will be analyzed in Section IV.

B. Dynamic Event-Triggered Transmission Mechanism

Reducing the processing of unnecessary data can effectively
save the computing resources. For this purpose, a dynamic
event-triggered transmission mechanism with a special thresh-
old parameter is employed to decide whether the system output
y(k) needs to be transmitted to the state estimator. Denote
the current triggered instant as hm(m � 0); the dynamic
event-triggered condition can be established as follows:


�
ζ(k), ρ(k), σψ(k)

�
� ρT (k)ρ(k)− yT (k)σψ(k)y(k)− 1

δψ(k)
ζ(k) (6)

where ρ(k) � y(k)− y(hm) with the current triggered output
y(hm) and the latest system outputs y(k), δψ(k), and ζ(k)
are known positive scalars and internal dynamic variables,
respectively. The threshold σψ(k) is designed as a diagonal
matrix satisfying�

σψ(k) = diag{σ1ψ(k), σ2ψ(k), . . . , σnyψ(k)}
σtψ(k) ∈ [0, 1), t ∈ {1, 2, . . . , ny}.

When the condition 

�
ζ(k), ρ(k), σψ(k)

�
� 0, the triggered

output y(hm) will be updated. Accordingly, the next triggered
instant hm+1 subjects to

hm+1 = inf
�
k > hm |
�ζ(k), ρ(k), σψ(k)� � 0

�
. (7)

Then, the internal dynamic variable ζ(k) will change with�
ζ(k + 1) = ηψ(k)ζ(k)+ yT (k)σψ(k)y(k)− ρT (k)ρ(k)

ζ(0) = ζ0 � 0
(8)

where ηψ(k) is a given scalar. It is worth noting that the given
parameters ηψ(k) and δψ(k) satisfy

ηψ(k) ∈ (0, 1), ηψ(k)δψ(k) � 1. (9)

Remark 2: Note that dynamic event-triggered condition (6)
is a uniform framework, including two special cases. Setting
ζ(k) = 0 or δψ(k) = ∞, the dynamic event-triggered condi-
tion will reduce to the static one in [35]. Further adjusting
the threshold matrix σψ(k) to approach zero, then all the
measurements will be transmitted, which implies that the
event-triggered mechanism is converted to the time-triggered
mechanism.

Remark 3: In fact, for a complex system, the fluctuations of
its subsystems are usually different, and some subsystems may
diverge too fast to estimate. For conventional event-triggered
mechanism, the scalar triggered threshold, such as the form
σi ∈ [0, 1) in [22], is determined according to the worst case
operating scenario. In this case, the transmission will be trig-
gered more frequently to insure the estimation performance.
Thus, the triggered threshold in this article is reconstructed
as a diagonal matrix in this article instead of the usual scalar
form. By flexibly adjusting the element σtψ(k) in the threshold
matrix σψ(k) according to the performance requirements of
each subsystem, the proposed dynamic triggering mechanism
has greater potential to strike a balance between reducing
communication burden and improving system performance.

Remark 4: The systems studied in this article are
discrete-time systems, and as can be seen from (7),
the event-triggered interval is greater than zero [36]. It means
that the proposed event-triggered transmission mechanism will
not consider Zeno behavior.

C. Event-Based Asynchronous State Estimator

Consider the invalidity and inaccuracy of state measure-
ment, we bring in the following asynchronous state estimator,
which can reconstruct the state by using the measurement
output: ⎧⎪⎨

⎪⎩
x̃(k + 1) = Ãψ(k) x̃(k)+ K̃ψ(k)(y(hm)

− Bφ(k) x̃(k)),

z̃(k) = C̃ψ(k) x̃(k)

(10)

where k ∈ [hm, hm+1), x̃(k) ∈ R
nx is the state estimation,

and z̃(k) ∈ R
nz is the estimation of z(k). The state estimator

matrices Ãψ(k), K̃ψ(k) , and C̃ψ(k) are to be confirmed later.
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D. State Estimation Error System

For convenience, the subscripts μ, ν, and ι are used in place
of the parameters φ(k), φ(k + 1), and ψ(k), respectively.
By integrating (2) and (10), an error system for the state
estimator is derived as⎧⎪⎨

⎪⎩
x̄(k + 1) = Āμι x̄(k)+ D̄μ f (x(k))

− K̄ιρ(k)+ M̄μιo(k)

z̄(k) = C̄μι x̄(k)

(11)

where

x̄(k) = �
x T (k) x̃ T (k)

�T
, z̄(k) = z(k)− z̃(k),

Āμι =
�

Aμ 0
K̃ιBμ Ãι − K̃ιBμ

�
, M̄μι =

�
M1μ

K̃ιM2μ

�
D̄μ = �

DT
μ 0

�T
, K̄ι = �

0 K̃ T
ι

�T
, C̄μι = �

Cμ −C̃ι

�
.

Up until now, the preliminary analyses of the researched
neural networks and the correlative state estimator have been
completed. To facilitate the derivation of theorems later, some
critical definitions and lemmas are needed.

Definition 1 [16]: For a positive definite matrix ϒ and some
scalars 0 < e1 < e3, 0 < e2, and T ∈ N+, system (11) is
stochastically finite-time bounded regarding (e1, e2, e3, ϒ,T )
if the following relation holds:⎧⎪⎨

⎪⎩
T�

k=0

oT (k)o(k) � e2
2

x̃ T (0)ϒ x̃(0) � e2
1 ⇒ E

�
x̃ T (k)ϒ x̃(k)

�
� e2

3.

(12)

To further derive the definition of dissipativity, the energy
supply function is introduced, which is described as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
J (U, z̄(k), o(k)) = E

�
U�

k=0

β−kr(z̄(k), o(k))

�
,

r(z̄(k), o(k)) = z̄T (k)�1 z̄(k)+ 2z̄T (k)�2o(k)

+ oT (k)�3o(k)

(13)

where β > 1 and U ∈ N+. The real matrices �1, �2, and �3

are with appropriate dimensions and satisfy �1 = �T
1 � 0 and

�T
3 = �3. To facilitate later derivation, let �1+ be a positive

semidefinite matrix and −(�1+)2 = �1.
Definition 2 [37]: System (11) is stochastically

finite-time exponential dissipative regarding (e1, e2, e3,
ϒ,T ,�1,�2,�3) if the following requirements are achieved.

C1: System (11) is finite-time bounded regarding (e1, e2, e3,
ϒ,T ).

C2: For every U > 0 and a given scalar γ̄ > 0, the estima-
tion error z̄(k) in system (11) satisfies

J (U, z̄(k), o(k)) ≥ γ̄

U�
k=0

oT (k)o(k) (14)

under the zero initial condition.

Lemma 1 [38]: For a scalar ε and nonsingular matrix W ,
the positive definite matrix Q satisfies

(W − εQ)Q−1(W − εQ)T � 0

⇔ ε2 Q − εW T − εW � −W Q−1W T . (15)

Lemma 2 [39]: For the dynamic law (8), the internal
dynamic variable ζ(k) � 0 holds for all nonnegative integers k
if the given scalars δψ(k) and ηψ(k) satisfy the precondition (9).

Lemma 3 [40]: For the neuron activation functions f (x(k))
in (2), if the following two assumptions are satisfied, the fol-
lowing holds.
Assumption 1: f (x(k)) is continuous and f (0) = 0.
Assumption 2: There exist constant diagonal matrices S1 and

S2 with appropriate dimensions such that

S1 ≤ f (x1)− f (x2)

x1 − x2
≤ S2 ∀x1 
= x2, x1, x2 ∈ R

nx .

Then, it holds that�
x(k)

f (x(k))

�T �
S̃1�μι S̃2�μι

∗ �μι

��
x(k)

f (x(k))

�
� 0 (16)

where �μι = diag{�1μι, . . . ,�nxμι} is positive definite, and

S̃1 = S1 S2, S̃2 = − S1 + S2

2
.

III. MAIN RESULTS

Considering the asynchronous constraint, a dynamic
event-triggered state estimator will be designed with the
form (10) for system (2). Meanwhile, a sufficient condition,
which can ensure the expected property for system (11), will
be deduced with the aid of the Lyapunov function.

Theorem 1: Given a scalar β (β > 1) and a diagonal
matrix σι, system (11) is stochastically finite-time exponen-
tial dissipative regarding (e1, e2, e3, ϒ,T ,�1,�2,�3) if there
exist positive numbers α and γ and positive definite matrices
Pμ, 	μι, and Oμ such that, for any μ ∈ G, the following
inequalities hold.

	̄Kμ + �
1 − τKμ

�
	μι < Pμ, ι ∈ Hμ

uk (17)

� �
�
�1 �2

∗ �3

�
< 0, ι ∈ H (18)

max
μ∈G

{λmax(P̃μ)}e2
1+ ζ0

δ
+max
μ∈G

{λmax(Oμ)}e2
2

<
e2

3 minμ∈G
�
λmin(P̃μ)

�
βT (19)

where λmax(∗) and λmin(∗) represent the maximum and mini-
mum eigenvalues of a real matrix, respectively. Furthermore

�1 =
�−P̄−1

μ 0
∗ −I

�
, P̃μ � ϒ− 1

2 Pμϒ
− 1

2 ,

�2 =
�

Āμι D̄μ −K̄ι 0 M̄μι M̄μι

�1+C̄μι 0 0 0 0 0

�

�3 �

⎡
⎢⎢⎢⎢⎣
�11

3 �12
3 0 0 �15

3∗ −�μι 0 0 0
∗ ∗ �33

3 0 0
∗ ∗ ∗ �44

3 0
∗ ∗ ∗ ∗ �55

3

⎤
⎥⎥⎥⎥⎦

�11
3 = −β	μι − LT S̃1�μιL +

�
1

δι
+ α

�
B̄T
μσι B̄μ,

L = �
I 0

�
, B̄μ = �

Bμ 0
�
, P̄μ =

G�
ν=1

ϕμνPν
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�12
3 = −LT S̃2�μι, �33

3 = −
�

1

δι
+ α

�
, �44

3 = ηι−β+α
δι

�15
3 =

��
1

δι
+ α

�
B̄T
μσιM2μ −C̄T

μι +
�

1

δι
+ α

�
B̄T
μσιM2μ

�

�55
3 =

�
�55(1)

3 0
∗ �

55(2)
3

�

�
55(1)
3 = −Oμ +

�
1

δι
+ α

�
MT

2μσιM2μ

�55(2)
3 = −�3 + γ I +

�
1

δι
+ α

�
MT

2μσιM2μ.

Proof: In the first place, we assume that the matrices 	μι
satisfy the following inequality:

H�
ι=1

τμι	μι < Pμ. (20)

Noting that the conditional probabilities τμι are not com-
pletely known, one has

H�
ι=1

τμι	μι − Pμ

=
�
ι∈Hμ

k

τμι	μι +
�
ι∈Hμ

uk

τμι	μι − Pμ

= 	̄Kμ + (1 − τKμ )
�
ι∈Hμ

uk

τμι

(1 − τKμ )
	μι − Pμ

=
�
ι∈Hμ

uk

τμι

(1 − τKμ )

�
	̄Kμ + (1 − τKμ )	μι − Pμ

�
(21)

with
�

ι∈Hμ
uk
(τμι/(1 − τKμ )) = 1. In the aforementioned

derivation, an equivalence between (20) and (17) is established
such that the assumption (20) holds, which will be used later.

In what follows, the finite-time boundedness of system (11)
will be analyzed based on the following Lyapunov function:

V (k) = x̄ T (k)Pμ x̄(k)+ 1

δι
ζ(k). (22)

Consider the condition (16) in Lemma 3 and the
event-triggered scheme with 


�
ζ(k), ρ(k), σψ(k)

�
< 0, the fol-

lowing derivation can be obtained by S-Procedure [41]:
E
�

V (k + 1)− βV (k)− oT (k)Oμo(k)
�

< E
�

V (k + 1)− βV (k)− oT (k)Oμo(k)
�

− αE�
�ζ(k), ρ(k), σψ(k)��
− E

��
x(k)

f (x(k))

�T�
S̃1�μι S̃2�μι

∗ �μι

��
x(k)

f (x(k))

��

=
H�
ι=1

τμι
�
x̄ T (k + 1)P̄μ x̄(k + 1)− β x̄ T (k)Pμ x̄(k)

+ 1

δι
(ζ(k + 1)− βζ(k))− oT (k)Oμo(k)

−α
�
ρT (k)ρ(k)− yT (k)σιy(k)− 1

δι
ζ(k)

��

−
�

x(k)
f (x(k))

�T �
S̃1�μι S̃2�μι

∗ �μι

��
x(k)

f (x(k))

��
. (23)

Recalling the inequality (20), it yields

E
�

V (k + 1)− βV (k)− oT (k)Oμo(k)
�

<

H�
ι=1

τμι
�
x̄ T (k + 1)P̄μ x̄(k + 1)− β x̄ T (k)	μι x̄(k)

+ 1

δι
(ζ(k + 1)− βζ(k))− oT (k)Oμo(k)

− α
�
ρT (k)ρ(k)− yT (k)σιy(k)− 1

δι
ζ(k)

��

−
�

x(k)
f (x(k))

�T �
S̃1�μι S̃2�μι

∗ �μι

��
x(k)

f (x(k))

��

= X T (k)
H�
ι=1

τμι
�
�̄T

2 P̄μ�̄2 + �̄3
�
X (k) (24)

where

X (k) =
�
x̄ T (k) f T (x(k)) ρT (k) ζ

1
2 (k) oT (k)

�T

�̄2 = �
Āμι D̄μ −K̄ι 0 M̄μι

�

�̄3 �

⎡
⎢⎢⎢⎢⎣
�11

3 �12
3 0 0 �̄15

3
∗ −�μι 0 0 0
∗ ∗ �33

3 0 0
∗ ∗ ∗ �44

3 0
∗ ∗ ∗ ∗ �̄55

3

⎤
⎥⎥⎥⎥⎦

�̄15
3 =

�
1

δι
+ α

�
B̄T
μσιM2μ

�̄55
3 = −Oμ +

�
1

δι
+ α

�
MT

2μσιM2μ.

Using the Schur complement, it is obvious that the inequal-
ity (18) is equivalent to �̄T

2 P̄μ�̄2 + �̄3 < 0, which leads to

E{V (k + 1)} < βV (k)+ oT (k)Oμo(k). (25)

Subsequently, through employing successive substitutions
of (25), it can be obtained that

E{V (k)}
< βV (k − 1)+ max

μ∈G
{λmax(Oμ)}oT (k − 1)o(k − 1)

< βk V (0)+ max
μ∈G

{λmax(Oμ)}
k−1�
t=0

βk−t−1oT (t)o(t)

< βT

�
V (0)+max

μ∈G
{λmax(Oμ)}

T�
t=0

oT (t)o(t)

�

< βT
�

max
μ∈G

{λmax(P̃μ)}e2
1+ ζ0

δ
+max
μ∈G

{λmax(Oμ)}e2
2

�
(26)

where P̃μ � ϒ−1/2 Pμϒ−1/2 and k ≤ T . Recalling the
conditions ζ(k) � 0 and δι > 0 in Lemma 2, one gets

E{V (k)} = E
 

x̄ T (k)Pμ x̄(k)+ 1

δι
ζ(k)

!
> E

�
x̄ T (k)Pμ x̄(k)

�
> min

μ∈G

�
λmin(P̃μ)

�
E
�

x̄ T (k)ϒ x̄(k)
�
. (27)

Combining with inequalities (26) and (27), one can derive

E
�

x̄ T (k)ϒ x̄(k)
�
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<
βT�maxμ∈G{λmax(P̃μ)}e2

1+ ζ0

δ
+maxμ∈G{λmax(Oμ)}e2

2

�
minμ∈G

�
λmin(P̃μ)

� .

(28)

From the inequality (1), it can be straightforward concluded
that E

�
x̄ T (k)ϒ x̄(k)

�
< e2

3, which signifies that system (11) is
stochastically finite-time bounded regarding (e1, e2, e3, ϒ,T ).

Now, one is in a position to analyze the dissipativity of
system (11) with zero initial conditions. Considering the
supply rate r(z̄(k), o(k)) and inequality (24), the following
function can be established:
F � E

�
V (k + 1)− βV (k)− z̄T (k)�1 z̄(k)

− 2z̄T (k)�2o(k)− oT (k)(�3 − γ I )o(k)
�
. (29)

Via the similar derivation as that for (23) and (24), it is not
difficult to get

F <

H�
ι=1

τμι
�
x̄ T (k + 1)P̄μ x̄(k + 1)− β x̄ T (k)	μι x̄(k)

+ 1

δι
(ζ(k + 1)− βζ(k))− z̄T (k)�1 z̄(k)

− 2z̄T (k)�2 o(k)− oT (k)(�3 − γ I )o(k)

− α
�
ρT (k)ρ(k)− yT (k)σιy(k)− 1

δι
ζ(k)

��

−
�

x(k)
f (x(k))

�T �
S̃1�μι S̃2�μι

∗ �μι

��
x(k)

f (x(k))

��

= X T (k)
H�
ι=1

τμι
�
�̄T

2 P̄μ�̄2 − FT
2 �1 F2 + F3

�
X (k) (30)

where

F2 = �
C̄μι 0 0 0 0

�

F3 �

⎡
⎢⎢⎢⎢⎣
�11

3 �12
3 0 0 F15

3∗ −�μι 0 0 0
∗ ∗ �33

3 0 0
∗ ∗ ∗ �44

3 0
∗ ∗ ∗ ∗ F55

3

⎤
⎥⎥⎥⎥⎦

F15
3 = −C̄T

μι +
�

1

δι
+ α

�
B̄T
μσιM2μ

F55
3 = −�3 + γ I +

�
1

δι
+ α

�
MT

2μσιM2μ.

By employing the Schur complement to (18), �̄T
2 P̄μ

�̄2 − FT
2 �1 F2 +F3 < 0 holds, which means that

E{V (k + 1)}
< E

�
βV (k)+ r(z̄(k), o(k))− γ oT (k)o(k)

�
. (31)

Under zero initial conditions, namely, x̄(0) = 0 and ζ0 = 0,
one further has

E{V (U + 1)}

< E
�

U�
k=0

βU−k
�
r(z̄(k), o(k))− γ oT (k)o(k)

��
. (32)

Noting that V (U + 1) > 0, it follows that

γ

U�
k=0

βU−koT (k)o(k)

< E
�

U�
k=0

βU−kr(z̄(k), o(k))

�

⇒ γ

U�
k=0

β−koT (k)o(k) < E
�

U�
k=0

β−kr(z̄(k), o(k))

�

⇒ γβ−U
U�

k=0

oT (k)o(k) < E
�

U�
k=0

β−kr(z̄(k), o(k))

�
. (33)

Letting γ̄ = γβ−U , it is intuitive to find that the inequal-
ity (33) satisfies the condition (C2) in Definition 2. In conclu-
sion, system (11) is of stochastically finite-time exponential
dissipativity regarding (e1, e2, e3, ϒ,T ,�1,�2,�3), which
finishes the proof.

Now, based on the discussion of Theorem 1, the design
approach of the event-based asynchronous state estimator will
be provided by introducing the following slack matrix:

Wμι =
�

W1μι W3ι

W2μι W3ι

�
. (34)

Theorem 2: Given scalars ε and β (β > 1) and a diagonal
matrices σι, system (11) is stochastically finite-time expo-
nential dissipative regarding (e1, e2, e3, ϒ,T ,�1,�2,�3) if
there exist positive numbers α, θ1, θ2, θ3, and γ and matrices

Pμ =
�

P1μ P2μ

∗ P3μ

�
> 0, 	μι =

�
	1μι 	2μι

∗ 	3μι

�
> 0, Oμ > 0, Ãι,

K̃ι, C̃ι, and Wμι such that, for any μ ∈ G, the inequality (17)
and the following conditions hold:

�̃ �
�
�̃1 �̃2

∗ �3

�
< 0, ι ∈ H (35)

θ1ϒ < Pμ < θ2ϒ, Oμ < θ3 I (36a)

θ2 e2
1 + ζ0

δι
+ θ3 e2

2 <
θ1 e2

3

βT (36b)

where

�̃1 =
�
ε2 P̄μ − εW T

μι − εWμι 0
∗ −I

�
, �̃2 =

�
�̃11

2 �̃12
2

�̃21
2 0

�

�̃11
2 =

�
W1μιAμ + K̃ιBμ Ãι − K̃ιBμ W1μιDμ −K̃ι

W2μιAμ + K̃ιBμ Ãι − K̃ιBμ W2μιDμ −K̃ι

�

�̃12
2 =

�
0 W1μιM1μ + K̃ιM2μ W1μιM1μ + K̃ιM2μ

0 W2μιM1μ + K̃ιM2μ W2μιM1μ + K̃ιM2μ

�
�̃21

2 = �
�1+Cμ −�1+C̃ι 0 0

�
.

In addition, the parameters in state estimator (10) can be
obtained by

Ãι = W−1
3ι Ãι, K̃ι = W−1

3ι K̃ι, C̃ = C̃ι. (37)

Proof: According to Lemma 1, the positive definite matrix
P̄μ satisfies −Wμι P̄−1

μ W T
μι � ε2 P̄μ − εW T

μι − εWμι, which
implies that

�̂ �
�
�̂1 �̃2

∗ �3

�
< 0, ι ∈ H (38)
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TABLE I

PARAMETERS OF SYSTEM (2)

where

�̂1 =
�−Wμι P̄−1

μ W T
μι 0

∗ −I

�
. (39)

To facilitate the following derivation, one defines the fol-
lowing matrix with appropriate dimensions:

W = diag

 �
W−1
μι 0
∗ I

�
, I

!
. (40)

Then, it is straightforward to obtain the inequality (18) by
performing a congruence transformation to (38) with W .

Furthermore, in the case that the condition (36a) holds,
it can be deduced that

λmax(P̃μ) < θ2, λmin(P̃μ) > θ1, λmax(Oμ) < θ3

which implies that (1) can be guaranteed by (36b). To sum up,
the expected property for system (11) is guaranteed, and the
desired state estimator parameters can be solved at the same
time. This completes the proof.

Remark 5: As an algorithm based on linear matrix
inequality, the resulting conditions in Theorem 2 have a
polynomial-time complexity. Looking back on the Markov
jump neural networks (2) and the state estimator (10), we can
get the total number of decision variables N = (6n2

x +
nx)G H + (2n2

x +nx ny +nznx +n2
o)H +4n2

x G and the number
of LMIs M = nx(2

�G
μ |Hμ

uk |+5G H +4G)+no(2G H +G)+
nz G H +2G H+H ), where |Hμ

uk | represents the capacity of the
set Hμ

uk . It is obvious that the computational burden depends
polynomially on the variable dimensions, the network size,
and the amount of estimator modes.

IV. EXAMPLES

The purpose here is to show the effectiveness of com-
bining the state estimator design methods and dynamic
event-triggered transmission mechanism through considering
the Markov jump neural networks (2) with three modes and
the parameters in Table I.

In addition, the external disturbance is chosen as
o(k) = e−0.3kcos(0.8k), and by defining the activation func-
tions as�

f1(x1(k)) = tanh(0.6x1(k))− 0.2 sin(x1(k))

f2(x2(k)) = tanh(−0.4x2(k))

TABLE II

FOUR DIFFERENT CONDITIONAL PROBABILITY MATRICES�2

it can be found that

S̃1 = diag{−0.16, 0}, S̃2 = diag{−0.3, 0.2}.
The transition probability matrix �1, which is introduced to

describe the switching of the system mode φ(k), is given by

�1 =
⎡
⎣0.25 0.6 0.15

0.2 0.65 0.15
0.1 0.7 0.2

⎤
⎦.

On the other hand, the hidden Markov process ψ(k) satisfies
ψ(k) ∈ {1, 2, 3}, and four conditional probability matrices
are defined in Table II to take into account the different
asynchronous cases where the probabilities τμι are partly
accessible.

With respect to the event-triggered scheme (6) and (8),
we choose the threshold matrices as

σψ(k) =

⎧⎪⎨
⎪⎩

diag{0.6, 0.8}, ψ(k) = 1

diag{0.3, 0.1}, ψ(k) = 2

diag{0.6, 0.5}, ψ(k) = 3

(41)

and the initial value ζ0 = 0. According to Lemma 2, we set
δ1 = 10, δ2 = 2, δ3 = 10, η1 = 0.1, η2 = 0.8, and η3 = 0.1.

To facilitate the solution of the state estimator through
using the linear matrix inequality, several parameters in Theo-
rem 2 need to be ascertained and set. Inspired by the methods
of optimizing parameters in the reference [16], the finite-time
parameters are selected as e1 = 1, e2 = 0.707, e3 = 15,
ϒ = diag{1, 1, 1, 1}, T = 30, and β = 1.04. Then, recalling
Lemma 1, we give � = 1.5. The dissipativity parameters are
chosen as �1 = −0.36, �2 = −1.1, and �3 = 5.

It is significant that different combinations of asynchro-
nous cases and boundary e3 will result in different dissipa-
tion indices. The corresponding comparison results are listed
in Table III, and two evolution principles can be found obvi-
ously in this table. First, for the fixed boundary e3, the optimal
dissipation index γ̄ is decreasing when changing the condi-
tional probability matrix �2 from Case I to Case IV, which
reflects that the performance of system degrades with the
loss of the conditional probability information. Furthermore,
there exists monotonicity in the augment of the dissipative
performance when the boundary e3 is increasing.

Based on the aforementioned parameter settings, the gains
of estimator (10) can be obtained straightway by solving a
set of linear matrix inequalities in Theorem 2. Subsequently,
for the partly accessible case (Case II), the optimal dissipation
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TABLE III

OPTIMAL DISSIPATION INDEX γ̄ FOR DIFFERENT e3’S

Fig. 1. Switching modes in the system and the estimator.

Fig. 2. Release intervals for the event-triggered condition (6).

index γ̄ for the finite-time exponential dissipative performance
is 1.2117, and the desired gains are acquired as

Ã1 =
�

0.2680 −0.3150
−0.0415 0.0382

�
, Ã2 =

�
0.1059 −0.4906

−0.1703 −0.1867

�

Ã3 =
�

0.3089 −0.3149
−0.1210 0.1112

�
, K̃1 =

�−0.0056 −0.2827
−0.2187 −0.1387

�

K̃2 =
�−0.1318 −0.3824
−0.2691 −0.2901

�
, K̃3 =

�
0.0156 −0.2798

−0.2608 −0.1378

�
C̃1 = �−0.2262 −0.3560

�
, C̃2 = �−0.2703 −0.2807

�
C̃3 = �−0.1799 −0.4861

�
.

Meanwhile, two sequences depicted in Fig. 1 illustrate that
the modes of system (2) and estimator (10) are switched
asynchronously. Under initial condition x(0) = [0.2 − 0.3]T ,
the event-triggered behavior within the finite interval [0, 30]
is represented in Fig. 2 by, respectively, defining release
intervals and release time as the vertical axis and the horizontal
axis. The output z(k) and its estimations z̃(k) are shown
in Fig. 3, which means that, with the dispatch of the dynamic
event-triggered transmission scheme, the estimator outputs can
closely track the original output. In other words, the proposed
dynamic event-triggered mechanism is able to effectively
reduce data transmission while maintaining the tracking effect
of the estimator. The estimation error z̄(k) described in the

Fig. 3. Output z(k) and its estimations z̃(k) under the dispatch of the
event-triggered scheme.

TABLE IV

OPTIMAL DISSIPATION INDEX γ̄ FOR THE TRIGGERED

THRESHOLD σι WITH DIFFERENT STRUCTURES

TABLE V

TE FOR THE TRIGGERED THRESHOLD σι WITH DIFFERENT STRUCTURES

subgraph of Fig. 3 also clearly reflects the tracking effect of
the estimator.

Up until now, we have just analyzed the tracking result
of the event-based estimator under Case II. In what follows,
a comparative verification is established to further illustrate
the feasibility of the proposed event-triggered transmission
scheme according to the exponential dissipative performance
and the transmission efficiency (TE), which is defined as

TE = The amount of triggered output

The total of system output
× 100%.

For a fixed number of system output, in order to reduce the
communication burden, we hope that the amount of triggered
output is as small as possible, which also means that the TE
is as low as possible.

The effects of the triggered threshold σι with different
structures on both of the index γ̄ and TE are reported
in Tables IV and V, respectively. The symbol “?" in Table V
signifies that the TE is indeterminate because most of the prob-
ability information of the conditional probability matrix �2 is
lost in Cases III and IV. Under this circumstance, the following
discussion only considers Cases I and II.

Setting the triggered threshold σι = 0.001I , it can be seen
that all the measurements are transmitted. As discussed in
Remark 2, it implies that the event-triggered mechanism is
converted to the time-triggered one. However, implementing
the event-triggered mechanism with σι in (41), the TE is 83.9%
in Case I and 81.7% in Case II. Thus, the event-triggered
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mechanism may be a more appropriate strategy in the cases
of communication resources that need to be saved. Then, let us
focus on the event triggering mechanism with a scalar thresh-
old (such as θ > 0 in [23]). As shown in Tables IV and V,
using the scalar threshold 0.27, namely, σι = 0.27I , needs to
occupy more transmission resources to maintain the similar
dissipation performance as the diagonal matrix (41). On the
contrary, with the similar TE as the diagonal matrix (41),
the dissipation performance of using the threshold σι =
0.54I is obviously worse than that of employing the diag-
onal matrix (41). The above observation concludes that the
proposed event-triggered transmission mechanism has greater
potential to strike a balance between reducing transmission
burden and improving system performance.

V. CONCLUSION

In this article, the finite-time exponential dissipative state
estimation issue for Markov jump neural networks has been
discussed with fully considering the asynchronization con-
straint. An asynchronous state estimator combining with an
event-triggered scheme has been presented to ensure that the
resulting system satisfies a prescribed dissipation performance
index within the finite time, and the estimator gains can be
acquired through solving a set of linear matrix inequalities.
In Section IV, the impact of different asynchronous situations
on the resulting system has been analyzed. In addition, the sim-
ulation data have proved that the proposed event-triggered
transmission mechanism can effectively reduce the amount
of data transmission while ensuring the expected estima-
tion performance. In practice, noting that there are many
undesired factors in networked control systems [42], such
as packet-dropout [43] and time delay [44], it is significant
to develop the resulting method for Markov jump neural
networks with communication constraints, which is one of our
future studies.
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